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Rigidity for relative 0-cycles

FEDERICO BINDA AND AMALENDU KRISHNA

Abstract. We present a relation between the classical Chow group of relative
0-cycles on a regular scheme X , projective and flat over an excellent Henselian
discrete valuation ring, and the Levine-Weibel Chow group of 0-cycles on the
special fiber. We show that these two Chow groups are isomorphic with finite
coefficients under extra assumptions. This generalizes a result of Esnault, Kerz
and Wittenberg.

Mathematics Subject Classification (2010): 14C25 (primary); 13F35, 14F30,
19E15 (secodary).

1. Introduction

Let A be an excellent Henselian discrete valuation ring with perfect residue field k
of exponential characteristic p � 1. Let X be a regular scheme which is projective
and flat over A. Let X ⇢ X be the reduced special fiber. If the map X ! Spec (A)
is an isomorphism, then Gabber’s generalization of Suslin’s rigidity theorem [16]
says that the algebraic K -theory ofX and X are isomorphic with coefficients prime
to p. However, this rigidity theorem does not hold when the relative dimension ofX
over A is positive. One can then ask if it is possible to prove such an isomorphism
for the higher Chow groups (which are the building block of K -theory in view
of [13]) in certain bi-degrees. This is the context of the present work.

Let CH1(X ) denote the classical Chow group [15] of 1-dimensional cycles
on X . If X is smooth over A and k is finite or algebraically closed, Saito and
Sato [36, Corollary 0.10] showed that there is a restriction map ⇢ : CH1(X ) ⌦Z
Z/mZ ! CH0(X) ⌦Z Z/mZ which is an isomorphism, whenever m is prime to
the exponential characteristic of k.

As part of their proof of the above restriction isomorphism, Saito and Sato
showed that the étale cycle class map for CH1(X ) ⌦Z Z/mZ is an isomorphism
more generally for every model X ! Spec (A) with semi-stable reduction, i.e.,
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such that the reduced special fiber X has simple normal crossing (again, under
the assumption that the residue field k is finite or algebraically closed). As an
application of this, they proved that if K is a local field with finite residue field and
Y is smooth and projective over K , then CH0(Y ) ⌦Z Z/mZ is finite, originally a
conjecture due to Colliot-Thélène [8].

Inspired by an argument originally due to Bloch and discussed in [11, Ap-
pendix A], the result of Saito and Sato was revisited and generalized by Esnault,
Kerz and Wittenberg in [10]. Under the assumption that the reduced special fiber
X is a simple normal crossing divisor in X , it was observed in [10] that it is pos-
sible to replace the classical Chow group (see [15]) CH0(X) of the special fiber
X with the Friedlander-Voevodsky [12] motivic cohomology H2d(X, Z(d)), where
d = dimk(X), and still prove the existence of an isomorphism

⇢ : CH1(X ) ⌦Z Z/mZ ! H2d(X, Z/mZ(d)), (1.1)

provided that some extra assumptions on m or on the residue field are satisfied.
This approach allowed Esnault, Kerz and Wittenberg to generalize the restriction
isomorphism of Saito and Sato by allowing the field k to belong to a bigger class
than just finite or algebraically closed fields, and the reduced special fiber to be
a simple normal crossing divisor than just smooth. In fact, in the case of good
reduction, they showed that ⇢ is an isomorphism for any perfect residue field k.
Note that there is always a surjective map H2d(X, Z(d)) ⇣ CH0(X) for a simple
normal crossings divisor X ⇢ X . But this is not in general an isomorphism, even
with finite coefficients.

In this paper, we show that if we further replace the (2d, d) motivic coho-
mology group of the reduced special fiber X by its Levine-Weibel Chow group of
0-cycles [31], then the restriction isomorphism of Saito and Sato holds without any
condition on X whenever the residue field is algebraically closed. More generally,
we prove the following generalization of [10] for arbitrary perfect residue fields.

We let Z1(X ) denote the free Abelian group on the set of integral 1-dimen-
sional closed subschemes of X and let Zg

1 (X ) denote the subgroup of Z1(X ) gen-
erated by integral cycles which are flat over A and do not meet the singular locus
of X . It follows from the moving lemma of Gabber, Liu and Lorenzini [17] that the
composite map

Zg
1 (X ) ,! Z1(X ) ⇣ CH1(X )

is surjective. For any reduced quasi-projective scheme Y over a field, let CHLW
0 (Y )

denote the Levine-Weibel Chow group of 0-cycles on Y , first introduced in [31]. It
is a quotient of the free Abelian group Z0(Y \ Ysing) of 0-cycles supported in the
regular locus of Y (see 3.1 for a reminder of its definition). Let m be an integer
prime to the exponential characteristic of k and let 3 = Z/mZ. For an Abelian
group M , write M3 = M ⌦Z 3. Then the following holds.

Theorem 1.1. Let X be a regular scheme which is projective and flat over an ex-
cellent Henselian discrete valuation ring with perfect residue field. Let X denote
the reduced special fiber of X . Then there exists a commutative diagram
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(1.2)
Zg

1 (X )Λ Z0(X \ Xsing)Λ

CH1(X )Λ CHLW
0 (X)Λ

ρ

γ

such that � is surjective.

Here, the vertical maps are the canonical projections, and e⇢ is the group homo-
morphism given by taking an 1-cycle in good position and intersecting it with the
reduced special fiber X .

Let us explain how this theorem relates to the construction of [10]. Suppose
that X has semi-stable reduction. Then by [10, Theorem 5.1] there exists a unique
surjective homomorphism �EKW making the diagram

Zg
1 (X )Λ Z0(X \ Xsing)Λ

CH1(X )Λ H2d(X, Λ(d))

ρ

γEKW

commutative. The group at the bottom right corner is the motivic cohomology
group with 3 coefficients (as in (1.1)). Combining this with the cycle class map
constructed in [5], we obtain then a commutative diagram of surjections

CH1(X )Λ CHLW
0 (X)Λ

H2d(X,Λ(d))

γ

cycMXγEKW

so that we can interpret Theorem 1.1 as a lift to the Levine-Weibel Chow group of
the inverse restriction map considered in [10]. Note that �EKW exists only in the
semi-stable case, while the diagram (1.2) with � exists without assumption on the
special fiber.

One consequence of Theorem 1.1 is the following.

Corollary 1.2. In the notation of Theorem 1.1, suppose that the map e⇢ :Zg
1 (X )3!

Z0(X \ Xsing)3 descends to a morphism between the Chow groups

⇢ : CH1(X )3 ! CHLW
0 (X)3. (1.3)

Then ⇢ is an isomorphism. If moreover X has semi-stable reduction, then there is
a commutative diagram of isomorphisms
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CH1(X )Λ CHLW
0 (X)Λ

H2d(X,Λ(d))

ρ

cycMX

.

The diagonal arrow in the semi-stable case agrees with the map ⇢ of [10, Theorem
1.1]. We expect that the homomorphism ⇢ in (1.3) always exists, and the reason
for such expectation is twofold. On one side, the Levine-Weibel Chow group is
expected to be part of a satisfactory theory of cycles on singular varieties, closer to
the K -theory of vector bundles than the cdh-motivic cohomology. The restriction
homomorphism ⇢ should then be seen as a cycle-theoretic incarnation (in certain
bi-degrees) of the restriction map on K -groups with 3-coefficients

◆⇤ : K0(X ;3) ! K0(X;3)

induced by the inclusion ◆ : X ,! X .
The relationship between the Levine-Weibel Chow group and the K0 group has

been object of investigation by many authors (we recall here [24,27–29,31,34,35] to
name a few). It is known that the group CHLW

0 (X) can be used to detect invariants
of “additive” type. For example, if X is an arbitrary reduced curve over a field k,
we have

CHLW
0 (X)

⇠=
�! Pic(X) ⇠= H1(X, Gm)

generalizing the classical relationship between line bundles andWeil divisors, while

H2(X, Z(1)) ⇠= H2(Xsn, Z(1)) ⇠= Pic(Xsn)

where Xsn denotes the semi-normalization of X . This is reflecting the fact that
the functor X 7! Pic(X) considered on Sch(k) rather than on Sm(k) is not A1-
invariant, and thus can not be captured by an A1-invariant theory like Voevodsky’s
motivic cohomology.

On the other side, however, with torsion coefficients prime to the exponen-
tial characteristic of k, there are no additive invariants to detect, and the non-A1-
invariant theory “collapses” to the classical one. This statement can be made pre-
cise in the context of the theory of motives with modulus, as recently developed by
Kahn Saito and Yamazaki. See [20, Corollary 4.2.6 and Remark 4.2.7 b)] (using
some results in [3]). We therefore conjecture that the cycle class map

cycMX : CHLW
0 (X)3 ! H2d(X,3(d)) (1.4)

is always an isomorphism with 3 = Z/mZ-coefficients. In a similar spirit, we
expect that cycMX is an isomorphismwith integral coefficients (if k admits resolution
of singularities, or with Z[1/p]-coefficients otherwise) if the the singularities of
X are sufficiently mild, intuitively where additive phenomena do not occur. This
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is supported by the following result: if the residue field k is algebraically closed
and X ⇢ X is a simple normal crossing divisor, it is shown in [5] that there is a
canonical isomorphism

cycMX : CHLW
0 (X) ⌦Z [1/p]

⇠=
�! H2d(X, Z[1/p](d)), (1.5)

which holds integrally if k admits resolution of singularities.
In view of the above discussion, the existence of the map ⇢ in (1.3) is therefore

coherent with the expectation of [10] in the semi-stable reduction case, as explained
in [10, 1].

We are in the situation of the Corollary if we put some extra assumption.

Theorem 1.3. Let X be as in Theorem 1.1, and assume moreover that A has equal
characteristic. Then the map e⇢ in (1.2) descends to a morphism between the Chow
groups in the following cases

(1) If X has only isolated singularities and k is finite;
(2) If dim(X) = 2, (with no further assumptions on the singularities of X).

In both cases, the map ⇢̃ induces an isomorphism

⇢ : CH1(X )3
⇠=
�! CHLW

0 (X)3,

and both groups are finite if k is finite.

If A has equal characteristic, then the Gersten conjecture for Milnor K -theory
holds, thanks to [22], and the existence of the map ⇢ can be deduced from the
validity of the Bloch-Quillen formula for singular varieties. See Section 5.3 for
details (and for a comment about the assumption on the singularities of X in the
case of relative dimension 2).

Remark 1.4. If the residue field k is algebraically closed, the cycle class map to
étale cohomology cycétX : CHLW

0 (X)3 ! H2dét (X,3(d)) is an isomorphism (see
5.1). This gives in particular that the map ⇢̃ of (1.2) descends to a morphism
between the Chow groups ⇢ : CH1(X )3

'
�! CHLW

0 (X)3, and so CH1(X )3
'
�!

H2dét (X ,3(d)) by proper base change. Note however that this isomorphism be-
tween CH1(X )3 and the étale cohomology group was already obtained by Bloch
[11, Theorem A.1], and we do not get more information in the algebraically closed
field case.

We end the introduction with a brief outline of this text. The proofs of our main
theorems are inspired by the ideas of Esnault, Kerz and Wittenberg [10]. The new
insight is the introduction of the Levine-Weibel Chow group and its modified ver-
sion from [4] in the picture and to show how this leads to the above generalizations,
using the moving lemmas of Gabber, Liu and Lorenzini [17], some ideas from the
Bertini theorems of Jannsen and Saito [36] and a construction of cycle class maps
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to étale cohomology and to the Nisnevich cohomology of Milnor K -sheaves. These
cycle class maps play an important role in the calculation of CHLW

0 (X) with torsion
coefficients.

In Section 2, we discuss some forms of Bertini theorems over a base and in Sec-
tion 3, we prove our result for relative curves. We finish the proof of Theorem 1.1
in Section 4. In Section 5, we construct the cycle class maps for the Levine-Weibel
Chow group and prove Theorem 1.3.

ACKNOWLEDGEMENTS. This project started while the first-named author was vis-
iting the Tata Institute of Fundamental Research in November 2016, and the final
part of this project was completed during the extended stay of the authors at the
Hausdorff Research Institute for Mathematics (HIM), Bonn in 2017. The authors
would like to thank both institutions for invitation and support. The authors would
also like to thank Hélène Esnault, Moritz Kerz and Olivier Wittenberg for sending
several valuable comments and suggestions on an earlier draft of this work, as well
as the anonymous referee for their help in improving the exposition of the paper.

2. Bertini type theorems over a base

In this section, we discuss some of the technical lemmas which we need in order to
prove Theorem 1.1 when dim(X ) is at least two. As some of these results are of
independent interest and also used elsewhere, we state them separately. We fix the
following general framework.

2.1. Setting

Let S be the spectrum of a discrete valuation ring A with field of fractions K . Let
⌘ be the generic point of S and s its closed point. Write k for the residue field of A,
which is assumed to be perfect. We let M = (⇡) denote the maximal ideal of A.
Throughout this text, we fix a regular scheme X which is flat and projective over
S. We let � : X ! S be the structure morphism and let d � 0 denote the relative
dimension of X over S. Write Xs = X ⇥A k := X ⇥S Spec (k) for the special fiber
of � and X = (Xs)red ,! Xs for the reduced special fiber. Given any scheme Y ,
we write Ysing ( Y for the singular locus of Yred. In this section, we shall assume k
to be infinite.
Definition 2.1. A hyperplane H ⇢ PN

S of the projective space PN
S over S is a

closed subscheme of PN
S corresponding to an S-rational point of the dual (PN

S )_ :=
GrS(N � 1, N ).

By definition, an S-point of GrS(N � 1, N ) corresponds to (an isomorphism
class of) a surjection q : O�N+1

S ! Q, where Q is locally free (hence free, since
S is the spectrum of a DVR) of rank N . Fixing a basis {e0, . . . , eN } of O�N+1

S , we
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can write the kernel of q as
PN

i=0hai iei ⇢ ON+1
S for elements ai 2 A, not all in

M. Here, hai is the submodule of OS generated by a 2 A. If X0, . . . , Xn are the
homogeneous coordinate functions on PN

S , then the hyperplane H corresponding to
q is the zero locus of the linear polynomial q(x) =

PN
i=0 ai Xi .

The same equation defines the hyperplane H⌘ ⇢ PN
K , the generic fiber of H .

We denote by Hs the hyperplane in PN
k defined by the reduction of q(x) mod ⇡ .

In order to show the existence of good hyperplanes of PN
S , we will frequently use

the following simple but crucial remark, due to Jannsen and Saito.

Lemma 2.2. ( [18, Theorem 0.1]) Let P be a projective S-scheme and let
sp : P(K ) ! P(k) be the specialization map, given by x 7! {x}\ Ps . Let V1 ⇢ P⌘

and V2 ⇢ Ps be two open dense subsets of P⌘ and Ps , respectively. Assume that sp
is surjective, P has irreducible fibers and Ps is a rational variety over k. Then the
set

U := V1(K ) \ sp�1(V2(k))

is non-empty.

Proof. This is extracted from the middle of the proof of [18, Theorem 0.1]. Before
we give the proof, we note that if x 2 P(K ), then the map {x} ! S must be an
isomorphism and hence {x} \ Ps is a unique closed point. In particular, the map
sp : P(K ) ! P(k) is well-defined.

Let Z1 = P⌘ \ V1 and Z2 = Ps \ V2 be the (reduced) closed complements
of V1 and V2, respectively. Write Z1 for the closure of Z1 in P . One clearly has
that Z1(K ) ⇢ sp�1((Z1 \ Ps)(k)), so that the interesting setU contains sp�1((V2 \
(Z1 \ Ps))(k)). Since sp is surjective by assumption, it’s enough to observe that
(V2 \ (Z1 \ Ps))(k) is non-empty. Now, we are given that V2 is a dense open subset
and (Z1\ Ps) is a proper closed subset of the irreducible scheme Ps . It follows that
V2 \ (Z1 \ Ps) is open and dense in Ps . Since k is infinite and Ps is rational over k,
one knows that V2 \ (Z1 \ Ps)(k) is dense in Ps . This finishes the proof.

If we take P = (PN
S )_, the three conditions of the Lemma are satisfied. Since

any hyperplane H ⇢ PS
N is completely determined by its generic fiber H⌘ (as

(PN
S )_(S) = (PN

K )_(K )), we see that the ‘good’ hyperplanes over S are param-
eterized by subsets of the form V (K ) \ sp�1(U(k)), for good open subsets V of
(PN

K )_ and U of (PN
k )_, representing the prescribed behavior of the generic fiber

and of the special fiber of H . We call a hyperplane H corresponding to a K -rational
point of a set of the form V (K ) \ sp�1(U(k)) general. Our first application is the
following proposition.

Proposition 2.3. Let X ⇢ PN
S be as in Subsection 2.1 such that d � 2. Then

a general hyperplane H ⇢ PN
S intersects X transversely, i.e., the fiber product

X ⇥PNS
H is regular and flat S-scheme. If the generic fiber X⌘ of X is smooth over

K , then H⌘ is smooth as well.
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Proof. We first note that since X ! S is flat and both X and S are regular, it
follows that X = (Xs)red is equi-dimensional of dimension d. We begin by claiming
that there exists an open subsetU of (PN

k )_ with the dense subsetU(k) of k-rational
points such that the following hold. Let H be the hyperplane of PN

k lying in U(k).
Then H does not contain any component of X , and if h denotes the image inOX,x of
a local equation for H at a closed point x 2 X , either h is a unit or h 2 mX,x \m2

X,x .
It is clear that there exists a dense open subsetU 0 of (PN

k )_ such that no hyper-
plane corresponding to a k-rational point of U 0 contains any irreducible component
of X . So we only need to find an open subset U of (PN

k )_ with the dense subset
U(k) such that if H is the hyperplane of PN

k corresponding to a point of U(k) and
if h denotes the image in OX,x of a local equation for H at a closed point x 2 X ,
either h is a unit or h 2 mX,x \ m2

X,x .
To prove this latter claim, we first assume that k = k is separably (hence

algebraically, since k is perfect) closed. Let W be the incidence variety W ⇢ X ⇥
(PN

k )_ consisting of points (x, H) such that either H contains a component of X or
H does not contain any component of X but for any local equation h of H at x , one
has h 2 m2

X,x ⇢ OX,x . We need to estimate the dimension of W .
Let V = H0(PN

k ,OPNk
(1)) be the (N+1)-dimensional k-vector space of linear

forms, with basis {X0, X1, . . . , Xn}. Let x 2 X be a closed point. Up to a change
of coordinates, we can assume that the hyperplane cut out by X0 does not pass
through x . We then get an isomorphism V '

�! OPNk ,x/m
2
PNk ,x

, sending X0 to 1. By
composition, we have a surjection

�x : V ⇣ OX,x/m
2
X,x

and the kernel of �x is the k-vector space Vx = {H 2 (PN
k )_(k) | x 2 H and h 2

m2
X,x }. Moreover, Vx consists precisely of the hyperplanes which are bad at x .

Notice now that we have an exact sequence of k-vector spaces

0 ! mX,x/m
2
X,x ! OX,x/m

2
X,x ! OX,x/mX,x =k ! 0.

In particular, we get dimk(OX,x/m2
X,x )�1+dim(OX,x )=1+d. Thus dimk(Vx ) 

(N + 1) � (d + 1) = N � d.
If Wx denotes the fiber at x of W along the first projection p1 : W ! X ⇥

(PN
k )_ ! X , then we haveWx = P(Vx ) and this implies from the previous estimate

that dimk(Wx )  N � d � 1. Since the projection p1 is surjective, X is equi-
dimensional of dimension d, and for each x 2 X , the fiber Wx is a projective
space of dimension at most N � d � 1, we deduce that W has dimension at most
(N � d � 1) + d = N � 1. Since X is proper over k, the second projection map
p2 : W ! (PN

k )_ is closed, hence the image is a proper closed subset of dimension
at most N �1. We conclude thatU := (PN

k )_ \ p2(W ) is open and dense in (PN
k )_.

Suppose now that k is an arbitrary infinite perfect field and let k be an algebraic
closure of k. Let Xk denote the base change of X to k and let U ⇢ (PN

k
)_ be the
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dense open subset of good hyperplanes over k obtained as above. Since k is infinite
and (PN

k )_ is rational, we know that the set of closed points in (PN
k

)_ which are
defined over k is dense in U . Let H 2 U(k) be any such point. Let x 2 X be any
closed point and let h denote the local equation of H inOX,x . Suppose that h is not
a unit inOX,x so that h 2 mX,x .

We know that ⇡�1(x) is a finite set of closed points {x1, . . . , xr }, where ⇡ :
Xk ! X is the projection. Moreover, Hk has the property that its local equation h
lies inmXk ,xi \m2

Xk ,xi
for each i . It follows that h must lie inmX,x \m2

X,x . In other
words, there is an open subset U ⇢ (PN

k )_ with the dense subset U(k) such that
every member of U(k) satisfies the desired property. This proves the claim.

We now let sp : (PN
K )_(K ) ! (PN

k )_(k) be the specialization map, and let
H be any hyperplane corresponding to a K -rational point of sp�1(U(k)) (note that
this set is non-empty). Since this is a point in a projective space, say of coordinates
(a0 : a1 : . . . : aN ), we can assume that not all the ai ’s are divisible by ⇡ . In
particular, H is not vertical, i.e., it is not contained in the special fiber PN

k . Hence it
is automatically flat over S.

Let x 2 X be a closed point and let h be the image inOX ,x of a local equation
defining X · H = X ⇥S H in a neighborhood of x . If h is a unit in OX ,x , then
x /2 X · H and there is nothing to say. Assume then that h 2 mX ,x ⇢ OX ,x and
write h for the image of h inOX,x . By construction, h is a local equation for X · Hs
and hence h 2 mX,x \m2

X,x by our choice ofU . But this forces h 2 mX ,x \m2
X ,x as

well. Since OX ,x is regular by assumption, this implies that OX ,x/(h) = OX ·H,x
is a regular local ring. We have thus shown that every closed point x 2 (X · H)s
has an open neighborhood in X · H where X · H is regular. Since X is proper over
S, these neighborhoods form a cover of X · H , proving that X · H is regular, as
required.

For the last assertion, suppose that X⌘ is smooth over K . In this case, the
classical theorem of Bertini (see, for example, [19, 6.11]) asserts that there exists
a dense Zariski open set V ⇢ (PN

K )_ parametrizing hyperplanes H⌘ of PN
K such

that the intersection X⌘ · H⌘ is smooth. It is then enough to take H 2 V (K ) \
sp�1(U(k)), which is non-empty by Lemma 2.2, to get a general hyperplane of PN

S
which satisfies all the required conditions.

Remark 2.4. The proof of Proposition 2.3 gives in fact a bit more. In the setting of
this proposition, we can consider the following situation. Let (P)s be any property
which is generically satisfied by a hyperplane section of X in PN

k . An example of
such property could be ‘being Cohen-Macaulay’ if X is Cohen-Macaulay, or ‘being
irreducible’ if X is irreducible (see [19]). Here, generically means that the property
is satisfied by each hyperplane in a open dense subset VP of (PN

k )_. The setU \VP
for the open set U constructed above is then open and dense in (PN

k )_. Thus,
any hyperplane H of PN

S which corresponds to a K -rational point of sp
�1((U \

VP)(k)) will intersect X transversely, and its special fiber will moreover satisfy the
property (P).
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We will now show that, under some extra conditions, there is a weak version
of the Theorem of Altman and Kleiman [1] on hypersurface sections containing
a subscheme. The proof of this fact uses a combination of ideas from Bloch’s
appendix to [11] and from [36, Theorem 4.2].

Proposition 2.5. Let X ⇢ PN
S be as in Subsection 2.1 such that d � 2. Let Z ⇢ X

be a regular, integral, flat relative 0-cycle over S. LetOX (1) be the restriction of the
line bundle OPNS

(1) to X , and let I ⇢ OPNS
be the ideal sheaf of Z in PN

S . Assume
that Z \ X is supported on one closed point x 2 X . Then, for all integers n � 0
and a general section � 2 H0(PN

S ,I(n)), the hypersurface H = (� ) defined by �
has the following properties:

(1) X · H is regular, flat and projective over S;
(2) H � Z .

Proof. Let W = Z ⇥S X be the scheme-theoretic intersection of Z with the re-
duced special fiber. We start by noting that the embedding dimension ex (W ) :=
dimk(x)mW,x/m2

W,x is at most 1. Indeed, W ⇢ Z and Z is regular, finite and flat
over S by assumption. Hence ex (W )  ex (Z) = dim(Z) = 1. As a consequence,
if we let IW,x denote the ideal of W inOX,x , we see that IW,x/(IW,x \ m2

X,x ) 6= 0.
In fact, suppose that IW,x ⇢ m2

X,x . Then mX,x/(m2
X,x + IW,x ) = mX,x/m2

X,x has
dimension d � 2. But mX,x/(m2

X,x + IW,x ) = mW,x/m2
W,x has dimension at most

one as shown above. This leads to a contradiction.
Let I be the ideal sheaf of W in PN

k and let n � 0 be any integer such that
I(n) is generated by the global sections V = H0(PN

k ,I(n)) ⇢ H0(PN
k ,O(n)). We

now claim that there exists a non-empty open subset U in the space P(V ) such that
for any � 2 U(k), the image �x of � in OX,x (for a closed point x 2 X) is either a
unit or an element of mX,x \ m2

X,x .
Since the linear system associated to a basis of V has base locus W , this con-

dition is satisfied for � in U 0 ⇢ V for each y 6= x thanks to the proof of Propo-
sition 2.3, with U 0 open and non-empty. For n � 0, there is clearly another non-
empty open U 00 ⇢ V such that for � 2 U 00, the restriction of � has non-zero
image in IW,x/(IW,x \m2

X,x ) (which is itself non-zero by the argument above). Let
U = U 0 \U 00.

If n � 0, the map a : H0(PN
S ,I(n)) ! H0(PN

k ,I(n)) is surjective. Then
any � 2 H0(PN

S ,I(n)) such that a(� ) 2 U will satisfy the conditions of the
proposition. Indeed, it is clear by our choice that H = (� ) contains Z , while
the regularity of X · H is proved exactly as in Proposition 2.3.

Remark 2.6. The reader can easily see that when A is Henselian (which is the case
for the rest of this text), the assumption in Proposition 2.5 that Z \ X be supported
on one closed point x 2 X , is redundant.
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3. Lifting of zero-cycles

In this section we shall recall the definitions of the Chow groups which are used
in the statements of the main results. We shall then show how the 0-cycles on the
special fiber can be lifted to good 1-cycles on X . Using this lifting, we shall give
a proof of the base case of Theorem 1.1, namely, the case of relative curves. This
case will be used in the next section to prove the general case of Theorem 1.1. We
keep the notation of Subsection 2.1. Throughout this section, we shall assume that
the base ring A is excellent and Henselian, with perfect residue field k which is not
necessarily infinite.

3.1. The Chow groups of the model and the special fiber

Let Z1(X ) be the free Abelian group on the set of integral 1-dimensional cycles in
X . LetR1(X ) be the subgroup of Z1(X ) generated by the cycles which are ratio-
nally equivalent to zero (see, for example, [17, Section 1] or [15, Chapter 20]). Let
CH1(X ) = Z1(X )/R1(X ) be the Chow group of 1-cycles on X modulo rational
equivalence.

We call an integral cycle Z 2 Z1(X ) good if it is flat over S and Z\Xsing = ;.
We let Zg

1 (X ) ⇢ Z1(X ) be the free Abelian group on the set of good cycles. In
a similar spirit, we write Zvg

1 (X ) ⇢ Zg
1 (X ) for the free Abelian group on the set

of integral flat 1-cycles Z which are good in the above sense and are regular as
schemes. We call these cycles very good on X .

As X is projective over S, it is an FA-scheme in the sense of [17, 2.2(1)].
Therefore, the moving Lemma of Gabber, Liu and Lorenzini [17, Theorem 2.3]
tells us that the canonical map

Zg
1 (X )

Zg
1 (X ) \R1(X )

! CH1(X ) (3.1)

is an isomorphism. In other words, every cycle ↵ 2 CH1(X ) has a representative
↵ =

Pn
i=1 ni [Zi ] with each Zi a good integral cycle. This will play a crucial role

in the proofs of our main results.
We now recall the definition of Levine-Weibel Chow group of 0-cycles on X

from [31] and its modified version from [4]. Let Xreg denote the disjoint union of
the smooth loci of the d-dimensional irreducible components of X . A regular (or
smooth) closed point of X will mean a closed point lying in Xreg. Let Y ( X
be a closed subset not containing any d-dimensional component of X such that
Xsing ✓ Y . Let Z0(X,Y ) be the free Abelian group on closed points of X \ Y . We
shall often write Z0(X, Xsing) as Z0(X).
Definition 3.1. Let C be a reduced scheme which is of pure dimension one over
k. We shall say that a pair (C, Z) is a good curve relative to X if there exists a
finite morphism ⌫ : C ! X and a closed proper subscheme Z ( C such that the
following hold.
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(1) No component of C is contained in Z ;
(2) ⌫�1(Xsing) [ Csing ✓ Z ;
(3) ⌫ is local complete intersection at every point x 2 C such that ⌫(x) 2 Xsing.

Let (C, Z) be a good curve relative to X and let {⌘1, · · · , ⌘r } be the set of generic
points of C . Let OC,Z denote the semilocal ring of C at S = Z [ {⌘1, · · · , ⌘r }.
Let k(C) denote the ring of total quotients of C and write O⇥

C,Z for the group of
units in OC,Z . Notice that OC,Z coincides with k(C) if |Z | = ;. As C is Cohen-
Macaulay, O⇥

C,Z is the subgroup of group of units in the ring of total quotients
k(C)⇥ consisting of those f 2 OC,x which are regular and invertible for every
x 2 Z (see [10, Section 1] for further details).

Given any f 2 O⇥
C,Z ,! k(C)⇥, we denote by divC( f ) (or div( f ) in short) the

divisor of zeros and poles of f on C , which is defined as follows. If C1, . . . ,Cr are
the irreducible components of C , and fi is the factor of f in k(Ci ), we set div( f ) to
be the 0-cycle

Pr
i=1 div( fi ), where div( fi ) is the usual divisor of a rational function

on an integral curve in the sense of [15]. As f is an invertible regular function on
C along Z , div( f ) 2 Z0(C, Z).

By definition, given any good curve (C, Z) relative to X , we have a push-
forward map Z0(C, Z)

⌫⇤�! Z0(X). We shall write R0(C, Z , X) for the subgroup
of Z0(X) generated by the set {⌫⇤(div( f ))| f 2 O⇥

C,Z }. Let R0(X) denote the
subgroup of Z0(X) generated by the image of the map R0(C, Z , X) ! Z0(X),
where (C, Z) runs through all good curves relative to X . We let CHBK

0 (X) =
Z0(X)
R0(X) .

If we letRLW
0 (X) denote the subgroup of Z0(X) generated by the divisors of

rational functions on good curves as above, where we further assume that the map ⌫ :
C ! X is a closed immersion, then the resulting quotient group Z0(X)/RLW

0 (X)

is denoted by CHLW
0 (X). Such curves on X are called the Cartier curves. There is

a canonical surjection CHLW
0 (X) ⇣ CHBK

0 (X). The Chow group CHLW
0 (X) was

discovered by Levine and Weibel [31] in an attempt to describe the Grothendieck
group of a singular scheme in terms of algebraic cycles. The modified version
CHBK

0 (X) was introduced in [4].
We remark here that the definition of CHLW

0 (X) given above is mildly different
from the one given in [31] because we do not allow non-reduced Cartier curves.
However, it does agree with the definition of [31] if k is infinite by [28, Lemmas 1.3,
1.4]. Note that over finite fields the situation is unclear (but see [6] for the case of
surfaces), since the standard norm trick to reduce to the case of infinite fields for
comparison does not work for the Levine-Weibel Chow group. The situation is
substantially better if one uses its variant [4] instead.

3.2. Lifting 0-cycles on the special fiber to 1-cycles on X

From the above definitions of CH1(X ) and CHLW
0 (X), it is not clear if the 1-cycles

on X always restrict to admissible 0-cycles on X , nor if the restriction (whenever
defined) preserves the rational equivalence. This question will be addressed in the
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next section. Here, we solve the reverse problem, namely, we show that the Levine-
Weibel 0-cycles on X can be lifted to good 1-cycles on X , following the idea of
[10]. Using this lifting, we shall prove Theorem 1.1. We fix an integer m prime to
the exponential characteristic of k and let 3 = Z/mZ. For an Abelian group M ,
we let M3 = M ⌦Z 3.

Let [Z ] 2 Zg
1 (X ) be an integral good 1-cycle. Intersecting [Z ] with the re-

duced special fiber X gives rise to a 0-cycle [Z \ X], which is supported in the
regular locus of X . Here, [Z \ X] is the 0-cycle in Z0(X) associated to the (pos-
sibly non-reduced) 0-dimensional scheme-theoretic intersection Z \ X . This gives
rise to the restriction homomorphism on the cycle group

e⇢ : Zg
1 (X ) ! Z0(X, Xsing), [Z ] 7! [Z \ X]. (3.2)

To prove Theorem 1.1, we begin by recalling the following result. The proof is
classical, and in this form is essentially taken from [10]. We review the proof in
order to fix our notation.

Proposition 3.2. ([10, Section 4]) Given a regular closed point x 2 X , there ex-
ists an integral 1-cycle Zx ⇢ X which is regular, finite and flat over S such that
Zx ⇥S X = {x} scheme-theoretically. In particular, the restriction map e⇢ of (3.2)
is surjective.

Proof. Let x 2 Xreg be a closed point and letOX ,x be the local ring ofX at x . Since
X is regular, OX ,x is a regular local ring. In particular, it is a unique factorization
domain. There is then a prime element � 2 mX ,x \m2

X ,x and an integer n > 0 such
that � n = ⇡c, where ⇡ 2 OX ,x is the uniformizer of A and c is a unit. Indeed, ⇡
can not be a product of distinct prime elements inOX ,x , sinceOX ,x ⌦A (A/(⇡)) =
OXs ,x has a unique minimal prime (its reduction, OX,x is a regular local ring). We
can now complete � to a regular sequence (�, a1, . . . , ad) generating the maximal
ideal mX ,x such that the images (a1, . . . , ad) in OX,x = OX ,x/(� ) form a regular
sequence, generating the maximal ideal mX,x .

Let Spec (OX ,x/(a1, . . . , ad)) be the closed subscheme of Spec (OX ,x ) asso-
ciated to the ideal (a1, . . . , ad). It is clearly integral, regular, local, 1-dimensional
and flat over S. If we let eZx denote its closure in X , then eZx is projective and
dominant of relative dimension zero over A. In particular, it is finite and flat over
S. We can therefore write eZx = Spec (B).

Since S is Henselian, the finite A-algebra B is totally split. Hence, there is
a unique irreducible component Zx of eZx such that x 2 Zx . The scheme Zx
is then regular because its local ring at the unique closed point x agrees with
OX ,x/(a1, . . . , ad). Furthermore, Zx is integral, finite and flat over S with Zx ⇥S
X = {x}.

Note that thanks to the proposition above, we have in fact shown that the com-
posite map

Zvg
1 (X ) ,! Zg

1 (X )
e⇢
�! Z0(X, Xsing)

is surjective.
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3.3. The case of relative dimension one

We continue with the assumption that A is Henselian and k is perfect (but not nec-
essarily infinite). Suppose that dimS(X ) = 1 so that X is a family of projective
curves over S. We shall now give the proof of Theorem 1.1 in this case.

Since X is reduced by construction, we have by [4, Lemma 3.12], the canon-
ical isomorphisms CHLW

0 (X)
'
�! CHBK

0 (X)
'
�! Pic(X) ⇠= H1ét(X, Gm). As a

scheme, X is integral and purely two-dimensional so that we can identify CH1(X )
with CH1(X ). Since X is moreover separated, regular (hence locally factorial) and
Noetherian, there are classical isomorphisms CH1(X )

'
�! Pic(X ) ⇠= H1ét(X , Gm).

Tensoring these groups with 3 = Z/m, the Kummer sequence gives us injections

CH1(X )3
⇠=
�! H1ét(X , Gm)3 ,! H2ét(X ,3(1))

CHLW
0 (X)3

⇠=
�! H1ét(X, Gm)3 ,! H2ét(X,3(1)).

Using these injections, we get a diagram of solid arrows

Zg
1 (X )3

e⇢
// //

✏✏

✏✏

↵X

yy

yyt

t

t

t

t

t

t

t

t

t

Z0(X, Xsing)3

✏✏

✏✏xxq

q

q

q

q

q

↵X

&&

&&

L

L

L

L

L

L

L

L

L

L

CH1(X )3
⇠=

//

cycétX %%

J

J

J

J

J

J

J

J

J

J

Pic(X )3� _

✏✏

⇢
// Pic(X)3� _

✏✏

CHLW
0 (X)3

cycétXyyr

r

r

r

r

r

r

r

r

r

⇠=
oo

H2ét(X ,3(1))
⇠=

// H2ét(X,3(1)).

(3.3)

All horizontal arrows in the middle are induced by the restriction to the reduced
special fiber. In particular, the two squares in the middle are commutative. The
two triangles on the top left and top right can be easily seen to be commutative
by recalling the construction of the isomorphism between the Picard group and the
Chow group of codimension one cycles. The two triangles on the bottom left and
bottom right commute by the definition of the cycle class maps to étale cohomology.

The bottom horizontal arrow (3.3) is an isomorphism by the rigidity the-
orem for étale cohomology (a consequence of the proper base change theorem,
see [33, Chapter VI, Corollary 2.7]). The top horizontal arrow is surjective by
Proposition 3.2. From the commutativity of (3.3), we immediately see that the
canonical map ↵X : Zg

1 (X )3 ⇣ CH1(X )3 factors via e⇢. Equivalently, we have
Ker(e⇢) ✓ Ker(↵X ). This gives the dashed arrow e� : Z0(X, Xsing)3 ! CH1(X )3,
which is automatically surjective.

A second inspection of (3.3), using this time the fact that CH1(X )3 !
H2ét(X ,3(1)) is injective, shows similarly that Ker(↵X ) ✓ Ker(e� ). Combining all
this, we finally get a surjective group homomorphism � fitting in the commutative
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diagram
CH1(X )3� _

✏✏

CHLW
0 (X)3

�
oo

� _

✏✏

H2ét(X ,3(1))
⇠=

// H2ét(X,3(1)).

(3.4)

We also deduce from (3.4) that � has to be injective as well. Since � is clearly
an inverse of the map e⇢ on the generators, we have then shown the following result
which proves Theorem 1.1 and a general form of the part (1) of Theorem 1.3 for
curves.

Proposition 3.3. Let A be an excellent Henselian discrete valuation ring with per-
fect residue field. Let X be a regular scheme, flat and projective over S of relative
dimension one. Then the restriction homomorphism e⇢ of (3.2) induces an isomor-
phism

⇢ : CH1(X )3
⇠=
�! CHLW

0 (X)3.

4. Proof of Theorem 1.1

We shall now prove Theorem 1.1 using the Bertini theorems of Section 2 and the
lifting proposition of Section 3. We assume A to be an excellent Henselian discrete
valuation ring with perfect residue field k. The rest of the assumptions and notation
are same as in Subsection 2.1.

4.1. Factorization of ↵X via e⇢

We begin by showing the first part of Theorem 1.1, i.e., we show that the canonical
surjection ↵X : Zg

1 (X )3 ⇣ CH1(X )3 factors through e⇢. This is a consequence of
the following result, whose proof goes through the steps of [10, Proposition 4.1], us-
ing Proposition 2.5 instead of the Bertini Theorem of Jannsen-Saito proved in [36].

Proposition 4.1. ( [10, Proposition 4.1]) Let Z 2 Zg
1 (X ) be a good, integral

1-cycle and let n[x] = [Z\X] for some x 2 Xreg and n > 0. Then ↵X (Z�nZx ) =
0 in CH1(X )3, where Zx is as in Proposition 3.2.

Proof. By the standard pro-`-extension argument, we can assume that the residue
field of A is infinite. The proof is now by induction on the relative dimension of X
over S. The case d = 0 is trivial and the case d = 1 is provided by Proposition 3.3.
We now assume that d � 2.

Assume first that Z is regular as well. The general case will be treated later,
using a trick due to Bloch [11, Appendix A]). By an iterated application of Propo-
sition 2.5, we can find

(1) a hypersurface section H ofX which is regular, flat and projective over S such
that Z ⇢ H , and
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(2) a relative curve H 0 over S (i.e., dimSH 0 = 1) which is regular, flat and projec-
tive over S and contains Zx .

We can also assume that Z 00 := H 0 \ H is regular as well, and that H 0 \ H \ X
consists only of the reduced point x . Note that we can do this since x 2 X is in
the regular locus of X , so that we can choose H 0 and H which meets transversely
there.

By our induction hypothesis, we have that ↵H (Z � nZ 00) = 0 in CH1(H)3.
Moreover, it follows from Proposition 3.3 that ↵H 0(Z 00 � Zx ) = 0 in CH1(H 0)3 =
Pic(H 0)3. In particular, we get n↵H 0(Z 00 � Zx ) = 0. But then, we get

↵X (Z � nZx ) = (◆H )⇤(↵H (Z � nZ 00)) + (◆H 0)⇤(↵H 0(nZ 00 � nZx )) = 0

in CH1(X )3, as required. Here, ◆H (respectively ◆H 0) is the inclusion H ,! X
(respectively H 0 ,! X ).

Suppose now that Z is not necessarily regular. Following an idea of Bloch, we
let ZN be the normalization of Z . Since A is excellent and Z is finite over A (as it
is a good 1-cycle), the map ZN ! Z is finite. In particular, there is a factorization

ZN
� �

//

✏✏

PM
X

q
✏✏

Z � �
// X ,

where q is the canonical projection. We are then reduced to prove the statement in
PM
X for Z

N and any regular lift of Zx to PM
X , chosen so that it contains Z

N \ PM
X .

Since ZN is now regular, the claim follows from the previous case.

An immediate consequence of Proposition 4.1 is the following.

Corollary 4.2. The lifting of 0-cycles of Proposition 3.2 gives rise to a well-defined
group homomorphism e� : Z0(X, Xsing)3 ! CH1(X )3 such that the diagram

Z1(X )3
e⇢

//

↵X
%%

K

K

K

K

K

K

K

K

K

K

Z0(X, Xsing)3

e�
✏✏

CH1(X )3

(4.1)

commutes.

Proof. Let Z 2 Zg
1 (X ) be a good, integral 1-cycle. Since A is Henselian and Z is

finite over A, the intersection Z \ X must be supported on a (regular) closed point,
say, x 2 X . In particular, we must have [Z \ X] = n[x] for some integer n > 0.
Now, it follows from Proposition 4.1 that

↵X ([Z ]) � e� � e⇢([Z ]) = ↵X ([Z ] � n[Zx ]) = 0

and this proves the corollary.
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4.2. Factorization of e� through rational equivalence

Now that we have constructed the map e� at the level of the cycle groups, our next
goal is to show that it factors through the cohomological Chow group CHLW

0 (X)3
of the reduced special fiber X . In fact, we shall show (probably) more in the sense
that e� actually has a factorization

e� : Z0(X, Xsing)3 ⇣ CHLW
0 (X)3 ⇣ CHBK

0 (X)3 ! CH1(X )3. (4.2)

As we will see below, apart from giving us a stronger statement, the approach of
working with CHBK

0 (X) also allows us to simplify the Cartier curves that give re-
lations inRLW

0 (X) which we want to kill in CH1(X )3. It allows us to assume that
the Cartier curves are regularly embedded in X . This is an essential requirement in
our proof.

It is not known if the canonical map CHLW
0 (X) ⇣ CHBK

0 (X) is an isomor-
phism in general. We refer to [4, Theorem 3.17] for some positive results.

We shall closely follow the proof of [10, Theorem 5.1] (and we keep similar
notation for the reader’s convenience), with one simplification and one complica-
tion. The simplification is that using the Levine-Weibel Chow group (or, rather,
its variant introduced in [4]), we don’t have to deal with the “type-1” relations
(see [10, Section 2.2]), arising from the relations in the Suslin homology group
HS
0 (Xreg). On the other hand, the complication is that without any assumption on

the geometry of X , we have to consider arbitrary l.c.i. curves C (and not simply
SNC subcurves in X as in loc.cit.). Note that these l.c.i. curves may not even be
embedded inside X . In order to lift our complicated relations in X to the model X ,
we shall use the argument of [17, Lemma 2.5].

We will need the following commutative algebra Lemma whose proof can be
obtained from [32, Theorem 16.3].

Lemma 4.3. Let R be a Noetherian local ring and let I ⇢ R be an ideal generated
by a regular sequence a1, . . . , an . Let b1, . . . , bn 2 I be elements such that the
image of {b1, . . . , bn} in I/I 2 is a basis over R/I . Then b1, . . . , bn is a regular
sequence in R.

Proposition 4.4. The lifting map e� : Z0(X, Xsing)3 ! CH1(X )3 of Corollary 4.2
factors through CHBK

0 (X)3.

Proof. Since the case of relative dimension one is already shown in Subsection 3.3,
we shall assume that d = dimS(X ) � 2. We need to show that for any good curve
⌫ : C ! X in the sense of Definition 3.1 and any rational function f on C which is
regular along ⌫�1(Xsing), we have e� (⌫⇤(div( f ))) = 0 in CH1(X )3.

We will first show that this relation holds when the curve C is regularly em-
bedded inside X (i.e., when the morphism ⌫ is a regular closed embedding). The
general case will be handled by factoring ⌫ as a regular closed embedding C ,! PN

X
followed by the projection PN

X ! X , and using the fact that the Chow groups
CH1(X ) and CHBK

0 (X) admit proper push-forward for smooth morphisms.
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So, let C ,! X be such an embedded l.c.i. curve. Write C1 for the finite
set of points (C \ Xsing) [ {⌘1, . . . , ⌘r }, where each ⌘i is a generic point of C and
C \ Xsing denotes the set of closed points of the intersection of C with Xsing. Let
OX,C1 be the semi-local ring of X at C1 and let IC,C1 be the ideal of C inOX,C1

so that OC,C1 = OX,C1/IC,C1 . By definition, C is regularly embedded at each
point x 2 C \ Xsing, and it is regularly embedded at the generic points. Hence,
as a module over OC,C1 , the conormal sheaf IC,C1/I 2C,C1

admits a free set of
generators, given by the image in IC,C1/I 2C,C1

of a regular sequence a1, . . . , ad�1
inOX,C1 .

We shall inductively modify the sequence a1, . . . , ad�1 (without changing the
induced basis of IC,C1/I 2C,C1

) in order to construct a good lifting of C to the model
X , following the recipe of [17, Lemma 2.5]. First, we note that according to Defini-
tion 3.1, the curve C is not contained in Xsing. By a moving argument, we can also
assume that C does not contain any component of Xsing. Indeed, the Cartier condi-
tion of C implies that it will contain a component of Xsing only if dim(Xsing) = 0.
On the other hand, in this latter case, we can use a moving argument to ensure that
C does not hit Xsing (see [9, Lemma 1.3]). Thus, the ideal IC,C1 of OX,C1 does
not contain, and it is not contained in the localization of any minimal prime p of
Xsing inOX,C1 .

Up to possibly adding an element of I 2C,C1
to a1 2 IC,C1 ⇢ OX,C1 , we can

now choose â1 2 OX ,C1 , lifting a1, with the property that â1 does not belong to any
minimal prime of Xsing inOX ,C1 . In other words, V (â1) in Spec (OX ,C1) does not
contain any irreducible component of Xsing. Moreover, each irreducible component
of V (â1) has codimension exactly one in Xsing⇥X Spec (OX ,C1) with the reduced
induced closed subscheme structure of Xsing. Note that thanks to Lemma 4.3, the
modification by adding elements of I 2C,C1

gives another regular sequence defin-
ing IC,C1 .

We now fix â1 and a1 chosen above, and proceed. Since locally V (â1)\C = C
in Spec (OX,C1), the ideal IC,C1 is not contained in any minimal prime of V (â1)\
Xsing. Thus, we can alter a2 by an element of I 2C,C1

so that we can assume that
a2 in particular is not in any minimal prime of V (â1) \ Xsing. We now lift a2
to â2 2 OX ,C1 and look at V (â1, â2) in Spec (OX ,C1). As before, it follows
by our construction that each irreducible component of V (â1, â2) has codimension
exactly one in Xsing \ V (â1). We fix this â2 and the corresponding a2. Again,
a1, a2, . . . , ad�1 (with a2 accordingly modified) form a regular sequence generating
IC,C1 , thanks to Lemma 4.3.

In general, the choice of âi depends on the previously chosen â1, . . . , âi�1.
It is chosen with the property that âi is a unit at each generic point of Xsing \
V (â1, . . . , âi�1), and that âi lifts ai 2 IC,C1 . This can be achieved, up to elements
of I 2C,C1

, since locally V (â1, . . . , âi�1) \ C = C 6� V (â1, . . . , âi�1) \ Xsing.
At the end of the process, we get â1, . . . , âd�1 2 OX ,C1 with the following

properties:

(1) The sequence {â1, . . . , âd�1} restricts to a regular sequence {a1, . . . , ad�1}
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generating the ideal IC,C1 in OX,C1 . The images of {a1, . . . , ad�1} in
IC,C1/I 2C,C1

are the basis we started from;
(2) Let V (â1,. . . ,âd�1)⇢Spec (OX ,C1) be the closed subscheme of Spec (OX ,C1)

defined by the ideal (â1, . . . , âd�1). Then V (â1, . . . , âd�1) intersects Xsing in
at most finitely many points (the intersection could be empty);

(3) Let Ĉ be the closure of V (â1, . . . , âd�1) in X . Then Ĉ is flat over S and
there exists an open neighborhood U of C1 in X such that (Ĉ \ X) \ U and
C \U coincide scheme-theoretically. In particular, if T denotes the (finite) set
of closed points of Ĉ \ Xsing together with the generic points of Ĉ \ X , then
we have an isomorphism OĈ\X,T

⇠= OC,C1 ⇥ R, with R an 1-dimensional
semi-local ring.

Property (2) follows from the fact that, at each step, the generic points of V(â1,...,âi )
have height exactly one at each generic point of Xsing \ V (â1, . . . , âi�1). Property
(3) is clearly a consequence of (1) and of the construction. It tells us in particu-
lar that we can harmlessly throw away any component of Ĉ which happens to be
completely vertical (i.e., the structure map to S factors through the closed point).
This is because such a component has to be disjoint from C in a neighborhood of
C1. Note that Ĉ can be taken with the reduced scheme structure, but it may not be
integral even if C is.

It follows from (3) that the map on units O⇥
Ĉ,T

! O⇥
Ĉ\X,T

⇥ R is surjective.

We can therefore find an element f̂ in the ring of total quotients of Ĉ (which is by
(3) a product of fields) which is a regular and invertible function in a neighborhood
of T and which restricts to ( f, 1) (where f was the given function on C). In par-
ticular, this implies that e⇢(divĈ( f̂ )) = divC( f ). By divĈ( f̂ ), here we mean the
sum of the divisors on the irreducible components of Ĉ if Ĉ is not integral. Note
that divĈ( f̂ ) is an element of Zg

1 (X ) and that, we have divĈ( f̂ ) = e� (divC( f )) by
construction. Since we clearly have divĈ( f̂ ) = 0 in CH1(X )3, this completes the
proof of the proposition when ⌫ : C ,! X is a regular closed immersion.

We now prove the general case. So suppose we are given a good curve ⌫ :
C ! X and a rational function f on C as in the beginning of the proof of the
proposition. By [4, Lemma 3.5], we can assume that the map ⌫ : C ! X is a
complete intersection morphism. Now, we can find a commutative diagram

C � � ⌫0
//

⌫
⇢⇢

5

5

5

5

5

5

5

PM
X

q
✏✏

// PM
X

q
✏✏ ⇡⇡

4

4

4

4

4

4

X // X // S

(4.3)

for some M � 0 such that ⌫0 is a regular closed embedding. Letting Y = PM
X and

Y = PM
X , this gives a diagram
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Z0(Y,Ysing)3
e�Y

//

q⇤

✏✏

CH1(Y)3

q⇤

✏✏

Z0(X, Xsing)3
e�X

// CH1(X )3.

(4.4)

Note that the push-forward map q⇤ on the left is defined since q is smooth (see [4,
Proposition 3.18]). It is easily seen from the construction of the cycle Zx associated
to a regular closed point of X in Proposition 3.2 that (4.4) commutes. We thus get

e�X � ⌫⇤(div( f )) = e�X � q⇤(divC( f )) = q⇤ � e�Y (divC( f )) = 0.

This finishes the proof of the proposition.

Proof of Theorem 1.1. The construction of e⇢ is given in (3.2). The existence of the
map � such that (1.2) commutes, follows directly from Corollary 4.2 and Propo-
sition 4.4, using the fact that the surjection Z0(X, Xsing) ⇣ CHBK

0 (X) factors as
Z0(X, Xsing) ⇣ CHLW

0 (X) ⇣ CHBK
0 (X). The surjectivity of � follows from

Proposition 3.2.

4.3 In the above notation, we have constructed a surjective group homomorphism

� : CHLW
0 (X)3 ⇣ CH1(X )3,

which is (by construction) an inverse on the level of generators of the naive restric-
tion map

e⇢ : Zg
1 (X ) ! Z0(X, Xsing)

for any regular projective and flat scheme X over S without any assumption on
the residue field (apart from it being perfect). This also does not depend on the
geometry of the reduced special fiber X . In particular, we can summarize what we
have shown as follows.

Corollary 4.5. Let A be a Henselian discrete valuation ring with perfect residue
field. Let X be a regular scheme which is projective and flat over A with reduced
special fiber X . Suppose that the map e⇢ : Zg

1 (X ) ! Z0(X, Xsing) descends to a
morphism between the Chow groups

⇢ : CH1(X )3 ! CHLW
0 (X)3. (4.5)

Then ⇢ is an isomorphism.

5. The restriction isomorphism

We shall prove Theorem 1.3 in this section. In other words, we shall show that the
restriction homomorphism ⇢ of (4.5) does exist if additional assumption on the field
k or on the DVR A hold.
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5.1. The étale cycle class map

The cycle class map from the Chow groups to the étale cohomology is well known
for smooth schemes. More generally, the étale realization of Voevodsky’s motives
tells us that there are such maps from the Friedlander-Voevodsky motivic cohomol-
ogy of singular schemes to their étale cohomology. But this is not good enough
for us since we do not work with the motivic cohomology. In this section, we give
a construction of the cycle class map from the Levine-Weibel Chow group of a
singular scheme to its étale cohomology using Gabber’s Gysin maps [14].

We let k be a perfect field and let X be an equi-dimensional quasi-projective
scheme of dimension d over k. Let m be an integer prime to the exponential char-
acteristic of k and let 3 = Z/mZ.

Let x 2 Xreg be a regular closed point of X . We have the sequence of maps

Z ⇣ 3
⇠=
�! H0ét(k(x),3)

(1)
!
⇠=
H2d{x},ét(X,3(d))

(2)
�! H2dét (X,3(d)). (5.1)

The arrow labeled (1) is the Gysin map [16], using the fact that x is a regular closed
point of X . This is an isomorphism by the purity and excision theorems in étale
cohomology. The arrow labeled (2) is the natural ‘forget support’ map. Let �x
denote the composite of all maps in (5.1). We let cycétX (x) = �x (1) and extend it
linearly to define a group homomorphism

cycétX : Z0(X, Xsing) ! H2dét (X,3(d)). (5.2)

We shall now show that this map factors through the modified Chow group
CHBK

0 (X). It will then follow that it factors through CHLW
0 (X) as well. So let

⌫ : (C, Z) ! X be a good curve as in Definition 3.1. As in the proof of Proposi-
tion 4.4, we can assume that ⌫ is a local complete intersection morphism. In this
case, Gabber’s construction of push-forward map in étale cohomology [14] gives
us a push-forward map

⌫⇤ : H2ét(C,3(1)) ! H2dét (X,3(d))

and a diagram
Z0(C, Z)

⌫⇤
//

cycétC
✏✏

Z0(X, Xsing)

cycétX
✏✏

H2ét(C,3(1))
⌫⇤

// H2dét (X,3(d)).

(5.3)

If x 2 C\Z is a closed point so that ⌫(x) 2 Xreg, the functoriality of the Gysin maps
implies that the composite H0ét(k(x),3(0)) ! H2ét(C,3(1)) ⌫⇤�! H2dét (X,3(d)) is
the push-forward map associated to the finite complete intersection map
Spec (k(x)) ! X . Using this fact and the description (5.1) of the cycle class map
on generators, it follows that (5.3) is commutative.
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We can identify CH0(C, Z) with Pic(C) according to [4, Lemma 4.12]. The
Kummer sequence then shows that there is a commutative diagram

Z0(C, Z) //

cycétC %%

K

K

K

K

K

K

K

K

K

K

Pic(C)

zzu

u

u

u

u

u

u

u

u

H2ét(C,3(1)).

This immediately shows that for any rational function f on k(C) such that
divC( f ) 2 R0(C, Z), we have cycétC(divC( f )) = 0 in H2ét(C,3(1)). But then,
the commutativity of (5.3) proves that ⌫⇤(divC( f )) goes to zero in H2dét (X,3(d)).
We have therefore shown that the map cycétX in (5.2) descends to a cycle class map
on the Chow group:

cycétX : CHBK
0 (X) ! H2dét (X,3(d)). (5.4)

We shall denote its composite with the canonical surjection CHLW
0 (X)⇣CHBK

0 (X)

also by cycétX .

5.2. The case of algebraically closed fields

In the notation of Subsection 5.1, suppose moreover that k is separably (hence al-
gebraically) closed and X is projective over k. Write X = [n

i=1Xi , where the Xi ’s
are the the irreducible components of X . In this case, we have a natural ‘trace’ map

⌧X : H2dét (X,3(d))
⇠=
�! �n

i=1H
2d
ét (Xi ,3(d))

⇠=
�! �n

i=13. (5.5)

It follows by combining the exact sequence

H2d�1
ét (Xsing,3(d))!H2dc,ét(Xreg,3(d))!H2dét (X,3(d))!H2dét (Xsing,3(d)),

[33, Chapter VI, Lemma 11.3] and the cohomological dimension bound
cd3(Xsing)  2d � 2 (as k is separably closed) that the map ⌧X in (5.5) is an
isomorphism.

Note further that for any regular closed point x 2 Xreg, the composition

3
⇠=
�! H0(k(x),3) ! H2dét (X,3(d))

⇠=
�! �n

i=1H
2d
ét (Xi ,3(d))

⌧
�! �n

i=13

sends 1 2 3 to the element 1 in the direct summand of �n
i=13 associated to the

unique component of X containing x and to zero in all other summands.
Recall now from [9, Section 1] that there is a degree map deg : CHBK

0 (X)3 !Ln
i=13. This is considered in loc. cit. for the Levine-Weibel Chow group, but the

discussion there easily shows that it actually factors through the quotient CHBK
0 (X).

This map is given by the sum of the degree maps for 0-cycles on the irreducible
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components of X . In particular, for any regular closed point x 2 X , the degree
of x is the element 1 in the direct summand of �n

i=13 associated to the unique
component of X containing x and is zero in all other summands.

Combining these two facts, we have a commutative diagram

CHBK
0 (X)3

deg
//

cycétX &&

L

L

L

L

L

L

L

L

L

L

�n
i=13

H2dét (X,3(d)).

⌧X

⇠=
::

u

u

u

u

u

u

u

u

u

(5.6)

In this setting, we have

Lemma 5.1. The degree map induces an isomorphism CHLW
0 (X)3

⇠=
�! �n

i=13. In
particular, the étale cycle class map cycétX : CHLW

0 (X)3 ! H2dét (X,3(d)) is an
isomorphism.

Proof. The second statement is a consequence of the first by (5.6). Since the degree
map is clearly surjective (as k is algebraically closed), it is enough to prove its
injectivity. Since we are working with Z/m-coefficients with m 2 k⇥, it is in
fact enough to prove that the subgroup CH0(X)deg=0 of 0-cycles of degree zero is
m-divisible. But this well known as k is algebraically closed. Indeed, given any 0-
cycle ↵ 2 Z0(X, Xsing) of degree zero, we can find a reduced Cartier curve C ⇢ X
which is regular along the support of ↵. This implies that ↵ lies in the image of
the push-forward map Pic0(C) ! CHLW

0 (X). It is therefore enough to know that
Pic0(C) is m-divisible. But this is elementary.

It is a straightforward exercise to deduce from the previous Lemma the isomorphism
discussed in Remark 1.4.

5.3. Results over non-algebraically closed fields

In this final section, we suppose that the Gersten conjecture for Milnor K -theory
holds for schemes over A. Thanks to [22], this is the case if k ⇢ A, i.e., if A is an
equicharacteristic DVR.

Let 3 = Z/mZ, with m prime to p, and let n � 0 be a non-negative in-
teger. Recall (see e.g., [10, 8.2]), that the n-th Milnor K -theory sheaf KM

n,3 with
3-coefficients is defined as the (Zariski or Nisnevich) sheafification of the presheaf
on affine schemes sending an A-algebra R to the quotient of 3 ⌦Z Tn(R) by the
two-sided ideal generated by elements of the form a⌦ (1� a) with a, 1� a 2 R⇥.
Here Tn(R) is the n-th tensor algebra of R⇥ (over Z). Since in what follows we
will only consider3-coefficients (unless explicitly mentioned), we drop it from the
notation. Write KM

n,Y for the restriction of KM
n,3 to the small (Zariski or Nisnevich)

site of Y for any A-scheme Y . If the residue field of A is finite, we denote by the
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same symbol the sheaf of improved Milnor K -theory, with 3 coefficients, in the
sense of Kerz [23].

LetX be again a regular scheme which is projective and flat over A, of relative
dimension d � 0. One of the consequences of the Gersten conjecture is the so called
Bloch formula, relating Milnor K-theory with the Chow groups. In particular, there
is a canonical isomorphism

cycMX : CH1(X )3
'
�! Hd(XNis,KM

d,X )

which is induced by the tautological “cycle class map”

cycMX : Z1(X ) =
M

x2X(1)

Z ⇠=
M

x2X(1)

KM
0 (k(x)),

where the right hand side appears as the last term of the Gersten resolution for
KM
d,X .
Let now X denote as before the reduced special fiber of X , and let x 2 Xreg be

a regular closed point of X . We have a sequence of maps

3⇠=KM
0 (k(x))⌦Z3

(1)
!
⇠=
Hd

{x}(XZar,KM
d,X )

(2)
�!Hd(XZar,KM

d,X)
(3)
�!Hd(XNis,KM

d,X )

where the isomorphism (1) follows from Kato’s computation [21, Theorem 2] (us-
ing again the regularity of the point x), the map (2) is the canonical forget support
map, and the map (3) is the change of topology from Zariski to the Nisnevich site.

Extending this map linearly, we get a cycle class map

cycMX : Z0(X, Xsing) ! Hd(XNis,KM
d,X ).

Recall now the following result from [26]

Theorem 5.2. (26, Theorem 4.1) The cycle class map cycMX induces a surjective
homomorphism

cycMX : CHLW
0 (X) ⇣ Hd(XNis,KM

d,X ).

With this result at disposal, we can consider the following diagram.

(5.7)
Z1(X )g

Λ CH1(X )Λ Hd(XNis,KM
d,X )

Z0(X, Xsing)Λ CHLW
0 (X)Λ Hd(XNis,KM

d,X)

ρ̃

cycM
X

∼=
ρ ρM

cycM
X

Note that the outer rectangle in (5.7) commutes, since the left vertical map is the
restriction on cycles (3.2), the right vertical map is the restriction homomorphism
on Milnor K -theory and the composite horizontal maps are by definition the cycle
class maps. We can therefore ask wether there exists a homomorphism making the
left square commutative as well, i.e., if the map ⇢̃ descends to a morphism between
the Chow groups.

This is clearly implied by the following Conjecture.
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Conjecture 5.3 (Bloch-Quillen formula). The cycle class map cycMX is an isomor-
phism.

If X is regular, this is a well-known fact. It was originally proved by Bloch
in [7] for surfaces, and generalized by Kato [21] in higher dimension. If X is
of dimension 1, it can be interpreted as the chain of isomorphisms (with integral
coefficients)

CHLW
0 (X)

⇠=
�! Pic(X) ⇠= H1(X,O⇥

X )

where the cohomology is taken with respect to the Zariski or the Nisnevich topol-
ogy.

For singular varieties of dimension � 1, the status of this conjecture is sum-
marized here.
Theorem 5.4. Conjecture 5.3 is true in the following cases, with integral coeffi-
cients:
(i) X is a quasi-projective surface with isolated singularities, over any field k;
(ii) X is a quasi-projective surface with arbitrary singularities;
(iii) X is an affine surface over any perfect field;
(iv) X is projective and regular in codimension 1, over an algebraically closed

field;
(v) X is quasi-projective with isolated singularities over a finite field.
Item i) was first verified by Pedrini and Weibel in [34], and in the affine case by
Levine and Weibel [31]. The case ii) is due to Levine [29] in the case of alge-
braically closed fields. A modification of Levine’s argument can be used to extend
the result to the case of an arbitrary (perfect) ground field, provided that one re-
places the Levine-Weibel Chow group with its modified version introduced in [4].
This is done in [6].

The affine case iii) and the case of singularities in codimension at least 2 iv)
are shown in [26, Theorem 1.1 and 1.2] (the arguments are independent from the
arguments used in [6]), while case v) is [25, Theorem 1.6]. Older results in the affine
case where obtained by Barbieri-Viale in [2]. We can now give another application
of Theorem 1.1.
Corollary 5.5. Let X and A be as above. Then the restriction homomorphism ⇢̃
of (3.2) factors through the rational equivalence classes if k is finite and if X has
only isolated singularities, or if dim(X) = 2 (without restrictions on the type of
singularities). In these cases, it induces an isomorphism

⇢ : CH1(X )3
'
�! CHLW

0 (X)3.

If k is finite, both groups are finite.

Proof. It is an immediate consequence of the commutative diagram (5.7), given
Theorem 5.4. By Corollary 1.2, the induced map ⇢ is automatically an isomor-
phism. Finally, by [25, Theorem 1.2], the group CHLW

0 (X)3 is finite if the residue
field k is finite.
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