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Piccolella et al. Retinoid Acid Inhibition of HSPB8 Q9
biological antagonist of the estrogenic system, among all the data
collected about the effects of RA in BC none has been focused on
its possible modulation of HSPB8 expression (16). The aim of
this work was to analyze the direct effect of RA on HSPB8
expression in MCF-7 cells and its possible role in preventing the
adverse effects of HSPB8 in BC. We found that RA reduces
HSPB8 transcription and translation by acting on its promoter
and on its mRNA stability, respectively, and this results in a
disruption of the correct structure of the mitotic spindle. Our
data also showed that the HSPB8 mRNA could be targeted in its
open reading frame (ORF) by miRNAs that can regulate HSPB8
Frontiers in Oncology | www.frontiersin.org 2
normalize the amount of transfected plasmid DNA. All plasmids
were transfected in MCF-7 and MDA-MB-213 cell lines as
previously described (21). NSC-34 cells were transfected as
previously described (25). The hsa-miR-574-5p miRCURY
LNA miRNA Inhibitor (Qiagen) was used to inhibit miR-574-
5p activity, and the miRCURY LNA miRNA Inhibitor Control
(Qiagen) was used as a control. Both miRNAs were transfected at
the final concentrat ion of 50nM according to the
manufacturers instructions.
its use in solid cancer is still controversial (6). Unfortunately, few
clinical investigations related to RA anticancer activity are
available (7). Retinoids act through two subfamilies of nuclear
retinoid receptors (RARs and RXRs) that belong to the family of
steroid/thyroid hormone receptors. To date, six different genes
encoding for nuclear RAR/RXRs have been identified. RAR/
RXRs are ligand-activated transcription factor (TF) able to bind
RA responsive elements (RAREs) located in the promoter of
responsive genes (7). The interplay between RAR and ER was
reported. Indeed, both receptors can bind the same DNA
responsive elements and in ER+-MCF-7 cells, they act
antagonistically to regulate human BC-associated genes (8).
Interestingly, also microRNAs (miRNAs) like miR-210, miR-
23a/24-2, miR-17/92, miR-424/450b are antagonistically
regulated by both estrogen and RA in MCF-7 cells (9).
Noteworthily, RA treatment reduces the proliferation of ER+-
MCF-7 but not of MDA-MB-231 cells, which are ER-; at the
same time RA upregulates the expression of the pro-oncogenic
miR-21 which reduces cellular motility, despite its ability to
counteract RA antiproliferative activity (10). A study carried out
on the ER- SKBR3 cells showed that RA treatment modulates the
expression of a considerably high number of miRNAs (11).
Chemoresistance of BC cells has been recently correlated with
autophagy impairment mediated by miR-27a expression (12).
Autophagy is one of the intracellular degradative systems
responsible for the clearance of damaged proteins and
organelles (13) and it is apparently involved in the generation
of drug-resistant BC cells (14). In cancer cells, autophagy initially
has a suppressive activity, but subsequently it can increase tumor
cell survival by enhancing stress tolerability, perturbing cell
function and reducing apoptotic cell death. Chaperone-assisted
selective autophagy (CASA) is a peculiar form of autophagy, that
exerts protective mechanisms against human diseases (15). A
crucial player in CASA is the small Heat Shock Protein B8
(HSPB8), which acts as autophagy flux enhancer (16), together
with its co-chaperone BCL2-associated athanogene 3 (BAG3),
the Heat Shock Cognate 70 Protein (HSC70) and the E3-
ubiquitin protein ligase CHIP (15, 17, 18). This CASA complex
recognizes aberrant proteins and drives them to autophagosomes
for their clearance (17–19). HSPB8 is a limiting component of
the CASA complex (20), and its expression is associated with
increased proliferation and migration of MCF-7 cells (21). Thus,
HSPB8 plays a relevant role in the modulation of MCF-7 cell
aggressiveness, and this action correlates with estrogen activity

mRNA stability, one of which is miR-574-5P. Thus, RA may be
viewed as a potent physiological antagonist of HSPB8 adverse
activities in BC.

MATERIALS AND METHODS

Chemicals
17b-estradiol (#E1024), all-trans retinoic acid (RA; #R2625) and
ICI 182.780 (#I4409) were obtained from Sigma-Aldrich (St.
Louis, MO, USA).

Cell Culture and Treatments
MCF-7 and MDA-MB-213 cells were originally obtained from
the American Type Culture Collection (Rockville, MD) and are
routinely used in our laboratory between passages 8 and 12 (21)
(5% CO2, 37° C, humidity > 90%). Short-tandem repeat (STR)
profile has been performed by Eurofins Genomics Europe
(Ebersberg, Germany). Genetic characteristics were determined
by PCR-single-locus-technology. 16 independent PCR-systems
D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317,
D16S539, D2S1338, AMEL, D5S818, FGA, D19S433, vWA,
TPOX and D18S51 were investigated (Table 1). Before any
experimental procedure, medium was replaced overnight with
RPMI 1640 without fetal bovine serum (FBS) and without
phenol red to synchronize cell growth. In all experiments, 17b-
estradiol was used at the dose of 10nM and RA at doses ranging
from 0.01mM to 1mM accordingly to literature (21–23). Plasmid
transfection was performed on the third day of RA treatment.
The immortalized motoneuronal NSC-34 cells were obtained
from Niel Cashman and are routinely used in our laboratory
between passages 10 and 20 (24, 25).

Plasmids, miR-Inhibitor and Transfection
pCMV-b-gal plasmid was obtained from Clontech Lab
(Mountain View, CA, USA). hPromB8-LUC plasmid contains
the firefly luciferase cDNA under the control of a -3000/+523
human HSPB8 promoter region (18); pCI-hHSPB8-wild-type
(wt) codes for the human HSPB8 protein (26). pHSPB8-mut has
been obtained in our laboratory by exchanging the ApaI/SalI
coding fragment with the mutated sequence obtained from
Eurofins Genomics. pEGFP-G93A-SOD1 expresses the green
fluorescent protein (GFP)-tagged mutant G93A SOD1 (17).
pcDNA3.1 (Life Technologies, #V790-20) plasmid was used to
228
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Q12

in 4% paraformaldehyde, permeabilized in 0.5% Triton X-100
and treated with 5% FBS (GIBCO) in PBS. Subsequently, cells
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RT-qPCR Analysis
MCF-7 and MDA-MB-231 cells were seeded in 6-well plates at
300,000 cells/well and treated for 2 or 3 days with increasing
doses of RA (0.01-1mM) and with 17b-estradiol (10nM). Then,

TABLE 1 | Cell Line Authentication. The table shows the result of the cell line
analysis.

Cell Line Authentication Report
Sample Name MCF-7 MDA-MB-231

D8S1179 10,14 13,13
D21S11 30,30 30,33.2
D7S820 8,9 8,8
CSF1PO 10,10 12,13
D3S1358 16,16 16,16
TH01 6,6 7,9.3
D13S317 11,11 13,13
D16S539 11,12 12,12
D2S1338 21,23 20,21
D19S433 13,14 11,14
vWA 14,15 15,15
TPOX 9,12 8,9
D18S51 14,14 11,16
AMEL X,X X,X
D5S818 11,12 12,13
FGA 23,25 22,23
Database Name MCF-7 MDA-MB-231
cells were harvested in 300 µL TRI Reagent (Sigma-Aldrich;

Frontiers in Oncology | www.frontiersin.org 3
Aldrich) added with a protease inhibitor cocktail (Sigma-
Aldrich) and homogenized using slight sonication to lyse cells
and nuclei. Total protein concentration was determined using
the bicinchoninic acid method (BCA assay; Euroclone,
#EMP014500). Equal amounts of proteins (15-20µg) were
resolved by electrophoresis on a 10-15% SDS-polyacrylamide
gel (SDS-PAGE). Proteins were transferred to 0.45 mm
nitrocellulose membranes using a transfer apparatus (Mini
Trans-Blot Cell; Bio-Rad Laboratories). The membranes were
then processed as previously described (21). For HSPB8,
Glyceraldeyde 3-Phosphate Dehydrogenase (GAPDH) and
a−Tubulin detection, overnight incubation at 4°C was
performed respectively with antibodies listed in Table 3.
Membranes were then washed and incubated for 1 h at room
temperature with secondary antibodies conjugated to peroxidase
(Table 3). Immunoreactive bands were visualized using
enhanced chemiluminescence detection kit reagents (Westar
Antares; Cyanagen, #XLS142). A ChemiDoc XRS System (Bio-
Rad) was used for image acquisition.

Immunofluorescence Analysis
MCF-7 cells were plated on 13mm-diameter coverslips at 50,000
cells/well and treated with RA (1mM) for 2 or 3 days, then fixed
were incubated overnight at 4°C with the primary antibodies 311
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#T9424) and total RNA was isolated. 1mg total RNA was treated
with DNAse and reverse-transcribed into cDNA using the High-
Capacity cDNA Archive Kit (Applied Biosystems, Life
Technologies Corporation; #4368813). Primers were
synthetized by Eurofins Genomics with the sequences reported
in Table 2. Real-time PCR (qPCR) was performed as previously
described (21). Data were transformed using the equation 2−DDCt

to give N-fold changes in gene expression; all statistical analyses
were performed with DCt values. Each sample was analyzed in
triplicate (n=3); HSPB8 and BAG3 values were normalized to
those of Ribosomal Protein Lateral Stalk Subunit P0 (RPLP0).

Western Blot Assay
MCF-7 and MDA-MB-231 cells were seeded in 6-well plates at
300,000 cells/well and treated for 2 or 3 days with increasing
doses of RA (0.01-1mM) and with 17b-estradiol (10nM).
Western blot (WB) assay was performed as previously
described (21). NSC-34 cells were seeded in 12-well plates at
80,000 cells/well. 48h after transfection, cells were harvested and
centrifuged for 5 min at 100 × g at 4°C; the cell pellets were then
re-suspended in Phosphate-Buffered Saline (PBS) (Sigma-

listed in Table 3. Incubation with secondary antibodies (Table 3)
was performed for 1 h at room temperature. Nuclei were stained
with Hoechst 33342 (Thermo Fisher). Finally, the coverslips were
mounted with Mowiol 40-88 (Sigma-Aldrich). Images were
collected by UIC-Metavue 6.2.2 (UIC-Crisel Instr. Rome)
imaging system on an Axiovert Zeiss 200 microscope, utilising
a 40× magnification (NA 0.8) objective.

Cell Growth Studies
To study the effect of RA and 17b-estradiol on MCF-7, cells were
seeded in 24-well plates at 40,000 cells/well and treated up to 6

TABLE 2 | Primer List.

Gene Sequence (5’-3’)

HSPB8 forward AGAGGAGTTGATGGTGAAGACC
reverse CTGCAGGAAGCTGGATTTTC

BAG3 forward GGGTGGAGGCAAAACACTAA
reverse AGACAGTGCACAACCACAGC

RPLP0 forward GTGGGAGCAGACAATGTGGG
reverse TGCGCATCATGGTGTTCTTG

TABLE 3 | Antibody list.

Antibody Species Dilution Application Company (Catalog #)

HSPB8 rabbit 1:2,000 WB kindly provided by Jacques
1:200 IF Landry, Quebec, Canada

BAG3 rabbit 1:10,000 WB Abcam; #ab47124
1:1,000 IF

a-Tubulin mouse 1:4,000 WB Sigma-Aldrich; #T6199
1:200 IF

GFP mouse 1:1000 WB/FRA Immunological Sciences;
#MAB94345

Anti-
rabbit

goat 1:10,000 WB (HSPB8) Santa Cruz Biotech; #E2908

1:20,000 WB (BAG3)
Anti-
mouse

goat 1:10,000 WB (a-
Tubulin)

Santa Cruz Biotech; #H2704

Anti-
rabbit

donkey 1:500 IF (red) Rockland; #611-700-127

Anti-
mouse

donkey 1:500 IF (green) Rockland; #710-702-124

Anti-
rabbit

goat 1:200 IF (green) Thermo Fisher; #A11070
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days with RA (1mM) and 17b-estradiol (10nM); cell growth/
viability was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] assay. Briefly, culture medium
was replaced with fresh medium containing MTT (1.5 mg/ml)
and the multiwells were incubated at 37°C for 1 h, then the
medium was removed and 2-propanol (500ml) was added to
solubilize the crystals. The absorbance was read at 550 nm with
an Enspire 2300 Multimode Plate Reader (Perkin Elmer,
Italy) (21).

miRNA RT-qPCR Analysis
10ng of total RNA were reverse-transcribed and amplified using
the miRCURY LNA miRNA PCR Starter Kit (Qiagen, Ref
339320. The kit includes a spike-in control primer set
(UniSp6), UniSP6 RNA Spike-in-template, one candidate
endogenous control primer set (miR-103a-3p) and two
validated primer sets, which in our case were miR-297 (Qiagen
YP00206079) and miR-574-5p (Qiagen YP02116206). As
additional control micro-RNAs (miRNAs), we chose miR-25-
3p (Qiagen YP00204361) and miR-331-3p (Qiagen YP00206046)
because both are used as markers in BC analysis (27, 28) and
their expression is not modified by RA treatment in the BC cell
line SKBR3 (11). Real-time PCR was performed with miRCURY
LNA SYBR Green Master Mix (Qiagen) in 10mL total volume
using the CFX 96 Real Time System (Bio-Rad). The expression of
target miRNAs miR-297 and miR-574-5p was normalized
against miR-25-3p, miR-103a-3p, miR-331-3p and UniSp6
using the 2-DDCt method. To validate the real-time system used
for miRNA analysis, we measured the levels of UniSp6RNA, a
control RNA provided with the Starter Kit, that was added before
the reverse transcription in equal amount to all samples (see
Supplementary material).

Transcriptional Activity
Transcriptional activity was measured using the LucLite Kit from
Perkin Elmer (Waltham, MA, USA). MCF-7 cells treated with
RA (1mM) and 17b-estradiol (10nM) were plated in 24-well
plates at a density of 100,000 cells/well and transfected with
0.4mg pCMV-b-gal plasmid and with 0.6mg hPromB8-LUC
plasmid. Each sample was analyzed in sextuplicate. All
plasmids were transfected as described above. The inducible
firefly luciferase activities controlled by the HSPB8 promoter
have been normalized using the constitutive b-galactosidase

activities produced under the control of the Citomegalovirus
(CMV) promoter (by co-transfecting pCMV-b-gal). The

443
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Filter Retardation Assay
NSC-34 cells were plated at 80,000 cells/well in 12-well plates,
transfected and collected 48h after transfection in PBS added
with protease inhibitor. Cells were homogenized using slight
sonication to lyse cells and nuclei as previously described (29).
Filter retardation assay (FRA) was performed using a Bio-Dot SF
Microfiltration Apparatus (Bio-Rad). 6mg of the total protein
extracts were filtered through 0.22mm cellulose acetate
membranes (Whatman, 100404180). The membranes were
probed as described for WB. A ChemiDoc XRS System (Bio-
Rad) was used for image acquisition. The optical density of
samples assayed with WB or FRA was detected and analyzed
using the Image Lab software (Bio-Rad). Statistical analyses were
performed using relative optical densities, defined as the ratio
between the optical densities of each independent biological
sample (n = 3) and the mean optical density of control samples.

Migration Assay
Briefly, cell migration assay was performed using a 48 well-
Boyden chamber (NeuroProbe, Inc., Gaithersburg, MD, USA)
containing 8µm polycarbonate filters (Nucleopore, Concorezzo,
Milan, Italy). Filters were coated on one side with 50µg/ml
laminin rinsed once with PBS, and then placed in contact with
the lower chamber containing RPMI 1640 medium. MCF-7 cells,
overexpressing mutated HSPB8 for 3 days and treated with 1mM
RA up to 6 days, were collected, added in aliquots (75,000 cells/
50µl) to the top of each chamber and allowed to migrate through
coated filters for 4h. At the end of the incubation, the migrated
cells attached on the lower membrane surfaces were fixed,
stained with Diffquik (Biomap, Italy) and counted in standard
optical microscopy (21).

Statistical Analysis
Statistical analysis was performed by one-way ANOVA followed
by Bonferroni multiple comparison tests. *p<0.05 was considered
statistically significant. Computations were performed with the
PRISM (ver. 6.0 h) software (GraphPad Software, LaJolla,
CA, USA).

RESULTS

Effect of RA on HSPB8 and BAG3
Gene Expression
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luminescence was evaluated using Wallac 1450 MicroBeta
TriLux (Perkin Elmer, Waltham, MA, USA). b-galactosidase
activity (coded by pCMVb) was then assayed in the same
samples. For b-galactosidase 50ml of each sample were added
to 750ml Assay Buffer in presence of 4mg/ml b-galactosidase
substrate o-nitrophenyl-b-D-galactopyraniside (ONPG, Sigma)
and incubated at 37°C until yellow color appeared. Then, 500mL
Na2CO3 (1M) were added, 200mL of the final solution were
transferred to 96-well plates and 420nm absorbance was
quantified using EnSpire 2300 Multimode Plate Reader (Perkin
Elmer, Italia).

We initially evaluated whether RA may modulate HSPB8
expression in MCF-7 cells. For this purpose, we treated MCF-7
with increasing doses of RA for 2 or 3 days, accordingly to the
literature (23). The analysis of HSPB8 gene expression,
performed using RT-qPCR on MCF-7 cells, is reported in
Figure 1A. The data clearly show that both 2 and 3 days of
1mM RA treatment resulted in a significant reduction of HSPB8
mRNA levels, while lower doses were not able to modify HPSB8
expression at both times considered. A similar result was
observed for HSPB8 protein by western blot (WB) analysis
(Figure 1B): in fact, no significant modulation of HSPB8
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with the lowest doses of RA, while 1mM RA treatment reduced
HSPB8 levels. Similarly, also BAG3 mRNA and protein levels
were reduced by RA (Figures 1C, D). Moreover, we performed
Immunofluorescence (IF) analysis to evaluate HSPB8, BAG3 and
tubulin intracellular localization (Figures 1E, F). HSPB8 and
BAG3 intracellular distribution in untreated cells was in line with
our previous observations (21). Interestingly, in MCF-7 cells
treated with 1mM RA the HSPB8 and BAG3 IF reactivities were
significantly reduced at both times considered (Figures 1E, F),
while they were easily detectable in untreated cells. No changes in

tubulin levels and distribution were observed after 2 days of RA

569

570

Frontiers in Oncology | www.frontiersin.org 5
treatment, but several dividing cells displayed a different
organization of their normal mitotic asset after 3 days of RA
treatment. As described by Fuchs and colleagues (30), HSPB8 has
a very peculiar localization at metaphase, since it surrounds the
complex microtubule spindle network and concentrates adjacent
to, but not co-localizing with the chromosomal DNA packed at
the metaphase plate. In Figure 1I, we showed that HSPB8
reduction induced by RA treatment was associated with the
alteration of the mitotic spindle, that appeared highly
disorganized, impairing the correct chromosomes alignment.
Therefore, our data suggest that the effects of HSPB8 on
A

B D

E F

G

I

H

C

FIGURE 1 | Effect of RA treatment in MCF-7 cells. HSPB8 (A, B) and BAG3 (C, D) mRNA and protein levels measured by RT-qPCR analysis and western blot
analysis in MCF-7 cells treated for 2 and 3 days with different doses of RA. (E) Immunofluorescence analysis of HSPB8 (red) and tubulin (green) in MCF-7 cells
treated for 2 and 3 days with 1mM RA, nuclei were stained with Hoechst (scale bar = 20mm). (F) Immunofluorescence analysis of BAG3 (red) and tubulin (green) in
MCF-7 cells treated for 2 and 3 days with 1mM RA (scale bar = 20mm). (G, H) fluorescent intensity quantification of HSPB8 and BAG3, nuclei were stained with
Hoechst. (I) Higher magnification of the mitotic spindle (scale bar = 5mm). *p<0.05, **p<0.01 and ***p<0.005 in all charts. *p<0.05; **p<0.01; ***p<0.005 vs control.
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microtubules could be more relevant during the mitotic phase
than during interphase, since the alteration on the tubulin
network induced by HSPB8 downregulation was present only
on the microtubules forming the mitotic spindle.

Dual Activity of RA on HSPB8
Transcript Levels
The reduction of HSPB8 gene expression operated by RA
suggests that there may be a direct action on the promoter
region of the humanHSPB8 gene. To evaluate this hypothesis, we
took advantage of the reporter plasmid hPromB8-LUC, in which
the cDNA coding for luciferase is placed under the control of the
human HSPB8 promoter (18). We transfected MCF-7 cells with
the plasmid and analysed RA effect on luciferase expression, both
in basal condition and in the presence of 10nM 17b-estradiol,
used as positive control (21) (Figure 2A). At 2 days of treatment,
we found that RA had no effect in basal condition, whilst it
significantly reduced 17b-estradiol-induced luciferase activity.
Consistently, we confirmed that, in our experimental condition,
RA treatment was able to reduce cell proliferation induced by
17b-estradiol treatment, as already published by Salvatori and
colleagues (23) (Figure S2).

To investigate the possible correlation between RA and 17b-
estradiol in the modulation of HSPB8 expression, we inhibited
ER activation in MCF-7 with the ER antagonist ICI 182.780 and

analysed HSPB8 expression by RT-qPCR (Figure 2B) and WB
(Figure 2C). The data clearly showed that both ICI 182.780 and
RA treatments resulted in a significant reduction of HSPB8
mRNA levels; moreover ICI 182.780 and RA co-treatment
showed a synergic effect (Figure 2B). A similar result was
observed for HSPB8 protein levels (Figure 2C), suggesting that
ER is necessary to maintain HSPB8 expression, but RA effects
might be exerted independently from the ER activity on HSPB8
promoter (21).

Then, we assessed the possibility that RA effects on HSPB8
expression levels were independent from HSPB8 promoter
regulation. For this purpose, we transfected MCF-7 cells with a
plasmid in which HSPB8 expression is regulated by the
Citomegalovirus (CMV) promoter. We found that, also in this
case, RA reduced both mRNA (Figure 2D) and protein levels
(Figure 2E) of overexpressed HSPB8 in MCF-7 cells, at every
time considered. Moreover, we confirmed that this effect was
specific for HSPB8, since no modulation was observed on the b-
galactosidase enzyme expressed under the control of CMV
promoter (Figure S3).

Therefore, the RA-mediated reduction of HSPB8 levels might
depend on a specific RA-regulated factor, that might act at
mRNA level, like, for example a micro-RNAs (miRNAs).

A B

D E

C

FIGURE 2 | Promoter independent modulation of HSPB8 is induced by RA in MCF-7 cells. (A) Transcriptional activity assay of MCF-7 cells treated with 1mM RA
and/or 10nM 17b-estradiol transfected with hPromB8-LUC and pCMV-b-gal. Luciferase activity is expressed as luminescence counts per second (LCPS) normalized

on b-galactosidase (b-gal) expression. HSPB8 mRNA (B) and protein levels (C) measured by RT-qPCR analysis and western blot analysis in MCF-7 cells treated for
2 days with 1mM RA and/or 100nM ICI 182.780. (D) HSPB8 mRNA levels measured by RT-qPCR analysis in MCF-7 cells. (E) HSPB8 protein levels measured by
western blot analysis in MCF-7 cells. For D, E untreated cells (C), mock-transfected cells (M) or cells treated up to 6 days with 1mM RA and transfected at day 3 with
the plasmid overexpressing wild-type HSPB8. Analyses were performed at 1, 2 and 3 days after transfection.
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Notably, the reduction of miR-574-5p levels in MCF-7 cells was
observed in all the analyzed conditions. Moreover, at 6h, 24h,
and 48h of RA treatment we did not observe miR-574-5p
reduction (Figure 3D).

Then, we treated MCF-7 cells with hsa-miR-574-5p
miRCURY LNA miRNA inhibitor, but unfortunately we did
not observe a modulation of HSPB8 protein levels after its
overexpression (Figure 3E). Despite this, we assayed the levels
of miR-297 and miR-574-5p also in the ER- MDA-MB-231 cell
line, that express low levels of HSPB8. miRNA levels in the two
cell lines have been compared using UniSP6RNA as external
reference to normalize samples. Interestingly, miR-574-5p levels
were significantly higher in MDA-MB-231 cells compared to
MCF-7 cells (Figure 3F). No differences were observed in the
case of miR-297 levels (Figure 3G).

This evidence led us to test the effect of RA on overexpressed
HSPB8 also in MDA-MB-231 cells. Data showed that RA
treatment did not affect HSPB8 mRNA (Figure 3H) and
protein levels (Figure 3I). Consistently, we did not observe
changes in miR-574-5p in MDA-MB-231 cells after exposure

TABLE 4 | miRNAs targeting HSPB8 ORF.

Accession ID Query start

MIMAT0027355 hsa-miR-6727-5p 37
MIMAT0027665 hsa-miR-6882-3p 75
MIMAT0000722 hsa-miR-370-3p 436
MIMAT0004450 hsa-miR-297 290
MIMAT0023700 hsa-miR-6075 35
MIMAT0025474 hsa-miR-6509-5p 22
MIMAT0025475 hsa-miR-6509-3p 22
MIMAT0027587 hsa-miR-6842-3p 158
MIMAT0004795 hsa-miR-574-5p 292
In grey are highlighted the miRNA confirmed by the analysis done with mirDIP. The table show
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on the overallHSPB8mRNA and protein levels. Surprisingly, RA
treatment correlated with a further increase of HSPB8 mRNA
levels at 1 and 2 days after transfection (Figure 4D), while
HSPB8 protein levels were enhanced only at day 1 after
transfection in MCF-7 cells (Figure 4E). Interestingly, this
unexpected stimulatory effect of RA was not observed in MDA-
MB-231 cells (Figures 4F, G). Since RA treatment in MCF-7 cells
overexpressing HSPB8 variant did not cause a reduction of total
HSPB8 levels, that remained elevated up to 3 days after
transfection, it was possible to assess whether RA treatment was
able to reduce MCF-7 cell proliferation even in presence of high
HSPB8 protein levels. The data in Figure 4H showed that the
presence of overexpressed HSPB8 variant did not change the
proliferative capacity of MCF-7 cells and that RA maintained its
antiproliferative activity even under these conditions. Finally, we
also assessed RA antimigratory capacity of MCF-7 cells in the
presence of the HSPB8 variant. We found that RA was able to
reduce the migratory capacity of MCF-7 cells from 4 to 6 days of
treatment. Interestingly, this effect was completely counteracted
by HSPB8 variant starting from the fifth day of treatment and
after 2 days post transfection (Figure 4I).

uery end Subject start Subject end Strand

55 1 19 –

93 6 24 +
454 2 20 +
308 1 19 +
53 2 20 –

40 2 20 –

40 1 19 +
176 2 20 +
306 8 22 +
miRNA Analysis in MCF-7 and MDA-MB-
231 Cells and Effects of RA Treatment
Our data suggest that endogenous and overexpressed HSPB8
could be the target of one or more miRNAs, possibly modulated
by RA in MCF-7 cells. It is expected that a putative miRNA
should be capable of binding in the HSPB8-mRNA open reading
frame (ORF); in fact, the transcript derived from pCI-hHSPB8
lacks the 5’-untranslated region (5’-UTR) and the 3’UTR of
endogenous HSPB8 mRNA. By scanning HSPB8 cDNA in silico
(http://www.mirbase.org) for sequences complementary to
known miRNAs, we identified some putative miRNAs that
target the ORF region of HSPB8 mRNA (Table 4). Of these,
only miR-297 and miR-574-5p were confirmed by a subsequent
analysis (http://ophid.utoronto.ca/mirDIP). Both are able to bind
HSPB8 mRNA region comprised between 781bp and
799bp (Figure 3A).

We thus measured the levels of the two selected miRNAs in
MCF-7. miR-297 levels did not show any significant variation
upon 1mM RA treatment for 4 days (Figure 3B). Otherwise, the
same treatment caused a significant reduction of miR-574-5p
levels (Figure 3C). In order to exclude a possible RA effect on
control miRNA levels, we used 3 different control miRNAs (miR-

to RA (Figure 3J). miR-297 levels did not change in the same
experimental conditions (Figure S4).

Effect of RA on MCF-7 Cell Proliferation
and Migration in Presence of HSPB8
Variant Overexpression
To deeply assess whether miR-574-5p mediates the RA effect on
HSPB8 levels, we edited miR-574-5p target sequence from
HPSB8-coding plasmid to avoid miRNA interaction. We
designed the mutation in order to minimize changes in protein
structure that might alter its functions and/or turnover. We
preferentially removed guanine and cytosine to weaken miRNA/
mRNA interaction in order to reduce the highest hydrogen
bonds number changing the lowest base pair (Figures 4A, B).
As shown in Figure 4C, the HSPB8 mutated variant has three
Val-to-Leu conservative replacements in positions 98, 100 and
102. Since miR-574-5p target region is localized in the first part
of the alpha-crystalline domain, that is a well-structured domain
essential for HSPB8 activity, we initially ruled out that the
introduced mutations did not affect the expression level/
stability and the activity of mutant HSPB8 (Figure S5). Then,
we overexpressed HSPB8 mutated variant in both MCF-7 and
s the result of in silico analysis of HSPB8 ORF with miRbase database. 798
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DISCUSSION

The study here described is based on our previous demonstration
that HSPB8 modulates the proliferation and migration of ER+

BC MCF-7 cells. These cells express HSPB8 protein and mRNA
at higher levels compared to ER- BC MDA-MB-231 cells (21).
Moreover, estrogen-induced HSPB8 expression is absent in
MDA-MB-231 cells (21). This suggests that HSPB8 translation
is differentially modulated by transcriptional regulatory
mechanisms in the two cell types. It is also known that these

of miR-574-5p in MCF-7 cells. (D) RT-qPCR analysis of miR-574-5p in MCF-7 ce
3p. (E) HSPB8 protein levels measured by western blot analysis in MCF-7 cells tr
574-5p-inhibitor. (F) RT-qPCR analysis of miR-574-5p in MCF-7 and MDA-MB-2
analysis of miR-297 in MCF-7 and MDA-MB-231 (MDA) cells, data are normalized
analysis in MDA-MB-231 cells. (I) HSPB8 protein levels measured by western blo
cells (M) or cells treated up to 6 days with 1mM RA and transfected at day 3 with
3 days after transfection. (J) MDA-MB-231 cells treated for 4 days with 1mM RA.
miR-331-3p as housekeeping microRNA. *p<0.05; **p<0.01; ***p<0.005 in all ch
911
cells are differently sensitive to RA treatment, that selectively
affects the expression of many genes (31) and miRNAs (11).

Therefore, we decided to analyze the direct effect of RA on
endogenous HSPB8 gene expression in MCF-7 cells and on
overexpressed HSPB8 in both MCF-7 and MDA-MB-231 cells.
We clearly observed that RA reduces HSPB8 and BAG3 gene
expression in MCF-7 cells. Since HSPB8 has been shown to
induce MCF-7 cell proliferation (21), we postulated that the well-
known antiproliferative action exerted by RA on BC cells may
also take place through the downregulation of HSPB8 and its co-
chaperone BAG3. A possible mechanism of action of RA on

reated for 6h, 24h, and 48 h with 1mM RA, data are normalized utilizing miR-25-
d up to 6 days with 1mM RA and 1, 2 and 3 days after transfection with miR-
MDA) cells, data are normalized utilizing RNA UniSp6 levels. (G) RT-qPCR
ilizing RNA UniSp6 levels. (H) HSPB8 mRNA levels measured by RT-qPCR
alysis in MDA-MB-231 cells. For (H, I) untreated cells (C), mock-transfected
plasmid overexpressing wild-type HSPB8. Analyses were performed at 1, 2 and
miRNAs RT-qPCR analysis are normalized utilizing miR-25-3p, miR-103a-3p or
. Graph bars represent the mean of three independent experiments.
912
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FIGURE 4 | Effects of RA treatment in MCF-7 cells overexpressing miR-574-5p m
of wild-type HSPB8 DNA with mutated HSPB8 DNA. (B) Alignment of miR-574-5
capital letters indicate the miRNA seed sequence. (C) Alignment of wild-type HSP
coded by the mRNA region between 780 and 800 basis. (D) HSPB8 mRNA mea
measured by western blot analysis in MCF-7 cells. (F) HSPB8 mRNA measured b
measured by western blot analysis in MDA-MB-231 cells. For (D–G) untreated ce

transfected at day 3 with the plasmid overexpressing miR-574-5p mutated HSPB8 v
Proliferation of MCF-7 cells overexpressing the miR-574-5p mutated HSPB8 variant f
percentage on day 3 of RA treatment. (I) Migration of MCF-7 cells overexpressing the
to 6 days, values are expressed as number of migrated cells (% vs untransfected con
mean of three independent experiments.
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ated HSPB8 variant. (A) Alignment of the ORF region (between 780 and 800bp)
NAs with mutated HSPB8 mRNA ORF region (between 780 and 800 basis),
protein sequences with the mutated one, bracket indicate the aminoacids
ariant. Analyses were performed at 1, 2 and 3 days after transfection. (H)
or 3 days and treated with 1mM RA up to 6 days, values are expressed as
miR-574-5p mutated HSPB8 variant for 3 days and treated with 1mM RA up
trol). *p<0.05; **p<0.01; ***p<0.005 in all charts. Graph bars represent the
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MCF-7 proliferation is the mitotic spindle disorganization and
incorrect placement of chromosomes in dividing HSPB8-
depleted cells. In fact, the HSPB8-BAG3 complex regulates
actin dynamics during mitosis by influencing spindle
orientation, a process required for chromosome alignment at
the metaphase plate and chromosome segregation (30), and
already proven to be a target for BC therapy (32). HSPB8 or
BAG3 silencing resulted in a disorganization of actin-rich
retraction fibers and altered spindle orientation, so the HSPB8-
BAG3 complex mediates the protein quality control mechanism
during mitotic processes activated in proliferating cells (30).

We found that RA inhibits HSPB8 expression acting on its
promoter, when its expression is enhanced by 17b-estradiol,
known to be a powerful positive regulator of HSPB8 expression
(21, 22); these data agree with other reports demonstrating the
antagonism between RA receptors and ERs on their DNA
responsive elements (8). Accordingly to other Authors (23), we
also report that the stimulatory action of 17b-estradiol exerted
on MCF-7 cell proliferation is antagonized by RA treatment, and
that RA antiproliferative effect is exerted only at a late stage after
treatment. We also determined whether RA effects on MCF-7
cells occurs even in the presence of HSPB8 overexpression.
Surprisingly, high HSPB8 protein levels achieved upon HSPB8
overexpression, were reduced by RA treatment. Interestingly,
this effect occurred when HSPB8 expression was driven by the
exogenous CMV promoter in the encoding plasmid lacking the
humanHSPB8 promoter. We excluded that RA acts on the CMV
promoter using the same promoter to drive the expression of the
reporter cDNA expressing b-galactosidase. In addition, MDA-
MB-231 cells transfected with the same HSPB8-coding plasmid
did not show any decrease of HSPB8 protein levels upon RA
treatment. Thus, RA must post-transcriptionally act on HSPB8

mRNA through a RA-induced factor in MCF-7 cells (and not in
MDA-MB-231 cells), such as a miRNA, capable of decreasing
HSPB8 mRNA levels and preventing its translation into the
protein. Some miRNAs are capable of binding to HSPB8 mRNA
(33, 34), but those of our interest should be also regulated by RA.
MiRNAs targeting the 3’-UTR or 5’-UTR were excluded since
both regions are absent in our HSPB8 plasmid; therefore the
putative miRNA must directly target the ORF region of HSPB8
mRNA. In silico analysis showed some miRNAs interacting with
the ORF region of HSPB8mRNA and among these our attention
focused on miR-297 and 574-5p, both able to bind in the same
trait between 780bp and 800bp. So far, miR-297 has never been
reported in any BC study, even if it was identified as tumor
suppressor in prostate cancer (35), in colorectal cancer (36) and
glioblastoma (37), while in pulmonary adenocarcinoma it has an
oncogenic effect (38). Conversely, miR-574-5p is highly
expressed in the triple negative BC SKBR3 cell line (11) where
it acts as tumor suppressor (39, 40). We found that miR-297 and
miR-574-5p are expressed in MCF-7 and MDA-MB-231 cells,
but only miR-574-5p is downregulated by RA specifically in
MCF-7 cells in which it correlates with the reduction of HSPB8
expression. The opposite has been observed in MDA-MB-231
cells, that express higher levels of miR-574-5p possibly
compensating for the lower levels of HSPB8 mRNA (21).
Thanks to a HSPB8 cDNA mutated in the putative target
sequence of miR-574-5p, we confirmed that this HSPB8 ORF
specific region is involved in RA-mediated downregulation of
HSPB8, since RA treatment is not able to affect mutated HSPB8
mRNA and protein levels in MCF-7 cells. We also confirmed that
RA reduces BC cells migration (41) and counteracts the pro-
migratory activity of HSPB8 in MCF-7 cells (21). We
characterized the possible physiological antagonism between

FIGURE 5 |Q16 Schematic representation of the RA effects on MCF-7 cells unveiled in this study.
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miR-574-5p and the HSPB8 mutated variant on RA
antimigratory effect, further proving that high HSPB8 levels
are counteracted by RA, making cells refractory to its action
on migration.

The data here reported suggest that in MCF-7 cells RA
reduces HSPB8 gene expression modulating the proliferative
and migratory activity of this cell line. RA inhibitory action on
MCF-7 proliferation and migration is also exerted in the
presence of high levels of HSPB8. We identify the miR-574-5p
as a modulator of HSPB8 expression by its binding to
HSPB8 ORF.
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