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Abstract 32 

The assessment of prognostic markers is key to the improvement of therapeutic strategies 33 

for cancer patients. Some promising markers may fail to be applied in clinical practice 34 

because of misleading results ensuing from inadequate planning of the study and/or from 35 

an over-simplified statistical analysis. The main issues involved in an efficient clinical study 36 

planning and the subsequent statistical analysis aimed to the prognostic evaluation of a 37 

cancer marker will be illustrated and discussed. The aim will be also to extend the offset of 38 

most applied statistical models, i.e. Kaplan-Meyer and Cox, to enable the choice of the 39 

methods most suited for the study endpoints  Specifically, for tumor centered endpoints, 40 

like tumor recurrence, the issue of competing risks will be highlighted . For markers 41 

measured on a continuous numerical scale, a loss of relevant prognostic information may 42 

occur by setting cut-offs, thus the methods to analyze the original scale will be explained. 43 

Furthermore, p-value is not a sufficient criterion to assess the usefulness of a marker in 44 

clinical practice; to such end, measures for evaluating the ability of the marker to 45 

discriminate between “good” and “bad” prognoses are illustrated.  46 

For illustrative purposes, an application of useful  methods of analysis  to a public dataset 47 

from human breast cancer patients, is shown. Tumor size, Tumor grading, number of 48 

axillary lymph nodes were considered as known prognostic factors, and the amount of 49 

Estrogen receptor content, recorded as quantitative continuous scale, was selected as the 50 

prognostic marker 51 

 52 

Keywords: 53 

Tumor markers, Prognostic Factors, Survival Analysis, Competing Risks, Cut-Offs. 54 
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 56 



4 
 

INTRODUCTION AND DEFINITIONS 57 

Oncology research on patient’s clinical characteristics and pathological tumor features is 58 

aimed to a better understanding of tumor biology, to advance diagnosis and open to new 59 

treatment protocols with the final aim to improve prognosis. Although results seem 60 

promising, patient’s response to anticancer therapies as well as patient’s life expectancy 61 

are still heterogeneous for the same tumor types. Clinical and pathological characteristics 62 

are frequently combined to identify patient groups with different risk of disease progression 63 

or treatment response (to date 1240 with oncology and risk groups in title/abstract, see for 64 

example: Liu et al23, Bell et al4, and Winick et al38). This is not surprising as risks groups 65 

could be useful to plan first line treatments (e.g. to avoid the potential over-treatment of 66 

low-risk patients and/or under-treatment of high risk patients) or to select patients for 67 

clinical trials including novel therapeutic principles and protocols according to their health 68 

status and probability to treatment response.  69 

The more information available on each specific tumor entity, the greater the possibility of 70 

building more effective patient stratification. The addition of tumor markers to other clinical 71 

and pathological variables has become a frequent approach because it improves the 72 

identification and stratification of cancer patients in different risk groups. According to the 73 

definition given by the National Cancer Institute, a tumor marker should be intended as 74 

“anything present in or produced by neoplastic cells or other cells of the body in response 75 

to cancer or certain benign (noncancerous) conditions that provide information about a 76 

cancer, such as how aggressive it is, whether it can be treated with a targeted therapy, or 77 

whether it is responding to treatment. Tumor markers have traditionally been proteins or 78 

other substances that are made by both normal and cancer cells but at higher amounts by 79 

cancer cells. These can be found in the blood, urine, stool, tumors, or other tissues or 80 

bodily fluids of some patients with cancer”. 81 
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The oncological research is on-going, and the contribution of tumor markers on body fluids 82 

and tumor tissues is investigated in order to explain patient’s overall cancer outcome, 83 

regardless of therapy (prognostic), or to give information on their effects on a therapeutic 84 

intervention (predictive).26 To decide whether new tumor markers should be included in a 85 

strategy for risk group identification their prognostic/predictive role has to be evaluated. 86 

For this aim the application of longitudinal studies is common. In this studies, for each 87 

patient the time to occurrence of tumor related events (e.g. local recurrence and distant 88 

metastases) and death (together with cause of death) are recorded. The prognostic or 89 

predictive role of tumor markers is investigated by statistical methods specific for time 90 

dependent events (survival analysis). 91 

Since the high number of papers about prognostic tumor markers, it is likely that a lot of 92 

clinicians and pathologists are involved in longitudinal studies for markers evaluation. Most 93 

of the study investigators are aware of the importance of the application of adequate 94 

statistical approaches to obtain reliable results however, this requires a specific statistical 95 

“know how” which is not widespread among researchers with clinical and/or biological 96 

training.  97 

The aim of this work is to highlight the major issues involved in the planning of statistical 98 

analysis to fulfill the study aims, by choosing adequate modeling strategies, and to 99 

correctly interpret the results obtained. The aim will be reached by providing clinical 100 

examples and by avoiding the use of formulas which could hamper the understanding 101 

without adding useful information. This aim will be attained by providing data from a 102 

human breast cancer clinical trial that will be used to show statistical analysis methodology 103 

and to interpret and discuss model results. Although dataset will refer to woman breast 104 

cancer, the analysis exemplifies statistical topics and problems faced also in veterinary 105 

longitudinal studies. Since, several tumor markers are considered both in “human” and 106 

veterinary breast cancer studies (see for example Kaszak et al21).  107 
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First, the statistical analysis of tumor markers needs to be planned in advance to achieve 108 

study goals. To better explain the statistical methodological approach to longitudinal 109 

studies, the four main steps are summarized as follows. 110 

1) Correct specification of the end-point.  111 

In longitudinal studies the end-point is the time elapsed from the study entry of the patient 112 

(e.g. date of starting treatment) to the time of the occurrence of the event of interest. 113 

Overall survival is considered the most relevant end-point for the evaluation of “patient 114 

centered” treatment efficacy.37,21 The definition is simple and unambiguous. In addition, 115 

“tumor centered” end-points are frequently used; such end-points usually include disease-116 

free survival, progression-free survival, relapse-free survival. They combine groups of 117 

events selected among tumor progression, local and distant tumor recurrence, 118 

metachronous cancer, severe toxicity, death. Thus, they are called “composite” end-points. 119 

The respective time to event is the time elapsed from the beginning of follow-up to the time 120 

of the first event occurred. It is worth noting the lack of general agreement among authors 121 

about the definition of the events that are included in the studied end-point: this attitude 122 

may impede the cross comparison of results of different studies. Thus, the end points 123 

should be always accurately specified/defined in longitudinal studies to allow 124 

standardization of inclusion criteria among studies.  125 

It must be stressed that it is unlikely that the end-point of interest is observed in every 126 

patient included in the study. The times of patients who are alive without any event 127 

recorded at the end of the study or who are lost to follow-up without events are “censored” 128 

at the date of last clinical information. Therefore, in such cases the main end-point may 129 

occur after the date of last collected clinical information, but the time to occurrence is 130 

unknown (right censoring). 131 

2) Choice of survival analysis models which are appropriate for the chosen end-points.  132 
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Survival analysis assessments are commonly based on Kaplan-Meier curves (compared 133 

by log-rank test) and Cox regression models. It must be stressed that these methods are 134 

based on strict assumptions and are not correct for every end-point, thus biased results 135 

may derive from a wrong modeling strategy. Careful evaluation and assistance by 136 

experienced statisticians may aid in the consideration and choice of alternative, better 137 

suited methods for specific end points. For example, Kaplan Meyer curves and Cox 138 

models are correct for comprehensive end-points, such as death for overall causes, or 139 

occurrence of any tumor-related event plus death for any cause. For more restrictive end-140 

points, as for example a main end-point including only tumor relapse (thus, not including 141 

death not related to cancer), the occurrence of death without tumor relapse prevents the 142 

observation of the main end-point. This is the case of competing risks analysis. More in 143 

general, competing risks are said to be present when a patient is at risk of more than one 144 

mutually exclusive event, and the occurrence of one of these prevents any other event 145 

from happening.10 A typical situation of competing risk is the analysis for causes of death 146 

(classified usually as “related to the disease” or not “related to the disease”). The 147 

occurrence of death classified as not related to the disease is a competing risks for death 148 

classified as related to the disease and vice versa. An adopted solution is to consider the 149 

time to occurrence of competing risk (death without recurrence) as a censored time, and to 150 

use Kaplan-Meyer and Cox methods. This is adequate only under some assumption, that 151 

is, that the probability of death is independent from the probability of relapse, which could 152 

be not always tenable according to clinical experience. In fact, death without tumor 153 

recurrence is a “peculiar” kind of censoring because we know the patient will never 154 

develop a tumor related event, such as tumor relapse, after death. Therefore, statistical 155 

methods specific for competing risks need to be adopted.  156 

3) Inclusion of the marker in the statistical analysis.  157 
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Several markers are measured by qualitative (ordered) scale or quantitative numerical 158 

scale. A widely used approach is to subdivide the scale so that define “high” and “low”, or 159 

“high”, “medium” and, “low” risk groups. Subdivision of the measurement scale is 160 

performed according to criteria defined in previous studies on similar diseases or, else, 161 

when such criteria are lacking, by specific and precise definition clearly provided by the 162 

authors. The advantages of grouping are the straightforward interpretation of the results, 163 

and the possibility of make more straightforward recommendations on the use of the 164 

marker for prognostic/predictive aims. The major disadvantage is the potential lack of 165 

prognostic/predictive efficacy. As an example, the ER receptor status can be measured in 166 

fmol/mg of cytosolic proteins. The complete prognostic information is the ER content in the 167 

original measurement scale. If a cut-off is used, e.g. 10 fmol/mg, to define ER- and ER+ 168 

classes, this implies the assumption that every ER value within each of the two classes 169 

has the same prognostic role. The putative prognostic information of the original 170 

measurement scale is no longer considered, and this avoids evaluating whether ER in the 171 

original measurement scale could provide more accurate information about the prognosis.  172 

Moreover, data driven rules for grouping generate heterogeneous choices which make 173 

difficult the cross comparison of study results, due to lack of standardization.  174 

4) Quantification of the prognostic/predictive information provided by the marker in addition 175 

to variables used routinely in clinical practice.  176 

Assessment and quantification of the value of the new marker should be done by adding 177 

the marker in a statistical model in which all the variables having a well-known 178 

prognostic/predictive role are included. To such aim the “p-value” corresponding to the 179 

marker is not exhaustive. As an example, in the case of marker with a single cut-off, if the 180 

Kaplan-Meyer survival curves for the two groups are significantly different, this can be 181 

interpreted in the following way: for each follow-up time the proportion of surviving patients 182 

in one group is different from that of the other group. But this does not imply that each 183 
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subject of one group has different survival probability compared with each subject of the 184 

other group. For routine clinical practice it is relevant to evaluate if the marker is able to 185 

discriminate subjects with different prognosis. This ability is referred to single subjects 186 

rather than groups of subjects, and therefore is not assessed by the p-value, but by 187 

specific measures of “discriminant ability”. A p-value lower than 0.05 does not imply a 188 

satisfactory discriminant ability of the marker.  189 

 190 

METHODS 191 

Selection of the statistical model 192 

For overall survival and relapse-free survival where the composite end-point includes all 193 

kinds of tumor relapses and death, Kaplan-Meyer and Cox models are adequate only 194 

under the strict assumption that censored times are independent from the time to event. 195 

As an example, for overall survival it is assumed that patients alive who are lost to follow-196 

up share the same “future” survival probability with those patients who are still in follow-up. 197 

This can be true for patients who are lost to follow-up for reasons not depending on their 198 

health status, but it is unlike for lost to follow-up diseased patients.  199 

Also, in existence of competing risks, some patients may be lost to follow-up or be free 200 

from any event at the end of the study. The assumption that these patients share the same 201 

probability of the event with patients who are still in follow-up is still needed. However, the 202 

situation is more complex than this. As an example, lets suppose we are interested in 203 

“Tumor relapse-free survival” where only related tumor events are of concern (death not 204 

included in the end-point). Some patients may die for unrelated tumor causes before a 205 

tumor relapse is observed. The independence between times to death and time to relapse 206 

is doubtful: in other terms, if the patient was not deceased, could we suppose he/she will 207 

have the same “relapse free probability” as patients with observed relapse? 208 
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Given the definition of study end-point, the possible presence of competing risks should be 209 

carefully considered and an adequate modeling strategy should be adopted. In presence 210 

of competing risks, crude cumulative incidences estimators must be considered instead of 211 

Kaplan-Meyer curves. Comparison between cumulative incidences among groups should 212 

be performed by the Gray test.12 Concerning regression models, the Fine and Gray model8 213 

should be used instead of Cox (see for example: Kim,22 Satagopan et al,31 Oyama et al27). 214 

Competing risks analysis tools are available in statistical softwares such as for example R, 215 

STATA and SAS. 216 

Inclusion of a novel marker in statistical analysis 217 

The method and the measurement scale of a marker is decided according to criteria 218 

established by the lab responsible according to her/his scientific skill. Let us make some 219 

consideration about the compliance between the perspectives of biochemical/pathological 220 

laboratory techniques and statistical analysis on the use of a marker. To exploit the 221 

maximum potential predictive /prognostic role of the marker it is preferable to maintain its 222 

original measure scale. Usually a first exploratory evaluation is performed by “univariate” 223 

analysis. This approach is simple when the marker is recorded on a quantitative or 224 

qualitative scale with a reduced number of levels, because survival or cumulative 225 

incidence curves can be traced for each marker level. By the examination of the curves it 226 

is possible to evaluate if some marker levels that show similar prognostic/predictive 227 

behavior could be grouped together. This approach is not applicable for markers 228 

measured on a quantitative scale with several levels. 229 

To maintain the original measurement scale, a regression model is needed. How does it 230 

work? Let us consider the most popular model: the Cox model, which is based on the 231 

relationship between log(h(t)), i.e. the logarithm of the hazard of the event at time t (the 232 

hazard is the rate of the event per time unit) and marker’s levels. The simplest relationship 233 

is “linear” i.e., the increase of log(h(t)) for each increase of x units of the marker is the 234 
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same for each marker level. For example, let us suppose a marker M can assume levels 235 

from 0 to 10: the linear relationships implies that the ratio between the hazards for levels 4 236 

and 5 is the same than the ratio between the hazards of levels 8 and 9 (Fig. 1A). By taking 237 

marker level 0 as reference level, it is possible with the Cox model to calculate the relative 238 

hazard of each marker level with respect to the reference one. For example, in Fig. 1B, the 239 

hazard between levels 5 of the marker and the hazard of the level 0 of the marker is 2.0, 240 

and the hazard between level 10 and the hazard of the level 0 is 4.0.  241 

The linear relationship is simple and “user friendly” but it does not always fit the “real 242 

world”. For some markers, a saturation effect is expected: the increase of log(h(t)) for x 243 

units of the marker decreases with the increasing of the marker level, so it no longer 244 

constant. For example, in Fig. 1C the ratio between the hazards for levels 2 and 1 is 1.7, 245 

which is not the same as the ratio between hazards of levels, e.g., 6 and 5, which is equal 246 

to 1.4. By taking marker level 0 as reference level, the ratio between hazards of marker 247 

levels 2 and 0 is equal to 2.0, whereas the ratio between hazards of marker levels 6 and 0 248 

is 2.7 (Fig. 1D). Effects more complex than those discussed above could occur and be 249 

difficult to interpret. 250 

Since the shape of the relationship between h(t) and marker’s level provides insights about 251 

the role of the marker on disease progression dynamics, the convenience to categorize 252 

marker levels to create risk groups has to be evaluated with care. To provide an alternative 253 

to the use of empirical cut-off rules which are not based on the prognostic propensity of the 254 

marker (e.g. median or other percentiles of the distribution), statistical procedures for 255 

“best” cut-off selection have been proposed (e.g. Faraggi, and Simon,7 Hilsenbach and 256 

Clark,18 Mazumdar et al24). Nevertheless, methodological papers on cancer journals 257 

advised against the best-cut-off use mainly for the risk of missing prognostic information or 258 

unreliable results (e.g. Altman et al,2 Altman,1 Holländer and Schumacher19). In addition, 259 
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the adoption of user defined cut-off values was criticized also on methodological statistical 260 

papers.30 261 

Results of univariate analysis are not sufficient to make conclusions on the usefulness of 262 

the marker, multivariate analysis is needed to estimate its adjusted effect when other 263 

clinical and pathological variables are taken into account.  264 

Quantifying the added prognostic/predictive information provided by the marker 265 

The “statistical significance” of the marker is not the main criterion to be adopted to assess 266 

significance. In fact, a statistically significant result does not imply a clinically relevant 267 

result and vice versa. It is easy to obtain a statistically significant result for an irrelevant 268 

prognostic impact of the marker if a large dataset is analyzed. Conversely, it is not easy to 269 

obtain statistically significant results for a clinically relevant prognostic impact of a marker if 270 

the sample has a small size. A statistically significant result depends on the power of the 271 

statistical test which, in turn, depends not only on the prognostic impact of the marker but 272 

also on sample size.  273 

Part 1: sample size considerations 274 

If statistical significance is retained as a relevant criteria for the initial evaluation of the 275 

contribution of a marker, the sample size needs to be considered with care. Sample size 276 

depends on the level of significance (usually 5%) but also on the power of the test (i.e. the 277 

probability of obtaining a statistical significant result when the marker is effectively 278 

prognostic in the population of patients to which the sample refers). Usually the power of 279 

the test is fixed equal or above 80%.  280 

A key issue is the minimal amount of prognostic impact considered clinically relevant to be 281 

detected by the test. For sake of simplicity, let us consider a marker classified into two 282 

classes (low and high), and survival curves compared by the log-rank test. After defining 283 

statistical significance and power, the information needed is the hazard ratio to be 284 

detected (e.g. the ratio between the hazard of end-point of patients with high marker levels 285 
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and the hazard of end-point of patients with low marker levels). For example, if a hazard 286 

ratio of death of 2 is to be detected, with a significance level of 5% and power of 80%, the 287 

total number of deaths to be observed is 56. The sample size depends on this number of 288 

events and on the proportion of deaths expected in each group. If in the low marker level 289 

group the 20% of patients is expected to die, and 40% of patients are expected to die in 290 

the high marker level group, the sample size for each of the groups is 93.  291 

From this example it may be noted that several key information is needed for sample size 292 

calculation. The responsibility of clinicians is to provide reliable information about the 293 

hazard ratio to be detected and by the proportion of events of interest expected in the two 294 

groups. The responsibility of the statistician is to apply correct methods and formulas for 295 

sample size calculation. 296 

When the marker is novel it is very difficult to provide reliable information for sample size, 297 

and “rule thumbs” may be adopted to perform regression analysis. These rules are based 298 

on a quantity defined as event per variable (EPV) ratio and suggest that the maximum 299 

number of variables that can be included in the regression model depends on the number 300 

of events observed in the sample. The most frequently used rule is that the EPV ratio is 301 

equal to ten.4 In such case if, for example, 50 events are observed then 5 binary variables 302 

can be considered (including the marker).  303 

Even in this case the number of events play a key role, and the number of patients 304 

required depends on the probability of events in the study population. For a disease with in 305 

general a good prognosis (low event probability) a very high sample size will be required. 306 

For example, if a 10% of probability of event is expected, to include five binary variables in 307 

the regression model, the minimal sample size will be 500 patients. 308 

Part 2: statistical procedures  309 

Clinical and pathological variables which are recognized to be prognostic/predictive factors 310 

usually are collected in routine clinical practice as an aid to clinical decision-making 311 
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process. Is the availability of information on marker level useful to improve treatment 312 

planning? The answer is to evaluate the additional prognostic/predictive contribution of the 313 

marker to that provided by the other variables. For this issue, the results of multivariate 314 

analysis must be considered.  315 

The evaluation of the prognostic usefulness of the marker in clinical routine practice should 316 

be based on the ability of the marker to discriminate patients with different outcomes. A 317 

regression model (e.g. Cox) including marker level is performed and for each patient the 318 

model’s predicted outcome is compared with the observed one. A measure of discriminant 319 

ability is the area under ROC curve (AUROC). It is customary that higher marker values 320 

are associated to worst prognosis. The AUROC represents the probability that, for a 321 

random pair of patients, the patients who has the shorter time to event (worst outcome) 322 

has also the higher marker level. In the case of optimal discriminant ability AUROC is 323 

equal to 1. AUROC equal to 0.5 indicates the lack of discriminant ability, in fact prediction 324 

is like a coin flip. An AUROC measure appropriate for time to event data has to be used, 325 

.e.g. Harrell’s c statistic.35 The Harrell’s c statistic provides a unique measure on the whole 326 

study duration. When both marker levels and individual outcome status change with follow-327 

up time a useful information to investigate could be the minimum follow-up time useful for 328 

outcome prediction. To such aim, time dependent AUROC measures can be adopted.16,20 329 

In the case of multivariate analysis the marker is included in the model together with other 330 

clinical and pathological variables, thus for each patient, model prediction is based on the 331 

joint effect of all variables, and the additional contribution of the markers is not highlighted. 332 

To such end a naïve method is to estimate AUROC by the model with all the variables but 333 

the marker (reduced model) and to compare this AUROC with that of the model also 334 

including the marker (full model). The greater the difference between AUROCs of full and 335 

reduced model and the greater will be the added discriminant contribution of the marker. It 336 

should be stressed that if the observed difference result “negligible” this does not imply a 337 
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negligible discrimination improvement. Because of this limitation a more structured 338 

approach is the integrated discrimination improvement index.28 Integrated discrimination 339 

improvement values range between 0 (no discrimination improvement) and 1 (maximum 340 

discrimination improvement) and the more is the index near to 1 and more the contribution 341 

of the marker to discrimination will be. 342 

STRATEGY OF ANALYSIS AND RESULTS: APPLICATION TO THE DATASET OF 343 

NODE POSITIVE BREAST CANCER PATIENTS TREATED WITH CHEMOTHERAPY  344 

We used public data made available by the German Breast Cancer Study group: a 345 

description about the dataset structure can be found, among others, in Sauerbrei and 346 

Royston.32 The dataset used for the application of the statistical analysis in this paper is 347 

available at the following web site: ftp//ftp.wiley.com/public/sci_tech_med/survival. 348 

These data were recorded from a multi-center randomized trial on lymph-node positive 349 

breast cancer with the primary aim of evaluating recurrence-free and overall survival 350 

between three chemotherapy regimens. The dataset consists of 686 records of patients 351 

with complete information about major prognostic variables. To apply the statistical 352 

methods two end points were considered: 1) death (for all causes) and 2) tumor 353 

recurrence. Tumor recurrence was defined as a composite end-point including the first 354 

occurrence of either loco-regional or distant recurrence, contralateral tumor, and 355 

secondary tumor.  356 

The analysis described in the following sections has been performed only for illustrative 357 

purposes, with no intention to provide clinically reliable results. The Authors are aware that 358 

to perform an exhaustive prognostic/predictive analysis on human breast cancer, data 359 

need a much more complex modeling strategy and the consideration of a larger number of 360 

variables. Several analyses can be found in the literature according to 361 

prognostic/predictive aims. But this is not the aim in the present report, so a restricted set 362 

of variables and only one marker will be considered to illustrate the methodology. Only a 363 
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subset of variables will be considered: a group to represent known prognostic factors 364 

(tumor size, tumor grade, number of nodes involved) and one, the amount of Estrogen 365 

Receptors representing the prognostic marker to be evaluated. Hormone receptor content 366 

was measured macroscopically by a dextran-coated charcoal method.33 The marker was 367 

recorded as quantitative numerical scale defined in femtomoles and specifically in fmol/mg 368 

of protein. Because patients have been submitted to chemotherapy and not to hormonal 369 

therapy, for methodological purposes, we have considered the analysis as prognostic 370 

rather than as predictive. 371 

For sake of simplicity, the number of nodes involved will be classified according to (1-3,>3 372 

and <10, >=10), tumor size as T1 (<=20 mm), T2 (>20 mm but < 50 mm), T3 (>50 mm). 373 

Concerning the first end-point the following analysis will be performed: the univariate 374 

analysis of the marker, firstly dichotomized according to the cut-off reported in the original 375 

trial paper (20 fmol), then by data driven best-cut-off, and finally considered as a 376 

continuous variable. The prognostic impact of the marker will be evaluated by “p-value”, 377 

Harrell’s c statistics, and AUROC during follow-up. Multivariate analysis will be performed 378 

considering a model with all the above-mentioned prognostic factors and the marker. The 379 

added contribution to discriminant ability of the prognostic marker will be evaluated. 380 

Concerning the second end-point (tumor recurrence) the issue of the competing risk effect 381 

due to death without local recurrence will be considered and crude cumulative incidence 382 

estimators and regression models for competing risks will be applied, showing the 383 

difference with naïve analysis which ignores competing risks. The evaluation of 384 

discriminant ability will no longer be showed because the interpretation in the case of 385 

competing risks analysis is like that discussed in the analysis of overall survival.  386 

All analyses have been performed with the software R release 3.6.2,29 with the packages 387 

survival,34 cmprsk,11 rms,15 survivalROC16 and survIDINRI13 added. 388 

Analysis of time to death (for all causes) 389 
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In this paragraph we illustrate analyses to assess the impact on overall survival of ER 390 

content as an example of “novel” marker. Standard Cox models and Kaplan-Meyer 391 

methods can be used in this case, because the only possible source of censoring is the 392 

loss to follow-up and patients alive at the end of the study follow-up period.  393 

Univariate analysis of ER content and time to death  394 

The Kaplan-Meier survival curves when the 20 fmol/mg cut-off was used (ER- if estrogen 395 

content <20 fmol/mg and ER+ if content >=20 fmol/mg) are represented in fig.2. A marked 396 

difference between the two groups is shown with a significant better prognosis for ER+ 397 

(log-rank test= 27.3 p<0.001). 398 

To find the optimal cut-off by the data driven method, a cut-off sequence starting from 5 to 399 

200 fmol/mg was considered, and the cut-off corresponding to the minimum p-value was 400 

chosen. According to this criterion the best cut-off was 10 fmol/mg (log-rank test =33.2 401 

p<0.0001). Results seem to be reproducible since this cut-off has been previously 402 

identified (e.g. Courdi,6 Nicholson et al,25 Andersen et al3). 403 

The survival curves obtained by the old and new “best” cut-off are illustrated in Fig. 3. In 404 

the comparison, curves for ER+ patients are superimposable while there is a difference in 405 

ER - patients with a slight worse prognosis for ER<10 patients. 406 

To consider ER as a continuous variable, a naïve approach is to include ER in a Cox 407 

model according to linear relationship with the following results: Hazard Ratio= 0.9985, 408 

95%, confidence interval: from 0.9972 to 0.9998 p-value 0.0281. This finding indicates that 409 

prognosis improves with the increasing of ER fmol concentration, for each increase of 1 410 

fmol/mg of ER. Is this result clinically reasonable? To give an answer, the first step is to 411 

examine the distribution of the variable. Range: from 0 to 1144 fmol: median=36, 412 

mean=96.25, Q1=8, Q3=114. The difference between mean and median suggests an 413 

asymmetrical distribution of the variable that is clear in Fig. 4A. The distribution of ER 414 

concentration is heavily asymmetrical and 72% of patients have ER <=100 fmol. It is likely 415 
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that a difference of 1 fmol is more clinically relevant when ER has low values than when 416 

ER has high values. 417 

In this situation, the application of a data scale transformation should be preferred in order 418 

to: 1) attribute more weight to small differences in fmol starting from low ER values than to 419 

high ER values and 2) reduce the spread of the ER values. 420 

A widely diffuse transformation is performed via logarithmic scale. Since some patients 421 

have 0 fmol ER recorded in the dataset, an empirical solution that can be adopted is 422 

log(ER+1). This scale transformation satisfies both requirements. For the requirement 1) 423 

as an example the difference of 5 fmol from 5 to 10 in logarithmic scale is Log(10)-424 

Log(5)=0.693 and from 100 to 105 is Log(105)-Log(100)=0.049. For the second 425 

requirement, see Figure 4B. 426 

The prognostic relationship is now evaluated by including ER in log scale (LER) into the 427 

Cox model. First, the simplest analysis: a linear relationship. Hazard ratio= 0.81, 95% 428 

confidence interval= 0.75-0.87 (p-value<0.0001). These results mean that for each 429 

increase of 1 unit LER the ratio between hazard of death for LER=x and the hazard of 430 

death for LER=x+1 is estimated to be 0.87 and does not change for each pair of values 431 

LER and LER+1. Thus, for example the ratio between the hazard of death for LER=0.69 432 

(about 1 fmol) and LER=1.69 (about 4 fmol) is 0.87 and the ratio between the hazard of 433 

death for LER=2.40 (about 10 fmol) and LER=3.40 (about 29 fmol) is 0.87, and so on. To 434 

facilitate the evaluation of model results, it is preferred to represent the estimated hazard 435 

ratios in the original measurement scale by considering as reference the lowest ER value. 436 

In Fig. 5 is shown the shape of the ratio between hazard of death for each ER fmol value 437 

and the hazard of death for 0 fmol. The decrease in hazard ratio is steeper for low ER 438 

values than for higher ones. For example, the hazard ratio of death from 0 to 10 fmol is 439 

0.52, from 0 to 20 fmol is 0.45, from 0 to 50 fmol is 0.37 and from 0 to 100 fmol is 0.32.  440 
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A relevant issue to be analyzed is how much a researcher is confident with a linear 441 

relationship. When the linear relationship seems to be too “restrictive”, to address this 442 

question the possible existence of a more flexible relationship needs to be investigated, for 443 

example by including into the Cox model power functions of LER, such as polynomials or 444 

fractional polynomials32 or spline functions (Harrell et al,14 Heinzl and Kaider17). 445 

As a matter of fact, after including cubic spline functions, a more complex functional 446 

relationship than a linear one was found. The comparison of model prediction with spline 447 

and model prediction with linear relationship is shown in fig. 6. The difference is a slight 448 

increase of the Hazard Ratio from 0 to 2 fmols, and after 200 fmol for the model with spline 449 

function whereas in the model with linear relationship the hazard ratio always decreases 450 

with the increasing of fmol.  451 

When the models are compared, the linear relationship model results in a likelihood ratio 452 

test= 27.34 p=2*10-7 and model with spline function results in a likelihood ratio test= 34.64, 453 

p=1*10-7. Based on the p value, the second model seems to be better. However a lower p-454 

value for the most complex model cannot be used as a criterion to decide which model 455 

better represents the prognostic behavior, thus the more complex model can be preferred 456 

over the simplest one only if the shape of the hazard shown in Fig. 6 has a credible 457 

clinical/biological explanation.  458 

If the aim is to predict outcome, the discriminant ability of the two models (AUROC) should 459 

be considered. First, the measure by Harrell’s c statistic for the AUROC on the whole 460 

follow-up is equal to 0.634 and to 0.633, respectively for the model with linear relationship 461 

and the model with spline functions. The two models provide the same discriminant ability 462 

(i.e. about 63% of patients who have longer survival times have higher ER values than 463 

patients who have shorter survival times) thus, according to this perspective it seems 464 

useless to complicate the model with a spline function. More detailed information can be 465 

obtained by dynamic ROC curve which provides cumulative AUROC for selected follow-up 466 
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times. This allows to investigate the possible time in which to assess the patients for the 467 

better model discriminant ability. Dynamic ROC curve for the linear and spline Cox 468 

regression models are reported in Fig, 7. Subdividing follow-up time in 180 days intervals, 469 

for the model with spline function the highest AUROC value is 0.72 at 180 days and for the 470 

model with linear relationship is 0.70 at 360 days. These results may suggest that better 471 

ER discriminant is shown at short follow-up times.  472 

After 900 days the discriminant ability of the model with spline function is fairly better than 473 

that of the model with linear relationship. The maximum of the discriminant ability of ER 474 

when considered as dichotomous (cut-off 20 fmol) is at 360 days with AUROC=0.65 which 475 

is lower than that obtained when ER is considered in a continuous scale (LER)  476 

Multivariate analysis of ER content and time to death 477 

The first model includes tumor size, number of axillary lymph nodes, tumor grading and 478 

LER (log (ER+1). The LER scale was considered for the same reasons discussed in the 479 

previous paragraph. Results of the Cox model are reported in Table 1. 480 

When the joint prognostic effect of the variables is considered, ER is a statistically 481 

significant prognostic factor, as well as grading and axillary lymph nodes but not tumor 482 

size. The three pathological variables are categorical (3 classes) and have to be included 483 

into Cox model as “dummy variables”; typically, such variables assume only the values 0 484 

and 1. For a categorical variable with 3 classes, two dummy variables are needed. One of 485 

the classes is chosen as the reference and Cox model estimates the ratio between the 486 

hazard of death of each of the two remaining categories and the hazard of death of the 487 

reference one. E.g. for grading, the chosen reference category is grade I thus, the hazard 488 

of death for patients with grade II is 2.57 times the hazard of death for patients with grade I 489 

and the hazard of death for patients with grade III is 3.63 times the hazard of death of 490 

grade I patients. Corresponding P-value tests the null hypothesis of hazard ratio=1 (i.e. no 491 

difference between the hazard of death for Grading II (or III) and grading I). Both hazard 492 
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ratios are significantly different from 1 thus, grading has a significant prognostic effect. The 493 

same was shown for axillary lymph nodes but not for tumor size. Together with p-value, 494 

95% Confidence Interval provides relevant information about the value of the hazard ratio 495 

that we would find if the whole population of patients were examined. E.g. if the whole 496 

population of node positive breast cancer patients submitted to the same chemotherapy 497 

were examined and patients with Grade III tumors were compared with patients with 498 

Grade I tumors the hazard ratio of death is expected (with a probability of 0.95) to lie 499 

between 1.54 and 8.60. 500 

In the previous analysis LER was included as linear effect. Now the question becomes: Is 501 

there evidence also in multivariate analysis for a more complex relationship? The inclusion 502 

of splines does not suggest any improvement over the previous model. These results can 503 

be interpreted as that the complex relationship in univariate analysis may be attributable to 504 

the lack of adjustment for other known prognostic factors. This is one of the reasons to 505 

evaluate the marker by multivariate analysis, considering other prognostic factors which 506 

are likely associated to the marker itself. 507 

Concerning the discriminant ability, the AUROC on the whole follow-up for the multivariate 508 

model was Harrell’s c statistic =0.731. For marker evaluation the main question is: does 509 

ER improve the discriminant ability when added to the other variables? Harrell’s c statistic 510 

for the model with the prognostic variables and without ER is 0.71. Thus, it seems that the 511 

contribution of ER to the discriminant ability of the three prognostic factors is limited.  512 

Because in univariate analysis (previous paragraph) it emerged that the best discriminant 513 

ability of ER was shown at early follow-up times, this evaluation was performed also in the 514 

multivariate analysis. Again, the highest discriminant ability was found at early follow-up 515 

times: 360 days (Fig. 9) and model with ER slightly outperforms the model without the 516 

variable (AUROC=0.85 vs AUROC=0.83). 517 
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The improvement in discriminant analysis obtained by including in the model ER (as LER) 518 

can be evaluated by “integrated discriminant index (IDI) which, at 360 days is 0.0026. The 519 

IDI is near to zero indicating a low discriminating improvement. The 95% Confidence 520 

interval (from -0.0020 to 0.0103) includes 0 thus there is not “statistical evidence” of a 521 

discriminant improvement in prognosis given by ER (in this type of chemotherapy treated 522 

patients) when Grade, tumor size and number of axillary lymph nodes are jointly 523 

considered. 524 

When ER is considered as dichotomous (cut-off 20 fmol) the highest discriminant ability is 525 

again at 360 days and AUC is 0.84, slightly lower than AUROC for the model with ER in 526 

continuous scale (LER). 527 

Analysis of impact of ER on time to tumor recurrence 528 

In this paragraph we show the impact of ER on tumor recurrence: as discussed in the 529 

methods section, this end-point requires methods for competing risk analysis, because of 530 

the presence of death occurrence without relapse, as the competing event preventing the 531 

observation of the end-point of interest.  532 

Univariate analysis of ER and tumor recurrence 533 

In the current example, among 171 patients who are dead, 21 had not experienced tumor 534 

recurrence. For this end-point, tumor recurrence-free survival curve interpretation is not 535 

straightforward because the probability of being free from tumor recurrence is the sum of 536 

two probabilities: the probability of being alive without tumor recurrence, plus the 537 

probability of being deceased without recurrence. For this reason, the probability of 538 

concern is the cumulative probability of tumor recurrence as first event (crude cumulative 539 

incidence). Sometimes, a naïve estimate of this probability is mistakenly obtained as the 540 

complement to the Kaplan-Meyer estimate of tumor recurrence-free survival, after 541 

considering time to death without recurrence as censored. For the data under examination, 542 
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the crude cumulative incidences and the naïve incidence obtained by 1-Kaplan-Meier are 543 

shown in Fig. 9. 544 

First let us consider ER as a categorical variable by cut-off 20 fmol/mg. In Figure10, the 545 

patterns of the cumulative incidence obtained by the two methods are similar and slight 546 

differences can be evidenced only at follow-up times greater than 1500 days. This result is 547 

expected in our case since the low number of patients who died without tumor recurrence. 548 

In other situations where a higher number of competing events is observed, more 549 

substantial differences between the two estimates are expected. Furthermore, the two 550 

estimates are nevertheless interchangeable. The naïve Kaplan-Meier estimate is a biased 551 

estimate of the probability of recurrence given the “removal” of death without recurrence, 552 

i.e. the cumulative probability of recurrence if this could be observed for all patients. The 553 

crude cumulative incidence estimator is the unbiased estimate of the cumulative 554 

probability of recurrence observed as first event.  555 

Concerning the comparison between crude cumulative incidences of recurrence for 556 

patients with ER- and ER+ status, a significant difference was found (Gray test= 12.97 p-557 

value=.0003164462): thus, a higher incidence of recurrence is expected in ER- patients.  558 

To find the optimal cut-off. ER was dichotomized by a cut-off sequence starting from 5 to 559 

200 fmol and the cut-off corresponding to a minimum p-value was chosen. According to 560 

this criterion the best cut-off was 9 fmol/mg (p-value of Gray test = 5.148984*10-7. Results 561 

are near to the cut-off 10 found for overall survival. 562 

Multivariate analysis of ER and tumor recurrence 563 

The analysis was performed by estimation of two models: The Fine and Gray regression 564 

model for competing risks, and, for comparison purposes, a Cox model for recurrence 565 

times, in which times to death without tumor recurrence are censored. Results are 566 

reported in Table 2. Although the slight differences among Hazard ratios (again, this result 567 

was expected because of the low number of deaths without recurrence) the interpretation 568 
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of the results of the two models are different. Both models account for the presence of 569 

competing risks but from a different perspective. For the Fine and Gray regression model, 570 

if the (sub-distribution) hazard ratio is significantly different from one, then the crude 571 

cumulative incidences (for example, between Grade III versus Grade I, see Tab. 2) are 572 

different. This relationship cannot be extended to Cox model results because hazard ratio 573 

from Cox model does not have a direct relationship with crude cumulative incidences.  574 

From the estimates of hazard ratios (Table 2), a significant impact of Estrogen Receptor 575 

levels (included in log scale) emerged, with an estimated hazard ration of 0.90 (95% C.I. 576 

0.84,0.97). This result suggests that the hazard of tumor recurrence decreases with 577 

increased levels of ER, and, consequently the crude incidence of recurrence is lower in 578 

subjects with higher ER levels. 579 

 580 

DISCUSSION 581 

This manuscript illustrates, utilizing a human database, some of the most appropriate 582 

statistical approaches to analyze prognostic significance of any novel tumor marker, 583 

stressing the necessity to plan in advance a statistical approach tailored to the clinical 584 

study and providing insights on study planning to provide statisticians with the most useful 585 

and adequately numerous dataset. Oncologists and clinicians in general should take into 586 

consideration before starting the study on a new marker several matters including: correct 587 

specification of the end-point, choice of the best suited survival model for the end-point, 588 

qualitative or quantitative measurement scale of the marker, and statistical methods aimed 589 

at quantifying the prognostic/predictive information provided by the marker. 590 

Most of the problem that are spotted by a statistician when she/he is consulted, after the 591 

end of a study, in order to improve the paper to submit to a scientific journal, or to clarify 592 

some technical issues about the statistical analysis, are: 593 
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- Lack of representativeness of the sample with respect to a wider population of subjects 594 

sharing the same pathology, due to an inadequate sampling plan. 595 

- Data retrieved from medical records (retrospective studies) with insufficient quality of 596 

data in order to satisfy the aims of the study. 597 

- Inadequate (small) sample size to the aim of investigating the prognostic value of the 598 

variables under examination. 599 

 - Choice of cut-offs for numerical markers based on empirical basis without investigation 600 

of the marker on the original measurement scale.  601 

- Inadequate statistical methods of analysis that strongly reduce the reliability of results.  602 

- A blind interpretation of p-values that makes statistical significance prevail over the most 603 

important clinical relevance. 604 

- Lack of evaluation of the discriminant ability when the statistical model is used as an aid 605 

to clinical decision making.  606 

The evaluation of prognostic/predictive tumor markers is challenging and should aim 607 

toward a personalized medicine framework, intended to improve clinical decision making. 608 

Because of the potentially relevant role of a marker, the statistical analysis needs to be 609 

performed in such a way to obtain reliable information. For this purpose, the end-point has 610 

to be clearly defined and its choice depends on the study aim, that is, and end point can 611 

be “patient oriented” or “tumor oriented”. The most utilized patient oriented end-point is 612 

patient overall survival or patient’s quality of life, representing composite end-points in 613 

which many events are included (e.g. tumor recurrences and death). The tumor oriented 614 

end-point relates generally to the response of the tumor to therapeutic strategies, and 615 

different specific end-points are of concern, as for example local relapse, end/or distant 616 

metastases and/or contralateral tumors. Since each one of the above mentioned end-617 

points provides different information on the disease course, it is usual and highly 618 

recommended to plan the study by considering both patient oriented and tumor oriented 619 
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end-points. The latter are only a subset of the events which can be observed and should 620 

be planned to take into account the presence of competing risks.  621 

When the goal is to evaluate the prognostic/predictive role of a marker, a multivariate 622 

analysis is the adequate strategy. In the model exemplified in this report, all the previously 623 

well-known prognostic predictive clinical and pathological variables should be included in 624 

such a way to quantify the added contribution provided by the marker, and to allow 625 

clinicians to decide whether to include the marker in their routine practice in costs/benefits 626 

terms. As an aid to decision, the criteria based on statistical significance are not sufficient 627 

and the discriminant ability should be provided in addition.  628 

Number of events is one of the main critical issues in this type of statistical analysis, 629 

because an insufficient EPV could determine lack of reliability of multivariate analysis 630 

results. In fact, the more variables needed to be included the larger sample size is needed. 631 

Methodological papers showed that at least 10 events for each variable should be 632 

considered to obtain reliable model results.5,36 As a consequence, when a low number of 633 

events are expected to occur for the disease of interest (e.g. low incidence of tumor 634 

recurrence or deaths) the adequate sample size may need to be very large and thus, 635 

difficult to reach by a single research center.  636 

The authors believe that the role of each study is to contribute to the scientific background 637 

enhancement, and to this aim a study should be correctly conducted non only regarding 638 

the experimental components (clinical, biological, pathological) but also with an 639 

appropriate statistical analysis. The role of the variables on the disease course is often 640 

complex, but it seems that most researchers fail to realize that unreliable results could be 641 

obtained by the application of a too simplified statistical approach, eventually adopted by 642 

honest researchers who, however, are not experienced in statistical methods. On the other 643 

hand, statisticians who are not experienced in medicine could apply complex statistical 644 

methods which are inadequate to study aims. In conclusion, the best strategy is to work in 645 
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close collaboration with each group providing the study with its own expertise, and learning 646 

how to communicate effectively to explain technical issues by using terms and examples 647 

which can be understood by each research staff component. We hope this manuscript will 648 

facilitate the cooperation among bio-statisticians, oncologists and pathologists. 649 
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FIGURE LEGENDS 774 

Figure 1: theoretical hazard ratios for a linear and a non-linear relationship between 775 

hazard and marker level.  776 

Marker levels are placed on the X axis. Panels A) and B) : linear relationship. A: Ratio 777 

between the hazard for a marker level x and the hazard for marker level 0; B: Ratio 778 

between the hazard for a marker level x+1 and the hazard for marker level x. Panels C) 779 

and D) : non-linear relationship. C: Ratio between the hazard for a marker level x and the 780 

hazard for marker level 0; D: Ratio between the hazard for a marker level x+1 and the 781 

hazard for marker level x. 782 

 783 

Figure 2: Kaplan-Meier survival curve for ER  784 

(ER- if fmol/mg<20 and ER+ if fmol/mg>=20) 785 

 786 

Figure 3: Kaplan-Meier survival curve for ER for old cutoff  787 

(ER- if fmol/mg <20 and ER+ if fmol/mg>=20) and new (“better”) cut-off (ER- if fmol/mg 788 

<10 and ER+ if fmol/mg >=10) 789 

 790 

Figure 4: histogram of the ER distributions 791 

Panel A: original scale (fmol/mg); panel B: log(ER+1) scale 792 

 793 

Figure 5. Ratio of the hazard of death for each fmol ER and the hazard of death for 1 794 

fmol ER 795 

 796 

Figure 6 The ratio of the hazard of death for each fmol ER and the hazard of death 797 

for 1 fmol ER Fi 798 

Gray line: model with regression spline; Black line: model with linear relationship. 799 
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 800 

Figure 7 Discriminant ability by dynamic ROC curve.  801 

Black line: model with linear relationship. Gray line: model with regression spline.  802 

 803 

Figure 8. Discriminant ability by dynamic ROC curve.  804 

Gray line: model with axillary lymph nodes, grading and tumor size. Black line: model with 805 

the three pathological variables plus LER.  806 

 807 

Figure 9. Cumulative incidence of tumor recurrence for ER (ER- if fmol<20 and ER+ 808 

if fmol>=20).  809 

Solid lines crude cumulative estimates, dashed lines: naïve Kaplan-Meier estimates. Black 810 

lines ER-, Gray lines ER+.  811 


