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Abstract

Genomic analyses promise to improve tumor characterization in order to optimize personalized 

treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 

liver tumors revealed mutational signatures associated with specific risk factors, mainly combined 

alcohol/tobacco consumption, and aflatoxin B1. We identified 161 putative driver genes 

associated with 11 recurrent pathways. Associations of mutations defined 3 groups of genes 

related to risk factors and centered on CTNNB1 (alcohol), TP53 (HBV), and AXIN1. Analyses 

according to tumor stage progression revealed TERT promoter mutation as an early event whereas 

FGF3, FGF4, FGF19/CCND1 amplification, TP53 and CDKN2A alterations, appeared at more 

advanced stages in aggressive tumors. In 28% of the tumors we identified genetic alterations 

potentially targetable by FDA-approved drugs. In conclusion, we identified risk factor-specific 

mutational signatures and defined the extensive landscape of altered genes and pathways in HCC 

which will be useful to design clinical trials for targeted therapy.
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Hepatocellular carcinoma (HCC) is a heterogeneous disease which usually develops within 

liver cirrhosis related to various etiologies. Hepatitis B virus (HBV) infection, with or 

without aflatoxin B1 (AFB1) exposure, is the most frequent etiology in Asia and Africa, 

whereas hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome are 

frequently related to HCC in Western countries1,2. In cirrhosis, hepatocarcinogenesis is a 

multi-step process where pre-cancerous dysplatic macronodules (DMN) transform into early 

HCC that progress into “small and progressed HCC” then leading to advanced HCC3,4. In 

rare cases, HCC develops in normal liver with some of these tumors potentially resulting 

from malignant transformation of hepatocellular adenomas (HCA)5-7. Unraveling the 

patterns of genomic alterations in these heterogeneous tumors is pivotal towards identifying 

targeted therapies that could improve patient care8,9.

To understand HCC diversity we analyzed the whole coding sequences of 243 liver tumors 

surgically resected in Europe (France, Italy and Spain) associated with cirrhosis (METAVIR 

F4, n=118), fibrosis (F2-F3, n=46) or non-fibrotic livers (F0-F1, n=79)10. Various risk 

factors were identified, including alcohol intake (41%), HCV (26%), nonalcoholic 

steatohepatitis as co-occurrence of metabolic syndrome (18%), HBV (14%), 

hemochromatosis (7%), or no known etiology (11%). The 118 tumors associated with 

cirrhosis represented different stages along HCC progression: 7 DMN, 7 early, 17 small and 

progressed, 58 classic, and 29 poor-prognosis HCC (Supplementary Tables 1, 2 and Online 
Methods for clinical definitions). Exome sequencing was performed in tumors and matched 

non-tumor liver samples to a mean depth of 72-fold (Supplementary Fig. 1). We identified 

28,478 somatic mutations, 6,184 of which occurred in a single tumor with a hypermutation 

phenotype (Supplementary Table 3). Excluding this sample, we identified a median of 21 

silent and 64 non-silent mutations per tumor (ranging from 1 to 706) corresponding to a 

mean somatic mutation rate in coding sequences of 1.3 mutations per megabase, consistent 

with previous reports11-13.

We analyzed the mutational spectrum of the 243 liver tumors to identify mutagenic 

processes operative in HCC. De novo signature analysis using the Wellcome Trust Sanger 

Institute mutational signatures framework revealed 4 signatures (Supplementary Fig. 2, 3). 

Two signatures were previously identified in a pan-cancer analysis (i.e., signatures 6 and 

16)14,15 and two were novel (signatures 23 and 24). Mutational catalogues derived from 

exome data may underestimate the number of operative signatures16, and 8 signatures were 

previously identified by analyzing 88 whole liver cancer genomes (signatures 1A, 1B, 4, 5, 

6, 12, 16, and 17)14. To determine the complete set of signatures in our series, we evaluated 

the contribution of these 8 previously identified signatures and the 2 novel signatures 

identified de novo (see Online Methods). Altogether, 8 signatures (all except signatures 12 

and 17) were found at different strengths in the 243 samples (Fig. 1a, Supplementary Table 

4).

Hierarchical clustering of the samples, based on the contributions of the mutational 

signatures in each sample, revealed 6 groups of tumors (MSig1 to 6) and 4 singletons which 

were significantly associated with demographic, etiologic and molecular features (Fig. 1b-d, 

Supplementary Tables 4, 5). Msig1 included 9 HCC enriched in signature 4 (frequent C>A 

and dinucleotide mutations) which has been previously shown to be associated with 
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tobacco14,17. The prevalence of smokers in Msig1 was high (57%) but not significantly 

different from the other groups. Msig2 group (5 HCC) was characterized by the novel 

“signature 24” showing a high rate of C>A mutations. All of the patients in the Msig2 group 

were migrants born in subtropical African countries and infected by HBV. Three of these 

tumors displayed a somatic R249S TP53 mutation typical of AFB1-exposed HCC18,19 

suggesting that signature 24 reflects the mutational pattern induced by AFB1. There was an 

equal prevalence of mutations for signatures 5 and 16 (49% each) in MSig3. This particular 

group included 19 highly mutated HCC associated with alcohol and tobacco exposure (67%, 

P = 6×10−5, Fisher’s exact test), CTNNB1 mutation (74%, P = 8×10−4), and non-cirrhotic 

livers (79%, P = 0.02). These results suggest a genotoxic synergistic effect of alcohol and 

tobacco exposures in 8% of the patients that developed a homogeneous molecular subtype of 

tumors. MSig4 tumors were characterized by frequent TP53-mutations and signature 5, 

enriched in T>C transitions. Mutations in the 46 tumors classified in Msig5 were related to 

signatures 1A and 1B resulting of spontaneous deamination at NpCpG trinucleotides 

acquired through the patient’s lifetime14. This group of tumors demonstrated a low mutation 

rate and an early histological stage, but these tumors also had a lower tumor cell content, so 

this group may partly be related to normal cell contamination (see Online Methods). 

Signature 16 accounted for 79% of mutations in MSig6 tumors and was associated with 

older patients, TERT and CTNNB1 mutations. Among the tumors classified alone, one 

(BCM723T) showed signature 6 which is characteristic of cancers with defective DNA 

mismatch repair, displaying numerous indels. The newly identified signature 23 was only 

encountered in the hypermutated tumor CHC892T, occuring in a 71 year old female 

presenting with a non-fibrotic liver having black anthracotic pigment deposition, 

predominantly in macrophages and vessels (Supplementary Fig. 4). This signature was 

characterized by a predominance of C>T mutations with a strong strand bias that may result 

from the interplay between an unknown mutagenic process affecting predominantly guanine 

residues and transcription coupled nucleotide excision repair15. To validate the mutational 

signatures identified in our series, we analyzed the mutation patterns identified by exome 

sequencing in the ICGC-Japan (452 tumors)20 and the TCGA cohorts of 198 tumors. 

Consistent with the findings by Totoki et al., we found an enrichment of T>C mutations in 

an ApTpN context in the Japanese data. We also found two tumors with mutational patterns 

corresponding to our signatures 6 and 23, validating the occurrence of these signatures in 

rare HCC cases (Supplementary Fig. 5). Six tumors of the TCGA data clustered with our 

MSig2 cases and displayed patterns similar to the AFB1-related signature 24. These cases 

were all African or Asian (P = 0.002, Fisher’s exact test) and 3 of them displayed the 

characteristic R249S TP53 mutation (P = 8×10−4, Fisher’s exact test) (Supplementary Fig. 

6).

We used MutSigCV to identify cancer driver genes21. Fourteen genes were significantly 

enriched for damaging mutations (q < 0.05, Fig. 2a): TP53, CTNNB1, AXIN1, ALB, 

ARID1A, ARID2, ACVR2A, NFE2L2, RPS6KA3, KEAP1, RPL22, CDKN2A, CDKN1A and 

RB1 (Supplementary Table 6). We also analyzed copy-number alterations (CNAs) by 

comparing the sequence coverage in 243 tumors and matched non-tumor liver samples. The 

pattern of broad gains and losses was consistent with previous reports in HCC (Fig. 

2b)11,22,23. We identified recurrent homozygous deletions of the CFH locus, IRF2, 
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CDKN2A, PTPN3, PTEN, AXIN1 and RPS6KA3, and recurrent focal amplifications of 

TERT, VEGFA, MET, MYC, the FGF3, FGF4, FGF19/CCND1 locus, JAK3 and CCNE1 

(Supplementary Tables 7a,b). Next, we developed a pipeline integrating focal CNAs and 

mutations identifying 161 putative driver genes in liver cancer (see Online Method, Fig. 2c, 

Supplementary Table 8).

To identify cellular pathways associated with HCC we annotated the 161 candidate driver 

genes using the Gene Ontology database and manually curated the precise role of each gene 

in pathways (see Online Methods). We found 11 pathways altered in ≥5% of HCC (Fig. 3 

and Supplementary Fig. 7,8,9): TERT promoter mutations activating telomerase expression 

(60%)24, WNT/ß-Catenin (54%), PI3K/AKT/mTOR (51%), TP53/cell cycle (49%), MAP 

kinase (43%), hepatic differentiation (34%), epigenetic regulation (32%) chromatin 

remodeling (28%), oxidative stress (12%), Il6/JAK/STAT (9%), and TGFß (5%). This 

analysis revealed new genes recurrently mutated in HCC: ß-catenin inhibitors (ZNRF3, 

USP34 and MACF1), hepatocyte secreted proteins( APOB and FGA), and the TGFß-

receptor ACVR2A, recently associated with chondrosarcoma25. We then identified 

significant associations between mutations and risk factors (Supplementary Table 9). 

Alcohol-related HCC were significantly enriched in CTNNB1, TERT, CDKN2A, SMARCA2, 

and HGF alterations (P < 0.05, chi-square tests for trend in proportions). HBV-related HCC 

were frequently mutated for TP53, and IL6ST mutations were exclusively identified in HCC 

with no known etiology. In contrast, HCV infection, metabolic syndrome, and 

hemochromatosis did not show significant associations.

Because each tumor accumulates numerous damaging mutations, we identified three major 

clusters of associated alterations, centered on CTNNB1, AXIN1 and TP53 (Fig. 4, 

Supplementary Fig. 10, and Supplementary Table 10). Interestingly, alterations of genes 

belonging to a same pathway were frequently distributed in different clusters. These results 

may reflect cooperation, functional redundancy, or lethality of gene combinations and may 

contribute to better predict efficacy of targeted therapies.

Next, we defined the catalog of actionable genomic alterations among the 11 major 

pathways. Altogether, 28% of patients harbored at least one damaging alteration potentially 

targetable by an FDA-approved drug (Fig. 3, Supplementary Fig. 11 and Supplementary 

Table 11) and 86% by a drug studied in phase I to phase III clinical trials (Supplementary 

Fig. 11 and Supplementary Table 12). Targetable alterations by FDA-approved drugs 

comprised focal amplifications or mutations of FLTs (6%), FGF3/4/19 (4%), PDGFRs 

(3%), EPHA4 (3%), JAK3 (3%), VEGFA (1%), HGF (3%), MTOR (2%), EGFR (1%), 

FGFRs (1%), IL6R (1%), KIT (1%), MET (1%), TEK (1%), BRAF (<1%), ERBB2 (<1%), 

JAK1 (<1%), KDR (<1%). We also showed in vitro that inactivating mutations of RPS6KA3 

(7%) induced an activation of the RAS/MAPK pathway with an over-expression of 

phosphorylated ERK1/2 (Supplementary Fig. 12) suggesting that RPS6KA3-mutated HCC 

could be targeted by ERK or MEK inhibitors. Notably, advanced-stage tumors harbored 

more potentially targetable alterations, including, in particular, FGF/CCND1 amplifications 

(Supplementary Fig. 13).
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Additionally to driver genes that can be directly inhibited by targeted drugs, other alterations 

may potentiate drug sensitivity of cancer cells. This includes NQO1, which markedly 

increases sensitivity to the HSP90 inhibitor, 17-AAG, by reducing this compound to a more 

potent inhibitor26,27. NQO1 expression is induced by the oxidative stress pathway, which is 

activated in 12% of HCC, primarily by mutations of KEAP1 or NFE2L2. To test whether 

these tumors could be more sensitive to HSP90 inhibitors, we assessed the response of 29 

liver cancer cell lines to 17-AAG and 17-DMAG (Fig. 5a). The growth inhibition of 50% 

(GI50) was significantly inversely correlated with the expression of NQO1 (Pearson’s r = 

−0.56, P = 0.0015, Fig. 5b). Two of the three cell lines harboring KEAP1 inactivating 

mutations were highly sensitive to HSP90 inhibitors, whereas the third mutated cell line, 

which was less sensitive, was homozygous for the NQO1 P187S (NQO1*2 allele, 

rs1800566) missense variant causing NQO1 deficiency (Fig. 5c)28. These findings suggest 

that tumors with high NQO1 expression may be more sensitive to HSP90 inhibitors except 

in patients with homozygous P187S genotype.

Finally, we explored the progression of HCC in cirrhotic and non-cirrhotic livers. We 

identified an increased number of gene mutations (P = 1.2×10−3, Jonckheere-Terpstra test) 

and chromosome aberrations (P = 1.3×10−5, Jonckheere-Terpstra test) along DMN 

malignant transformation to poor prognosis HCC (Fig. 6a). Although TERT promoter 

mutations were already frequent at early stages, CTNNB1 and TP53 mutation frequencies 

increased significantly with progression, and focal amplifications at the CCND1/FGF locus 

were mostly encountered in poor prognosis HCC (P < 0.01, Chi-square test for trend in 

proportions, Fig. 6b). Interestingly, chromosome aberrations appearred later than gene 

mutations during progression. While similar findings were observed in tumors which 

developed in non-fibrotic liver relative to the progressive accumulation of mutations and 

CNAs, TERT promoter mutations were later events during malignant transformation. 

Moreover, HNF1A and IL6ST mutations were restricted mostly to HCA suggesting that most 

of the HCC in non-fibrotic liver did not derive from the transformation of an adenoma (Fig. 

6b). A link between FGF19 expression and overall survival has been described in the 

literature22,24,29-32. Using a multivariate survival analysis, we identified that CDKN2A 

inactivation and FGF/CCND1 amplification were associated with poor prognosis in our 

cohort of resected HCC, independently of classical prognostic clinical and histological 

features (Fig. 6c and Supplementary Table 13).

In conclusion, our study identified relationships between environmental exposures and 

mutational patterns in HCC as well as the landscape of driver genes and pathways altered in 

different clinical stages and etiological backgrounds. For patient care, genomic alterations 

identified in targetable genes will be useful to determine HCC patients that could potentially 

benefit from targeted treatment in future clinical trials.

Online Methods

Liver Samples

A series of 243 liver tumor samples and their non-tumor counterparts were collected from 

patients surgically treated in Europe: 193 cases from France (Créteil, Bordeaux), 9 from 

Spain (Barcelona), and 41 from Italy (Milan). The study was approved by institutional 
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review board committees (CCPRB Paris Saint-Louis, 1997, 2004, and 2010, approval 

number 01-037; Bordeaux 2010-A00498-31). Written informed consent was obtained in 

accordance with french legislation. All samples were immediately frozen in liquid nitrogen 

and stored at −80 °C.

Clinical Data

Clinicopathological data were available in all cases. Risk factors were defined by significant 

alcohol intake, HCV, HBV, hemochromatosis, with no known etiology, and non-alcoholic 

steatohepatitis (NASH) as co-occurrence of metabolic syndrome. Metabolic syndrome 

consists of a combination of disorders including central obesity [waist circumference >102 

cm (M), >88 cm (F)], hypertriglyceridemia (triglycerides >150 mg/dL), low high-density 

lipoprotein serum levels (<40 mg/dL), arterial hypertension (>130 mmHg systolic or >85 

mmHg diastolic), and raised fasting plasma glucose (FPG) ≥1.1 mg/dL or previously 

diagnosed type 2 diabetes. At least three of the latter criteria have to be fulfilled for 

diagnosis. NASH can be the chronic consequence of a non-alcoholic fatty liver disease 

(NAFLD), which frequently co-occurs in patients with metabolic syndrome and is 

characterized by hepatocellular accumulation of triglycerides in the absence of significant 

alcohol consumption. By contrast, NASH additionally includes the presence of 

inflammation and can display different degrees of fibrosis. Patients without known etiology 

are those that do not display the above frequent etiologies or rare etiologies (such as primary 

biliary cirrhosis, autoimmune hepatitis and primary sclerosing cholangitis). Samples were 

classified according to the clinical, pathological and genetic features as previously described 

by Guichard et al. (Supplementary Table 1, 2)11. In all HCC samples, the ratio of tumor 

cells/non-tumor cells was evaluated >50%; the PurBayes method33 estimated an average 

70% (range 39-100%) of tumor purity based upon sequencing data (Supplementary Table 

14). Definition of DMN, early, small and progressed, classic, and poor prognosis HCC is 

based on histopathological criteria in HCC proposed by the International Consensus Group 

for Hepatocellular Neoplasia3,4. DMN: macronodules containing low (a cell population 

lacking architectural atypia with mild increase in cellularity as compared to surroundings; 

portal tracts detectable) or high (frank cytological and architectural atypia as compared to 

surroundings but insufficient for a diagnosis of malignancy; portal tracts detectable) grade 

dysplastic nodules. Early HCC: diameter ≤2 cm, vaguely nodular lesion with indistinct 

margins with a well differentiated histology which may require careful distinction from high 

grade dysplastic nodules; few portal tracts detectable. Small and progressed HCC: diameter 

≤2 cm, distinctly nodular lesion with well (G1) to moderately (G2) differentiated histology 

in which malignancy is recognized at first glance; no portal tracts detectable. Poor prognosis 

HCC: HCC cases displaying recurrence within 2 years. Classic HCC: non-early, non-small, 

non-poor prognosis HCC.

Genomic DNA extraction

We extracted DNA using a salting-out procedure34. Genomic DNA was loaded on a 0.8% 

agarose gel for quality control, only DNA >10Kb were selected. DNA quantification was 

performed using Hoechst 33258 from Sigma Chemical Co. (St. Louis, MO, USA).
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Exome capture, library construction and sequencing

Sequence capture, enrichment and elution from 243 pairs of genomic DNA were performed 

by IntegraGen (Evry, France) as previously described in Guichard et al. with some 

modifications11. Agilent in-solution enrichment was used with their biotinylated 

oligonucleotides probes library (SureSelect Human All-Exon kit v2-46Mb (n=36 pairs); 

v3-52Mb (n=7 pairs); v4-70Mb (n=56 pairs); v5+UTRs-75Mb (n=144 pairs), Agilent 

technologies) according to manufacturer’s instruction. Eluted-enriched DNA sample was 

sequenced on an Illumina HiSeq 2000 sequencer as paired-end 75b reads as previously 

described35. Image analysis and base-calling was performed using Illumina Real Time 

Analysis (RTA) Pipeline v1.12 with default parameters. Whole-exome sequencing pre-

analysis was based on the Illumina pipeline (CASAVA1.8.2). Only the positions included in 

the bait coordinates were conserved. Each sample was sequenced to an average depth of 

72.0X, with ~96.9% of the targeted regions covered ≥1×, ~92.6% ≥10× and ~82.9% ≥25× 

(Supplementary Fig. 1).

Identification of somatic variants

A list of variants was generated (Supplementary Table 3) considering only somatic 

mutations in coding regions plus consensus intronic bases (missense/nonsense/splice-site/

indels/synonymous mutations) as previously described in Guichard et al. with some 

modifications11. Polymorphisms referenced in dbSNP135 or 1000Genomes with minor 

allele frequency over 2% were removed. Functional evidence of predictive drastic 

consequence of the variants was investigated using Polyphen-2 v2.2.236. A total of 11,823 

(41%) putative somatic mutations were validated manually using the Integrated Genomics 

Viewer (IGV) and 3,126 (11%) using Sanger sequencing (Supplementary Table 3). A 

systematic Sanger sequencing was performed in a subset of 155 samples on a list of 11 

genes (CTNNB1, TP53, ARID1A, AXIN1, RPS6KA3, CDKN2A, NFE2L2, ARID2, PI3KCA, 

KRAS and KEAP1) and we used these data to benchmark our exome mutation calling 

pipeline. A total of 151 somatic variants were called by both methods, whereas 21 variants 

were only identified by Sanger sequencing and 10 by exome sequencing. Variants not 

identified by exome sequencing were mostly mutations in the poorly covered GC-rich exon 

1 of ARID1A (n=10 variants) and large deletions of CTNNB1 exon 3 (n=3). This results in a 

sensitivity of our somatic calling pipeline of 88% [82-92%, IC95] that reaches 95% 

[90-98%, IC95] when excluding those 2 specific regions, and a specificity of 99% 

[98-100%, IC95].

Mutations were annotated using the Alamut Batch, Alamut Visual v2.4 (Interactive 

biosoftware, France) and Oncotator (http://www.broadinstitute.org/cancer/cga/Oncotator/). 

All sequences has been deposited in the EGA (European genome-phenome archive - http://

www.ebi.ac.uk/ega/) database (accessions EGAS00001000217, EGAS00001000679 and 

EGAS00001001002) and ICGC data portal (http://dcc.icgc.org/, release 18, Dec10th, 2014).

De novo mutational signature analysis

The mutational catalogues of the 243 liver tumors were analyzed using the Wellcome Trust 

Sanger Institute mutational signatures framework16. This algorithm makes use of a well-

known blind source separation technique, termed nonnegative matrix factorization (NMF). 
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NMF identifies the matrix of N mutational signature, P, and the matrix of the exposures of 

these signatures, E, by minimizing a Frobenius norm while maintaining non-negativity:

The method for deciphering mutational signatures, including evaluation with simulated data 

and list of limitations, can be found in ref 16.

First, all mutation data were converted into a matrix, M, that is made up of 96 features 

comprising mutations counts for each mutation type (C>A, C>G, C>T, T>A, T>C, and 

T>G; somatic mutations presented in a pyrimidine context) using each possible 5′ (C, A, G, 

T) and 3′ (C, A, G, T) context for all samples. Then, the algorithm was applied to the matrix 

that contains K mutation types and G samples, deciphering the minimal set of mutational 

signatures that optimally explains the proportion of each mutation type, thus estimating the 

contribution of each signature to each sample.

After extraction, 4 stable and reproducible mutational signatures were deciphered (see 

stability and error plot in Supplementary Fig. 2) and termed Signatures A, B, C, and D. 

Those signatures were compared to the catalogue of 27 consensus signatures that were 

previously identified by a pan-cancer analysis encompassing 7,042 samples and 30 cancer 

types14. The comparison was performed by cosine similarity as described16 as well as based 

on other biological features exhibited by the mutational signatures (e.g., transcriptional 

strand bias, presence of small insertions and/or deletions at specific context, etc.).

The comparison revealed that 2 of the 4 signatures are novel, while the patterns of the 

remaining 2 were previously identified through the pan-cancer analysis. Notably, Signatures 

C exhibited a strong transcriptional strand bias of T>C mutations especially at TpA 

dinucleotides (70% vs. 30%) a behaviour consistent with the one of Signature 16. The 

pattern of mutations of Signature C showed a cosine similarity of 0.95 with the pattern of 

mutations of Signature 16. Similarly, Signature D’s pattern is extremely similar to the one of 

Signature 6 (cosine similarity of 0.90), both exhibiting prevalence for high numbers of 

indels at repetitive elements. In contrast, Signatures A and B had cosine similarity <0.90 

with any of the previously identified mutational signatures. Please note that we previously 

used a cut-off of ~0.90 to cluster mutational signatures into consensus mutational 

signatures14.

Reintroduction of consensus mutational signature analysis and sample clustering

Previous analysis of 88 whole-genomes of liver cancers has revealed 6 mutational 

signatures: Signatures 1B, 4, 6, 12, 16, and 1714. Further, signature 1B can be decomposed 

into Signatures 1A and 514. The de novo extraction of mutational signatures of our 243 liver 

exomes revealed two additional mutational signatures, termed signatures 23 and 24. Thus, 

the complete compendium of mutational signature that can be present in a liver cancer is: 

Signatures 1A, 1B, 4, 5, 6, 12, 16, 17, 23, and 24. To evaluate the presence of all these 
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signatures in the 243 liver exomes, we used a previously described approach to find the 

Exposure matrix minimizing the following constrained linear function for each sample37:

Here,  represents a vector with 96 components (corresponding to the six somatic 

substitutions and their immediate sequencing context) and Exposurei is a nonnegative scalar 

reflecting the number of mutations contributed by this signature. N is equal to 10 and it 

reflects the number of all possible signatures that can be found in a liver sample. Any 

mutational signature contributing less than 1% of the somatic mutations in a sample was 

removed and the sample was re-analyzed with the remaining signatures. Any signature that 

did not improve the cosine similarity between the original sample and the sample 

reconstructed using the consensus mutational signatures and their respective exposures with 

more than 0.02 was removed and the sample was reanalyzed with the remaining signatures. 

The analysis revealed that signatures 1A, 1B, 4, 5, 6, 16, 23, and 24 are present in these liver 

cancer exomes but not signatures 12 and 17. The re-introduction allowed better evaluating 

the presence of mutational signatures in each sample by leveraging the set of consensus 

mutational signatures previously deciphered from a larger dataset of 88 whole-genomes.

All samples were clustered, based on the number of somatic mutations contributed by each 

signature in each sample, using unsupervised hierarchical clustering with cosine distance 

and Ward linkage.

Copy-number analysis

To identify copy-number alterations, we calculated the log ratio of the coverage in each 

tumor and its matched non-tumor liver sample for each bait of the exome capture kit. Log 

ratio profiles were then smoothed using the circular binary segmentation algorithm as 

implemented in the Bioconductor package DNAcopy38. The most frequent smoothed value 

was considered to be the zero level of each sample. Segments with a smoothed log ratio 

above (zero+0.3) or below (zero−0.3) were considered to be gained and deleted, 

respectively. High-level amplifications and homozygous deletions thresholds were defined 

as the (mean+ 5 standard deviations) of smoothed log ratios in gained and deleted regions, 

respectively. Chromosome instability was quantified as the frequency of aberrant arms 

(FAA), i.e. the proportion of chromosome arms with an aberrant copy-number status on 

>60% of their length11.

Identification of putative driver genes

We first used the MutSigCV21 algorithm to identify genes harboring significantly more 

mutations than expected by chance. This approach takes into account the nucleotide context, 

gene-expression, replication time, the observed silent mutations and the presence of 

mutations in the surrounding regions. It estimates the background mutation rate for each 

gene–patient–category combination and tests the null hypothesis that all the observed 

mutations in each gene are a consequence of random background mutation. Genes for which 
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this hypothesis is rejected based on the Benjamini-Hochberg false discovery rate-corrected 

q-value are considered significantly mutated. Analysis was done using default settings 

together with a liver-oriented covariates table comprising HCC-derived gene expression 

levels (GSE62232).

We then combined mutations and focal CNAs to define an enlarged list of putative drivers. 

We considered all genes with ≥6 alterations (non-silent mutations, high-level amplifications 

or homozygous deletions) among the 235 HCC (excluding DMN samples and hypermutated 

HCC sample CHC892T), corresponding to a frequency of ≥2.5%. We then remove large 

genes (cds length ≤10.000 amino acid), genes not expressed in HCC considering our 

Affymetrix microarray GSE62232 dataset collected on a series of 81 HCCs (RMA 

normalized intensities ≥20 units or <20 units., with ≥20 standard deviation) and genes 

displaying ratio of silent versus non-silent mutations ≤0.15. 161 genes passed more than two 

of these three filters and were considered to be putative driver genes (Supplementary Table 

8).

Identification of recurrently altered pathways and targetable genes

Gene annotations, including unique gene and transcript identifiers, description and 

functional reports, were retrieved from Ensembl release 75 given the variant genomic 

location using the Bioconductor package biomaRt. The definition of the cellular pathways 

found to be associated with HCC was established by annotating the 161 candidate driver 

genes using the Gene Ontology database (http://www.geneontology.org/), then stating their 

precise roles through an expert reviewing of the literature and gene annotation or pathways 

databases including GeneCards (http://www.genecards.org/), KEGG (http://

www.genome.jp/kegg/pathway.html), and PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). 

Using this approach, we identified 11 major pathways altered in more than 5% of HCC. 

Some putative driver genes or genes already reported in HCC were added to the general 

scheme (Fig. 3a), as well as genes with only minor or no alterations in our cohort but 

playing key functional roles in the identified pathways. Interactions between pathways and 

repartition of the genes in the cellular compartments were highlighted as reported in KEGG 

pathway database. The FDA-approved drugs or drugs screened in different phases of clinical 

trials that were found related to one of the genes or pathways were reviewed in 

ClinicalTrails.gov (http://www.clinicaltrials.gov) and NCI Drug Dictionary (http://

www.cancer.gov/drugdictionary) databases.

Sanger sequencing

Eleven percent of the mutations identified by exome sequencing were confirmed by 

independent PCR and Sanger sequencing. All HCC and liver cancer cell lines were 

systematically screened for CTNNB1, TP53, ARID1A, AXIN1, RPS6KA3, KEAP1, CDKN2A, 

NFE2L2, ARID2, PIK3CA and KRAS mutations (Supplementary Table 15) as described in 

Guichard et al. and the promoter region of TERT was sequenced as described in Nault et 

al.11,24. In all cases the somatic origin of the mutation found in tumor was verified by 

sequencing the corresponding adjacent, normal liver sample11,24.
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Cell lines

The 29 liver cancer cell lines were obtained from commercial sources. Cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) or William’s E medium supplemented with 

10% fetal bovine serum and 100 U/mL penicillin/streptomycin and maintained at 37 °C in a 

humidified incubator in 5% CO2. Cell line identity was confirmed by exploring known gene 

mutations in each cell line. All the cells were mycoplasma-free, as tested by a PCR assay 

(Sigma).

Drugs and cell viability assay

17-AAG and 17-DMAG, two benzoquinone ansamycin HSP90 inhibitors were purchased 

from Sigma-Aldrich and dissolved in DMSO. Cells were seeded into 96-well plates at a 

density of 1500-3000 cells per well. After overnight incubation, cells were treated for 48h 

with vehicle alone (0.1% DMSO) or with various concentrations of 17-AAG or 17-DMAG 

(0.001, 0.01, 0.1, 1 and 10 uM, in 0.1% DMSO) in 100 ul of culture medium supplemented 

with 10% fetal bovine serum and 100 U/ml penicillin/streptomycin. Each concentration was 

tested in duplicate; experiments were repeated two to three times for each cell. Cell viability 

was measured by MTS assays (Promega) according to the manufacturer’s recommendations. 

The concentration of drug inhibiting cells growth by 50% relative to the untreated control 

(GI50) was calculated after curve fitting with GraphPad Prism 5.0 software.

Cell lines transfection and western-blotting

Cells were transfected with 2 nM of siRNA using the lipofectamine RNAiMAX reagent 

(Invitrogen) in 6-well plates, according to the manufacturer’s protocol. Three different 

siRNA duplexes targeting RPS6KA3 (coding RSK2) (s12279, s12280 and s12280, Life 

Technologies) were tested. Block-iT Alexa Fluor Red Fluorescent Oligo siRNA (Life 

Technologies) was used as a double-stranded RNA negative control. The effect of the gene 

knockdown was verified on the protein level by western blotting. The total protein extracts 

were obtained by lysis in the RIPA buffer supplemented with protease and phosphatase 

inhibitors. Western-blot analyses were performed using primary antibodies specific for: 

RSK2 (sc-1430 Santa Cruz, dilution 1:2000), ERK1/2 (#9102 Cell Signaling Technology, 

dilution 1:500) and phospho-ERK1/2 (#9101 Thr202/Tyr204) (Cell Signaling Technology, 

dilution 1:300). Polyclonal rabbit anti-β-actin (A5060 Sigma, 1:3000) was used as loading 

control.

Quantitative RT-PCR

Quantification of NQO1 mRNA level was performed by quantitative RT-PCR on the 

BioMark HD™ platform (Fluidigm) using a set of pre-designed primers and probe from Life 

technologies (Hs00168547_m1). Ribosomal 18S (R18S) was used for the normalization of 

expression data.

Reverse phase protein array

RPPA technology was used to quantify NQO1 protein level in cells as previously 

described39. Briefly, equal amounts of protein lysates were printed onto nitrocellulose 

covered slides. Four serial dilutions and two technical replicates per dilution were deposited 
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for each sample. Arrays were revealed with an anti-NQO1 antibody (HPA007308 from 

Sigma). Quantification and normalization of RPPA data was performed using the 

NormaCurve method39.

NQO1 P187S SNP analysis

NQO1 P187S (NQO1*2 allele, rs1800566) SNP genotyping was performed on genomic 

DNA extracted from cells using a pre-designed TaqMan assay (C_2091255_30, Life 

Technologies), on an ABI 7900HT instrument (Applied Biosystems), according to the 

manufacturer’s instructions.

Statistical Analysis

R software v2.15.0 (http://www.R-project.org) and Bioconductor packages were used for 

statistical analysis and data visualization. Tests of independence were performed using Chi-

square and Fisher’s exact tests. P values were adjusted by Monte Carlo simulation according 

to Hope et al.40. The strength of association among gene mutation events was modeled using 

a binomial logistic regression. We used chi-square tests for trend in proportions to identify 

genes associated with HCC progression and the Jonckheere-Terpstra test to assess the 

increase of mutation and CNA numbers along tumor stages. Only genes mutated in ≥3% of 

cases were included.

Variables associated with overall survival at 60 months were identified using univariate and 

multivariate Cox proportional hazards regression models (Wald test), using the survival 

package. Only patients with curative (R0) resection were included in survival analysis 

(n=216, exclusion of non-curative resections and liver transplantations). Kaplan-Meier plots 

were used to describe survival rates among all cases.

All reported P values were two-tailed and differences were considered significant when the 

P value was under 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We warmly thank Anais Boulais, Cécile Guichard, Ichrafe Ben Maad, and Camilla Pilati for helpful participation to 
this work. We thank Leanne de Koning, Celine Baldeyron, Aurélie Barbet and Caroline Lecerf from the Institut 
Curie for the RPPA experiments. We also thank Jean Saric, Christophe Laurent, Laurence Chiche, Brigitte Le Bail, 
Claire Castain (CHU Bordeaux) and Daniel Cherqui, Jeanne Tran Van Nhieu (CHU Henri Mondor, Créteil) for 
contributing to the tissue collection. This work was supported by the INCa with the ICGC project, the PAIR-CHC 
project NoFLIC (funded by INCa and Association pour la recherche contre le Cancer, ARC), HEPTROMIC (FP7), 
Cancéropole Ile de France, CRB Liver tumors, Tumorotheque CHU Bordeaux and CHU Henri Mondor, 
BioIntelligence (OSEO) and INSERM. J-C.N. was supported by a fellowship from the INCa. K.S. is supported by 
the Deutsche Forschungsgemeinschaft (DFG Grant Number: SCHU 2893/2-1). Research performed at Los Alamos 
National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US 
Department of Energy. Vincenzo Mazzaferro is supported by a grant from AIRC (Italian association for Cancer 
Research). Josep M. Llovet is supported by grants from the European Comission-FP7 Framework (HEPTROMIC, 
Proposal No: 259744), The Samuel Waxman Cancer Research Foundation, the Spanish National Health Institute 
(SAF-2010-16055 and SAF-2013-41027), and the Asociación Española Contra el Cáncer (AECC).

Schulze et al. Page 13

Nat Genet. Author manuscript; available in PMC 2015 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.R-project.org


References

1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012; 379:1245–55. [PubMed: 
22353262] 

2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011; 365:1118–27. [PubMed: 21992124] 

3. International Consensus Group for Hepatocellular NeoplasiaThe International Consensus Group for 
Hepatocellular, N. Pathologic diagnosis of early hepatocellular carcinoma: a report of the 
international consensus group for hepatocellular neoplasia. Hepatology. 2009; 49:658–64. 
[PubMed: 19177576] 

4. Roncalli M, et al. Liver precancerous lesions and hepatocellular carcinoma: the histology report. Dig 
Liver Dis. 2011; 43(Suppl 4):S361–72. [PubMed: 21459342] 

5. Zucman-Rossi J, et al. Genotype-phenotype correlation in hepatocellular adenoma: new 
classification and relationship with HCC. Hepatology. 2006; 43:515–24. [PubMed: 16496320] 

6. Nault JC, Bioulac-Sage P, Zucman-Rossi J. Hepatocellular benign tumors-from molecular 
classification to personalized clinical care. Gastroenterology. 2013; 144:888–902. [PubMed: 
23485860] 

7. Pilati C, et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating 
mutations and the mechanisms of malignant transformation. Cancer Cell. 2014; 25:428–41. 
[PubMed: 24735922] 

8. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 
2014; 63:844–55. [PubMed: 24531850] 

9. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel 
perspectives on trial design. Clin Cancer Res. 2014; 20:2072–9. [PubMed: 24589894] 

10. The French METAVIR Cooperative Study Group. Intraobserver and interobserver variations in 
liver biopsy interpretation in patients with chronic hepatitis C. Hepatology. 1994; 20:15–20. 
[PubMed: 8020885] 

11. Guichard C, et al. Integrated analysis of somatic mutations and focal copy-number changes 
identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012; 44:694–8. 
[PubMed: 22561517] 

12. Fujimoto A, et al. Whole-genome sequencing of liver cancers identifies etiological influences on 
mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012; 44:760–4. 
[PubMed: 22634756] 

13. Kan Z, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. 
Genome Res. 2013; 23:1422–33. [PubMed: 23788652] 

14. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500:415–
21. [PubMed: 23945592] 

15. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human 
cancers. Nat Rev Genet. 2014; 15:585–98. [PubMed: 24981601] 

16. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of 
mutational processes operative in human cancer. Cell Rep. 2013; 3:246–59. [PubMed: 23318258] 

17. Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in 
cancer genomes. Curr Opin Genet Dev. 2014; 24:52–60. [PubMed: 24657537] 

18. Hsu IC, et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 
1991; 350:427–8. [PubMed: 1849234] 

19. Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular 
carcinoma from southern Africa. Nature. 1991; 350:429–31. [PubMed: 1672732] 

20. Totoki Y, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat 
Genet. 2014; 46:1267–73. [PubMed: 25362482] 

21. Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated 
genes. Nature. 2013; 499:214–8. [PubMed: 23770567] 

22. Sawey ET, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer 
by Oncogenomic screening. Cancer Cell. 2011; 19:347–58. [PubMed: 21397858] 

Schulze et al. Page 14

Nat Genet. Author manuscript; available in PMC 2015 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



23. Chiang DY, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. 
Cancer Res. 2008; 68:6779–88. [PubMed: 18701503] 

24. Nault JC, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in 
hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013; 4:2218. [PubMed: 
23887712] 

25. Totoki Y, et al. Unique mutation portraits and frequent COL2A1 gene alteration in 
chondrosarcoma. Genome Res. 2014; 24:1411–20. [PubMed: 25024164] 

26. Barretina J, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer 
drug sensitivity. Nature. 2012; 483:603–7. [PubMed: 22460905] 

27. Garnett MJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. 
Nature. 2012; 483:570–5. [PubMed: 22460902] 

28. Siegel D, et al. Rapid polyubiquitination and proteasomal degradation of a mutant form of 
NAD(P)H:quinone oxidoreductase 1. Mol Pharmacol. 2001; 59:263–8. [PubMed: 11160862] 

29. Ahn SM, et al. Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and 
FGF19 aberrations for patient stratification. Hepatology. 2014; 60:1972–82. [PubMed: 24798001] 

30. Wang K, et al. Genomic landscape of copy number aberrations enables the identification of 
oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013; 58:706–17. [PubMed: 
23505090] 

31. Hyeon J, Ahn S, Lee JJ, Song DH, Park CK. Expression of fibroblast growth factor 19 is 
associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig Dis Sci. 2013; 
58:1916–22. [PubMed: 23456506] 

32. Miura S, et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer 
prognosis of hepatocellular carcinoma. BMC Cancer. 2012; 12:56. [PubMed: 22309595] 

References Methods

33. Song S, et al. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide 
polymorphism profiles. PLoS One. 2012; 7:e45835. [PubMed: 23049875] 

34. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from 
human nucleated cells. Nucleic Acids Res. 1988; 16:1215. [PubMed: 3344216] 

35. Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel 
targeted sequencing. Nat Biotechnol. 2009; 27:182–9. [PubMed: 19182786] 

36. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat 
Methods. 2010; 7:248–9. [PubMed: 20354512] 

37. Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that 
combines line search and trust region steps. Mathematical Programming. 2006; 107:391–408.

38. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of 
array-based DNA copy number data. Biostatistics. 2004; 5:557–72. [PubMed: 15475419] 

39. Troncale S, et al. NormaCurve: a SuperCurve-based method that simultaneously quantifies and 
normalizes reverse phase protein array data. PLoS One. 2012; 7:e38686. [PubMed: 22761696] 

40. Hope ACA. A simplified Monte Carlo significance test procedure. JSTOR. 1968; 30:582598.

Schulze et al. Page 15

Nat Genet. Author manuscript; available in PMC 2015 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. 
Consensus signatures of mutational processes in hepatocellular carcinoma. (a) Patterns of 

the signatures of the mutational processes operative in 243 liver exomes. Signatures 23 and 

24 were identified using de novo WTSI mutational signatures framework, while the presence 

of Signatures 1A, 1B, 4, 5, 6, and 16 were identified via re-introduction of consensus 

mutational signatures previously identified in liver cancer by a pan-cancer analysis14. Each 

signature is displayed according to the 96 substitution classification defined by the 

substitution class and sequence context immediately 3′ and 5′ to the mutated base. 
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Signatures 1A, 1B, 4, 5, 6 and 16 match signatures previously described in a pan-cancer 

study14 and the plotted patterns correspond to the updated consensus signatures. Signatures 

23 and 24 are new.(b) Unsupervised hierarchical clustering of 243 liver tumors based on the 

intensity of signatures operative in each sample. Tumors were classified into 6 mutational 

signature (MSig) groups and 4 singletons. The number of mutations attributed to each 

signature in each tumor is represented by color bars below the dendogram. *Tumors 

harboring more than 500 mutations. (c) Principal component analysis of mutational 

signature intensities in 243 liver tumors. Tumor samples are plotted in three dimensions 

using their projections onto the first three principal components (PC). MSig group 

membership is represented by a color code and labels. (d) Clinical and molecular features 

associated with each MSig group. Associations were assessed using Chi-square tests for 

categorical variables and ANOVA for quantitative features.
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Figure 2. 
Integration of mutations, focal amplifications and homozygous deletions identifies putative 

driver genes in hepatocellular carcinoma. (a) The 161 putative driver genes identified by 

integrating mutations and focal CNAs are represented, with the log-transformed mutation 

significance on the x-axis and the net frequency of gains and deletions on the y-axis. The 

size and color of each sample represent the alteration frequency and MutSig q-values, 

respectively. Significantly mutated genes (q < 0.05) are indicated. (b) Frequency of CNAs 

along the genome. The top axis indicates the frequency of low-amplitude changes (gains and 

losses); the bottom axis indicates the frequency of high-amplitude changes (focal 

amplifications and homozygous deletions). Target genes of recurrent amplifications and 

homozygous deletions are indicated. (c) Bar plot indicating the number and type of events 

for the most frequently altered genes (≥4%).
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Figure 3. 
The landscape of altered genes and pathways in HCC. Eleven pathways altered in ≥5% of 

HCC. Genes belonging to each pathway are represented with their alteration frequencies 

(green font: inactivation; red font: activation; white font: unknown) and activating or 

inhibiting interactions between pathways are highlighted. Major genes lacking alterations 

are highlighted in white. Focal amplifications (FA) and significant associations with 

etiologies are indicated. Potential druggable genes are assigned (yellow: FDA-approved 

drugs; lighting: drugs screened in phase I-III clinical trials).
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Figure 4. 
Major clusters of associated alterations. Three major groups of associated alterations: 

CTNNB1-cluster, AXIN1-cluster, and TP53-cluster. Significant associations and exclusions 

between genes are represented, with line widths proportional to significance, as indicated in 

the legend. Surrounding colors of each gene indicate its participation to a particular 

pathway.
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Figure 5. 
Sensitivity of liver cancer cell lines to HSP90 inhibitors is associated with NQO1 

expression. (a) Sensitivity of 29 liver cancer cell lines to 17-AAG and 17-DMAG was 

assessed by a cell viability assay. The heatmap represents the GI50 of the two drugs in each 

cell line, and mRNA expression levels of NQO1 are represented atop the heatmap. Three 

cell lines harboring KEAP1 mutations are indicated. (b) Correlation between NQO1 protein 

expression and sensitivity to 17-AAG. A color code indicates cell lines with KEAP1 

mutation, and the MHCC97H cell line that harbors a KEAP1 mutation but is homozygous 

for the NQO1*2 variant causing NQO1 enzymatic deficiency. (c) Cell viability curves for 

cell lines JHH-4 (KEAP1-wild-type), JHH-5 (KEAP1-mutated) and MHCC97H (KEAP1-

mutated and NQO1*2 homozygous) in the presence of the HSP90 inhibitor 17-AAG. 

Results are shown as mean + sem (standard error of the mean). Each experiment was 

repeated two to three times for each cell line.
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Figure 6. 
Molecular features of HCC progression in cirrhotic and non-cirrhotic liver. (a) Box-and-

whisker plots show the distribution of mutation numbers (top) and chromosome instability 

scores (bottom) relative to tumor stage in cirrhotic (left) and non-cirrhotic liver (right). FAA, 

fraction of aberrant arms; DMN, dysplastic macronodule; HCA, hepatocellular adenoma; 

HCC, hepatocellular carcinoma. Middle bar, median; box, interquartile range; bars extend to 

1.5 times the interquartile range. *Most HCA and HCC in HCA samples are from a previous 

study7. (b) Genetic alterations with significantly different frequencies across tumor stages in 

cirrhotic (top) and non-cirrhotic liver (bottom). **, P < 0.01, ***, P < 0.001, Chi-square test 

for trends in proportion. (c) Kaplan-Meier curves for overall survival in the presence or 

absence of CDKN2A alteration (left) or FGF3, FGF4, FGF19/CCND1 amplification (right), 

two features found significantly associated with survival in a multivariate Cox model. P-

values were obtained using Wald tests.
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