Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/135638

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/135638
mailto:wrap@warwick.ac.uk

A p-adic non-abelian criterion for good reduction of curves

Fabrizio Andreatta
Adrian Iovita
Minhyong Kim

April 9, 2020

Contents
1 Introduction

2 Notations
2.1 Rings of p-adic periods . . . . . . ...

3 Universal unipotent objects

3.1 The Kummer étale site . . . . . . . .. ...
3.2 The étale category . . . . . ..o
3.3 The de Rham category . . . . . . . . . . . ...
3.4 The crystalline category . . . . . . . . .. L
3.5 Axiomatic characterization and properties of the universal unipotent objects

3.6 Existence of universal projective systems . . . . . . . ... ... ... ..
3.7 Fundamental groups . . . . . . ..o

4 Geometrically semi-stable sheaves
4.1 Faltings’ site and Fontaine’s period sheaves . . . . . . . . .. .. ... ... ...
4.2 Localizations . . . . . . ...

4.3 Geometrically and arithmetically semistable sheaves . . . . . . . .. .. ... ..
4.3.1 The functor D&Y . . . . L

4.3.2 The functor Dt

CTIS  * * * = = ot e e e e e e e e e e e e e e e e e e e e e e

5 Comparison of universal objects

6 Proofs of the Theorems in section §1
6.1 The proof of Theorems 1.7 and 1.8 . . . . . . . . . . ... .. ... .. .....
6.2 The proof of Theorem 1.9 . . . . . . . . . . . . . . ... .. ...

O

© © oo ®

12
17

18
18
18
20
20
23

25



1 Introduction

Let K be a complete discrete valuation field of characteristic 0, with valuation ring Ok and
perfect residue field k of positive characteristic p. We fix an algebraic closure K of K and
denote by Gk the Galois group of K over K.

Let Xk denote a smooth, proper, geometrically irreducible scheme over Spec(K). An inter-
esting question in Arithmetic Geometry is the question of deciding if X has or has not good
reduction. For example, if A is an abelian scheme over Spec(K) then we have:

Theorem 1.1 (Néron, Ogg, Shafarevich, Serre-Tate). Ax has good reduction if and only if for
some (all) prime integer { # p the (-adic G-representation Ty(A) is unramified.

and

Theorem 1.2 (Fontaine, Mokrane, Coleman-Iovita, Breuil). Ax has good reduction if and only
if the p-adic G -representation T,(Ak) is crystalline.

It is not expected that such theorems hold in general, for example let X be a smooth, proper,
geometrically irreducible curve over Spec(K'). Then for all prime integers ¢ # p, the (-adic G-
representations H; (XF, Zg) are unramified and the p-adic Gg-representations H; (X?, Zp) are
crystalline for + = 0, 1,2, but the converse is not always true.

It is known that a criterion for good reduction of Xx has to be non-abelian, more precisely
let us first assume that X has semi-stable reduction, i.e. there is a a proper semi-stable curve
X over Ok, that is to say X is a regular scheme, proper and flat of relative dimension 1 over
Ok whose generic fiber is Xg. We also assume that the genus of Xx > 2. Let us also fix a
geometric point b of Xy and for every prime integer ¢ denote by 7#) the maximal pro-¢ quotient
of the geometric, étale fundamental group m (Xz,b) of Xk. Let also {ng) [n]}n>1 denote the
lower central series of 7T§€). For each n > 1 we have natural, outer representations of Gx on the
quotients 7#) / 71'56) [n].

Theorem 1.3 (Takayuki Oda). Xk has good reduction if and only if for some (all) prime integer

U # p the outer representations 7r§£)/7r§£) [n] are unramified for alln > 1. In fact it is sufficient
that this happens for all 1 < n < 3 for Xk to have good reduction.

The main purpose of this article is to state and prove the p-adic analogue of theorem 1.3.
At a first glance our theorem would read: Xk has good reduction if and only if 7r§p ) /7T§p ) [n] is
crystalline for every n > 1, but a quick analysis shows that this statement does not make sense.

In fact this problem has partially beed investigated in [Vo], [Ol], [Ha] and it has become
clear that instead of working with 7r§p ) one should work with the p-adic unipotent fundamental
group of Xg. Let us briefly explain the setting. We denote by Ky the maximal unramified
subfield of K, i.e. the fraction field of W(k) in K, assume that there exists a point b € X (Ok)
and denote by bz and bg the corresponding points of X (K), respectively Xy (K). We then
denote by G := G°*( X, bg) and G := GI® (X, b ) the unipotent p-adic étale, respectively
the unipotent de Rham fundamental groups. They are characterized by the property that their
algebraic representations on finite dimensional Q,-vector spaces (resp. K-vector spaces) classify
unipotent lisse Q,-adic étale sheaves on X (resp. vector bundles on X g endowed with integrable

connections). The first important property of these is that they are pro-algebraic groups over
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Q,, respectively over K, with extra structure for example G* has a natural action of Gx by
automorphisms.

We denote by Beisk and By k the base changes to K of Fontaine’s rings B, and By, respec-
tively. Then our result could be simply formulated as the following sequence of statements.

Theorem 1.4. G is semi-stable i.e. we have a natural isomorphism as group-schemes over
By x, Gk-equivariant:
et ~ dR
G XQp Bst,K = G Xk Bst,K'

Definition 1.5. We say that G is crystalline if the above isomorphism holds for the base
changes to Bgisx C Bs k, i.e. we have a canonical isomorphism as group-schemes over Bk,
G k-equivariant

Get XQp Bcris,K = GdR XK Bcris,K;

whose base change to By i is the one in theorem 1.4.

Now we can formulate our main result as:

Theorem 1.6. Xy has good reduction if and only if G is crystalline.

We’'ll now be more precise and formulate the sequence of stamenets above in the language
of p-adic Hodge theory. As G and G} are pro-algebraic groups we may write them as
G (Xg, bg) = Spec(A%Y) and G (X, bk ) := Spec(AY), where A%V and AV are Hopf-
algebras over @, and K-respectively. Then, theorem 1.4 can be expressed in a more precise way
as

Theorem 1.7. (1) The Q,-algebra A% is the direct limit Jim. gL of finite dimensional Q-
representations of Gk such that each Sflfl;v is semistable in the sense of Fontaine and Sf,tl;v =Q,

provides the structure as Q,-algebra;

(2) the K-algebra AR is the direct limit lim 5212’\/ where each Sndl;’v is a filtered K-vector
n—o0 ’ )
space and Eﬁf}’v = K (with trivial filtration Fi’K = K, Fil'K = 0) provides the structure as
K-algebra;
(8) there exist isomorphisms 1, : €S§’V = Dy (Sf;fg,v) Rk, K as filtered K-vector spaces, com-
patibly for varying n
so that

(i) the induced isomorphism
woo: Ag?’v = Dst (Af,to’v) ®K0 K

is an isomorphism of Hopf algebras over K;

(ii) for n =2 the dual of the isomorphism
(1) (D55 155 o K
induced by 1y is the p-adic comparison isomorphism (see [Al]) of filtered K -vector spaces
HcllR(XK/K) = Dst (Hét(XK7 Qp)) ®K0 K.

3



Let us explain the notations in theorem 1.7. If we denote by Ef:b, respectively by 53,%
the Q,, respectively K duals of Esfl;v and ngN then these are naturally represenatations of
G°, respectively G and therefore there are unipotent étale local systems £ and universal
unipotent Ox,-modules endowed with integrable connections 5% such that £, is the fiber
of & at br and EJF is the fiber of ¥ at by. Moreover, these sheaves have very interesting
universal properties which are characterized in section 3.5 and in section 3.6 we show how they
can be inductively constructed.

Theorem 1.7 is proven via a p-adic comparison isomorphism between these two systems
of objects. In fact, we prove a finer result. Write W := W(k) and denote by O := W[Z]
and by O — Ok the W-algebra homomorphism sending Z to w. Let P.(Z) be the minimal
polynomial of m over W. Let O be the p-adic completion of the DP envelope of O with
respect to the ideal (p, P.(Z )) Define Frobenius, extending the Frobenius on W, by requiring
that Z — ZP. We construct a crystalline (log crystalline would have been a more appropriate
but too long name for it) unipotent fundamental group G (X ,E) = Spec (Agfjsvv) associated
to the category of unipotent log isocrystals on the mod p reduction X, of X relative to the
thickening Spec(Ok /pOk) C Spf(Oeis). Here we endow O with the log structure defined by Z
and O with the induced log structure. Then,

Theorem 1.8. (1) The Oys [p_l} -algebra ASSV s the direct limit lim g;rgls,\/ of free Opris [p_l} -
n—00 ’

modules, endowed with logarithmic connections relative to W(k), horizontal and étale Frobe-
nius linear operators, descending exhaustive filtrations satisfying Griffiths’ transversality and
Sirgs’v = Ouis[p™*] with the standard derivation, Frobenius, DP filtration provides the structure

as Ouis[p~'] -algebra;

(2) using the map of W(k)-algebras Ouis — Of, sending Z — 7, there exist isomorphisms
ty: Eny R0, K — ES}Z’V as filtered K -vector spaces, where we endow the LHS with the image
filtration, compatibly for varying n;

(3) there exist G x-equivariant isomorphisms py: e @0, Biog = Eny’ ®q, Biog as filtered
Biog-modules, compatibly with connections and Frobenii and compatibly for varying n. Here,
Biog is a variant of Fontaine’s period ring By and carries Gg-action, filtration, connection,
Frobenius;
such that

(i) the induced isomorphism

Vo, cris,V dR,V

cris

is an isomorphism of Hopf algebras over K;

(1) the induced isomorphism

v is,v3 t,V
oo Ase” ®0u Blog — A" ®q, Blog

cris

is an isomorphism of Hopf algebras over Biog;
(111) using the map of W(k)-algebras Oeis — Ko, sending Z — 0, and taking Gk -invariants,
the isomorphism pY, produces an isomorphism

AT @0, Ko = Dy (ALY)

cris
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of Hopf algebras over Ky, compatible with Frobenius and monodromy operator where on the LHS
we take the residue of the connection on AT at Z = 0;

(iv) for n = 2 the dual of the isomorphisms t, and p,. produce the p-adic comparison isomor-
phism as filtered Biog-modules, compatible with G k-action, Frobenius, connection and filtrations:

Hllogcris (XO/ Ocris)®ocris BIOg = Hét(Xfa @p)) ®q, Blog
and of filtered K -vector spaces
H}eris (X0/ Ocris) R0, K = Hig (X /K)
and of Ky-vector spaces, compatibly with monodromy operators and Frobenius,

Hllogcris (XO/OCY15> ®Ocris KO = DSt (Hét (Xf7 QLD)) .

Let us remark that results similar to theorem 1.8 have been proved using different methods
in [O]] in the case that X has good reduction and Ox = W(k), but with no restriction on
the dimension of Xk. The results also follow from [Vo] using a relative version of the theory
of Fontaine-Lafaille, for curves, but assuming that Ok has ramification index < p — 1 and for
n < ;%1‘ More recently such a result was proved in [Ha] for affine curves with good reduction.

Our approach is based on [AI]. The comparison is provided after fixing a log deformation X of
X to O. It has the advantage of describing the monodromy operator on log crystalline objects in
a very geometric way which in the end allows us to prove our main result. Let us recall that for
every n > 1, Efifb is a p-adic representation of Gx. We then have the following explicit version
of theorem 1.6.

Theorem 1.9. The curve Xi has good reduction if and only if the Gk -representations Sﬁfb are
crystalline for every n > 1.

We remark that for n = 2 the hypothesis and theorem 1.7(ii) imply that the p-adic Tate
module of the Jacobian J(X) of Xy is a crystalline G g-representation. This is known to be
equivalent to the fact that the Jacobian of XK, J(Xk) has good reduction, see theorem 1.2
(from [CI]).

Let us explain our startegy for proving theorem 1.9.

e Theorem 1.8 implies that for every n > 1, £ is an arithmetically semi-stable étale local
system on X, which implies that S,Efb is a semi-stable p-adic G'g-representation.

o Theorem 1.8 also implies that Df3, (€5") = (€5, V,,), which implies that Dy (E5%) = £,
as filtered, Frobenius monodromy modules. Specially, the monodromy operator on £7%° can be
identified with the residue of the connection V,, at Z = 0. B

e Finally we choose an embedding of K — C, as fields and use it to base-change X and
(Egris, Vn). We obtain a family of curves X¢ over the complex open disk D, smooth and proper
over D* := D — {0} and semi-stable at Z = 0 and a locally free Og_-module ErE with an
integrable, log connection V,, c. By identifying the p-adic and complex monodromy operators,
theorem 1.9 then follows by applying T. Oda’s proposition 10 in [O].

Remark 1.10. The Theorems 1.7 and 1.8 are proven in a more general context, as we allow
the case of open curves with good compactifcations.



2 Notations

Let K be a complete discrete valuation field of characteristic 0, with valuation ring Ok and
perfect residue field £ of positive characteristic p. Fix a uniformizer 7 of Ox. We endow
S := Spec(Ok) with the log structure M defined by the pre log structure N — Ok sending
n € Ntorn" e Og. We let (§ , m denote the associated p-adic log formal scheme.

Write W := W(k) and we denote by O := W[Z] and by O — Ok the W-algebra homomor-
phism sending Z to w. Its kernel is generated by an Eisnstein polynomial P,(Z), the minimal
polynomial of m over W. We define Frobenius on O to be the homomorphism given by the usual
Frobenius on W(k) and Z — Z?. We write P,(Z) € W[Z] for the monic minimal polynomial of
m over W. It is a generator of Ker((’) — (’)K). We denote by S = Spf(O) the associated formal

scheme for the (p, Z)-adic topology and by M the log structure on S associated to the prelog
structure N — O sending n € N to Z" € 0. The natural closed immersion of formal schemes
S — S is exact with respect to the given log structures. Denote by O, the p-adic completion
of the DP envelope of O with respect to the ideal (p, Pﬂ(Z)) We denote by wp, e /W Oeris >
the continuous log 1-differential forms of O relative to W

Let X be a proper curve over Ok, i.e., a proper and flat scheme of relative dimension 1.
Assume that the generic fiber Xy is geometrically irreducible and smooth over K and that
X — Spec(Ogk) is semistable. In particular, we endow X with a log structure N defined by
(i) its special fiber and (ii) finitely many disjoint sections s;: Spec(Ok,) — X fori=1,...,n
defined over unramified extensions Ox C Og,. We assume that if g is the genus of Xk and
degs; = [K; : K| then

g—3+Zdegsi20 (1)
i=1
The morphism f: X — S induces a log smooth morphism f: (X, N) — (S, M). We let

()?, ]/\7) be the associated p-adic log formal scheme and f: ()/f, N) — (g, m the associated
morphism of p-adic log formal schemes.
As the deformation theory of f is unobstructed by [K2, 777] there exists a deformation

f: ()N(, N) — (§, M) of f In particular, for every singular point S of X, if the local structure
of (X,N) at S is Og[z,y]/(zy — 7) then the local structure of (X,N) at S is of the form

OlZ, x,yl/(zy — Z).
We also fix a base point b: S — X factoring through the smooth locus of X and disjoint
from the sections sy, ..., s, and a lift b: Spf(Q) — X of the section b: S — X defined by b.

2.1 Rings of p-adic periods

We recall the definition of the crystalline period ring A defined in [Fo, §2.3] and of the
semistable period ring Ay, defined in [K1, §3].

Choose a compatible system of n!-roots ma of 7in K and a compatible system of primitive
n-roots €, of 1 for varying n € N. Consider the ring

Bt T (D—
E, = hinOK,



where the transition maps are given by raising to the p-th power. Define the elements p :=
(p,p%, .. .), T = (7r, 7r%, o ) and € := (1, €py e ) The set Eg? has a natural ring structure [Fo,
§1.2.2] in which p = 0 and a log structure associated to the morphism of monoids N — E?gf
given by 1 — 7. Write Ay (OF), or simply A, for the Witt ring W(Eég?) It is endowed
with the log structure associated to the morphism of monoids N — W(E;g?) given by 1 +— [ﬂ
There is a natural ring homomorphism 6: W(Ezg?) — (5? [Fo, §1.2.2] such that 9( [ﬂ) =m. In

particular, it is surjective and strict considering on @F the log structure associated to N — 6?
given by 1 — 7. Its kernel is principal and generated by Pﬁ([%]) or by the element ¢ := [;T)] —p.

(i) We define A.;s as the p-adic completion of the DP envelope of W(Egﬁ) with respect to
the ideal generated by p and the kernel of 6.
(ii) We also define Ao, as the p-adic completion of the log DP envelope of the morphism
W(E f) Qwy(r) O with respect to the morphism 0 ® 0o : W(E ) Qwr) O — O
In particular,
Apog = Agyis {(u— 1) }.

More precisely, there exists an isomorphism of A.s-algebras from the p-adic completion Ags {(V')}
R
cf. [K1, Prop. 3.3] and [Bre, §2] where the same ring is denoted Ast. We endow Agis and Ajog
with the p-adic topology and the divided power filtration. We write Bes := Acis [t_l] and
Biog = Aig[t™], where t := log([¢]), with the inductive limit topology and the filtration
Fil"Beris == D nen Fil"™ Aist™™ and Fil" Bjyg := Y meN Fil" ™ Ay t =™,

All these period rings are endowed with a Frobenius, compatible with the Frobenius on W
and on O introduced above, and having the property that ¢(u) = u? and ¢(t) = pt. They are
also endowed with a continuous action of the Galois group G, acting trivially on W(k) and on
O and acting on W(E+ ) through its action on O . Moreover, there is a derivation

of the DP polynomial ring over A in the variable V' and Ajg sendlng Vtou—1with u: i

dz
d: Blog — B]0g7

which is Beis linear and satisfies d((u — 1)) = (u — 1)""Yu4Z; see [K1, Prop. 3.3] and [Bre,
Lemma 7.1]. We let
N: Blog — B]og

be the operator such that d(f) = N(f)%. It is proven in [K1, Thm. 3.7] that Fontaine’s period
ring By, see [Fo, §3.1.6], is isomorphic to the largest subring of By,, on which N acts nilpotently.

Biog-admissible representations: Following [Bre, Def. 3.2] we call a Q,-adic representation V'
of Gk, Biog-admissible if

(1) Diog(V) := (Biog ®q, V)GK is a free ng-module;
(2) the morphism B,y ® yax D(V) — Biog ®q, V' is an isomorphism strictly compatible
log
with the filtrations.



Gk

log ~modules M, endowed with

(i) a monodromy operator Ny, compatible via Leibniz rule with the one on ng , (ii) a decreasing

exhaustive filtration Fil" M which satisfies Griffiths’ transversality with respect to Ny, and such

that the multiplication map ng x M — M is compatible with the filtrations, (iii) a semilinear

Frobenius morphism ¢,;: M — M such that Ny, o oy = pear o Ny and det ¢y is invertible in

BEX . 1f V is Bjog-admissible it is proven [Bre, §6.1] that Dy, (V) is an object of /\/l}"Bch (o, N).
og

log -

We denote by MF ox (v, N) the category of finite and free B
log

Comparison with semistable representations: Consider the category MFk(p, N) of finite
dimensional Ky-vector spaces D endowed with (i) a monodromy operator Np, (ii) a descending
and exhaustive filtration Fil"Dg on Dy = D ®g, K, (iii) a Frobenius ¢p such that detyp # 0
and Np o ¢p = pyp o Np; see [CF]. Such a module is called By-admissible if there exists a
Qp-representation V' of Gk such that Dy (V) := (V ®q, Bst)GK is isomorphic to D compatibly
with monodromy operator, Frobenius and filtration after extending scalars to K. Consider the
functor

T: MFk(p,N) — ./\/l}"Blco:é{(go,N)
sending D +— T(D) := D ®k, ng with monodromy operator Np ® 1 + 1 ® N, Frobenius
©p ® ¢ and filtration defined on [Bre, p. 201] using the filtration on Dg and the monodromy
operator. More precisely, there is a natural map Bﬁg — K, sending Z to m, providing a
morphism p: T(D) — Dg. Then, Fil"T(D) is defined inductively on n by setting Fil"T (D) :=
{z € T(D)|p(z) € FI"Dy, N(z) € Fil"'T(D)}. There is also a natural map ¢o: ijgK — K
sending Z +— 0.

Proposition 2.1. [Bre] The notions of Bi,g-admissible representations and of Bs-admissible
representations are equivalent. For any such V', we have an identification T(Dst(V)) = Digg(V)
such that

(i) Dst(V) @Ky K = Diog(V) @ gaxe K as filtered K-vector spaces considering on the RHS the

log
image filtration.

(1) Dt (V) = Diog(V) ®8_. Ko as Ko-vector space so that the monodromy operator on the
LHS 1s the residue of the monodromy operator on the RHS.

Proof. The first claim is proven in [Bre, Thm. 3.3]. One knows that 7" is in fact an equivalence due
to [Bre, Thm. 6.1.1]. From the the proof of loc. cit. one deduces also the claimed compatibility
of filtrations and the relation between the monodromy operators. O

3 Universal unipotent objects

3.1 The Kummer étale site

We define the Kummer étale site X associated to (X , N ) as follows. The objects are Kum-
mer étale morphisms g: (Y, Ny) — (X, N) in the sense of [Il, §2.1]. The morphisms from
an object (Y, Ny) — (X,N) to an object (Z,Nz) — (X,N) are morphisms ¢: (Y, Ny) —
(Z Y Z) of log schemes over (X, N). The coverings are collections of Kummer étale morphisms



{(Y;,N;) = (Y, Ny)}, such that Y is the set theoretic union of the images of the ¥;’s. This
defines a site; see loc. cit.

An object U of X* is called small if it is affine, connencted and there exists an étale
morphism (i) U — Spec(OK [T, T *1]) which is a chart for the log structure on U considering
on Spec(OK [T, T‘l}) either the log structure defined by the special fiber or the log structure
defined by the special fiber and by the section T =1 or (ii) U — Spec(Ok[S,T]/(ST — ))
which is a chart for the log structure on U considering on Spec(Ok [T, S]/(ST — m)]) the log
structure defined by its special fiber.

In the following we will consider the following categories:

3.2 The étale category

Denote Unig, (X%et) the category of QQ,-unipotent local systems on Xz for the Kummer étale
topology. This is the full tensor subcategory of Q,-sheaves L on X%t with the property that L
admits a filtration

L=L'2L*> - ->L"D>L,1=0

such that
ikl L
L'JL"™ ~ Qp

for each 7. We say that the index of unipotency of L is < n. Note that we use 1 := Q, here to
denote the constant sheaf on X.
We let b%: Unig, (kaet) — Vectg, be the functor associating to L the Q,-vector space

bi(L) = L(K). It is exact and it commutes with tensor products and duals. Moreover 1 =

(1) =Qp

3.3 The de Rham category

Write Uniggr (X i, N K) for the full subcategory of the category of locally free O, -modules M,
endowed with an integrable log connection V with respect to the log structure Ny, which are
unipotent. Namely we require that (M, V) admits a filtration by Ox,-modules

M=M'>M?*>--->M"D> M,;; =0

such that each M is preserved by the connection V and M*/M*, with the induced connection,
is isomorphic to 1™ with 1 := (OXK, d), for each 7. We also say that the index of unipotency
of (M, V) is < n. The category Unigr (X K, N, K) admits tensor products and duals.

We let b} : Unigr (XK,NK) — Vectgx be the functor associating to (M, V) the K-vector
space defined by the pull back of M via bg. It is exact and it commutes with taking tensor
products and duals and it sends 1 to 1 = K.

3.4 The crystalline category

Let Xy be the reduction of X modulo p and let us recall that we denoted by Oy the p-
adic completion of the DP envelope of O := WJ[[Z]] with respect to the kernel of the map
O — Ok /pOf defined by Z — 0. Og;s is endowed with the log structure induced from the one



on O. Following [K2, §5], consider the site (Xg / (’)Cris)f:gs, consisting of quintuples (U, T, My, ¢, 5)
where

(a) U — Xy is Kummer étale,

(b) (T, MT) is a fine log scheme over O (with its log structure) in which p is locally
nilpotent,

(¢) t: U — T is an exact closed immersion over Os,

(d) § is DP structure on the ideal defining the closed immersion U C T', compatible with the
DP structure on Q.

We let Cris(Xo/O) be the category of crystals of finitely presented Ox,,o,,.-modules on

(XO/Ocris)f:gs, cf. [K2, Def 6.1]. By [Be, Prop. IV.1.7.6] it is an abelian category. Given
a crystal £ let &, be the crystal &, := £/p"E. Tt defines a (’))'%P/p”O)D?P—module, endowed

with integrable logarithmic connection V,, relative to Ogis/p"Oeris; see [K2, Thm. 6.2]. Here
(’))'%P = Og®@(9cris. Let £¢ = lim &, be the associated sheaf of O)'%P -modules on X(l)‘et with

ocon

log connection Vg)? relative to Oes. It follows from [Be, Prop. IV.1.1.3] that this crystal is
finitely presented if and only if £5 is finitely presented as O%"-module. By [Be, Cor. IV.1.7.7]
a sequence of crystals is exact if and only if the associated sequence of O?%P—modules is exact.
Let Ind(Cris(Xo/O)) be the abelian category of inductive systems consisting of the inductive
system & — £ — £ — -+ where £ is a crystal of finitely presented Ox,,0,,,.-modules and the

cris

transition maps £ — £ are multiplication by p. We denote by 1 the structure sheaf isocrystal.

Let Unijog (Xo / Ocris) be the full subcategory of Ind (Cris(XO / (’))) consisting of isocrystals &,
which are unipotent. More precisely, we require that £ admits a filtration

E=E'2ED...DE"D&,1=0

such that each £ is a log isocrystal of X with respect to O and for every i the quotient
£/ is isomorphic to 1™, Also this case, we say the index of unipotency is < n. The
category Unijyg (XO / Ocris) is closed under tensor products and duals.

We let b*: Unijog (XO / Ocris) — Vecto ' [pq} be the functor associating to £ the O [pil}-
module defined by pull back of £5 [pfl] via b. Here Vect(9 ' [p—l] is the category of finite and

free Qs [pfl]—modules. The functor b* is exact and it commutes with taking duals and tensor
products. It sends 1 to 1 := O [pil}.

3.5 Axiomatic characterization and properties of the universal unipo-
tent objects

Let Uni be any one of the categories above. Let C be the category of Vectg, in the étale case,

Vecty in the de Rham case and Vecto A [p_l in the crystalline case. We call an object of Uni
constant if it is of the form 7" ®; 1 for some 7" in C. We simply write F': Uni — C, in short
L — Ly, for the functor defined in each case. It sends 1 to 1, it is exact and it commutes with

duals and tensor products.
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Let A be the category of Q,-adic sheaves on X%et in the étale case, the category of finite
Ox,-modules with integrable logarithmic connection in the de Rham case and the category
Ind(Cris(Xo / (’))) in the log crystalline case. Then A is an abelian category with enough in-
jectives and Uni C A is a full sub-category. Given two objects £ and F in Uni, we write
Ext!(€,F) for the i-th derived functor of Hom4(&€, F). We denote by H'(E) := Hi(&) the fol-
lowing: in the étale case H' (X5 £), in the de Rham case Hjg (X, &) and in the crystalline

case Hi , i ((Xo/Ocis), €). Note that in each case

logeris
1= Hom(1,1).

Moreover using that for £ in Uni the functor £Y ® _ is exact, we get that

Ext'(€,F) 2 H(EY @ F).

We define the category Uni* taking for objects pairs (V,v), where £ is an object of Uni and
v € Vp. A morphism (V,v) — (W, w) is a morphism g: ¥V — W in Uni such that goV'0 = w.
Thus, Uni* is the category of ‘pointed objects’ in Uni.

Let Uni be any one of the categories of unipotent étale, de Rham or crystalline sheaves attached
to X.

Definition 3.1. A projective system of objects {(&,, €,)}n>1 in Uni* such that &, has index of
unipotency < n for every n > 1 will be called universal if for every (V,v) object in Uni* with
index of unipotency < n there is a unique morphism in Uni*, g : (&,,e,) — (V,v).

One easily sees from the universal property that if a universal projective system exists in
Uni* then it is unique up to unique isomorphism.

For the rest of this section we present an axiomatic characterization of universal projective
systems and in the next section we’ll give an inductive construction which will show that such
systems exist. For affine curves with good reduction this was accomplished in [Ha].

Consider a system {(é'n,en)} in Uni* with transition morphisms f,: (€n+1,en+1) —
(En, en) such that

(1) 51 =1 and €1 = 1,

(ii) fn : Ens1 — &, is surjective (as a morphism in A) and has constant kernel 7, = T, ® 1
for every n € N,

(iii) the coboundary map 7,Y = Hom (7;, 1) — Ext! (Sn, 1), defined by the sequence of Ext-
groups associated to the short exact sequence 0 — 7T, — &,41 — &, — 0in A, is an isomorphism.

neN

From (iii) we immediately get

Lemma 3.2. For every n the map Hom(é'n, 1) — Hom(5n+1, 1) s an 1somorphism. In partic-
ular, 1 = End(1) = Hom(&,, 1).
For every n the map Ext! (Sn, 1) — Extl(gnH, 1) s the zero map.

We prove the analogue of [Ha, Prop. 2.6]:
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Proposition 3.3. A projective system {((Sn,en),fn)}nzl satisfying the properties i), ii), iii)
above is universal.

Proof. We have to prove that if (V,v) is an object of Uni* with index of unipotency < n, then
there is a unique morphism g: (En, en) — (V, v) such that gy(e,) = v.

We proceed by induction on n. Let n = 1. Then V = 1" is constant and there is a unique
map & = Q, — V that takes e; =1 € & to v € V},. Assume that statement true for n and let
VY have index < n + 1. We know that ¥V admits a filtration

V=V oV ooyt =g
such that V¢/Vi*! ~ 17, Consider the extension
(S) 00—V — Vv -yt

where V/V"! now has index < n. Let o € (V/V™), be the image of v. Thus, by the inductive
hypothesis there is a unique morphism

Gn: (Enyen) — (VY 0).

We use it to pull-back the extension S, then ¢} (S) is an extension of &, by a constant sheaf
Yt We pull-back this extension to &, via the projection f,,: £,.1 — &, and notice that the
new extension must split (by Lemma 3.2). Therefore, we get a morphism of extensions

0 — T, — & — En — 0

| L Lon

0 — Yyt — Yy — p/yrtt — 0

We have v — ¥(e,y1) € Vi1 Since V"*1 is constant, there exists a global section s such that
sp = v — P(enq1). Via the constant quotient &£,4; — & = Q,, this then gives us a map h
from &,,1 to V"1 that takes e, 1 to v — ¥(eny1). If we set ¢, 11 =1 + h, then ¢p1(eni1) = v.
Suppose ¢, is another lifting of ¢,. Then

1
Q= Qpyr — ¢/n+1: Ens1 — VT

and a(e,+1) = 0. Since V"™ is constant and Hom(&,11,1) = End(1) = 1 by Lemma 3.2,
the map «a factors through a quotient map & = 1 — V"*! that takes e; to 0. Thus, by the
uniqueness for n = 1, we have o = 0, and ¢ 41 = ¢, 4. O

3.6 Existence of universal projective systems

As in the previous section we let Uni* denote any one of the categories of pointed unipotent
étale, de Rham, respectively crystalline sheaves associetated to X and we construct a universal
pointed projective system {(En, 6”)}n>1 in Uni* with the properties of proposition 3.3. We’d
like to point out that in all cases (i.e. étale, de Rham and crystalline) H’(l) is a free 1 module
of finite rank for + = 0,1,2 and we have a perfect, alternating pairing called ”cup product”
U : H'(1) x H'(1) — H?*(1) = 1. We denote by {(E,e) }neN the universal projective

n»n
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8dR edR

n J’n

system in the étale case, {( )}neN the universal projective system in the de Rham case

and { (£, ers) o the universal projective system in the crystalline case.

First of all we define inductively on n > 1 finite and locally free 1-submodules R"™ C
(H1 (1))® . The inductive definition will give us sub-spaces

b R — R @, H'(1).
Define
R':=H'(1), R*=Ker(y),

with

= U HY(1) @ HY(L) —> H2(1)
the cup product. For n > 2 set

o R HY(1) "5 Rt i, HY(1) @0, HY (1) 225 R 0, H2(1),

put R"*! = Ker (v,) and define ¢,: R"*! < R" ®; H'(1) to be the natural inclusion.

Lemma 3.4. For every n the map v, is surjective forn > 1.

Proof. Notice that H2(1) is a free 1-module of rank 1 if » = 0 and it is 0 if » # 0 by Poincaré
duality. Thus the lemma is trivial if » # 0. We may then assume that » = 0. In this case the
group H! (1) is a free 1-module of rank 2¢g > 4 due to assumption (1). We proceed by induction
on n. The map ~; is the cup product

s HE(1) @y HY(1) — H2(1),

which is a perfect pairing by Poincaré duality. In particular it is surjective.
O

Proposition 3.5. There exists a pointed system {(En, en) }neN such that &, =1 and e; = 1 and
we have exract sequences
0—Tp,— &1 — & —0

with the following properties

(i) Ext’/ (En, 1) 1s a finite and projective 1-module for 3 = 0, 1 and 2. It is non zero for
J=1

(i1) T, =T, ®1 1 is a constant object and T,, = R™" := Homl(R",l) ;

(iii) the map T,) = Hom(’ﬁl, 1) — Ext! (8n, 1), induced on Ext-groups by the above short
exact sequence, 1S an isomorphism;

(iv) the map Ext*(€,.1,1) = Ext*(Ty,, 1) = T,Y ®1 H2(1) is an isomorphism;

(v) the sequence

0 — Ext'(Ei1, 1) 22 Ext (7, 1) 25 Ext?(€,,1) — 0

1 an isomorphism;
(vi) identifying R = T, | = Hom(Ty41,1) = Ext' (E,41, 1) via (ii) and (iii) and Ext' (T,, 1) =
T ®1 Extl(q, 1) = R" @, H'(1) the map o, in (v) is the map t,.

In particular, such a system is universal due to Proposition 3.3.
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Remark 3.6. The reader may have noticed that the properties i) to vi) in proposition 3.5 are
not independent. For example v) is a consequence of iii) and iv) etc. We prefer to list them all
as we did for they all appear in the proof of the proposition.

Proof. We proceed by induction on n. For n = 1 notice that Ext’ (1, 1) = Hj(l), 7 =0,1
and 2, are the cohomology groups of the structure sheaf. Recall that X — S is a geometrically
connected semistable curve. Thus for 7 = 0 the group Ho(l) coincides with 1. For 7 = 1 it
is a free 1-module in the étale, de Rham and crystalline cases of rank > 2¢g +r — 1 > 2, with
r =37 degs;, due to assumption (1). Eventually H?*(1) is a free 1-module of rank 1 if r = 0
and it is trivial if » # 0 by Poincaré duality.

Assume that (£,,e,), _, has been constructed so that (i)-(ii) of the proposition hold for
all 1 <n < N, (iii)-(vi) hold for n < N and (vii) tkT}, > rkT},_; for every n < N. Set Ty :=
Ext! (SN, 1)v. By assumption it is a non-zero, free 1-module of finite rank. Put Ty := Ty ® 1.
It then follows that

Ext! (En, Ty) = Ty ® Ext' (En,1) 2 Ty ® Ty = End(Ty).
Consider the extension
0—>TN—>5N+1—>5N—>0

defined by the image of the identity map Id € End(7w). Let exy1 € Ent1p be any element
mapping to ey. The coboundary map Ty = Hom (’TN, 1) — Ext! (SN, 1) is the isomorphism
Extl(EN,TN) >~ Ty ® Ty described above and, as Ty # 0, it is an isomorphism. This proves
the inductive step in (ii) and (iii) except for the identification Ty = RY. Using the long exact
sequence in cohomology associated to

0—>TN—>5N+1—>5N—>0

we also deduce that the map Ext! (5 N, 1) — Ext! (5N+1, 1) is 0. In particular we have the exact
sequence

0 — Ext!(Ensr, 1) 2% Ext! (T, 1) 25 Ext?(Ex, 1).

Using the identifications

Ext'(Ty, 1) = Ty ®1 Ext'(1,1) 2 Ty ®; H'(1)

and Ext? (8N, 1) >~ Ext? (TN_l, 1) ~ Ty | ®; H*(1) by inductive hypothesis, the map By defines
a morphism
Byt Ty @1 H' (1) — Ty, @1 H*(1)

and T, , is the kernel of B). Thanks to the identification Ty = Ext'(Ey, 1) we get Ext' (Ty, 1) =
Ext! (5 N, 1) ®; Ext! (1, 1) providing a second description of Sy as a map

N Extl(EN, 1) ®1 Extl(l, 1) — Extz(SN, 1)

as follows. Given G € Ext! (5 N 1) corresponding to a unique morphism fg: 7y — 1 and a class
F e Extl(l, 1) we take the unique extension F’ € Extl(TN, 1) obtained by pulling-back the
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extension F via fg and then gY% (Q’ ®F ) is the Yoneda two extension of £y by 1 given by the
composite complex

Fxlyip=0—1—F — Ty —Evy1 —EN —0

(see [Ve, §3.2.4]). In particular we have a natural morphism of complexes

Fséyygy = 0 — 1 — F — Ty — Evy1 — En — 0
| l l l I
Fxg =0 — 1 — F — 1 — G — & — 0.

Thus By (g®.7-") = G F by [Ve, Prop. 3.2.2]. Due to [Ve, Prop. 3.2.5] the map (Q,]—“) — GxF
is minus the cup product of Ext-groups in the sense of derived functors. Consider the diagram:

Ext!(Ex,1) @ Bxt'(1,1) 2% Bxt? igN, 1)

ay-1 ®id| !
Ext'(Ty_1,1) ® Ext'(1,1) 2% Ext®(Tas,1) (2)

L L

Ty e H' (1) @ H'Y(1) 55 Ty, @ H2(1).

Here the map dy is the cup product (with a minus sign). The top square is defined by the
inclusion Ty_; C Ey so that it commutes as we have proven that % is the cup product (with
a minus sign). The right top vertical map is an isomorphism by inductive hypothesis. The
lower square is defined identifying Ext! (TN_l, 1) ~ Ty | ®; Ext! (1, 1) and Ext? (TN_l, 1) =

TN 4 ®1 ExtQ(l, 1) so that we can can re-write the middle row as

Tn_y ®1 Ext'(1,1) @1 Ext'(1,1) — Ty_, ®; Ext*(1,1),

which is the identity on T _, and it is the cup product Ext' (1, 1) ®q Ext! (1, 1) — Ext? (1, 1).

We deduce that identifying Ext'(1,1) = H'(1) and Ext*(1,1) = H?(1), the map dy is obtained,
up to sign, via the cup product

s HE(1) @y HY(1) — H2(1).

Hence, also the lower square commutes. As ay_1 is injective and coincides with ¢y _; by inductive
hypothesis, we conclude that also a_; ®id is injective, ay = ¢y and T]\\/,Jrl = Ker( f(,) coincides
with RY*L. This concludes the proof of the inductive step in (ii) and proves the inductive step
of (vi).

Using the Ext’ = 0 for j > 3 as X — S is of relative dimension 1, to prove (iv) and (v) for
n = N it suffices to show that the map

B Ext! (TN, 1) — Ext? (EN, 1)

is surjective. Using the identifications of Sy with g% and the commutativity of the diagram
(2), the map Sy is the map vy of Lemma 3.4. As the later is surjective by loc. cit. also Sy
is surjective. In particular, Ext? (5N+1, 1) ~ TV ®; H*(1) is a finite and free 1-module. As
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Ext! (TN, 1) ~ TV @, H (1) it also follows that Ty, = Extl(é'nﬂ, 1) = Ker(fy) is a finite and
projective 1-module of rank equal to

rkTny 1 = 1kTy - rkH! (1) —1kTy_; - rkH? (1)

As rkTy > rkTnx_1 by inductive hypothesis, rkHl(l) > 2 and rkH? (1) < 1 as remarked above,
it follows that kT, > rkTy and in particular Ty, # 0. O

Now that we have proved the existence of the universal projective systems in the three categories
of unipotent sheaves on X we will list some of their specific properties.

Corollary 3.7. There is a unique action of G on the pointed étale system {(Sst, fif) }n lifting
the action on Xg. Furthermore, each € is G -invariant.

Proof. For every o € Gk we have a unique morphism f,: (£, €e') — (0*(E), 0% (e')) by
universality. The map o +— f, defines an action by uniqueness. In particular each f, is an
isomorphism with inverse f,-1. As b is a Og-valued point, it is G g-invariant so that 52&, =

o*(E), and via this identification o*(eS") = €. O

Let us recall the sequence of object {R"},>1 in Unig, (X5')* and the fact that we have
denoted

T, = Homg, (R", Qp).

We deduce that T}, is naturally a Q,-representation of G, quotient of (H1 (X ke“))@m The
group H! (X%et) is the étale cohomology of the complement in X7 of the sections 1% s; @ K
defining the log structure Nz (see [I1, Cor. 7.5]). Since the sections s; are unramified over Ok by
assumption, the latter H! (X ket) is a semistable representations of G in the sense of Fontaine
77?777, The same holds for its n-th tensor power and any of its quotients 77777. We deduce
from proposition 2.1:

Corollary 3.8. For every n the G -representation T,, is Biog-admissible.

In the de Rham case, we will need a compatibility result under base change. Let R be
a complete noetherian local ring and let LR: Ouis — R be a continuous morphism of W(k)-
algebras. Consider the base change Xp := X R0Spf(R) as a p-adic formal scheme. It inherits a
log structure Ng from the base change of the log structure on X. Also the base change of bvia ¢
defines a section bR. Spf(R) — Xg. Consider the category Unigg (X ry N R) of unipotent locally
free sheaves Oy -modules with integrable log connection relative to Spf(R) and the category

Unijy ()N( R, N R) where we further consider a section of the pull-back via ER. For example, we
will consider the following two cases which will be important later:

(i) The unique map of W(k)-algebras Ois — Ok mapping Z — T;

(ii) The unique map of W(k)-algebras Ocis — W(k) [x] mapping Z — pz.

On the other hand, as R is a complete local ring, Xisa projective formal scheme over Spf(R)
and we can algebraize it to a projective algebraic curve X with log structure Ny and with a
section bg by GAGA. Consider the category Unijg (X r, V. R) of unipotent locally free sheaves
Ox,-modules with integrable log connections relative to Spec(R) and sections of the pull-back
via bg.
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Lemma 3.9. (i) For every n the universal object in Unijg ()?R, ]VR) of index < n exists and its

base change to R[p~'] is uniquely isomorphic to the base change of (S:Lri;(, eflris) via LR.

(i1) For every n the universal object in Unijg (XR, NR) of index < n exists and its base via
the map of ringed toposes p: Xp — Xpg is the universal object in Unijg (XR7 NR) of index < n.

Proof. (ii) The existence statements are proven arguing as in Proposition 3.5. Indeed, it follows
from loc. cit. that the cohomology groups Ext’ (,, 1) of the universal objects (for j = 0, 1 and

2) are free R-modules of finite rank both in the case of X r and of Xg, non-zero for j = 1. In
particular, due to [Ka, Cor. 8.6] their reductions modulo a power m® of the maximal ideal m of
R will still satisfy the properties of Proposition 3.5 and will provide the universal object of the
reduction of Xg (resp. Xg) modulo m* thanks to Proposition 3.3. By universality we get (ii).
(i) Again using the system of universal pointed unipotent objects in Cris(X,/O) of Corollary
3.7 and since the cohomology groups Ext’ (,, 1) of the universal objects (for j = 0, 1 and 2) are
finite and projective O i-modules of finite rank (non zero for j = 1), their reduction modulo p"
and base change to R/m™ will satisfy the properties of Proposition 3.5 for the reduction of Xp
modulo m”. And then (i) follows from Proposition 3.3. O

3.7 Fundamental groups

Following the discussion in [Ha, §2] we show how the existence of an object as in Proposition 3.3
allows us to construct a fundamental group scheme. It follows from 3.3 that &, , = End(E&,,) via
the map taking w € &, to the unique endomorphism g: &, — &, such that g,(e,) = w. Hence,
A,, = &, has a (non necessarily commutative) ring structure having e,, as identity element. Set

Ay := lim A,. For every n and m there is a unique morphism ¢, ,,,: Em — &, ® &, sending
oo—n

Cntm — €n @ em. Let cpmp: Entmp — Enp @1 Emyp be the induced map and let
c: Aoy — Ao ®1 Ao

be the limits of the morphisms ¢, ,,, over all n and m. Let e5: Asxc — 1 be the map induced by
the projection €,,: £, — &1 = 1. Then, A, has a natural structure of co-commutative and co-
associative Hopf algebra with comultiplication ¢, and co-unit €. Its dual AY, := Hom¢ (Aoo,l)
is then a commutative, associative, unitary ring with Hopf algebra structure. Let G"™™ :=
Spec(A\o/o) be the associated group scheme over Spec(l), called the fundamental group scheme
of Uni. It is flat over Spec(1).

Depending on the category we are working in we write Get((Xf, N%), b?), Gcris((X , N ),g)
or GdR((XK, NK), bK) for Guniv‘

Proposition 3.10. In the étale and in the de Rham case the category Uni together with the fibre
functor F': Uni — C is a neutral Tannakian category, equivalent to the category of representations
of GV on finite dimensional 1-vector spaces.

Proof. See [Ha, Thm. 2.9]. O
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4 Geometrically semi-stable sheaves

4.1 Faltings’ site and Fontaine’s period sheaves

We provide the analogue of the constructions in §2.1 in the relative setting. In [AI, §2.2.3] we
have introduced a site X3 called Faltings’ site as follows:

i) the objects of the underlying category consist of pairs (U, W) such that U € X* and
W e U%et is Kummer finite étale over Ug;

ii) a morphism (U’, W) — (U, W) consists of a pair («, 3), where a.: U’ — U is a morphism
in X*" and B: W' — W xy_ Uz is a morphism in U%’fket;

iii) the topology is generated by the following families {(U;, W;) — (U, W) }ier:
a) {U; — U}ics is a covering in X&' and W; = W xu U; iz for every i € 1.

or
B) Ui = U for all i € I and {W; — W}ie; is a covering in U,

We have morphisms of sites
v: X*— X, U = (U, Ug)

and

2 X — X2, (UW) — W,

inducing a morphism of associated toposes of sheaves
vyt Sh(Xz) — Sh(X*), z: Sh(X3') — Sh(X%).

In [AIL §2.3] we have also defined an ind-continuous sheaf of periods By, i.e., this sheaf is an
inductive limit of inverse systems of sheaves. We summarize its key properties:

(1) it is a sheaf of v* (Og)@oBlog—modules. Here v* (Og)@oBIOg is viewed as the inductive
limit with respect to the multiplication by ¢ on the inverse system v* (Og)@oAbg /(p, Z)" for
n e N;

(2) there is an integrable connection Vg : Biog — Biog R0 W W) (here we write wy W)
for the module of log differentials and we set wy (k) for v* (w;( /W(k)) by abuse of notation).

(3) thanks to [AI, §2.3.3& §2.3.4] By, it is endowed with a decreasing, exhaustive filtration
Fil"Bjog by ind-continuous sheaves. The connection Vyyy) satisfies Griffiths’ transversality with
respect to the filtration;

(4) For every small object U = Spec(Ry) of X ' and for every choice of Frobenius on the
open U of X defined by the special fiber Uy, of U, the sheaf By, restricted to objects over (U , U?)

is endowed with a Frobenius morphism compatible with Frobenius on BY,, and By,.

4.2 Localizations

Fix (U, My) with U = Spec(Ry) a small object of X ', mapping surjectively onto Spec(Oy ), an
algebraic closure Cy of Frac(Ry) and (Clgg = (Cy, N¢) a log geometric point of (Spec(RU), NU)
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over Cyr. Let U= Spf (EU) be the formal open subscheme of X associated to the special fiber
U of U and Ny the induced log structure on U.

Let Gy, be the Kummer étale Galois group "¢ (Spec(Ru[p™']), Cll})g), see [I1, §4.5], classifying
Kummer étale covers of Spec(RU [pfl]). It sits in an exact sequence

O—>GUKHQUK—>GK—>O

where Gy, is the geometric Kummer étale Galois group w8 (Spec(Ru ®oy F),Clgg).

We write (EU,NU) for the direct limit of all the normal extensions Ry ®o, Of — 5, all
log structures Ng on Spec(S[1/p]) and all maps (R %, Nyz) — (S[1/p], Ns) = (Cu, Nc) such
that (Ry %, Nyw) — (S[1/p], Ns) is finite Kummer étale. In [AI, §2.2.6] we have explained how
to associate to a (ind-continuous) sheaf F on X% a continuous representation

F(Ry) = lim F(U,W)
w=Spec(s[1/p))

of Gy,., where the limit is taken over all (S, Ng). Next we will describe the localizations of the
sheaves BY,,, By, and Biy.
Put _ L
E%U = llin RU/pRU

where the projective limits are taken with respect to Frobenius x +— 2P, with log structure
provided by the the inverse image of the log structure on Ry /pRy defined by Ny, We get an
induced log structure on W(E%U) applying the Teichmiiller lift of the log structure on E%U.
There is a natural map ©

O: E%U — EU,

strict with respect to the log structures. Extending the morphism © ]:?U—linearly we obtain a
homomorphism of Ry—algebras

©

I:EU,log: W(E%U)(gw(k)RU — EU.

We consider on W(E%U)@)W(k) EU the log structure defined as the product of the log structures

on W(E%U) and on EU. Then, © By log TESDeCts the log structures.

~ ~ ~ logDP
Let Ajoq(Ry) be the p-adic completion of the log divided power envelope (W (E%U)@)w(k) RU> g

of W(E%U)@)W(k) éU with respect to Ker(@ Bulo g) (compatible with the canonical divided power
structure on pW(E%U)QQW(k)éU) in the sense of [K2, Def. 5.4]. It is endowed with a filtration

coming from the DP filtration. For every choice of a lift of Frobenius on ég, compatible with
the given Frobenius on O, we get an induced Frobenius morphism on A, (RU). Define

Biog (i) 1= Auog (Fur) [t71],

with induced filtration and Frobenius, once chosen a lift of Frobenius on EU. It follows from
[AI, §2.3.6]:
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Proposition 4.1. We have an isomorphism of algebras, compatible with filtrations, actions of
Gu, and Frobenius: Biog (RU) = Biog (RU)

Recall that we have chosen a Og-valued point b of X and a O-valued point bof X lifting
b the Og-valued point associated to X. Choose a small open subscheme U of X such that b
factors through U. Thus b defines a ring homomorphism Ry — Og. Choose an extension to
a morphism b: Ry — O%. Then b defines a morphism E%U — EZ;K and hence a morphism on

Witt vectors w(b). We get a commutative diagram

W(EL ) @w Ry =% Ry
lw®) ©b 15

This induces a morphism Ajq (EU) — Ay and, inverting ¢, a morphism of Bjg-algebras

blog: Blog (EU) — Blog (3)

4.3 Geometrically and arithmetically semistable sheaves

Q,-adic étale sheaves. By a p-adic sheaf L on X3 we mean a continuous system {L,} €
Sh(Xf)N such that L, is a locally constant sheaf of Z/p"Z-modules, free of finite rank, and LL,, =

Ly 11/p"Ly4q for every n € N. The category of p-adic sheaves on X3 is an abelian tensor category.
Define Sh(X%)g, to be the full subcategory of Ind (Sh(X%)") consisting of inductive systems
of the form (IL);cz where L is a p-adic étale sheaf and the transition maps . — L are given by
multiplication by p. The functor z, is a fully faithful functor of abelian tensor categories from
Sh(X%)q, to the category of ind-continuous sheaves on X%. Abusing notations we still write L
instead of z.(IL).

4.3.1 The functor D&

Cris

Given a Q,—adic sheaf L. on X%et define
DER(L) = v, (L2, Buog ).
It is a sheaf of O);@@Blog—modules in Sh (X ket). We get a functor

D Sh(X%)

cris *

Q — Mod ((’);(@Blog) .

We have the following explicit description given in [AI, §2.4.3]. For every small object (U, Ny)
of Xkt let V := IL(RU) be the localization of L. Tt is a representation of Gy,.. Set D7 (V) =

log
(V ®q, Blog (EU)> . Then, Dg3 (M ) ﬁfg (V)

Definition 4.2. A Q,-adic sheaf I = {IL,, },, on X is called geometrically semistable if
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i. there exists a coherent O3®oAjg-submodule D(L) of D (L) such that:

(a) it is stable with respect to the connection Vi w) and Vl7w(k)| p(L) is integrable and
topologically nilpotent on D(L);

(b) D55 (L) = D(L)®a,, Biog;

(c) there exist integers h and n € N such that for every small object U of X*°* the map
t"op, i sends D(LL)|y to D(IL)|y and multiplication by " on D(L)|y factors via t"¢p, .

ii. D&Y (]L) is locally free of finite rank on X*! as O X@)OBlog—module.

cris

cris

category Ind (Sh(Xz)").

iii. the natural map oegr: D&Y (]L)®( )BlogR — L®z,B,, x is an isomorphism in the

8o
X,log

We let Sh(X%*t)gs be the full subcategory of Q,-adic étale sheaves on X%t consisting of

geometrically semistable sheaves. We have the following fundamental result [AI, Prop. 2.26 &
Prop. 3.68]:

Proposition 4.3. (i) The category of geometrically semistable representations is closed under
duals, tensor products and extensions. In particular, the category Unig, (Xk?et) of unipotent

Qp-adic étale sheaves is a full subcategory of Sh(Xk?et)gs.

(ii) The functor DY from the category of geometrically semistable representations to the

category of Og@oBlog—modules, commutes with duals and tensor products and moreover it is
exact.

Fix (U, My) with U = Spec(Ry) a small object of X*** as in §4.2. It follows from [AI, Prop.
2.26& Prop. 3.65] that if L is a geometrically semistable Q,-adic étale sheaves on X7 and if V' :=

L(Ry) is the associated representation of Gy,., then setting Dlgfg (V) = (V ®q, Biog (RU))GUK
we deduce from 4.1:

Dgs (L) (U) = DEg (V) (4)
and _ _
Dlgcfg(v> ®B10g (EU)GUK Blog (RU) —V ®@p Blog (RU)

is an isomorphism, compatible with Galois actions, filtrations and Frobenius. In particular,
pulling-back this isomorphism via the section bi,g: Biog (RU) — Bjog defined in (3), we get a
G g-equivariant isomorphism of Bj,e-modules:

bieg (Digg (V) = bc(V) ©, Buog (5)

log

The connection Vp,y(x induces a connection on by, (D2 (V) compatible with the connec-

tion on the RHS of equation (5) inducing the connection B,y described in §2.1 and trivial on
b (V). The filtration on Df7(V) defines a filtration on bf,, (DY (V) (a priori not strictly)
compatible with the filtration on b*?(V) ®q, Biog defined by requiring that b*?(V) are in Fil°

and the filtration on B, is as in §2.1.
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We come to the main result of this section. Due to Corollary 3.7 there is an action of Gk on
the pointed étale system {(57‘?, e )} lifting the action on X7 and such that e is G g-invariant
for every n. Arguing as in [Al, Lemma 3.3], or using dlrectly equation (4), we deduce that for
every n € N the sheaf of OXQAQOB]Og modules D2 (Set) is endowed with an action of Gk such

Cris

that eS' ® 1 € by, (D& (EY)) (via the identification in (5)) is Gk-invariant.

Cris

On the other hand the universal pointed system {(Egrys,effys)}neN on the crystalline site

(XO / (’)cris)fj; provides by evaluation at X QOSpf((’)nys) a system of sheaves of @?%P [p_l} -modules
with integrable logarithmic connection (E:i’;, V,,) relative to Ouis on X5 (see §3.4) and com-

. . T crys
patible sections e;® of b* (Sn’ )?)
Theorem 4.4. There exist unique isomorphisms

Qp E:Lri%s@ocrys Blog D%f; (get)
of OXQAZ)oBlOg modules on X ket with logarithmic connection with respect to Biog, which are com-
patible for varying n and such that blog(an) sends €Y to e @ 1 for every n € N. Moreover, for
every n € N the isomorphism «,, is Gi-equivariant.

Proof. We proceed by induction on n. For n = 1 we know that Ecrys = @QP [p~!] with connection
given by the usual derivation and e¢™¥* = 1. On the other hand ]D)geo (&) =DEL (1) = O 20 Biog

Cris Cris
with connection given by the usual derivation and e ® 1 = 1. Thus the claim follows for n = 1.

Assume that the statement is proven for n. Let us prove if for n+ 1. Note that D3 (2" ) is,

Cris

as a module with connection, an extension of D7 (£¢%) by DR (T,¢) = 1< ®q, D (1) Where

T2 is a Bjog-admissible representation of Gk (see corollary 3.8). Hence, such an extension is
defined by a class

enin € Hig (X0, T3 @, DER(65)") 2 Hiig (X0, €75 B0, Buos O, T
The last isomorphism is a G g-equivariant isomorphism of Bj,.-modules obtained using the in-
ductive hypothesis. We have also used the inductive hypothesis to identify D& (£S") with

Cris

Szr§®ocrysBlog and the fact that D% commutes with duals (Proposition 4.3). As T¢' is Biog-

admissible, setting Dog (Tﬁt) = (Blog®QpT§t)GK, the natural Gk-equivariant map Do (Tnet) ® ok
log

Biog — T @ Biog of Bjgg-modules is an isomorphism. The existence of a Gg-action on

fofs( e +1) translates into the fact that ¢, is Gg-invariant. Thus, ¢, defines a class in

cris

Gk
Dlog(T )® Gk Blog>

log

Cny1 € (Hclm (X(l)(etagzri;v> ®o

— Hip (X5, £7%) 8o,
By Proposition 3.5 we have that 7' = Ext' (£, 1) = H (X%t £e4V). Hence, Diog(T5)
T5®p,,. BEX with Tows .= H! (X0/Ouris, EX%Y) by [AL Thm. 1.1]. As the latter group is

cris lOg

Diog (T3') = Bl (X5, €% B0, Dios (T31) ) -

12
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Ext' (£%,1)®0, BEE | again in virtue of Proposition 3.5, also Sflisl X@@C“SBGK is an extension

cris*~ log log
s 5 a
of E2 @0, Biog by Diog (T").
We conclude that 5;1517 5 ®0.5, Blog and ]fof;( §t+1) are both extensions of 85}?@0
the inductive hypothesis for the existence of a,,) by T' ®q, Biog = TR0, Biog-
Arguing as in Proposition 3.3 one proves that there is a unique isomorphism a,,,; of such
cris

extensions such that b (ay41) sends €5 to eff,; ® 1. The existence follows from the fact that
the map

cris cris Blog (U‘Slng

Eth (5;?%@(’) Blog; 1) — Eth (gcris ~®OcrisBlog7 1)

cris n+1,X
is zero as it is the base change ®OcrisBlog of Extl(ﬁgi;(, 1) — Extl(é'ﬁsl’x, 1) Whi.Ch is zero
by loc. cit. The uniqueness follows from the fact that the projection 8:;;5( — Sfr)lg =1 in-
duces an isomorphism Hom(é';rijsz,l) = Hom(l,l) and, hence, it provides an isomorphism

cris cris

Hom (Szri;{.@@ Biog, 1®OcriSBlog) = DBjog after base change Ro Biog.
We are only left to prove that o, is Gg-equivariant. This follows from its uniqueness as

both e, and €2, ® 1 are Gg-invariant (see Corollary 3.7). O

4.3.2 The functor D**

cris

Consider a lisse Q,-adic sheaf L on Xk, We view it as a sheaf on X%et endowed with an auxiliary
action of Gk lifting the action on Xg. As in [Al, Lemma 3.3], or using directly equation (4),
one can prove that the sheaf v, (Bjg) and more generally D27 (L) is endowed with an action of
Gg.

We wish to study D2 (L)“%. For L = Q, the sheaf D (L)% = v, (Biog) “K contains
O)'%P [p~!] but is not known to be equal to it. But is is very close. Namely, given a small object
U of X** and a choice of Frobenius on the formal open subscheme U of X associated to U , it
is proven in [Al, Lemma 2.25] that the second power of Frobenius ¢? on v, (Blog) | factors via

ADP[, —1
Oz"[p™']. One defines

DLl = (PEL) ™l er ) OF" ™"
og

VUx

Following [Al, §2.4.4] we say that L[y is semi-stable if
i. D (L)|y is in Coh(@gP@)Zpr) (the full subcategory of sheaves of 65P—modules isomor-

phic to F®z,Q, for some coherent sheaf I of @gp—modules on Uxet);

ar
Cris

ii. the natural map aeer: D (]L) |U®@QPIB%10g,K — L®z,Byog is an isomorphism in the cat-
U

egory Ind (Sh(tlz)") of inductive systems of continuous sheaves.

We say that LL is semi-stable if there exists a covering of X by open small subschemes {U;}
and for every i there exists a lift of Frobenius on U; such that L[y _ is semistable for every i. We

let Sh (X}‘(et)ss be the full sub-category of Q,-adic étale sheaves on X7 consisting of semi-stable
sheaves.
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For a semi-stable sheaf L the elements D2, (L) |y, glue to an element D%, (L) of Coh ((5)'%P®Zp Q).
We obtain a functor R
D, Sh(XY)  — Coh(0¥®z,Q,)

Ccris *

and we have a natural Bjee-linear and G g-equivariant map

B DZ ( )®OcrysBlog — D&Y (L),

Cris Cris

functorial in L.
Proposition 4.5. The functor D2, has the following extra properties:
(1) the map Pr: D2 (L) @0, Biog — DE(L) is an isomorphism for every L. It commutes

with connections relative to W(k) and is strict with respect to the filtrations on D2 (L) and the

filtration on D (L) R0, Blog composite of the filtrations on DY, (L) and on Bigg;

(2) D (L) is a finite and projective (9)9( ®z,Q,-module;

(3) D2 (L) is endowed with a decreasing, ezhaustive filtration Fil"D (L), forn € Z, strictly

compatible with the filtration on D (L) via B and with finite and projective Og _-modules as
graded pieces;

(4) D2 (L) is endowed with an integrable and topologically nilpotent connection

V]LW k) D L) — D (]L) ®O w

cris ( Cris

X/W(k)

compatible with the connection on DE2 (L) via i, and such that the filtration satisfies Griffiths’
transversality,

(5) given a small U object of X*°* and a choice of Frobenius on the formal open subscheme
U ofX associated to U, we have a Frobenius operator or,: D (L)|y — D2,

Cris Cris
with the Frobenius on Dgeo( v via Bu and horizontal with respect to Vi

(6) if write

(L) |u compatible

VLo D (L) — DI (L) Qo wx/o

for the connection induced by Vi war, then (]D)ar (L ),VL,@) uniquely defines an isocrystal on

Cris

(XO/OCﬂS)z: in the sense of §3.4 and the local Frobenii define the structure of an F-isocrystal.

Proof. The first claim is proven in [AI, Prop. 2.26]. Claims (2)—(5) follow from [AI, Prop. 2.28].
Claim (6) follows from [AI, Cor. 2.29]. O

Concerning statement (6) of Proposition 4.5 we recall that absolute Frobenius on X and the
given Frobenius pp on O define a morphism of sites

(XO/OCI‘IS) o (XO/Ocris) Cris-

log

The category of F-isocrystals consist of pairs (€, ¢) where £ is an isocrystal and ¢: F*(€) — &
is an isomorphism of isocrystals.

Cohomology of semistable sheaves: By construction we have an isomorphism

QlogL + Dgis (]L) ®@)D}PBlog,K — L®ZPB10g7
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compatible with all extra structures (connections, local Frobenii, filtrations). It follows from
[AI, §2.4.9] that there are isomorphsims

H ( X%et7 L) ®g, Biog = H’ (3€K, D (L)®@§PBlog,K)

and
' (X, D (L) S Bus ) = 1 (X, D5, (L)) B Bl

Therefore one obtains the comparison isomorphism

H' (XE' L) ®g, Biog = H' (X, D% (L)) @0, Biog

Cris

as filtered Bjog-modules, compatible with derivations, Frobenius, and Gx-action.

5 Comparison of universal objects

As a consequence of Theorem 4.4 we immediately have the following

Corollary 5.1. For every n € N the universal étale object ES* on X%t, with its natural action
of G, is semistable and
gcrls ~ Dg‘ls (gzt)

as isocrystals on (XO / Ocm)cr:;, compatibly for varying n.

In particular, eS¥® defines an element of b* (5:;%) Due to 4.5 we may complete the equa-
tion (5) to an isomorphism

L Y @0, Biog = bl (DB (E51)) = £ ®q, Biog: (6)

These are G g-equivariant isomorphisms of Bj,e-modules, compatible for varying n, commuting
with Frobenius ¢ and by 4.4 the image of e ® 1 is e ® 1. Here we write £ := b* (8:;;5() and

Using 5.1 we get that (Ezri)% C“S) has further structure:

Theorem 5.2. (i) The universal crystalline system {5cris}n is endowed with a Frobenius mor-
phism {¢n}n making it an F-isocrystal and moreover e is fized by Frobenius. In particular,

f:}f s a free (’)CHS[ ] -module and Frobenius is étale;

(ii.a) the connection on {5::;5(} relative to Oqis [p_l] can be extended to an integrable,

topologically nilpotent, log connection {V,,w}n, relative to W(k) [p‘l} ;
(11.b) the connection V,,w induces a connection V,,, on ,‘;r}f such that Frobenius is horizontal
and in (6) it is compatible with the connection on £ ®q, Biog which is trivial on £, and is the

connection on Bi,e defined in §2.1;
(ii.a) the Og, -modules Scr; are endowed with decreasing, erhaustive filtrations Fll'c‘fC“b
strictly compatzble with the ﬁltmtzons for varying n, V, w satisfies Griffith’s transversality wzth
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respect to the filtration. Moreover the graded quotients of the filtration are finite and projective
Oz, -modules;

(m b) for each n > 1 the filtration at (iii.a) induces by pull-back a filtration on EC“S such that
via the isomorphism p, in (6) is strictly compatible with the filtration on Eetb ®Q, Blog defined
by: Sﬁfb is endowed with the trivial filtration and the filtration of Bl is the one defined in §2.1.

cris

Proof. (i) the first part has already been proven. The element e is fixed by Frobenius as e ® 1

is. The last statement follows as Szr}? is a Frobenius isocrystal so that its pull back via b is also
a Frobenius isocrystal. ’

(ii.a) follows directly from Proposition 4.5.

(ii.b) the horizontality of Frobenius follows from 4.5. The first isomorphism in (6) is compati-
ble with the connections induced from V,, w and the given connection on D% (5 et) by Proposition
4.5(i). The second isomorphism is compatible with the given connection on n7 p ®q, Blog by the
discussion following (6). In particular ™ is horizontal as €' ® 1 is.

(iii.a) the claim, except the strict compatibility of the filtrations via the surjection 6'““51 x

Scris follows from Proposition 4.5. The compatibility of the filtrations via 5;151 P Sfff( follows
from the functoriality of D2}, . 7 7
(iii.b) The compatibility of the filtrations follow immediately. In particular e
et @1 is.
We are left to prove the strict compatibility in (ii.a) and (ii.b). Fix (U, My) with U =
Spec(Ry) a small object of X** as in §4.2. Write V; := £*(Ry) for i = n or n+ 1. The natural
isomorphism

cris js in Fil° as

v D (E7) (V)8 pr Buog (Ru) — Vi @g, Buog (Ru)

is strictly compatible with the filtrations due to [AI, Prop. 2.28(5)], considering on the RHS the
composite of the trivial filtration Fil’V = V and the given filtration on Biog (EU) If b factors
via U, then p, is obtained by pull-back of via bj, of ayy and (iii.b) follows.

We also deduce that the map

]D)SII:IS( 25_1)((])@1}51931(% (EU) — Dglljls(gzt) (U)®§5PB103 (EU)

is strictly compatible with the filtrations, namely it induces a surjective map on the graded
quotients. As

Gr' D (&) (V)& prBiog (R) = €D GreD(€7) (U)@ryer Gr'Biog (Ru)

cris
a+b=h

by [Al, Prop. 3.29(4)] and Gr’By, (éU) is free }%U[p* ]-module by [AI, Prop. 3.15], we deduce

that the surjection Scisl s EC“S induces a surjective map on the graded quotients, i.e., it is

strictly compatible with the ﬁltratlons This proves (iii.a). ]

Let T := Ker(£,, — &) and TC“S = Ker(é'cfl % j SC“S) Write T := b (T,¢). It
is a finite dimensional representation of Gx. Set ’7;‘37215 = b* (’7;“)155) It is a filtered Ogis [p‘l}—
module, endowed with a filtration, a Frobenius linear operator ¢ and a logarithmic connection V

obtained by pull-back from 7;“XLS Composing it with the derivation Z a% we get a derivation V.
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Also Bﬁg is a filtered Oy [p_l]—module, endowed with a filtration, a Frobenius linear operator

and a derivation. In particular, using the conventions of §2.1:

Corollary 5.3. (i) The modules £ Qo ng and T3 @0y ng endowed with a composite
filtration, a composite Frobenius linear operator and a composite derivation define objects in the

category MF o (o, N).
log
(iii) The Gr-representations E5Y and Ty are semi-stable in the sense of Fontaine, and in
particular Biog-admissible and

Gk
cris lOg

et |\ ~ gcris Gk et ~v gcris
Diog (5n,b) = &b @O Biog » Diog (Toh) = Tob ®o

in MF g (o, N).

log

Proof. (i) As 7:1;15 is the kernel of a morphism of isocrystals, it is an isocrystal and the same holds

for its pull-back 7:;?3 via b* is. In particular, it is a free Oy [p_l}—module,  is horizontal with
respect to IV and étale. As the connection of S:Lisl % satisfies Griffiths transversality, the induced

connection on 7:1;—1; does as well with respect to the induced filtration and hence also the pull-

’ .
T1s

back connection on 7,7}® satisfies Griffith transversality with respect to the pull-back filtration.
Hence, the axioms for T @0, . BEX to be in MF ek (@, N) hold. For £ @0 BEX this
) log )

crys "~ log cris "~ log
follows from 5.2.
(ii) As 7" is constant, we have that 7 = T as representations of Gx. The latter is
semistable thanks to Propositions 2.1 and 3.8. It follows from Theorem 5.2 that the natural
map

cris G et
( n,b S Oeris BlogK) ®BIGK Blog ? 771,17 ®q, Blog>
og

defined in (6), is an isomorphism of filtered Bj,-modules and it is G'x-equivariant and compat-

ible with connections on the two sides. Hence, Do ne%) = (7;% ®q, Blog)GK coincides with
T3 @0 ng (as filtered ng -modules, strictly compatible with filtrations and compatible

with connections). The second claim follows. The statement for £, follows directly from (6)
and Theorem 5.2.
O

We know from Lemma 3.9 that the base-change of the universal pointed de Rham object

(ESR, egR) of index < n on Xg is the algebrization of the base-change of the universal pointed
cris cris

crystalline object ( e ) via the map O [p_l} — K, Z — m, as module with connection
on X Kk, with a section of the pull-back via /b\K Let Fil*€I® be the image of the filtration on Szr;%.

It is called the Hodge filtration. We write EI% for the K-vector space by (E3%) with induced
pull-back filtration.

Corollary 5.4. (1) For every n > 1 the filtration Fil*£® is decreasing and exhaustive with
quotients which are locally free Ox, -modules;

(2) the connection satisfies Griffiths’ transversality with respect to the filtration;
(8) the maps Sdf_”l — EIR qre strictly compatible with respect to the filtrations;

n
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(4) the filtration on ES} coincides with the image of the filtration on )" via the isomorphism

bt €S ©0,, K — EX.

cris

In particular ed® = t, () is in Fil°.

Proof. Claims (1), (2) and (3) follow from Theorem 5.2 and [AI, Cor. 2.29] where the behaviour
of the filtration on D2 (IL) under base change via Ocys — K is studied. The map ¢,, is compatible
and surjective on filtrations by construction. As ed® corresponds via t,, to e by 3.9 it follows

from theorem 5.2 that it lies in Fil°. OJ

As TR = Ker(&8Y, — €M) is constant, then T = T @ 1 with T4 := b (T,/F). By
definition the Hodge filtration on 7% is the image of the filtration on 7,7}’ and it is uniquely
determined by the filtration on 7,%. By Corollary 5.4(4) the latter coincides with the image of

the filtration on ncﬂs via t,. On the other hand, as the G-representation 7716‘,; is semistable by

5.3, following Fontaine we can associate to it a filtered (¢, N)-module Dy (Tﬁfb): it is a Ky-vector
space with Frobenius and monodromy operator and a filtration on Dy (TCt

n,b) ®k, K. It follows
from 2.1 and 5.3 that Dy (&eltb) Rk, K = ’7;311:‘ and Dy (Efltb) R, K = 7;&1} as K-vector space.
Then,

Lemma 5.5. (i) We have EJ} = Dq (€S,
spaces;

(i1) There is a unique filtration on the system (SSR)n inducing the filtration on 7;35‘ provided
by the identification with obtained Dy (’7;62) R, K and such that properties (1)-(3) of Corollary
5.4 hold.

)@k K and T4 = Dyt (T8 @1, K as filtered K -vector

Proof. Claim (i) follows from 2.1, Corollary 5.3 and Corollary 5.4. For claim (ii) one argues as
in [Ha, Prop. 3.3& Lemma 3.6]. O

6 Proofs of the Theorems in section §1

6.1 The proof of Theorems 1.7 and 1.8

Write G ((Xg, Ng), bg) = Spec(ALY), set G™*((X, N),b) := Spec(AD*Y) and finally de-
note G’dR((XK,NK),bK) = Spec(A‘oig’V) as in §3.7 using the universal systems (Set eet)n,

n’n

(€,§rys,e;rys)n and (é'dR edR)n respectively. Then, Corollary 5.3 and Lemma 5.5 imply that

n - n

(i) AV = lim £ is endowed with an action of G such that each £, is a semistable or
n—00 ’ ’
equivalently a Bj,.-admissible representation of G (in the sense of §2.1);
(ii) A<V = lim €Y and E;YZS’@%Sijg is an object in MJF o (¢, V) (in the sense of
n—o00 ’ ’ log
§2.1) isomorphic to Djyg (Sstl;v) for every n;
dR.V __ 7: dR,V dR,V . . . . cris,V
(iii) ASHY = lim &£, each &, 7" is a filtered K-vector space, identified with £, ®¢
n—00 ’ ’ ’

K = Dy (SZ%V) ®K, K (as filtered K-vector spaces).

cris
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We obtain identifications

cris,V Gk ~v et,V
Aoo ®o B - Dlog( n,b )

cris " log

of ng" -modules, compatibly with Frobenius, monodromy operators N and strictly compatibly

with the filtrations and

AT 2 AT @, K = Dy (ALY @, K

cris
as filtered K-vector spaces.

The correspondence as universal objects between £, £ and £, of the sections e,
cris

e and ed® proven in Theorem 5.2 and in Corollary 5.4 and the compatibilities for varying
n imply that the isomorphisms displayed above respect the structures as Hopf algebras over
ng (resp. Hopf K-algebras for the second one). This proves Theorem 1.7 and, using ??, also
Theorem 1.8 except for Theorem 1.7(ii) and Theorem 1.8(iv). These claims follow from (5.1)

and the discussion after Proposition 4.5.

6.2 The proof of Theorem 1.9

First of all we characterize the integrable log connection {V,, w}, on {EZTE} relative to W(k) [pfl]

extending the universal one relative to Qs [pfl} provided by Theorem 5.2.
Consider the exact sequence

cris cris cris
0 —>Tn)~( — &0 — 8% —0
The compatibility of V, 1w and V,, w provide an integrable connection on 7;"%? relative to
W(k). Then,

Proposition 6.1. (1) The logarithmic connection on 7;‘“;‘; relative to W(k) described above is
the unique one for which

a) 7:}5 is constant, namely the tensor product of an Ouis[p~]-module T:}? with log connec-
tion with 1 with the standard derivation;

b) the induced map

T8 = Hn (Xo/Oeris, T3 ) — Hin (Xo/Oeris, £727).

which we know to be an isomorphism by the discussion in §3.5, is compatible with respect to the
induced Gauss—Manin connections considering V, w on Eflrijsz.

(2) Given the connection V,,w on 5:31; and the connection on :%s relative to W(k) described

in (1), then V11w is the unique connection on Sflisli which is compatible with the two and

’ .
cris

with the universal one relative to Ous [p‘l} and such that e;"% is horizontal for the induced

; cris
connection on &7 ;.
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Proof. (1) The uniqueness is clear. The object Tcris is constant for the connection relative to

W(k) as it coincides with D (7,¢") by 5.2, T, is constant and D (7,¢") commutes with tensor
product.

The given connection on T“)l(s satisfies also property (b) taking the long exact sequence of
de Rham cohomology groups associated to the dual of the short exact sequence displayed before
the lemma.

(2) Suppose we have two connections V11w and V; . with the properties in (2). Their
difference provides a homomorphism

cris cris 1
£rg 7 TX ®Ouss WO wik):
Such morphism must factor via Ecris = 1 by the discussion in §3.5 and it is determined by the

cris

s is the image of e it must be zero. ]

image of 1 = €$™ in the pull back via b. Ase

Let tg: Ocys = R := W(k) [2] be the unique morphism of W(k)-algebras sending Z — p.
Thanks to Lemma 3.9 the base change of (5“‘5 C“S) as (’))'%P—module with connection and with

section e via tx is isomorphic, as a pointed module with connection on X K, to the module

with connection associated to the universal pointed de Rham object (Sn T, € R) of index < n
on X (with log poles along Ng).

As the base change R[p~!] — R’ := K [«] is flat, the base change of (£3%, ed%;) via the
map R — R’ is the universal obJect of (M, %) index < n on Xp := X ®p R (with log

poles along Ng/). The section b defines a section by € X r(R) and by further base change a
section b € Xp/(R'). Write £3%, , for by, (€3%,).

Lemma 6.2. (i) The connections on {& R’}n uniquely extend to a compatible, log, integrable
connection relative to Ky satisfying the requirements of Proposition 6.1(2). In particular, SH,R, b
is endowed with an integrable logarithmic connection V,, r/p relative to R', considering on R’ the
logarithmic structure defined by x.

(i) We have isomorphisms Dst( ,‘itb) b/x R, compatible for varying n, as Ky-vector
spaces endowed with nilpotent operators, where on the LHS we consider the monodromy operator
and on the RHS we consider the residue of V,, pip at x = 0.

Proof. (i) The claimed extension follows from 5.2 by base change to R’. The uniqueness follows
arguing as in the proof of Proposition 6.1(2).

(ii) By construction &% /xS is equal to the base change of £7}° via the morphism
Oerys — Kj sending Z — 0 and the residues of the connections on these two Ky-vector spaces
coincide. The second claim follows then from Corollary 5.3 and the description of the monodromy
operator on Dy (Eﬁtb) starting from the connection on D (5 etb) provided by Proposition 2.1. [

n,

As the special fiber of Xg at x = 0 has the same dual graph as the special fiber of X in
order to prove Theorem 1.9 we are left to show that:

Proposition 6.3. The special ﬁber 7/ of Xr at x = 0 has good reduction if and only if the
residue of the connection on EW% Ry 10 for every n € N.
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Proof. To check this we may replace R’ with the base change Ky [z] — C [z] obtained by any
field homomorphism K, — C. Notice that as such morphism is faithfully flat, the formation of

universal de Rham pointed object (En Ty €, ) commutes with base change. We may then assume

that R' = C[z]. As the choice of X is auxiliary we may proceed as in [0, §2.3] and choose
X — Spf(O) as arising from the completion of a 1-dimensional quotient of the henselization of
the moduli stack of genus g curves at the k-valued point defined by the class of the curve [Xj].
In particular, we may assume that there exists a smooth irreducible affine curve U = Spec(A)
over C, a semistable genus g curve X4 over U, a section by € Xy(U) and a point x of U such
that R’ is the completion of A at x, X4 is smooth over U\{x} and (X ", bR/) is isomorphic to
the base-change of (XA, bA) via A — R’

We denote by X3 — U® the associated morphism of complex analytic spaces and by
v X3 — X4 the associated map of ringed spaces. Then, arguing as in Lemma 3.9 we have that

(i) The base change of the pointed universal de Rham system (5 s €5, A) on XyviaA— R

n,

is the pointed universal de Rham system (5 R+ € )n;

n

dR

(ii) The pull back of the pointed universal de Rham system (5 A € A) on X4 via ¢ is the

universal system (gn Uan egf}]an) on X"

The Betti realization: On the analytic side we also have a pointed universal Betti system
(5 BUan, €, Uan) in the category of unipotent local systems in finite dimensional C-vector spaces
on X := X4\ X2 Then £3¢ 7an ®c Oxane defines a locally free O xano-module with connection
defined by the derivation on Oxane and by requiring that EBUdn are horizontal elements. By
universality we get unique morphisms

g?’b Uan |X:“>O gBUan ®(C OXa“ o ei%an — GE?Uan ® 1
They are compatible for varying n and they are isomorphisms. This description provides £I% Dano

with a unique integrable connection relative to C, extending the universal one relative to Uan ©,
such that £, is the set of solutions. Setting San AR W (EM ) and EP5 = b4 (EDam ), we

n

conclude that {SSE’dR}n is endowed with a connection with log poles at k and that

,dR
gan | an,0 — 8 b ®(C OUanO TL Uan ® 1 |_> en Uan,

as Opan\ (x}-modules with connection, compatibly for varying n. Here, U*° := U**\{s} and

the connection on 8 Be b @c Opano has & Bb as horizontal sections and is the standard derivative on

gan dR|Uan,O )

Opran,o. Note that we also get an action of m (Uano, bA) on 5Bb and hence on
Topological vs algebraic monodromy: Let X9 := Xa\X, and U° := U\{k}. Arguing as in
the proof of Proposition 6.1(2), one shows by induction on n that the problem of extending the

universal connection on (Sn s €5, A) on X relative to U to a connection relative to C lives in

the H' (X3, 52547;:32’\/ ®a w}];/ /(‘c) As such an extensions exists over X", the pull back of such
an obstruction via ¢: X3" — X4 vanishes and, hence, it is zero. It follows from Proposition 6.1
that its base change via A — R’ is the extension of the universal connection on X9, := Xp/\ X,
relative to R’ to a connection relative to C. Putting everything together and base-changing to
R' = C[z], identified with the completed local ring of U and U*™° at k, we obtain isomorphisms

of R/ [xfl]—modules, compatible with connections relative to C and compatible for varying n:
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53% Qp R [x_l} = sz;;dR Q0yano R [x_l] o~ 52’; ®c R’ [m‘l],

where on the RHS we consider the unique connection relative to C having 52‘2 as set of solutions.
Note that we also get an action of the fundamental group I, = Z of a punctured disk of U*™°
with center in £ on €7 and that by construction the connection on 53,% ®p R'[27!] extends to
a logarithmic connection V)8 on £J%.

It follows from [D1, ??7?] that V!¢ is regular if and only if its residue at = = 0 is trivial if
and only if the action of I, on 5}22 is trivial. We are then reduced to prove that X, is smooth
it and only if the action of I,; on 55”2 is trivial for every n € N.

If X} then EXGan 18 a local system on the whole of X" and £ extends to a representation
of the fundamental group of U?". It follows that the action of I, is trivial.

Viceversa, if X, is singular, it follows from [O, Prop. 1.10] that the action of I, on 8,]32 is non
trivial for n large enough. The conclusion follows. O]
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