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Abstract: Despite the current reductionist approach providing an optimal indication for 
diagnosis and treatment of patients with heart failure with reduced ejection fraction (HFrEF), 
there are no standard pharmacological therapies for heart failure with preserved ejection 
fraction (HFpEF). Although in its infancy in cardiovascular diseases, the epigenetic-based 
therapy (“epidrugs”) is capturing the interest of physician community. In fact, an increasing 
number of controlled clinical trials is evaluating the putative beneficial effects of: 1) direct 
epigenetic-oriented drugs, eg, apabetalone, and 2) repurposed drugs with a possible indirect 
epigenetic interference, eg, metformin, statins, sodium glucose transporter inhibitors 2 
(SGLT2i), and omega 3 polyunsaturated fatty acids (PUFAs) in both HFrEF and HFpEF, 
separately. Apabetalone is the first and unique direct epidrug tested in cardiovascular patients 
to date, and the BETonMACE trial has reported a reduction in first HF hospitalization (any 
EF value) and cardiovascular death in patients with type 2 diabetes and recent acute coronary 
syndrome, suggesting a possible role in secondary prevention. Patients with HFpEF seem to 
benefit from supplementation to the standard therapy with statins, metformin, and SGLT2i 
owing to their ability in reducing mortality. In contrast, the vasodilator hydralazine, with or 
without isosorbide dinitrate, did not provide beneficial effects. In HFrEF, metformin and 
SGLT2i could reduce the risk of incident HF and mortality in affected patients whereas 
clinical trials based on statins provided mixed results. Furthermore, PUFAs diet supplemen-
tation was significantly associated with reduced cardiovascular risk in both HFpEF and 
HFrEF. Future large trials will reveal whether direct and indirect epitherapy will remain 
a work in progress or become a useful way to customize the therapy in the real-world 
management of HFpEF and HFrEF. Our goal is to discuss the recent advancement in the 
epitherapy as a possible way to improve personalized therapy of HF. 
Keywords: heart failure, personalized therapy, epidrugs

Introduction
Although novel drugs have successfully entered the clinical arena of heart failure with 
reduced ejection fraction (HFrEF), such as the PARADIGM-HF-derived angiotensin 
receptor neprilysin inhibitor (ARNI), disease-modifying therapies with a prognostic 
impact for patients affected by heart failure with preserved ejection fraction (HFpEF) 
are still lacking.1–5 HF is a complex and highly prevalent syndrome for which the heart 
undergoes a substantial structural remodeling in patients at risk for major cardiovascular 
diseases (CVDs) (Figure 1).1–6 Gene–environment interactions can be mediated by 
specific patterns of epigenetic-sensitive changes (mainly DNA methylation and histone 
modifications) which may modulate the individual responsiveness to HF 
development.6–14 This complex molecular circuit seems to trigger early cardiomyocyte 
loss, cardiac-remodeling, and micro- and macrovascular damage contributing to the 
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development of major CVDs which may lead to differential 
HF clinical phenotypes.6–14 Of note, the reversible nature of 
epigenetic-sensitive changes has been translated in the clinical 
management of specific hematological malignancies with the 
approval by the Food and Drug Administration (FDA) of some 
“epidrugs”, such as decitabine (Dacogen) and azacitidine 
(Vidaza), as DNA methylation inhibitors, as well as vorinostat 
(Zolinza), belinostat (Beleodaq), romidepsin (Istodax), and 
panobinostat (Farydak), as histone deacetylase inhibitors 
(HDACi).15 Epidrugs are now providing a novel vision for 
personalized therapy of HF and heart transplantation, opening 
up novel options for management of the affected patients.15–18 

At molecular level, we can classify the epidrugs in: “direct 
epidrugs” [eg, the bromodomain and extra-terminal (BET) 
protein inhibitor apabetalone]; and repurposed drugs with 
potential, indirect (non-classical) epigenetic-oriented interfer-
ence by which they may exert cardioprotective functions [eg, 
hydralazine, metformin, statins, and sodium-glucose co- 
transporter-2 inhibitors (SGLT2i)] or nutraceutical compounds 
[eg, omega-3 polyunsaturated fatty acids (PUFAs)]. 
Encouraging results are coming from large randomized trials 
evaluating the putative beneficial effects of combining 

epidrugs with the conventional therapy in patients with 
HF.14–22 Our goal is to update on the emerging epigenetic- 
based strategies which may be useful in the prevention and 
treatment of HFrEF and HFpEF (Figure 1).

Apabetalone: The First and Unique 
“Direct Epidrug” for Management 
of HF
Apabetalone Can Improve Cardiac Function: 
A Focus on Molecular Mechanisms
The bromodomain and extra terminal domain (BET) proteins, 
including the ubiquitous BRD2, BRD3, BRD4, and the testis- 
restricted BRDT, are epigenetic readers (via bromodomains) 
existing in the form of nuclear multidomain docking platforms 
which control the cell-specific activation of gene expression 
profiles.23 Experimental data demonstrated that BETs regulate 
vascular cells, cardiac myocytes, and inflammatory cells,24 and 
their activity may be extended to the regulation of calcification, 
thrombosis, as well as lipid and lipoprotein metabolism, all of 
which participate in atherogenesis.25–27 In particular, BRD4 
facilitated the expression of multiple proinflammatory and 

Figure 1 The possible role of epitherapy in the current framework of HFrEF and HFpEF management. The unstable transition state from the ACC/AHA Stage A/B to Stage 
C/D-Acute/Hospitalized HF is the key point in the treatment of HFrEF and HFpEF. The epitherapy, mainly apabetalone, statins, metformin, SGLT2i, and PUFAs in addition to 
the standard of the care may improve personalized therapy of affected patients. 
Abbreviations: HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; SGLT2i, sodium glucose co-transporter 2 
inhibitors; PUFAs, polyunsaturated fatty acids.
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proatherosclerotic targets involved in thrombosis, leukocyte 
adhesion, and endothelial barrier function, thus identifying 
BRD4 as a possible therapeutic target in CVD setting.24 The 
quinazolone (RVX-208), known as apabetalone, is a derivative 
of the plant polyphenol resveratrol. Apabetalone acts as a direct 
epidrug by selectively targeting the BET family member 
BRD4 to block its interaction with acetylated lysines located 
in histones.28 Apabetalone-BRD4 binding can impact choles-
terol levels and inflammation; in fact, apabetalone stimulates 
ApoA-I gene expression and increases high-density lipopro-
tein (HDL).29,30 Besides, apabetalone may attenuate the devel-
opment of cardiac hypertrophy31 and cardiac fibrosis,32 

suggesting novel options for the management of HF.

First Results from BETonMACE Clinical Trial
Resverlogix developed apabetalone (RVX-208), a first-in- 
class, orally available, small molecule for the treatment of 
atherosclerosis and associated CVDs.20 BETonMACE 
(NCT02586155) is the first Phase 3 clinical trial evaluating 
the cardiovascular efficacy and safety of apabetalone.22 Recent 
results from the BETonMACE study have demonstrated that 
apabetalone is associated with a reduction in first HF hospita-
lization and cardiovascular death in patients with type 2 dia-
betes and recent acute coronary syndrome as compared to 
controls (placebo-treated patients).22 Additionally, 
a significant increase in HDL and a decrease in alkaline phos-
phatase levels have been observed following 24 weeks of 
apabetalone treatment as compared to the placebo group.22 

However, investigators were unable to make a distinction 
between HF in the setting of preserved or reduced ejection 
fraction. Thus, further clinical trials should be designed to 
evaluate the putative beneficial effects of apabetalone in 
HFrEF and HFpEF, separately.

Repurposed Drugs with a Potential 
“Indirect” Epigenetic-Oriented 
Interference for Management of HF
Indirect Epidrugs Can Improve Vascular 
Health and Cardiac Remodeling: Insights 
from Preclinical Models
Preclinical studies demonstrated that pharmacological 
HDACi,33–36 BET inhibitors,31,37 and DNA methylation 
inhibitors38 can attenuate cardiac remodeling (cardiomyocyte 
hypertrophy and fibrosis). Although not originally developed 
as epidrugs, hydralazine (anti-hypertensive drug), metformin, 
and SGLT2i (anti-diabetic drugs), statins (anti-dyslipidemic 

drugs), and PUFAs (nutraceuticals) might have downstream 
epigenetic-oriented effects in cardiac cells. Hydralazine, for 
example, lowers blood pressure by a direct relaxation of vas-
cular smooth muscle; additionally, it may reduce DNA methy-
lation and improve cardiac function through increasing 
sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and mod-
ulating calcium homeostasis in cardiomyocytes.39 Statins are 
used as a first-line treatment to decrease serum cholesterol 
levels in dyslipidemic patients and as primary and secondary 
prophylaxis against atherosclerosis and associated CVDs.6 

Many of their non-classical pleiotropic properties relevant for 
endothelial health are mediated by epigenetic mechanisms 
which improve blood flow, decrease LDL oxidation, enhance 
atherosclerotic plaque stability and decrease proliferation of 
vascular smooth muscle cells and platelet aggregation.6 

Metformin is a first-line drug in the treatment of overweight 
and obese type 2 diabetic patients.10 Mechanistically, metfor-
min may also have epigenetic-oriented effects through activat-
ing the AMP-activated protein kinase (AMPK) which, in turn, 
can phosphorylate and inhibit epigenetic enzymes such as 
histone acetyltransferases (HATs), class II HDAC, and DNA 
methyltransferases (DNMTs).40 Both metformin41,42 and 
statins43,44 may reduce cardiac fibrosis; however, whether 
their beneficial effects are mediated by epigenetic-oriented 
responses has yet to be demonstrated. Furthermore, SGLT2i 
are a new group of oral drugs used for treating type 2 diabetes 
and its cardiovascular/renal complications.45 Animal models 
have demonstrated that empagliflozin46,47 and dapagliflozin48 

may improve hemodynamics in HF by increasing renal protec-
tion and cardiac fibrosis. Interestingly, inflammation and glu-
cotoxicity (AGE/RAGE signaling) were epigenetically 
prevented by empagliflozin;49 this observation has provided 
insights about mechanisms by which SGLT2i can reduce car-
diovascular mortality in man (EMPA-REG trial).50

Indirect Epidrugs in Clinical Trials for 
Management of Patients with HFpEF
An effective therapy for HFpEF has yet to be established. 
Hydralazine is frequently used in HFrEF, and represents 
a potential DNA methylation inhibitor.39 DNA methylation is 
the most studied direct epigenetic change with potential clin-
ical implications in major CVDs and the development of 
HF.7,14 This epigenetic signature mainly involves methylation 
of CpG islands in the gene promoters leading to a specific long- 
term silencing of gene expression.7,14 A completed Phase 2 
clinical trial (NCT01516346) evaluated the effect of prolonged 
therapy (24 weeks) with isosorbide dinitrate (ISDN) ± 
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hydralazine on arterial wave reflections (primary endpoint) as 
well as left ventricular (LV) mass, fibrosis and diastolic func-
tion, and exercise capacity (6-minute walk test) in patients with 
HFpEF, New York Heart Association (NYHA) Class II–IV 
symptoms, and standard therapy as defined by ACEi, ARB, 
beta-blockers, or calcium channel blockers (CCBs).51 Results 
from this trial reported that ISDN, with or without hydralazine, 
had deleterious effects on reflection magnitude, LV remodel-
ing, or submaximal exercise thus not supporting their routine 
use in patients with HFpEF.51

Metformin has been associated with a reduced mortal-
ity in patients with HFpEF, even if female gender was 
associated with worse outcomes.52 Recently, it has been 
observed that a long-term treatment with metformin can 
improve LV diastolic function and hypertrophy, decrease 
the incidence of new-onset HFpEF, and delay disease 
progression in patients with type 2 diabetes and 
hypertension.53 Besides, a prospective phase 2 clinical 
trial (NCT03629340) is testing the therapeutic efficacy of 
metformin in patients with pulmonary hypertension and 
HFpEF by evaluating exercise hemodynamics, functional 
capacity, skeletal muscle signaling, and insulin sensitivity. 
However, results have not been published. A recent study 
based on the JASPER registry, a multicenter, observa-
tional, prospective cohort of Japanese patients aged ≥ 20 
years requiring hospitalization for acute HFpEF has 
reported that the use of statins could reduce mortality in 
affected patients without coronary heart disease.54 

Furthermore, the use of statins was associated with 
improved clinical outcomes in patients with HFpEF but 
not in patients with HFrEF (or mid-range ejection 
fraction).55 A reduced rate of major adverse cardiac 
events, cardiovascular death and all-cause mortality was 
associated with SGLT2i treatment in both HFpEF and 
HFrEF patients as compared to placebo.56,57 However, 
the observed cardiovascular and renal benefits cannot be 
fully explained by improvement in risk factors (such as 
glycemia, blood pressure or dyslipidemias) suggesting that 
other molecular mechanisms may explain the cardiovascu-
lar benefits.56 Interestingly, the SGLT2i-related epigenetic 
interference may arise from their ability to increase the 
circulating and tissue levels of β-hydroxybutyrate, 
a specific molecule able to generate a pattern of histone 
modifications (known as β-hydroxybutyrylation) which are 
associated with the beneficial effects of fasting.58 Besides, 
the DELIVER (NCT03619213) multicenter, randomized, 
double-blind, placebo-controlled study of 6263 HFpEF 
patients will evaluate the effect of dapagliflozin 10 mg 

(1 per day) as compared to placebo in addition to the 
standard of care in order to reduce the composite of 
cardiovascular death or HF events. However, results have 
not yet been published.

Indirect Epidrugs in Clinical Trials for 
Management of Patients with HFrEF
The use of metformin has been generally considered 
a contraindication in HFrEF patients owing the potential risk 
of lactic acidosis; however, recent evidence has reported that 
metformin can provide beneficial effects in reducing the risk of 
incident HF and mortality in diabetic patients.59–61 

A completed, observational clinical trial (NCT03546062) has 
recently performed the evaluation of seriated cardiac biopsies 
from healthy implanted hearts in type 2 diabetes recipients 
during 12-month follow-up upon heart transplantation.21 

Even if the intra-cardiomyocyte lipid accumulation in type 2 
diabetes recipients may start in the early stages after heart 
transplantation, metformin therapy could reduce lipid accumu-
lation independently of immunosuppressive therapy.21 The 
DANHEART trial (NCT03514108), a multicenter, rando-
mized, double-blind, placebo-controlled study in 1500 patients 
with HFrEF will evaluate: 1) whether hydralazine-isosorbide 
dinitrate as compared to placebo may reduce the incidence of 
death and HF hospitalization, and 2) if metformin as compared 
to placebo may reduce the incidence of death, worsening of 
HF, acute myocardial infarction, and stroke in patients with 
diabetes or prediabetes. Two large randomized trials demon-
strated that statins did not have beneficial effects in manage-
ment of patients with HFrEF.62,63 Specifically, the CORONA 
phase 3 trial randomized more than 5000 patients with 
ischemic HFrEF to rosuvastatin as compared to placebo result-
ing in no benefits on the primary endpoints, as death from 
cardiovascular causes, nonfatal myocardial infarction, and 
nonfatal stroke.62 According to CORONA trial, the GISSI- 
HF study randomized almost 5000 patients with clinically 
apparent HF of any cause to rosuvastatin as compared to 
placebo and observed no benefits on the primary endpoints, 
as all-cause death or cardiovascular hospitalization.63 

However, it is needed to highlight that both trials demonstrated 
that statins are safe in HF patients. In contrast with the previous 
evidence, the trial based on the Swedish Heart Failure Registry 
(21,864 patients with HFrEF, of whom 10,345 were treated 
with statins) reported an association between the use of statins 
and improved outcomes, as all-cause mortality, cardiovascular 
mortality, HF hospitalization, and combined all-cause mortal-
ity or cardiovascular hospitalization, especially in patients with 
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ischemic HF.64 Thus, further randomized controlled trials 
focused on ischemic HF may be warranted. Omega-3 poly-
unsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), are key players in 
modulating inflammatory process by limiting leucocyte che-
motaxis, adhesion molecule expression, leucocyte- 
endothelium interaction as well as T cell reactivity.65 EPA 
and DHA are mainly gained from marine food consumption 
and large population-based studies have shown that 
Mediterranean diet with PUFA supplementation may aid to 
prevent CVDs owing to their ability in promoting the release of 
nitric oxide from endothelial cells and decreasing serum levels 
of triglycerides.66 Recent evidence has indicated that PUFAs 
can significantly affect the cellular epigenome mainly thought 
DNA methylation-sensitive mechanisms.67,68 The GISSI mul-
ticenter, double-blind trial enrolled 6975 HF patients 
(New York Heart Association class II–IV, irrespective of 
cause and LV ejection fraction) and randomized them to low 
dose (0.84 g per day) of PUFAs as compared to placebo. 
PUFAs supplementation reduced risk for total mortality and 
HF hospitalization when added to standard therapy.19 

Furthermore, in the OMEGA-REMODEL trial, high-dose of 
PUFAs (3.4 g per day) for 6 months post-myocardial infarction 
reduced infarct size and non-infarct myocardial fibrosis as well 
as improved ventricular systolic function.69 Taken together, 

these results suggest that PUFAs may aid to prevent HFrEF. 
More recently, the MESA longitudinal trial including 6562 
participants 45 to 84 years has demonstrated that higher plasma 
levels of EPA were significantly associated with reduced risk 
both in HFpEF and HFrEF.70

Concluding Remarks
Although the possibility of improving the HF standard of care 
with epidrugs is still in its infancy, the BETonMACE study has 
provided promising results about the use of apabetalone in 
reducing hospitalization and cardiovascular death. Preclinical 
models of cardiac remodeling demonstrated that metformin, 
statins, SGLT2i, and PUFAs41–48 can improve vascular health 
and cardiac fibrosis by modulating specific molecular path-
ways, and, in part, through downstream epigenetic interfer-
ence, especially for hydralazine39 and empagliflozin (Figure 
2).49 Of note, metformin and SGLT2i can impact on the 
“epigenetic memory” phenomenon. This latter suggests that 
an early glycemia normalization can arrest hyperglycemia- 
induced epigenetic processes associated with enhanced oxida-
tive stress and glycation of cellular proteins and lipids.71,72 In 
parallel, an increasing number of clinical trials is evaluating the 
putative beneficial repurposing of metformin, statins, SGLT2i, 
and PUFAs in patients with HFpEF and/or 
HFrEF;19,62–64,69,73–75 however, despite experimental 

Figure 2 Direct and indirect epigenetic drugs in preclinical models of HF. Cardiac remodeling includes different pathological phenotypes and each type of drug can selectively 
improve inflammation, cardiac fibrosis and hypertrophy, calcium homeostasis, and lipid metabolism. 
Abbreviations: HF, heart failure; SGLT2i, sodium glucose co-transporter 2 inhibitors.
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evidence, none of these trials evaluated their potential epige-
netic effects involved in improving the cardiac function. This 
gap should be overcome to improve personalized therapy of 
patients with HF. Thus, further randomized trials are needed to 
clarify whether apabetalone, as well as non-canonical repur-
posed epidrugs, will really be able to save failing hearts in 
different HF clinical phenotypes or prevent irreversible 
damages in high-risk patients. In this context, Network 
Medicine approaches may help to evaluate a possible repur-
posing of epidrugs in patients with major CVDs.15,76,77
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