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1 Introduction

Let K be a complete discrete valuation field of characteristic 0, with valuation ring OK and
perfect residue field k of positive characteristic p. We fix an algebraic closure K of K and
denote by GK the Galois group of K over K.

Let XK denote a smooth, proper, geometrically irreducible scheme over Spec(K). An inter-
esting question in Arithmetic Geometry is the question of deciding if XK has or has not good
reduction. For example, if AK is an abelian scheme over Spec(K) then we have:

Theorem 1.1 (Néron, Ogg, Shafarevich, Serre-Tate). AK has good reduction if and only if for
some (all) prime integer ` 6= p the `-adic GK-representation T`(AK) is unramified.

and

Theorem 1.2 (Fontaine, Mokrane, Coleman-Iovita, Breuil). AK has good reduction if and only
if the p-adic GK-representation Tp(AK) is crystalline.

It is not expected that such theorems hold in general, for example let XK be a smooth, proper,
geometrically irreducible curve over Spec(K). Then for all prime integers ` 6= p, the `-adic GK-
representations Hi

(
XK ,Z`

)
are unramified and the p-adic GK-representations Hi

(
XK ,Zp

)
are

crystalline for i = 0, 1, 2, but the converse is not always true.
It is known that a criterion for good reduction of XK has to be non-abelian, more precisely

let us first assume that XK has semi-stable reduction, i.e. there is a a proper semi-stable curve
X over OK , that is to say X is a regular scheme, proper and flat of relative dimension 1 over
OK whose generic fiber is XK . We also assume that the genus of XK ≥ 2. Let us also fix a
geometric point b of XK and for every prime integer ` denote by π

(`)
1 the maximal pro-` quotient

of the geometric, étale fundamental group π1(XK , b) of XK . Let also {π(`)
1 [n]}n≥1 denote the

lower central series of π
(`)
1 . For each n ≥ 1 we have natural, outer representations of GK on the

quotients π
(`)
1 /π

(`)
1 [n].

Theorem 1.3 (Takayuki Oda). XK has good reduction if and only if for some (all) prime integer

` 6= p the outer representations π
(`)
1 /π

(`)
1 [n] are unramified for all n ≥ 1. In fact it is sufficient

that this happens for all 1 ≤ n ≤ 3 for XK to have good reduction.

The main purpose of this article is to state and prove the p-adic analogue of theorem 1.3.
At a first glance our theorem would read: XK has good reduction if and only if π

(p)
1 /π

(p)
1 [n] is

crystalline for every n ≥ 1, but a quick analysis shows that this statement does not make sense.
In fact this problem has partially beed investigated in [Vo], [Ol], [Ha] and it has become

clear that instead of working with π
(p)
1 one should work with the p-adic unipotent fundamental

group of XK . Let us briefly explain the setting. We denote by K0 the maximal unramified
subfield of K, i.e. the fraction field of W(k) in K, assume that there exists a point b ∈ X(OK)
and denote by bK and bK the corresponding points of XK(K), respectively XK(K). We then
denote by Get := Get

(
XK , bK

)
and GdR := GdR

(
XK , bK

)
the unipotent p-adic étale, respectively

the unipotent de Rham fundamental groups. They are characterized by the property that their
algebraic representations on finite dimensional Qp-vector spaces (resp. K-vector spaces) classify
unipotent lisse Qp-adic étale sheaves on XK (resp. vector bundles on XK endowed with integrable
connections). The first important property of these is that they are pro-algebraic groups over
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Qp, respectively over K, with extra structure for example Get has a natural action of GK by
automorphisms.
We denote by Bcris,K and Bst,K the base changes to K of Fontaine’s rings Bcris and Bst, respec-
tively. Then our result could be simply formulated as the following sequence of statements.

Theorem 1.4. Get is semi-stable i.e. we have a natural isomorphism as group-schemes over
Bst,K, GK-equivariant:

Get ×Qp Bst,K
∼= GdR ×K Bst,K.

Definition 1.5. We say that Get is crystalline if the above isomorphism holds for the base
changes to Bcris,K ⊂ Bst,K, i.e. we have a canonical isomorphism as group-schemes over Bcris,K,
GK-equivariant

Get ×Qp Bcris,K
∼= GdR ×K Bcris,K,

whose base change to Bst,K is the one in theorem 1.4.

Now we can formulate our main result as:

Theorem 1.6. XK has good reduction if and only if Get is crystalline.

We’ll now be more precise and formulate the sequence of stamenets above in the language
of p-adic Hodge theory. As Get and GdR are pro-algebraic groups we may write them as
Get
(
XK , bK

)
= Spec

(
Aet,∨
∞
)

and GdR
(
XK , bK

)
:= Spec

(
AdR,∨
∞

)
, where Aet,∨

∞ and AdR,∨
∞ are Hopf-

algebras over Qp and K-respectively. Then, theorem 1.4 can be expressed in a more precise way
as

Theorem 1.7. (1) The Qp-algebra Aet,∨
∞ is the direct limit lim

n→∞
Eet,∨
n,b of finite dimensional Qp-

representations of GK such that each Eet,∨
n,b is semistable in the sense of Fontaine and Eet,∨

1,b = Qp

provides the structure as Qp-algebra;

(2) the K-algebra AdR,∨
∞ is the direct limit lim

n→∞
EdR,∨
n,b where each EdR,∨

n,b is a filtered K-vector

space and EdR,∨
1,b = K (with trivial filtration Fil0K = K, Fil1K = 0) provides the structure as

K-algebra;

(3) there exist isomorphisms ψn : EdR,∨
n,b
∼= Dst

(
Eet,∨
n,b

)
⊗K0 K as filtered K-vector spaces, com-

patibly for varying n

so that

(i) the induced isomorphism

ψ∞ : AdR,∨
∞
∼= Dst

(
Aet,∨
∞
)
⊗K0 K

is an isomorphism of Hopf algebras over K;

(ii) for n = 2 the dual of the isomorphism(
EdR,∨

2,b /EdR,∨
1,b

) ∼= (Dst

(
Eet,∨

2,b /E
et,∨
1,b

)
⊗K0 K

induced by ψ2 is the p-adic comparison isomorphism (see [AI]) of filtered K-vector spaces

H1
dR

(
XK/K

) ∼= Dst

(
H1

et(XK ,Qp)
)
⊗K0 K.
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Let us explain the notations in theorem 1.7. If we denote by Eet
n,b, respectively by EdR

n,b

the Qp, respectively K duals of Eet,∨
n,b and EdR,∨

n,b then these are naturally represenatations of

Get, respectively GdR and therefore there are unipotent étale local systems Eet
n and universal

unipotent OXK
-modules endowed with integrable connections EdR

n such that Eet
n,b is the fiber

of Eet
n at bK and EdR

n,b is the fiber of EdR
n at bK . Moreover, these sheaves have very interesting

universal properties which are characterized in section 3.5 and in section 3.6 we show how they
can be inductively constructed.

Theorem 1.7 is proven via a p-adic comparison isomorphism between these two systems
of objects. In fact, we prove a finer result. Write W := W(k) and denote by O := W[[Z]]
and by O −→ OK the W-algebra homomorphism sending Z to π. Let Pπ(Z) be the minimal
polynomial of π over W. Let Ocris be the p-adic completion of the DP envelope of O with
respect to the ideal

(
p, Pπ(Z)

)
. Define Frobenius, extending the Frobenius on W, by requiring

that Z 7→ Zp. We construct a crystalline (log crystalline would have been a more appropriate

but too long name for it) unipotent fundamental group Gcris
(
X, b̃

)
:= Spec

(
Acris,∨
∞

)
associated

to the category of unipotent log isocrystals on the mod p reduction X0 of X relative to the
thickening Spec(OK/pOK) ⊂ Spf(Ocris). Here we endow O with the log structure defined by Z
and Ocris with the induced log structure. Then,

Theorem 1.8. (1) The Ocris

[
p−1
]
-algebra Acris,∨

∞ is the direct limit lim
n→∞

Ecrys,∨
n,b of free Ocris

[
p−1
]
-

modules, endowed with logarithmic connections relative to W(k), horizontal and étale Frobe-
nius linear operators, descending exhaustive filtrations satisfying Griffiths’ transversality and
Ecris,∨

1,b = Ocris

[
p−1
]

with the standard derivation, Frobenius, DP filtration provides the structure

as Ocris

[
p−1
]
-algebra;

(2) using the map of W(k)-algebras Ocris → OK, sending Z 7→ π, there exist isomorphisms
t∨n : Ecris,∨

n,b ⊗Ocris
K −→ EdR,∨

n,b as filtered K-vector spaces, where we endow the LHS with the image
filtration, compatibly for varying n;

(3) there exist GK-equivariant isomorphisms ρ∨n : Ecris,∨
n,b ⊗̂Ocris

Blog
∼= Eet,∨

n,b ⊗Qp Blog as filtered
Blog-modules, compatibly with connections and Frobenii and compatibly for varying n. Here,
Blog is a variant of Fontaine’s period ring Bst and carries GK-action, filtration, connection,
Frobenius;

such that

(i) the induced isomorphism

t∨∞ : Acris,∨
∞ ⊗Ocris

K −→ AdR,∨
∞

is an isomorphism of Hopf algebras over K;

(ii) the induced isomorphism

ρ∨∞ : Acris,∨
∞ ⊗̂Ocris

Blog −→ Aet,∨
∞ ⊗Qp Blog

is an isomorphism of Hopf algebras over Blog;

(iii) using the map of W(k)-algebras Ocris → K0, sending Z → 0, and taking GK-invariants,
the isomorphism ρ∨∞ produces an isomorphism

Acris,∨
∞ ⊗Ocris

K0
∼= Dst

(
Aet,∨
∞
)
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of Hopf algebras over K0, compatible with Frobenius and monodromy operator where on the LHS
we take the residue of the connection on Acris,∨

∞ at Z = 0;

(iv) for n = 2 the dual of the isomorphisms t∨n and ρ∨n produce the p-adic comparison isomor-
phism as filtered Blog-modules, compatible with GK-action, Frobenius, connection and filtrations:

H1
logcris

(
X0/Ocris

)
⊗̂Ocris

Blog
∼= H1

et(XK ,Qp)
)
⊗Qp Blog

and of filtered K-vector spaces

H1
logcris

(
X0/Ocris

)
⊗̂Ocris

K ∼= H1
dR

(
XK/K

)
and of K0-vector spaces, compatibly with monodromy operators and Frobenius,

H1
logcris

(
X0/Ocris

)
⊗Ocris

K0
∼= Dst

(
H1

et(XK ,Qp)
)
.

Let us remark that results similar to theorem 1.8 have been proved using different methods
in [Ol] in the case that X has good reduction and OK = W(k), but with no restriction on
the dimension of XK . The results also follow from [Vo] using a relative version of the theory
of Fontaine-Lafaille, for curves, but assuming that OK has ramification index ≤ p − 1 and for
n ≤ p−1

2
. More recently such a result was proved in [Ha] for affine curves with good reduction.

Our approach is based on [AI]. The comparison is provided after fixing a log deformation X̃ of
X to O. It has the advantage of describing the monodromy operator on log crystalline objects in
a very geometric way which in the end allows us to prove our main result. Let us recall that for
every n ≥ 1, Eet

n,b is a p-adic representation of GK . We then have the following explicit version
of theorem 1.6.

Theorem 1.9. The curve XK has good reduction if and only if the GK-representations Eet
n,b are

crystalline for every n ≥ 1.

We remark that for n = 2 the hypothesis and theorem 1.7(ii) imply that the p-adic Tate
module of the Jacobian J(XK) of XK is a crystalline GK-representation. This is known to be
equivalent to the fact that the Jacobian of XK, J(XK) has good reduction, see theorem 1.2
(from [CI]).

Let us explain our startegy for proving theorem 1.9.
• Theorem 1.8 implies that for every n ≥ 1, Eet

n is an arithmetically semi-stable étale local
system on XK , which implies that Eet

n,b is a semi-stable p-adic GK-representation.

• Theorem 1.8 also implies that Dar
log

(
Eet
n

) ∼= (Ecris
n ,∇n

)
, which implies that Dst

(
Eet
n,b

) ∼= Ecris
n,b ,

as filtered, Frobenius monodromy modules. Specially, the monodromy operator on Ecris
n,b can be

identified with the residue of the connection ∇n at Z = 0.
• Finally we choose an embedding of K ↪→ C, as fields and use it to base-change X̃ and(

Ecris
n ,∇n

)
. We obtain a family of curves X̃C over the complex open disk D, smooth and proper

over D∗ := D − {0} and semi-stable at Z = 0 and a locally free OX̃C
-module Ecris

n,C with an
integrable, log connection ∇n,C. By identifying the p-adic and complex monodromy operators,
theorem 1.9 then follows by applying T. Oda’s proposition 10 in [O].

Remark 1.10. The Theorems 1.7 and 1.8 are proven in a more general context, as we allow
the case of open curves with good compactifcations.
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2 Notations

Let K be a complete discrete valuation field of characteristic 0, with valuation ring OK and
perfect residue field k of positive characteristic p. Fix a uniformizer π of OK . We endow
S := Spec(OK) with the log structure M defined by the pre log structure N −→ OK sending

n ∈ N to πn ∈ OK . We let
(
Ŝ, M̂

)
denote the associated p-adic log formal scheme.

Write W := W(k) and we denote by O := W[[Z]] and by O −→ OK the W-algebra homomor-
phism sending Z to π. Its kernel is generated by an Eisnstein polynomial Pπ(Z), the minimal
polynomial of π over W. We define Frobenius on O to be the homomorphism given by the usual
Frobenius on W(k) and Z 7→ Zp. We write Pπ(Z) ∈W[Z] for the monic minimal polynomial of

π over W. It is a generator of Ker
(
O −→ OK

)
. We denote by S̃ := Spf(O) the associated formal

scheme for the (p, Z)-adic topology and by M̃ the log structure on S̃ associated to the prelog
structure N −→ O sending n ∈ N to Zn ∈ O. The natural closed immersion of formal schemes
Ŝ ↪→ S̃ is exact with respect to the given log structures. Denote by Ocris the p-adic completion
of the DP envelope of O with respect to the ideal

(
p, Pπ(Z)

)
. We denote by ω1

Ocris/W
∼= Ocris

dZ
Z

the continuous log 1-differential forms of Ocris relative to W
Let X be a proper curve over OK , i.e., a proper and flat scheme of relative dimension 1.

Assume that the generic fiber XK is geometrically irreducible and smooth over K and that
X → Spec(OK) is semistable. In particular, we endow X with a log structure N defined by
(i) its special fiber and (ii) finitely many disjoint sections si : Spec(OKi

) → X for i = 1, . . . , n
defined over unramified extensions OK ⊂ OKi

. We assume that if g is the genus of XK and
degsi = [Ki : K] then

g − 3 +
n∑
i=1

degsi ≥ 0 (1)

The morphism f : X → S induces a log smooth morphism f : (X,N) −→ (S,M). We let(
X̂, N̂

)
be the associated p-adic log formal scheme and f̂ :

(
X̂, N̂

)
−→

(
Ŝ, M̂

)
the associated

morphism of p-adic log formal schemes.
As the deformation theory of f̂ is unobstructed by [K2, ???] there exists a deformation

f̃ :
(
X̃, Ñ

)
−→

(
S̃, M̃

)
of f̂ . In particular, for every singular point S of Xk if the local structure

of (X,N) at S is OK [[x, y]]/(xy − π) then the local structure of
(
X̃, Ñ

)
at S is of the form

O[[Z, x, y]]/(xy − Z).
We also fix a base point b : S → X factoring through the smooth locus of X and disjoint

from the sections s1, . . . , sm and a lift b̃ : Spf(O)→ X̃ of the section b̂ : Ŝ → X̂ defined by b.

2.1 Rings of p-adic periods

We recall the definition of the crystalline period ring Acris defined in [Fo, §2.3] and of the
semistable period ring Alog defined in [K1, §3].

Choose a compatible system of n!–roots π
1
n! of π in K and a compatible system of primitive

n–roots εn of 1 for varying n ∈ N. Consider the ring

Ẽ+
OK

:= lim
←
ÔK ,

6



where the transition maps are given by raising to the p-th power. Define the elements p :=(
p, p

1
p , . . .

)
, π :=

(
π, π

1
p , · · ·

)
and ε :=

(
1, εp, · · ·

)
. The set Ẽ+

OK
has a natural ring structure [Fo,

§1.2.2] in which p ≡ 0 and a log structure associated to the morphism of monoids N → Ẽ+
OK

given by 1 7→ π. Write Ainf (OK), or simply Ainf , for the Witt ring W
(
Ẽ+
OK

)
. It is endowed

with the log structure associated to the morphism of monoids N→W
(
Ẽ+
OK

)
given by 1 7→

[
π
]
.

There is a natural ring homomorphism θ : W
(
Ẽ+
OK

)
−→ ÔK [Fo, §1.2.2] such that θ

([
π
])

= π. In

particular, it is surjective and strict considering on ÔK the log structure associated to N→ ÔK
given by 1 7→ π. Its kernel is principal and generated by Pπ

([
π
])

or by the element ξ :=
[
p
]
− p.

(i) We define Acris as the p-adic completion of the DP envelope of W
(
Ẽ+
OK

)
with respect to

the ideal generated by p and the kernel of θ.

(ii) We also define Alog as the p-adic completion of the log DP envelope of the morphism

W
(
Ẽ+
OK

)
⊗W(k) O with respect to the morphism θ ⊗ θO : W

(
Ẽ+
OK

)
⊗W(k) O −→ ÔK .

In particular,
Alog
∼= Acris {〈u− 1〉} .

More precisely, there exists an isomorphism ofAcris-algebras from the p-adic completionAcris {〈V 〉}

of the DP polynomial ring over Acris in the variable V and Alog sending V to u−1 with u :=

[
π
]

Z
;

cf. [K1, Prop. 3.3] and [Bre, §2] where the same ring is denoted Âst. We endow Acris and Alog

with the p-adic topology and the divided power filtration. We write Bcris := Acris

[
t−1
]

and
Blog := Alog

[
t−1
]
, where t := log

(
[ε]
)
, with the inductive limit topology and the filtration

FilnBcris :=
∑

m∈N Filn+mAcrist
−m and FilnBlog :=

∑
m∈N Filn+mAlogt

−m.
All these period rings are endowed with a Frobenius, compatible with the Frobenius on W

and on O introduced above, and having the property that ϕ(u) = up and ϕ(t) = pt. They are
also endowed with a continuous action of the Galois group GK , acting trivially on W(k) and on

O and acting on W
(
Ẽ+
OK

)
through its action on ÔK . Moreover, there is a derivation

d : Blog −→ Blog
dZ

Z

which is Bcris linear and satisfies d
(
(u − 1)[n]

)
= (u − 1)[n−1]udZ

Z
; see [K1, Prop. 3.3] and [Bre,

Lemma 7.1]. We let
N : Blog −→ Blog

be the operator such that d(f) = N(f)dZ
Z

. It is proven in [K1, Thm. 3.7] that Fontaine’s period
ring Bst, see [Fo, §3.1.6], is isomorphic to the largest subring of Blog on which N acts nilpotently.

Blog-admissible representations: Following [Bre, Def. 3.2] we call a Qp-adic representation V
of GK , Blog-admissible if

(1) Dlog(V ) :=
(
Blog ⊗Qp V

)GK is a free BGK
log -module;

(2) the morphism Blog ⊗BGK
log

D(V ) −→ Blog ⊗Qp V is an isomorphism strictly compatible

with the filtrations.
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We denote byMF
B

GK
log

(ϕ,N) the category of finite and free BGK
log -modules M , endowed with

(i) a monodromy operator NM compatible via Leibniz rule with the one on BGK
log , (ii) a decreasing

exhaustive filtration FilnM which satisfies Griffiths’ transversality with respect to NM and such
that the multiplication map BGK

log ×M →M is compatible with the filtrations, (iii) a semilinear
Frobenius morphism ϕM : M →M such that NM ◦ ϕM = pϕM ◦NM and detϕM is invertible in
BGK

log . If V is Blog-admissible it is proven [Bre, §6.1] that Dlog(V ) is an object ofMF
B

GK
log

(ϕ,N).

Comparison with semistable representations: Consider the category MFK(ϕ,N) of finite
dimensional K0-vector spaces D endowed with (i) a monodromy operator ND, (ii) a descending
and exhaustive filtration FilnDK on DK := D⊗K0 K, (iii) a Frobenius ϕD such that detϕD 6= 0
and ND ◦ ϕD = pϕD ◦ ND; see [CF]. Such a module is called Bst-admissible if there exists a

Qp-representation V of GK such that Dst(V ) :=
(
V ⊗Qp Bst

)GK is isomorphic to D compatibly
with monodromy operator, Frobenius and filtration after extending scalars to K. Consider the
functor

T : MFK(ϕ,N) −→MF
B

GK
log

(ϕ,N)

sending D 7→ T (D) := D ⊗K0 B
GK
log with monodromy operator ND ⊗ 1 + 1 ⊗ N , Frobenius

ϕD ⊗ ϕ and filtration defined on [Bre, p. 201] using the filtration on DK and the monodromy
operator. More precisely, there is a natural map BGK

log −→ K, sending Z to π, providing a
morphism ρ : T (D) → DK . Then, FilnT (D) is defined inductively on n by setting FilnT (D) :={
x ∈ T (D)|ρ(x) ∈ FilnDK , N(x) ∈ Filn−1T (D)

}
. There is also a natural map ι0 : BGK

log −→ K0

sending Z 7→ 0.

Proposition 2.1. [Bre] The notions of Blog-admissible representations and of Bst-admissible
representations are equivalent. For any such V , we have an identification T

(
Dst(V )

) ∼= Dlog(V )
such that

(i) Dst(V )⊗K0 K
∼= Dlog(V )⊗

B
GK
log

K as filtered K-vector spaces considering on the RHS the

image filtration.

(ii) Dst(V ) ∼= Dlog(V ) ⊗ι0Ocris
K0 as K0-vector space so that the monodromy operator on the

LHS is the residue of the monodromy operator on the RHS.

Proof. The first claim is proven in [Bre, Thm. 3.3]. One knows that T is in fact an equivalence due
to [Bre, Thm. 6.1.1]. From the the proof of loc. cit. one deduces also the claimed compatibility
of filtrations and the relation between the monodromy operators.

3 Universal unipotent objects

3.1 The Kummer étale site

We define the Kummer étale site Xket associated to
(
X,N

)
as follows. The objects are Kum-

mer étale morphisms g :
(
Y,NY

)
→ (X,N) in the sense of [Il, §2.1]. The morphisms from

an object (Y,NY ) → (X,N) to an object (Z,NZ) → (X,N) are morphisms t :
(
Y,NY

)
→(

Z,NZ

)
of log schemes over (X,N). The coverings are collections of Kummer étale morphisms
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{(Yi, Ni)→ (Y,NY )}i such that Y is the set theoretic union of the images of the Yi’s. This
defines a site; see loc. cit.

An object U of Xket is called small if it is affine, connencted and there exists an étale
morphism (i) U → Spec

(
OK
[
T, T−1

])
which is a chart for the log structure on U considering

on Spec
(
OK
[
T, T−1

])
either the log structure defined by the special fiber or the log structure

defined by the special fiber and by the section T = 1 or (ii) U → Spec
(
OK [S, T ]/(ST − π)

)
which is a chart for the log structure on U considering on Spec

(
OK
[
T, S]/(ST − π)

])
the log

structure defined by its special fiber.
In the following we will consider the following categories:

3.2 The étale category

Denote UniQp

(
Xket
K

)
the category of Qp-unipotent local systems on XK for the Kummer étale

topology. This is the full tensor subcategory of Qp-sheaves L on Xket
K

with the property that L
admits a filtration

L = L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ Ln+1 = 0

such that
Li/Li+1 ' Qri

p

for each i. We say that the index of unipotency of L is ≤ n. Note that we use 1 := Qp here to
denote the constant sheaf on XK .

We let b∗
K

: UniQp

(
Xket
K

)
−→ VectQp be the functor associating to L the Qp-vector space

b∗
K

(L) = L(K). It is exact and it commutes with tensor products and duals. Moreover 1 =
b∗
K

(1) = Qp

3.3 The de Rham category

Write UnidR

(
XK , NK

)
for the full subcategory of the category of locally free OXK

-modules M ,
endowed with an integrable log connection ∇ with respect to the log structure NK , which are
unipotent. Namely we require that (M,∇) admits a filtration by OXK

-modules

M = M1 ⊃M2 ⊃ · · · ⊃Mn ⊃Mn+1 = 0

such that each M i is preserved by the connection ∇ and M i/M i+1, with the induced connection,
is isomorphic to 1mi with 1 :=

(
OXK

, d
)
, for each i. We also say that the index of unipotency

of (M,∇) is ≤ n. The category UnidR

(
XK , NK

)
admits tensor products and duals.

We let b∗K : UnidR

(
XK , NK

)
−→ VectK be the functor associating to (M,∇) the K-vector

space defined by the pull back of M via bK . It is exact and it commutes with taking tensor
products and duals and it sends 1 to 1 = K.

3.4 The crystalline category

Let X0 be the reduction of X modulo p and let us recall that we denoted by Ocris the p-
adic completion of the DP envelope of O := W[[Z]] with respect to the kernel of the map
O → OK/pOK defined by Z 7→ 0. Ocris is endowed with the log structure induced from the one
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on O. Following [K2, §5], consider the site
(
X0/Ocris

)cris

log
, consisting of quintuples

(
U, T,MT , ι, δ

)
where

(a) U → X0 is Kummer étale,

(b)
(
T,MT

)
is a fine log scheme over Ocris (with its log structure) in which p is locally

nilpotent,

(c) ι : U → T is an exact closed immersion over Ocris,

(d) δ is DP structure on the ideal defining the closed immersion U ⊂ T , compatible with the
DP structure on Ocris.

We let Cris(X0/O) be the category of crystals of finitely presented OX0/Ocris
-modules on(

X0/Ocris

)cris

log
, cf. [K2, Def 6.1]. By [Be, Prop. IV.1.7.6] it is an abelian category. Given

a crystal E let En be the crystal En := E/pnE . It defines a ODP
X̃
/pnODP

X̃
-module, endowed

with integrable logarithmic connection ∇n relative to Ocris/p
nOcris; see [K2, Thm. 6.2]. Here

ODP
X̃

:= OX̃⊗̂OOcris. Let EX̃ := lim
∞←n

En be the associated sheaf of ÔDP
X̃

-modules on Xket
0 with

log connection ∇E
X̃

relative to Ocris. It follows from [Be, Prop. IV.1.1.3] that this crystal is

finitely presented if and only if EX̃ is finitely presented as ODP
X̃

-module. By [Be, Cor. IV.1.7.7]

a sequence of crystals is exact if and only if the associated sequence of ODP
X̃

-modules is exact.

Let Ind
(
Cris(X0/O)

)
be the abelian category of inductive systems consisting of the inductive

system E → E → E → · · · where E is a crystal of finitely presented OX0/Ocris
-modules and the

transition maps E → E are multiplication by p. We denote by 1 the structure sheaf isocrystal.

Let Unilog

(
X0/Ocris

)
be the full subcategory of Ind

(
Cris(X0/O)

)
consisting of isocrystals E ,

which are unipotent. More precisely, we require that E admits a filtration

E = E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 = 0

such that each E i is a log isocrystal of X0 with respect to Ocris and for every i the quotient
E i/E i+1 is isomorphic to 1mi . Also this case, we say the index of unipotency is ≤ n. The
category Unilog

(
X0/Ocris

)
is closed under tensor products and duals.

We let b̃∗ : Unilog

(
X0/Ocris

)
−→ Vect

Ocris

[
p−1
] be the functor associating to E the Ocris

[
p−1
]
-

module defined by pull back of EX̃
[
p−1
]

via b̃. Here Vect
Ocris

[
p−1
] is the category of finite and

free Ocris

[
p−1
]
-modules. The functor b̃∗ is exact and it commutes with taking duals and tensor

products. It sends 1 to 1 := Ocris

[
p−1
]
.

3.5 Axiomatic characterization and properties of the universal unipo-
tent objects

Let Uni be any one of the categories above. Let C be the category of VectQp in the étale case,
VectK in the de Rham case and Vect

Ocris

[
p−1
] in the crystalline case. We call an object of Uni

constant if it is of the form T ⊗1 1 for some T in C. We simply write F : Uni → C, in short
L→ Lb, for the functor defined in each case. It sends 1 to 1, it is exact and it commutes with
duals and tensor products.
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Let A be the category of Qp-adic sheaves on Xket
K

in the étale case, the category of finite
OXK

-modules with integrable logarithmic connection in the de Rham case and the category
Ind
(
Cris(X0/O)

)
in the log crystalline case. Then A is an abelian category with enough in-

jectives and Uni ⊂ A is a full sub-category. Given two objects E and F in Uni, we write
Exti(E ,F) for the i-th derived functor of HomA(E ,F). We denote by Hi(E) := Hi

A(E) the fol-
lowing: in the étale case Hi

(
Xket
K
, E
)
, in the de Rham case Hi

dR

(
XK , E

)
and in the crystalline

case Hi
logcris

(
(X0/Ocris), E

)
. Note that in each case

1 ∼= Hom
(
1,1
)
.

Moreover using that for E in Uni the functor E∨ ⊗ is exact, we get that

Exti(E ,F) ∼= Hi(E∨ ⊗F).

We define the category Uni∗ taking for objects pairs (V , v), where E is an object of Uni and
v ∈ Vb. A morphism (V , v) → (W , w) is a morphism g : V → W in Uni such that g9V 0 = u.
Thus, Uni∗ is the category of ‘pointed objects’ in Uni.

Let Uni be any one of the categories of unipotent étale, de Rham or crystalline sheaves attached
to X.

Definition 3.1. A projective system of objects {(En, en)}n≥1 in Uni∗ such that En has index of
unipotency ≤ n for every n ≥ 1 will be called universal if for every (V , v) object in Uni∗ with
index of unipotency ≤ n there is a unique morphism in Uni∗, g : (En, en) −→ (V , v).

One easily sees from the universal property that if a universal projective system exists in
Uni∗ then it is unique up to unique isomorphism.

For the rest of this section we present an axiomatic characterization of universal projective
systems and in the next section we’ll give an inductive construction which will show that such
systems exist. For affine curves with good reduction this was accomplished in [Ha].

Consider a system
{(
En, en

)}
n∈N in Uni∗ with transition morphisms fn :

(
En+1, en+1

)
→(

En, en
)

such that

(i) E1 = 1 and e1 = 1,

(ii) fn : En+1 → En is surjective (as a morphism in A) and has constant kernel Tn ∼= Tn ⊗ 1
for every n ∈ N,

(iii) the coboundary map T∨n
∼= Hom

(
Tn,1

)
→ Ext1

(
En,1

)
, defined by the sequence of Ext-

groups associated to the short exact sequence 0→ Tn → En+1 → En → 0 inA, is an isomorphism.

From (iii) we immediately get

Lemma 3.2. For every n the map Hom
(
En,1

)
→ Hom

(
En+1,1

)
is an isomorphism. In partic-

ular, 1 ∼= End(1) ∼= Hom
(
En,1

)
.

For every n the map Ext1
(
En,1

)
→ Ext1

(
En+1,1

)
is the zero map.

We prove the analogue of [Ha, Prop. 2.6]:
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Proposition 3.3. A projective system {
(
(En, en), fn

)
}n≥1 satisfying the properties i), ii), iii)

above is universal.

Proof. We have to prove that if (V , v) is an object of Uni∗ with index of unipotency ≤ n, then
there is a unique morphism g :

(
En, en

)
→
(
V , v

)
such that gb(en) = v.

We proceed by induction on n. Let n = 1. Then V ∼= 1r is constant and there is a unique
map E1 = Qp → V that takes e1 = 1 ∈ E1,b to v ∈ Vb. Assume that statement true for n and let
V have index ≤ n+ 1. We know that V admits a filtration

V = V1 ⊃ V2 ⊃ · · · Vn+1 ⊃ Vn+2 = 0

such that V i/V i+1 ' 1ri . Consider the extension

(S) 0 −→ Vn+1 −→ V −→ V/Vn+1 → 0,

where V/Vn+1 now has index ≤ n. Let v̄ ∈
(
V/Vn+1

)
b

be the image of v. Thus, by the inductive
hypothesis there is a unique morphism

φn : (En, en) −→ (V/Vn+1, v̄).

We use it to pull-back the extension S, then φ∗n(S) is an extension of En by a constant sheaf
Vn+1. We pull-back this extension to En+1 via the projection fn : En+1 → En and notice that the
new extension must split (by Lemma 3.2). Therefore, we get a morphism of extensions

0 −→ Tn −→ En+1 −→ En −→ 0y yψ yφn
0 −→ Vn+1 −→ V −→ V/Vn+1 −→ 0

We have v − ψ(en+1) ∈ Vn+1
b . Since Vn+1 is constant, there exists a global section s such that

sb = v − ψ(en+1). Via the constant quotient En+1 −→ E1 = Qp, this then gives us a map h
from En+1 to Vn+1 that takes en+1 to v − ψ(en+1). If we set φn+1 = ψ + h, then φn+1(en+1) = v.
Suppose φ′n+1 is another lifting of φn. Then

α := φn+1 − φ′n+1 : En+1 −→ Vn+1

and α(en+1) = 0. Since Vn+1 is constant and Hom
(
En+1,1

)
= End(1) = 1 by Lemma 3.2,

the map α factors through a quotient map E1 = 1 −→ Vn+1 that takes e1 to 0. Thus, by the
uniqueness for n = 1, we have α = 0, and φn+1 = φ′n+1.

3.6 Existence of universal projective systems

As in the previous section we let Uni∗ denote any one of the categories of pointed unipotent
étale, de Rham, respectively crystalline sheaves associetated to X and we construct a universal
pointed projective system

{(
En, en

)}
n≥1

in Uni∗ with the properties of proposition 3.3. We’d

like to point out that in all cases (i.e. étale, de Rham and crystalline) Hi
(
1
)

is a free 1 module
of finite rank for i = 0, 1, 2 and we have a perfect, alternating pairing called ”cup product”
∪ : H1

(
1
)
× H1

(
1
)
−→ H2

(
1
) ∼= 1. We denote by

{(
Eet
n , e

et
n

)}
n∈N the universal projective
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system in the étale case,
{(
EdR
n , edR

n

)}
n∈N the universal projective system in the de Rham case

and
{(
Ecris
n , ecris

n

)}
n∈N the universal projective system in the crystalline case.

First of all we define inductively on n ≥ 1 finite and locally free 1-submodules Rn ⊂(
H1
(
1
))⊗n

. The inductive definition will give us sub-spaces

ιn : Rn+1 ↪→ Rn ⊗1 H1
(
1
)
.

Define
R1 := H1

(
1
)
, R2 = Ker

(
γ1

)
,

with
γ1 = ∪ : H1

(
1
)
⊗ H1

(
1
)
−→ H2

(
1
)

the cup product. For n ≥ 2 set

γn : Rn ⊗1 H1
(
1
) ιn−1⊗1−→ Rn−1 ⊗1 H1

(
1
)
⊗1 H1

(
1
) 1⊗∪−→ Rn−1 ⊗1 H2

(
1
)
,

put Rn+1 = Ker (γn) and define ιn : Rn+1 ↪→ Rn ⊗1 H1
(
1
)

to be the natural inclusion.

Lemma 3.4. For every n the map γn is surjective for n ≥ 1.

Proof. Notice that H2
(
1
)

is a free 1-module of rank 1 if r = 0 and it is 0 if r 6= 0 by Poincaré
duality. Thus the lemma is trivial if r 6= 0. We may then assume that r = 0. In this case the
group H1

(
1
)

is a free 1-module of rank 2g ≥ 4 due to assumption (1). We proceed by induction
on n. The map γ1 is the cup product

∪ : H1
(
1
)
⊗1 H1

(
1
)
−→ H2

(
1
)
,

which is a perfect pairing by Poincaré duality. In particular it is surjective.

Proposition 3.5. There exists a pointed system
{(
En, en

)}
n∈N such that E1 = 1 and e1 = 1 and

we have exact sequences
0 −→ Tn −→ En+1 −→ En −→ 0

with the following properties

(i) Extj
(
En,1

)
is a finite and projective 1-module for j = 0, 1 and 2. It is non zero for

j = 1;

(ii) Tn = Tn ⊗1 1 is a constant object and Tn ∼= Rn,∨ := Hom1

(
Rn, 1

)
;

(iii) the map T∨n = Hom
(
Tn,1

)
→ Ext1

(
En,1

)
, induced on Ext-groups by the above short

exact sequence, is an isomorphism;

(iv) the map Ext2
(
En+1,1

)
→ Ext2

(
Tn,1

)
= T∨n ⊗1 H2(1) is an isomorphism;

(v) the sequence

0 −→ Ext1
(
En+1,1

) αn−→ Ext1
(
Tn,1

) βn−→ Ext2
(
En,1

)
−→ 0

is an isomorphism;

(vi) identifying Rn+1 ∼= T∨n+1 = Hom
(
Tn+1,1

) ∼= Ext1
(
En+1,1

)
via (ii) and (iii) and Ext1

(
Tn,1

) ∼=
T∨n ⊗1 Ext1

(
q,1

) ∼= Rn ⊗1 H1
(
1
)

the map αn in (v) is the map ιn.

In particular, such a system is universal due to Proposition 3.3.
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Remark 3.6. The reader may have noticed that the properties i) to vi) in proposition 3.5 are
not independent. For example v) is a consequence of iii) and iv) etc. We prefer to list them all
as we did for they all appear in the proof of the proposition.

Proof. We proceed by induction on n. For n = 1 notice that Extj
(
1,1
) ∼= Hj

(
1
)
, j = 0, 1

and 2, are the cohomology groups of the structure sheaf. Recall that X → S is a geometrically
connected semistable curve. Thus for j = 0 the group H0

(
1
)

coincides with 1. For j = 1 it
is a free 1-module in the étale, de Rham and crystalline cases of rank ≥ 2g + r − 1 ≥ 2, with
r =

∑n
i=1 degsi, due to assumption (1). Eventually H2

(
1
)

is a free 1-module of rank 1 if r = 0
and it is trivial if r 6= 0 by Poincaré duality.

Assume that
(
En, en

)
n≤N has been constructed so that (i)–(ii) of the proposition hold for

all 1 ≤ n ≤ N , (iii)–(vi) hold for n < N and (vii) rkTn ≥ rkTn−1 for every n ≤ N . Set TN :=
Ext1

(
EN ,1

)∨
. By assumption it is a non-zero, free 1-module of finite rank. Put TN := TN ⊗ 1.

It then follows that

Ext1
(
EN , TN

) ∼= TN ⊗ Ext1
(
EN ,1

) ∼= TN ⊗ T∨N ∼= End(TN).

Consider the extension
0 −→ TN −→ EN+1 −→ EN −→ 0

defined by the image of the identity map Id ∈ End(TN). Let eN+1 ∈ EN+1,b be any element
mapping to eN . The coboundary map T∨N = Hom

(
TN ,1

)
→ Ext1

(
EN ,1

)
is the isomorphism

Ext1
(
EN , TN

) ∼= TN ⊗ T∨N described above and, as TN 6= 0, it is an isomorphism. This proves
the inductive step in (ii) and (iii) except for the identification T∨N

∼= RN . Using the long exact
sequence in cohomology associated to

0 −→ TN −→ EN+1 −→ EN −→ 0

we also deduce that the map Ext1
(
EN ,1

)
→ Ext1

(
EN+1,1

)
is 0. In particular we have the exact

sequence

0 −→ Ext1
(
EN+1,1

) αN−→ Ext1
(
TN ,1

) βN−→ Ext2
(
EN ,1

)
.

Using the identifications

Ext1
(
TN ,1

) ∼= T∨N ⊗1 Ext1
(
1,1
) ∼= T∨N ⊗1 H1(1)

and Ext2
(
EN ,1

) ∼= Ext2
(
TN−1,1

) ∼= T∨N−1⊗1 H2(1) by inductive hypothesis, the map βN defines
a morphism

β′N : T∨N ⊗1 H1(1) −→ T∨N−1 ⊗1 H2(1)

and T∨N+1 is the kernel of β′N . Thanks to the identification T∨N = Ext1
(
EN ,1

)
we get Ext1

(
TN ,1

) ∼=
Ext1

(
EN ,1

)
⊗1 Ext1

(
1,1
)

providing a second description of βN as a map

β′′N : Ext1
(
EN ,1

)
⊗1 Ext1

(
1,1
)
−→ Ext2

(
EN ,1

)
as follows. Given G ∈ Ext1

(
EN ,1

)
corresponding to a unique morphism fG : TN → 1 and a class

F ∈ Ext1
(
1,1
)

we take the unique extension F ′ ∈ Ext1
(
TN ,1

)
obtained by pulling–back the
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extension F via fG and then β′′N
(
G ⊗ F

)
is the Yoneda two extension of EN by 1 given by the

composite complex

F ′ ∗ EN+1 := 0 −→ 1 −→ F ′ −→ TN −→ EN+1 −→ EN −→ 0

(see [Ve, §3.2.4]). In particular we have a natural morphism of complexes

F ′ ∗ EN+1 = 0 −→ 1 −→ F ′ −→ TN −→ EN+1 −→ EN −→ 0y ‖
y y y ‖

F ∗ G = 0 −→ 1 −→ F −→ 1 −→ G −→ EN −→ 0.

Thus β′′N
(
G ⊗F

)
= G ∗F by [Ve, Prop. 3.2.2]. Due to [Ve, Prop. 3.2.5] the map

(
G,F

)
7→ G ∗F

is minus the cup product of Ext-groups in the sense of derived functors. Consider the diagram:

Ext1
(
EN ,1

)
⊗1 Ext1

(
1,1
) β′′N−→ Ext2

(
EN ,1

)
αN−1 ⊗ id

y yo
Ext1

(
TN−1,1

)
⊗1 Ext1

(
1,1
) δN−→ Ext2

(
TN−1,1

)yo yo
T∨N−1 ⊗1 H1

(
1
)
⊗1 H1

(
1
) Id⊗∪−→ T∨N−1 ⊗1 H2

(
1
)
.

(2)

Here the map δN is the cup product (with a minus sign). The top square is defined by the
inclusion TN−1 ⊂ EN so that it commutes as we have proven that β′′N is the cup product (with
a minus sign). The right top vertical map is an isomorphism by inductive hypothesis. The
lower square is defined identifying Ext1

(
TN−1,1

) ∼= T∨N−1 ⊗1 Ext1
(
1,1
)

and Ext2
(
TN−1,1

) ∼=
T∨N−1 ⊗1 Ext2

(
1,1
)

so that we can can re-write the middle row as

T∨N−1 ⊗1 Ext1
(
1,1
)
⊗1 Ext1

(
1,1
)
−→ T∨N−1 ⊗1 Ext2

(
1,1
)
,

which is the identity on T∨N−1 and it is the cup product Ext1
(
1,1
)
⊗1 Ext1

(
1,1
)
−→ Ext2

(
1,1
)
.

We deduce that identifying Ext1
(
1,1
) ∼= H1

(
1
)

and Ext2
(
1,1
) ∼= H2

(
1
)
, the map δN is obtained,

up to sign, via the cup product

∪ : H1
(
1
)
⊗1 H1

(
1
)
−→ H2

(
1
)
.

Hence, also the lower square commutes. As αN−1 is injective and coincides with ιN−1 by inductive
hypothesis, we conclude that also αN−1⊗ id is injective, αN = ιN and T∨N+1 = Ker

(
β′′N
)

coincides
with RN+1. This concludes the proof of the inductive step in (ii) and proves the inductive step
of (vi).

Using the Extj = 0 for j ≥ 3 as X → S is of relative dimension 1, to prove (iv) and (v) for
n = N it suffices to show that the map

βN : Ext1
(
TN ,1

)
−→ Ext2

(
EN ,1

)
is surjective. Using the identifications of βN with β′′N and the commutativity of the diagram
(2), the map βN is the map γN of Lemma 3.4. As the later is surjective by loc. cit. also βN
is surjective. In particular, Ext2

(
EN+1,1

) ∼= T∨N ⊗1 H2(1) is a finite and free 1-module. As
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Ext1
(
TN ,1

) ∼= T∨N ⊗1 H1
(
1
)

it also follows that TN+1 = Ext1
(
En+1,1

)
= Ker(βN) is a finite and

projective 1-module of rank equal to

rkTN+1 = rkTN · rkH1
(
1
)
− rkTN−1 · rkH2

(
1
)
.

As rkTN ≥ rkTN−1 by inductive hypothesis, rkH1
(
1
)
≥ 2 and rkH2

(
1
)
≤ 1 as remarked above,

it follows that rkTN+1 ≥ rkTN and in particular TN+1 6= 0.

Now that we have proved the existence of the universal projective systems in the three categories
of unipotent sheaves on X we will list some of their specific properties.

Corollary 3.7. There is a unique action of GK on the pointed étale system
{(
Eet
n , e

et
n

)}
n

lifting
the action on XK. Furthermore, each eet

n is GK-invariant.

Proof. For every σ ∈ GK we have a unique morphism fσ :
(
Eet
n , e

et
n

)
→
(
σ∗(Eet

n ), σ∗(eet
n )
)

by
universality. The map σ 7→ fσ defines an action by uniqueness. In particular each fσ is an
isomorphism with inverse fσ−1 . As b is a OK-valued point, it is GK-invariant so that Eet

n,b =
σ∗(Eet

n )b and via this identification σ∗(eet
n ) = eet

n .

Let us recall the sequence of object {Rn}n≥1 in UniQp(Xket
K

)∗ and the fact that we have
denoted

Tn = HomQp

(
Rn,Qp

)
.

We deduce that Tn is naturally a Qp-representation of GK , quotient of
(
H1
(
Xket
K

))⊗n
. The

group H1
(
Xket
K

)
is the étale cohomology of the complement in XK of the sections qni=1si ⊗ K

defining the log structure NK (see [Il, Cor. 7.5]). Since the sections si are unramified over OK by
assumption, the latter H1

(
Xket
K

)
is a semistable representations of GK in the sense of Fontaine

??????. The same holds for its n-th tensor power and any of its quotients ?????. We deduce
from proposition 2.1:

Corollary 3.8. For every n the GK-representation Tn is Blog-admissible.

In the de Rham case, we will need a compatibility result under base change. Let R be
a complete noetherian local ring and let ιR : Ocris → R be a continuous morphism of W(k)-

algebras. Consider the base change X̃R := X̃⊗̂OSpf(R) as a p-adic formal scheme. It inherits a

log structure ÑR from the base change of the log structure on X̃. Also the base change of b̃ via ι
defines a section b̃R : Spf(R)→ X̃R. Consider the category UnidR

(
X̃R, ÑR

)
of unipotent locally

free sheaves OX̃R
-modules with integrable log connection relative to Spf(R) and the category

Uni∗dR

(
X̃R, ÑR

)
where we further consider a section of the pull-back via b̃R. For example, we

will consider the following two cases which will be important later:

(i) The unique map of W(k)-algebras Ocris → OK mapping Z → π;

(ii) The unique map of W(k)-algebras Ocris →W(k) [[x]] mapping Z → px.

On the other hand, as R is a complete local ring, X̃ is a projective formal scheme over Spf(R)
and we can algebraize it to a projective algebraic curve XR with log structure NR and with a
section bR by GAGA. Consider the category Uni∗dR

(
XR, NR

)
of unipotent locally free sheaves

OXR
-modules with integrable log connections relative to Spec

(
R
)

and sections of the pull-back
via bR.
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Lemma 3.9. (i) For every n the universal object in Uni∗dR

(
X̃R, ÑR

)
of index ≤ n exists and its

base change to R[p−1] is uniquely isomorphic to the base change of
(
Ecris
n,X̃

, ecris
n

)
via ιR.

(ii) For every n the universal object in Uni∗dR

(
XR, NR

)
of index ≤ n exists and its base via

the map of ringed toposes ρ : X̃R → XR is the universal object in Uni∗dR

(
X̃R, ÑR

)
of index ≤ n.

Proof. (ii) The existence statements are proven arguing as in Proposition 3.5. Indeed, it follows
from loc. cit. that the cohomology groups Extj

(
,1
)

of the universal objects (for j = 0, 1 and

2) are free R-modules of finite rank both in the case of X̃R and of XR, non-zero for j = 1. In
particular, due to [Ka, Cor. 8.6] their reductions modulo a power ma of the maximal ideal m of
R will still satisfy the properties of Proposition 3.5 and will provide the universal object of the
reduction of X̃R (resp. XR) modulo ma thanks to Proposition 3.3. By universality we get (ii).

(i) Again using the system of universal pointed unipotent objects in Cris(X0/O) of Corollary
3.7 and since the cohomology groups Extj

(
,1
)

of the universal objects (for j = 0, 1 and 2) are
finite and projective Ocris-modules of finite rank (non zero for j = 1), their reduction modulo pn

and base change to R/mn will satisfy the properties of Proposition 3.5 for the reduction of XR

modulo mn. And then (i) follows from Proposition 3.3.

3.7 Fundamental groups

Following the discussion in [Ha, §2] we show how the existence of an object as in Proposition 3.3
allows us to construct a fundamental group scheme. It follows from 3.3 that En,b ∼= End(En) via
the map taking w ∈ En,b to the unique endomorphism g : En → En such that gb(en) = w. Hence,
An := En,b has a (non necessarily commutative) ring structure having en as identity element. Set
A∞ := lim

∞←n
An. For every n and m there is a unique morphism cn,m : En+m → En ⊗ Em sending

en+m → en ⊗ em. Let cn,m,b : En+m,b → En,b ⊗1 Em,b be the induced map and let

c : A∞ −→ A∞ ⊗1 A∞

be the limits of the morphisms cn,m,b over all n and m. Let ε∞ : A∞ → 1 be the map induced by
the projection εn : En,b → E1,b = 1. Then, A∞ has a natural structure of co-commutative and co-
associative Hopf algebra with comultiplication c∞ and co-unit ε. Its dual A∨∞ := HomC

(
A∞, 1

)
is then a commutative, associative, unitary ring with Hopf algebra structure. Let Guniv :=
Spec

(
A∨∞) be the associated group scheme over Spec(1), called the fundamental group scheme

of Uni. It is flat over Spec(1).

Depending on the category we are working in we write Get
(
(XK , NK), bK

)
, Gcris

(
(X,N), b̃

)
or GdR

(
(XK , NK), bK

)
for Guniv.

Proposition 3.10. In the étale and in the de Rham case the category Uni together with the fibre
functor F : Uni→ C is a neutral Tannakian category, equivalent to the category of representations
of Guniv on finite dimensional 1-vector spaces.

Proof. See [Ha, Thm. 2.9].
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4 Geometrically semi-stable sheaves

4.1 Faltings’ site and Fontaine’s period sheaves

We provide the analogue of the constructions in §2.1 in the relative setting. In [AI, §2.2.3] we
have introduced a site XK called Faltings’ site as follows:

i) the objects of the underlying category consist of pairs
(
U,W

)
such that U ∈ Xket and

W ∈ U fket
K

is Kummer finite étale over UK ;

ii) a morphism (U ′,W ′) −→ (U,W ) consists of a pair (α, β), where α : U ′ −→ U is a morphism

in Xket and β : W ′ −→ W ×UK
U ′
K

is a morphism in U
′,fket

K
;

iii) the topology is generated by the following families {(Ui,Wi) −→ (U,W )}i∈I :
α) {Ui −→ U}i∈I is a covering in X fket and Wi

∼= W ×UK
Ui,K for every i ∈ I.

or

β) Ui ∼= U for all i ∈ I and {Wi −→ W}i∈I is a covering in U fket
K

.

We have morphisms of sites

v : Xket −→ XK , U 7→
(
U,UK

)
and

z : XK −→ Xket
K
, (U,W ) 7→ W,

inducing a morphism of associated toposes of sheaves

v∗ : Sh
(
XK

)
−→ Sh

(
Xket

)
, z∗ : Sh

(
Xket
K

)
−→ Sh

(
XK

)
.

In [AI, §2.3] we have also defined an ind-continuous sheaf of periods Blog i.e., this sheaf is an
inductive limit of inverse systems of sheaves. We summarize its key properties:

(1) it is a sheaf of v∗
(
OX̃
)
⊗̂OBlog-modules. Here v∗

(
OX̃
)
⊗̂OBlog is viewed as the inductive

limit with respect to the multiplication by t on the inverse system v∗
(
OX̃
)
⊗̂OAlog/(p, Z)n for

n ∈ N;

(2) there is an integrable connection ∇W(k) : Blog −→ Blog⊗O
X̃
ωX̃/W(k) (here we write ωX̃/W(k)

for the module of log differentials and we set ωX̃/W(k) for v∗
(
ωX̃/W(k)

)
by abuse of notation).

(3) thanks to [AI, §2.3.3& §2.3.4] Blog it is endowed with a decreasing, exhaustive filtration
FilnBlog by ind-continuous sheaves. The connection ∇W(k) satisfies Griffiths’ transversality with
respect to the filtration;

(4) For every small object U = Spec(RU) of Xket and for every choice of Frobenius on the

open Ũ of X̃ defined by the special fiber Uk of U , the sheaf Blog restricted to objects over
(
U,UK

)
is endowed with a Frobenius morphism compatible with Frobenius on B∇cris and B∇log.

4.2 Localizations

Fix (U,MU) with U = Spec(RU) a small object of Xket, mapping surjectively onto Spec(OK), an
algebraic closure CU of Frac(RU) and Clog

U = (CU , NC) a log geometric point of
(
Spec(RU), NU

)
18



over CU . Let Ũ = Spf
(
R̃U

)
be the formal open subscheme of X̃ associated to the special fiber

Uk of U and ÑU the induced log structure on Ũ .
Let GUK

be the Kummer étale Galois group πlog
1

(
Spec

(
RU [p−1]

)
,Clog

U

)
, see [Il, §4.5], classifying

Kummer étale covers of Spec
(
RU [p−1]

)
. It sits in an exact sequence

0 −→ GUK
−→ GUK

−→ GK −→ 0

where GUK
is the geometric Kummer étale Galois group πlog

1

(
Spec

(
RU ⊗OK

K
)
,Clog

U

)
.

We write
(
RU , NU

)
for the direct limit of all the normal extensions RU ⊗OK

OK → S, all
log structures NS on Spec(S[1/p]) and all maps

(
RU,K , NU,K

)
→
(
S[1/p], NS

)
→
(
CU , NC

)
such

that (RU,K , NU,K)→ (S[1/p], NS) is finite Kummer étale. In [AI, §2.2.6] we have explained how
to associate to a (ind-continuous) sheaf F on XK a continuous representation

F(RU) := lim
W=Spec(S[1/p])

F
(
U,W )

of GUK
, where the limit is taken over all (S,NS). Next we will describe the localizations of the

sheaves B∇cris, B∇log and Blog.
Put

Ẽ+

RU
:= lim

←
RU/pRU

where the projective limits are taken with respect to Frobenius x 7→ xp, with log structure
provided by the the inverse image of the log structure on RU/pRU defined by NU . We get an

induced log structure on W
(
Ẽ+

RU

)
applying the Teichmüller lift of the log structure on Ẽ+

RU
.

There is a natural map Θ

Θ: Ẽ+

RU
−→ R̂U ,

strict with respect to the log structures. Extending the morphism Θ R̃U -linearly we obtain a
homomorphism of R̃U–algebras

ΘR̃U ,log : W
(
Ẽ+

RU

)
⊗W(k)R̃U −→ R̂U .

We consider on W
(
Ẽ+

RU

)
⊗W(k)R̃U the log structure defined as the product of the log structures

on W
(
Ẽ+

RU

)
and on R̃U . Then, ΘR̃U ,log respects the log structures.

Let Alog(R̃U) be the p–adic completion of the log divided power envelope
(
W
(
Ẽ+

RU

)
⊗W(k)R̃U

)logDP

of W
(
Ẽ+

RU

)
⊗W(k)R̃U with respect to Ker

(
ΘR̃U ,log

)
(compatible with the canonical divided power

structure on pW
(
Ẽ+

RU

)
⊗W(k)R̃U) in the sense of [K2, Def. 5.4]. It is endowed with a filtration

coming from the DP filtration. For every choice of a lift of Frobenius on R̃U , compatible with
the given Frobenius on O, we get an induced Frobenius morphism on Alog

(
R̃U

)
. Define

Blog

(
R̃U

)
:= Alog

(
R̃U

)[
t−1
]
,

with induced filtration and Frobenius, once chosen a lift of Frobenius on R̃U . It follows from
[AI, §2.3.6]:
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Proposition 4.1. We have an isomorphism of algebras, compatible with filtrations, actions of
GUK

and Frobenius: Blog

(
RU

) ∼= Blog

(
R̃U

)
Recall that we have chosen a OK-valued point b of X and a O-valued point b̃ of X̃ lifting

b̂, the OK-valued point associated to X̂. Choose a small open subscheme U of X such that b
factors through U . Thus b defines a ring homomorphism RU → OK . Choose an extension to
a morphism b : RU → OK . Then b defines a morphism Ẽ+

RU
→ Ẽ+

OK
and hence a morphism on

Witt vectors w(b). We get a commutative diagram

W
(
Ẽ+

RU

)
⊗W R̃U

Θlog−→ R̂Uyw(b)⊗ b̃
yb̂

W
(
Ẽ+
OK

)
⊗W O

θ⊗θO−→ ÔK

This induces a morphism Alog

(
R̃U

)
−→ Alog and, inverting t, a morphism of Blog-algebras

blog : Blog

(
R̃U

)
−→ Blog (3)

4.3 Geometrically and arithmetically semistable sheaves

Qp-adic étale sheaves. By a p–adic sheaf L on XK we mean a continuous system {Ln} ∈
Sh(XK)N such that Ln is a locally constant sheaf of Z/pnZ–modules, free of finite rank, and Ln =
Ln+1/p

nLn+1 for every n ∈ N. The category of p-adic sheaves onXK is an abelian tensor category.
Define Sh(XK)Qp to be the full subcategory of Ind

(
Sh(XK)N

)
consisting of inductive systems

of the form (L)i∈Z where L is a p-adic étale sheaf and the transition maps L → L are given by
multiplication by p. The functor z∗ is a fully faithful functor of abelian tensor categories from
Sh(XK)Qp to the category of ind-continuous sheaves on XK . Abusing notations we still write L
instead of z∗(L).

4.3.1 The functor Dgeo
cris

Given a Qp–adic sheaf L on Xket
K

define

Dgeo
cris(L) := vK,∗

(
L⊗ZpBlog

)
.

It is a sheaf of OX̃⊗̂OBlog-modules in Sh
(
Xket

)
. We get a functor

Dgeo
cris : Sh

(
XK

)
Qp
−→ Mod

(
OX̃⊗̂Blog

)
.

We have the following explicit description given in [AI, §2.4.3]. For every small object (U,NU)
of Xket, let V := L

(
RU

)
be the localization of L. It is a representation of GUK

. Set Dgeo
log

(
V
)

:=(
V ⊗Qp Blog

(
R̃U

))GUK
. Then, Dgeo

cris

(
L|U
) ∼= Dgeo

log

(
V
)
.

Definition 4.2. A Qp-adic sheaf L = {Ln}n on Xket
K

is called geometrically semistable if
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i. there exists a coherent OX̃⊗̂OAlog-submodule D(L) of Dgeo
cris

(
L
)

such that:

(a) it is stable with respect to the connection ∇L,W(k) and ∇L,W(k)|D(L) is integrable and
topologically nilpotent on D(L);

(b) Dgeo
cris

(
L
) ∼= D(L)⊗Alog

Blog;

(c) there exist integers h and n ∈ N such that for every small object U of Xket the map
thϕL,U sends D(L)|U to D(L)|U and multiplication by tn on D(L)|U factors via thϕL,U .

ii. Dgeo
cris

(
L
)

is locally free of finite rank on Xket as OX̃⊗̂OBlog-module.

iii. the natural map αlog,L : Dgeo
cris

(
L
)
⊗(
Ogeo

X̃,log

)Blog,K −→ L⊗ZpBlog,K is an isomorphism in the

category Ind
(
Sh(XK)N

)
.

We let Sh
(
Xket
K

)
gs

be the full subcategory of Qp-adic étale sheaves on Xket
K

consisting of

geometrically semistable sheaves. We have the following fundamental result [AI, Prop. 2.26 &
Prop. 3.68]:

Proposition 4.3. (i) The category of geometrically semistable representations is closed under
duals, tensor products and extensions. In particular, the category UniQp

(
Xket
K

)
of unipotent

Qp-adic étale sheaves is a full subcategory of Sh
(
Xket
K

)
gs

.

(ii) The functor Dgeo
cris, from the category of geometrically semistable representations to the

category of OX̃⊗̂OBlog-modules, commutes with duals and tensor products and moreover it is
exact.

Fix (U,MU) with U = Spec(RU) a small object of Xket as in §4.2. It follows from [AI, Prop.
2.26& Prop. 3.65] that if L is a geometrically semistable Qp-adic étale sheaves on XK and if V :=

L(RU) is the associated representation of GUK
, then setting Dgeo

log

(
V
)

:=
(
V ⊗Qp Blog

(
RU

))GUK

we deduce from 4.1:

Dgeo
cris

(
L
)
(U) = Dgeo

log (V ) (4)

and
Dgeo

log (V )⊗
Blog

(
R̃U

)GUK
Blog

(
R̃U

)
−→ V ⊗Qp Blog

(
R̃U

)
is an isomorphism, compatible with Galois actions, filtrations and Frobenius. In particular,
pulling-back this isomorphism via the section blog : Blog

(
R̃U

)
−→ Blog defined in (3), we get a

GK-equivariant isomorphism of Blog-modules:

b∗log

(
Dgeo

log

(
V
)) ∼= b∗

K

(
V
)
⊗Qp Blog (5)

The connection ∇L,W(k) induces a connection on b∗log

(
Dgeo

log

(
V
))

compatible with the connec-
tion on the RHS of equation (5) inducing the connection Blog described in §2.1 and trivial on
b∗
K

(
V
)
. The filtration on Dgeo

log

(
V
)

defines a filtration on b∗log

(
Dgeo

log

(
V
))

(a priori not strictly)

compatible with the filtration on b∗
K

(
V
)
⊗Qp Blog defined by requiring that b∗

K

(
V
)

are in Fil0

and the filtration on Blog is as in §2.1.
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We come to the main result of this section. Due to Corollary 3.7 there is an action of GK on
the pointed étale system

{(
Eet
n , e

et
n

)}
n

lifting the action on XK and such that eet
n is GK-invariant

for every n. Arguing as in [AI, Lemma 3.3], or using directly equation (4), we deduce that for
every n ∈ N the sheaf of OX̃⊗̂OBlog-modules Dgeo

cris

(
Eet
n

)
is endowed with an action of GK such

that eet
n ⊗ 1 ∈ b∗log

(
Dgeo

cris

(
Eet
n

))
(via the identification in (5)) is GK-invariant.

On the other hand the universal pointed system
{(
Ecrys
n , ecrys

n

)}
n∈N on the crystalline site(

X0/Ocris

)cris

log
provides by evaluation at X̃×̂OSpf(Ocrys) a system of sheaves of ÔDP

X̃

[
p−1
]
-modules

with integrable logarithmic connection
(
Ecrys

n,X̃
,∇n

)
relative to Ocris on Xket

0 (see §3.4) and com-

patible sections ecrys
n of b̃∗

(
Ecrys

n,X̃

)
.

Theorem 4.4. There exist unique isomorphisms

αn : Ecrys

n,X̃
⊗̂OcrysBlog −→ Dgeo

cris

(
Eet
n

)
of OX̃⊗̂OBlog-modules on Xket

0 with logarithmic connection with respect to Blog, which are com-
patible for varying n and such that b∗log(αn) sends ecrys

n to eet
n ⊗ 1 for every n ∈ N. Moreover, for

every n ∈ N the isomorphism αn is GK-equivariant.

Proof. We proceed by induction on n. For n = 1 we know that Ecrys

1,X̃
= ÔDP

X̃

[
p−1
]

with connection

given by the usual derivation and ecrys
n = 1. On the other hand Dgeo

cris

(
Eet

1

)
= Dgeo

cris

(
1
)

= OX̃⊗̂OBlog

with connection given by the usual derivation and eet
n ⊗ 1 = 1. Thus the claim follows for n = 1.

Assume that the statement is proven for n. Let us prove if for n+1. Note that Dgeo
cris

(
Eet
n+1

)
is,

as a module with connection, an extension of Dgeo
cris

(
Eet
n

)
by Dgeo

cris

(
T et
n

)
= T et

n ⊗Qp D
geo
cris

(
1
)

where
T et
n is a Blog-admissible representation of GK (see corollary 3.8). Hence, such an extension is

defined by a class

cn+1 ∈ H1
dR

(
Xket

0 , T et
n ⊗Qp D

geo
cris

(
Eet
n

)∨) ∼= H1
dR

(
Xket

0 , Ecrys,∨
n,X̃

)
⊗̂OcrysBlog ⊗Qp T

et
n .

The last isomorphism is a GK-equivariant isomorphism of Blog-modules obtained using the in-
ductive hypothesis. We have also used the inductive hypothesis to identify Dgeo

cris

(
Eet
n

)
with

Ecrys

n,X̃
⊗̂OcrysBlog and the fact that Dgeo

cris commutes with duals (Proposition 4.3). As T et
n is Blog-

admissible, settingDlog

(
T et
n

)
:=
(
Blog⊗QpT

et
n

)GK , the naturalGK-equivariant mapDlog

(
T et
n

)
⊗
B

GK
log

Blog −→ T et
n ⊗ Blog of Blog-modules is an isomorphism. The existence of a GK-action on

Dgeo
cris

(
Eet
n+1

)
translates into the fact that cn+1 is GK-invariant. Thus, cn+1 defines a class in

cn+1 ∈
(
H1

dR

(
Xket

0 , Ecris,∨
n,X̃

)
⊗̂Ocris

Dlog

(
T et
n

)
⊗
B

GK
log

Blog

)GK

= H1
dR

(
Xket

0 , Ecris,∨
n,X̃

)
⊗̂Ocris

Dlog

(
T et
n

)
= H1

dR

(
Xket

0 , Ecris,∨
n,X̃
⊗̂Ocris

Dlog

(
T et
n

))
.

By Proposition 3.5 we have that T et
n = Ext1

(
Eet
n ,1

) ∼= H1
(
Xket
K
, Eet,∨

n

)
. Hence, Dlog

(
T et
n

) ∼=
T cris
n ⊗̂Ocris

BGK
log with T crys

n := H1
(
X0/Ocris, Ecris,∨

n

)
by [AI, Thm. 1.1]. As the latter group is
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Ext1
(
Ecris
n ,1

)
⊗̂Ocris

BGK
log , again in virtue of Proposition 3.5, also Ecris

n+1,X̃
⊗̂Ocris

BGK
log is an extension

of Ecris
n,X̃
⊗̂Ocris

BGK
log by Dlog

(
T et
n

)
.

We conclude that Ecris
n+1,X̃

⊗̂Ocris
Blog and Dgeo

cris

(
Eet
n+1

)
are both extensions of Ecris

n,X̃
⊗̂Ocris

Blog (using

the inductive hypothesis for the existence of αn) by T et
n ⊗Qp Blog

∼= T cris
n ⊗̂Ocris

Blog.
Arguing as in Proposition 3.3 one proves that there is a unique isomorphism αn+1 of such

extensions such that b∗log(αn+1) sends ecris
n+1 to eet

n+1 ⊗ 1. The existence follows from the fact that
the map

Ext1
(
Ecris
n,X̃
⊗̂Ocris

Blog,1
)
→ Ext1

(
Ecris
n+1,X̃

⊗̂Ocris
Blog,1

)
is zero as it is the base change ⊗̂Ocris

Blog of Ext1
(
Ecris
n,X̃

,1
)
→ Ext1

(
Ecris
n+1,X̃

,1
)

which is zero

by loc. cit. The uniqueness follows from the fact that the projection Ecris
n,X̃
→ Ecris

1,X̃
= 1 in-

duces an isomorphism Hom
(
Ecris
n,X̃

,1
)

= Hom
(
1,1
)

and, hence, it provides an isomorphism

Hom
(
Ecris
n,X̃
⊗̂Ocris

Blog,1⊗̂Ocris
Blog

)
= Blog after base change ⊗̂Ocris

Blog.

We are only left to prove that αn+1 is GK-equivariant. This follows from its uniqueness as
both ecris

n+1 and eet
n+1 ⊗ 1 are GK-invariant (see Corollary 3.7).

4.3.2 The functor Dar
cris

Consider a lisse Qp-adic sheaf L on Xket
K . We view it as a sheaf on Xket

K
endowed with an auxiliary

action of GK lifting the action on XK . As in [AI, Lemma 3.3], or using directly equation (4),
one can prove that the sheaf v∗

(
Blog

)
and more generally Dgeo

cris(L) is endowed with an action of
GK .

We wish to study Dgeo
cris(L)GK . For L = Qp the sheaf Dgeo

cris(L)GK = v∗
(
Blog

)GK contains

ÔDP
X̃

[p−1] but is not known to be equal to it. But is is very close. Namely, given a small object

U of Xket and a choice of Frobenius on the formal open subscheme Ũ of X̃ associated to U , it
is proven in [AI, Lemma 2.25] that the second power of Frobenius ϕ2 on v∗

(
Blog

)
|U factors via

ÔDP
Ũ

[p−1]. One defines

Dar
cris(L)|U =

(
Dgeo

cris(L)
)GK |U ⊗ϕ

2

v∗

(
Blog|U

) ÔDP
Ũ

[p−1].

Following [AI, §2.4.4] we say that L|UK
is semi-stable if

i. Dar
cris

(
L
)
|U is in Coh

(
ÔDP
Ũ
⊗ZpQp

)
(the full subcategory of sheaves of ÔDP

Ũ
-modules isomor-

phic to F⊗ZpQp for some coherent sheaf F of ÔDP
Ũ

-modules on Uket
0 );

ii. the natural map αlog,L : Dar
cris

(
L
)
|U⊗ÔDP

Ũ

Blog,K −→ L⊗ZpBlog is an isomorphism in the cat-

egory Ind
(
Sh(UK)N

)
of inductive systems of continuous sheaves.

We say that L is semi-stable if there exists a covering of X by open small subschemes {Ui}
and for every i there exists a lift of Frobenius on Ũi such that L|Ui,K

is semistable for every i. We

let Sh
(
Xket
K

)
ss

be the full sub-category of Qp-adic étale sheaves on XK consisting of semi-stable
sheaves.
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For a semi-stable sheaf L the elements Dar
cris

(
L
)
|Ui

glue to an element Dar
cris

(
L
)

of Coh
(
ÔDP
X̃
⊗ZpQp

)
.

We obtain a functor
Dar

cris : Sh
(
Xket
K

)
ss
−→ Coh

(
ÔDP
X̃
⊗ZpQp

)
and we have a natural Blog-linear and GK-equivariant map

βL : Dar
cris

(
L
)
⊗̂OcrysBlog −→ Dgeo

cris(L),

functorial in L.

Proposition 4.5. The functor Dar
cris has the following extra properties:

(1) the map βL : Dar
cris

(
L
)
⊗̂Ocris

Blog −→ Dgeo
cris(L) is an isomorphism for every L. It commutes

with connections relative to W(k) and is strict with respect to the filtrations on Dgeo
cris(L) and the

filtration on Dar
cris

(
L
)
⊗̂Ocris

Blog composite of the filtrations on Dar
cris

(
L
)

and on Blog;

(2) Dar
cris(L) is a finite and projective ÔDP

X̃
⊗ZpQp-module;

(3) Dar
cris(L) is endowed with a decreasing, exhaustive filtration FilnDar

cris(L), for n ∈ Z, strictly
compatible with the filtration on Dgeo

cris(L) via βL and with finite and projective OX̂K
-modules as

graded pieces;

(4) Dar
cris(L) is endowed with an integrable and topologically nilpotent connection

∇L,W(k) : Dar
cris(L) −→ Dar

cris(L)⊗O
X̃
ω1
X̃/W(k)

compatible with the connection on Dgeo
cris(L) via βL and such that the filtration satisfies Griffiths’

transversality;

(5) given a small U object of Xket and a choice of Frobenius on the formal open subscheme

Ũ of X̃ associated to U , we have a Frobenius operator ϕL : Dar
cris(L)|U −→ Dar

cris(L)|U compatible
with the Frobenius on Dgeo

cris(L)|U via βL and horizontal with respect to ∇L,W(k);

(6) if write
∇L,O : Dar

cris(L) −→ Dar
cris(L)⊗O

X̃
ω1
X̃/O

for the connection induced by ∇L,W(k), then
(
Dar

cris(L),∇L,O
)

uniquely defines an isocrystal on(
X0/Ocris

)cris

log
in the sense of §3.4 and the local Frobenii define the structure of an F -isocrystal.

Proof. The first claim is proven in [AI, Prop. 2.26]. Claims (2)–(5) follow from [AI, Prop. 2.28].
Claim (6) follows from [AI, Cor. 2.29].

Concerning statement (6) of Proposition 4.5 we recall that absolute Frobenius on X0 and the
given Frobenius ϕO on O define a morphism of sites

F :
(
X0/Ocris

)cris

log
−→

(
X0/Ocris

)cris

log
.

The category of F -isocrystals consist of pairs (E , ϕ) where E is an isocrystal and ϕ : F ∗(E)→ E
is an isomorphism of isocrystals.

Cohomology of semistable sheaves: By construction we have an isomorphism

αlog,L : Dar
cris

(
L
)
⊗ÔDP

X̃

Blog,K −→ L⊗ZpBlog,
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compatible with all extra structures (connections, local Frobenii, filtrations). It follows from
[AI, §2.4.9] that there are isomorphsims

Hi
(
Xket
K
,L
)
⊗Qp Blog

∼= Hi
(
XK ,D

ar
cris

(
L
)
⊗ÔDP

X̃

Blog,K

)
and

Hi
(
XK ,D

ar
cris

(
L
)
⊗ÔDP

X̃

Blog,K

)
∼= Hi

(
X,Dar

cris

(
L
))
⊗̂Ocris

Blog.

Therefore one obtains the comparison isomorphism

Hi
(
Xket
K
,L
)
⊗Qp Blog

∼= Hi
(
X,Dar

cris

(
L
))
⊗̂Ocris

Blog

as filtered Blog-modules, compatible with derivations, Frobenius, and GK-action.

5 Comparison of universal objects

As a consequence of Theorem 4.4 we immediately have the following

Corollary 5.1. For every n ∈ N the universal étale object Eet
n on Xket

K
, with its natural action

of GK, is semistable and
Ecris
n,X̃
∼= Dar

cris

(
Eet
n

)
as isocrystals on

(
X0/Ocris

)cris

log
, compatibly for varying n.

In particular, ecrys
n defines an element of b̃∗

(
Ecris
n,X̃

)
. Due to 4.5 we may complete the equa-

tion (5) to an isomorphism

ρn : Ecrys
n,b ⊗̂Ocris

Blog
∼= b∗log

(
Dgeo

cris

(
Eet
n

)) ∼= Eet
n,b ⊗Qp Blog. (6)

These are GK-equivariant isomorphisms of Blog-modules, compatible for varying n, commuting

with Frobenius ϕ and by 4.4 the image of ecris
n ⊗ 1 is eet

n ⊗ 1. Here we write Ecris
n,b := b̃∗

(
Ecris
n,X̃

)
and

Eet
n,b := b∗

K

(
Eet
n

)
.

Using 5.1 we get that
(
Ecris
n,X̃

, ecris
n

)
has further structure:

Theorem 5.2. (i) The universal crystalline system {Ecris
n }n is endowed with a Frobenius mor-

phism {ϕn}n making it an F -isocrystal and moreover ecris
n is fixed by Frobenius. In particular,

Ecris
n,b is a free Ocris

[
p−1
]
-module and Frobenius is étale;

(ii.a) the connection on
{
Ecris
n,X̃

}
n

relative to Ocris

[
p−1
]

can be extended to an integrable,

topologically nilpotent, log connection {∇n,W}n relative to W(k)
[
p−1
]
;

(ii.b) the connection ∇n,W induces a connection ∇n,b on Ecris
n,b such that Frobenius is horizontal

and in (6) it is compatible with the connection on Eet
n,b⊗Qp Blog which is trivial on Eet

n,b and is the
connection on Blog defined in §2.1;

(iii.a) the OX̂K
-modules Ecris

n,X̃
are endowed with decreasing, exhaustive filtrations Fil•Ecris

n,X̃
,

strictly compatible with the filtrations for varying n, ∇n,W satisfies Griffith’s transversality with
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respect to the filtration. Moreover the graded quotients of the filtration are finite and projective
OX̂K

-modules;

(iii.b) for each n ≥ 1 the filtration at (iii.a) induces by pull-back a filtration on Ecris
n,b such that

via the isomorphism ρn in (6) is strictly compatible with the filtration on Eet
n,b ⊗Qp Blog defined

by: Eet
n,b is endowed with the trivial filtration and the filtration of Blog is the one defined in §2.1.

Proof. (i) the first part has already been proven. The element ecris
n is fixed by Frobenius as eet

n ⊗1

is. The last statement follows as Ecris
n,X̃

is a Frobenius isocrystal so that its pull back via b̃ is also

a Frobenius isocrystal.
(ii.a) follows directly from Proposition 4.5.
(ii.b) the horizontality of Frobenius follows from 4.5. The first isomorphism in (6) is compati-

ble with the connections induced from∇n,W and the given connection on Dgeo
cris

(
Eet
n

)
by Proposition

4.5(i). The second isomorphism is compatible with the given connection on Eet
n,b⊗Qp Blog by the

discussion following (6). In particular ecrys
n is horizontal as eet

n ⊗ 1 is.
(iii.a) the claim, except the strict compatibility of the filtrations via the surjection Ecris

n+1,X̃
→

Ecris
n,X̃

, follows from Proposition 4.5. The compatibility of the filtrations via Ecris
n+1,X̃

→ Ecris
n,X̃

follows

from the functoriality of Dar
cris.

(iii.b) The compatibility of the filtrations follow immediately. In particular ecris
n is in Fil0 as

eet
n ⊗ 1 is.

We are left to prove the strict compatibility in (ii.a) and (ii.b). Fix (U,MU) with U =
Spec(RU) a small object of Xket as in §4.2. Write Vi := Eet

i (RU) for i = n or n+ 1. The natural
isomorphism

αU : Dar
cris

(
Eet
i

)
(U)⊗̂R̃DP

U
Blog

(
R̃U

)
−→ Vi ⊗Qp Blog

(
R̃U

)
is strictly compatible with the filtrations due to [AI, Prop. 2.28(5)], considering on the RHS the

composite of the trivial filtration Fil0V = V and the given filtration on Blog

(
R̃U

)
. If b factors

via U , then ρn is obtained by pull-back of via b∗log of αU and (iii.b) follows.
We also deduce that the map

Dar
cris

(
Eet
n+1

)
(U)⊗̂R̃DP

U
Blog

(
R̃U

)
−→ Dar

cris

(
Eet
n

)
(U)⊗̂R̃DP

U
Blog

(
R̃U

)
is strictly compatible with the filtrations, namely it induces a surjective map on the graded
quotients. As

GrhDar
cris

(
Eet
i

)
(U)⊗̂R̃DP

U
Blog

(
R̃U

)
=
⊕
a+b=h

GraDar
cris

(
Eet
i

)
(U)⊗̂RU⊗KGrbBlog

(
R̃U

)
by [AI, Prop. 3.29(4)] and GrbBlog

(
R̃U

)
is free R̂U [p−1]-module by [AI, Prop. 3.15], we deduce

that the surjection Ecris
n+1,X̃

→ Ecris
n,X̃

induces a surjective map on the graded quotients, i.e., it is

strictly compatible with the filtrations. This proves (iii.a).

Let T et
n := Ker

(
Eet
n+1 → Eet

n

)
and T cris

n,X̃
:= Ker

(
Ecris
n+1,X̃

→ Ecris
n,X̃

)
. Write T et

n,b := b∗
K

(
T et
n

)
. It

is a finite dimensional representation of GK . Set T cris
n,b := b̃∗

(
T cris
n,X̃

)
. It is a filtered Ocris

[
p−1
]
-

module, endowed with a filtration, a Frobenius linear operator ϕ and a logarithmic connection ∇
obtained by pull-back from T cris

n,X̃
. Composing it with the derivation Z ∂

∂Z
we get a derivation N .
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Also BGK
log is a filtered Ocris

[
p−1
]
-module, endowed with a filtration, a Frobenius linear operator

and a derivation. In particular, using the conventions of §2.1:

Corollary 5.3. (i) The modules Ecris
n,b ⊗Ocris

BGK
log and T cris

n,b ⊗Ocrys B
GK
log endowed with a composite

filtration, a composite Frobenius linear operator and a composite derivation define objects in the
category MF

B
GK
log

(ϕ,N).

(iii) The GK-representations Eet
n,b and T et

n,b are semi-stable in the sense of Fontaine, and in
particular Blog-admissible and

Dlog

(
Eet
n,b

) ∼= Ecris
n,b ⊗Ocris

BGK
log , Dlog

(
T et
n,b

) ∼= T cris
n,b ⊗Ocris

BGK
log

in MF
B

GK
log

(ϕ,N).

Proof. (i) As T cris
n,X̃

is the kernel of a morphism of isocrystals, it is an isocrystal and the same holds

for its pull-back T cris
n,b via b̃∗ is. In particular, it is a free Ocris

[
p−1
]
-module, ϕ is horizontal with

respect to N and étale. As the connection of Ecris
n+1,X̃

satisfies Griffiths transversality, the induced

connection on T cris
n,X̃

does as well with respect to the induced filtration and hence also the pull-

back connection on T cris
n,b satisfies Griffith transversality with respect to the pull-back filtration.

Hence, the axioms for T cris
n,b ⊗Ocrys B

GK
log to be in MF

B
GK
log

(ϕ,N) hold. For Ecris
n,b ⊗Ocris

BGK
log this

follows from 5.2.
(ii) As T et

n is constant, we have that T et
n,b
∼= T et

n as representations of GK . The latter is
semistable thanks to Propositions 2.1 and 3.8. It follows from Theorem 5.2 that the natural
map (

T cris
n,b ⊗Ocris

BGK
log

)
⊗
B

GK
log

Blog −→ T et
n,b ⊗Qp Blog,

defined in (6), is an isomorphism of filtered Blog-modules and it is GK-equivariant and compat-

ible with connections on the two sides. Hence, Dlog

(
T et
n,b

)
:=
(
T et
n,b ⊗Qp Blog

)GK coincides with

T cris
n,b ⊗Ocris

BGK
log (as filtered BGK

log -modules, strictly compatible with filtrations and compatible
with connections). The second claim follows. The statement for Eet

n,b follows directly from (6)
and Theorem 5.2.

We know from Lemma 3.9 that the base-change of the universal pointed de Rham object(
EdR
n , edR

n

)
of index ≤ n on XK is the algebrization of the base-change of the universal pointed

crystalline object
(
Ecris
n,X̃

, ecris
n

)
via the map Ocris

[
p−1
]
→ K, Z 7→ π, as module with connection

on X̂K , with a section of the pull-back via b̂K . Let Fil•EdR
n be the image of the filtration on Ecris

n,X̃
.

It is called the Hodge filtration. We write EdR
n,b for the K-vector space b∗K

(
EdR
n

)
with induced

pull-back filtration.

Corollary 5.4. (1) For every n ≥ 1 the filtration Fil•EdR
n is decreasing and exhaustive with

quotients which are locally free OXK
-modules;

(2) the connection satisfies Griffiths’ transversality with respect to the filtration;

(3) the maps EdR
n+1 → EdR

n are strictly compatible with respect to the filtrations;
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(4) the filtration on EdR
n,b coincides with the image of the filtration on Ecrys

n,b via the isomorphism

tn : Ecris
n,b ⊗Ocris

K −→ EdR
n,b .

In particular edR
n = tn

(
ecris
n

)
is in Fil0.

Proof. Claims (1), (2) and (3) follow from Theorem 5.2 and [AI, Cor. 2.29] where the behaviour
of the filtration on Dar

cris(L) under base change viaOcrys → K is studied. The map tn is compatible
and surjective on filtrations by construction. As edR

n corresponds via tn to ecris
n by 3.9 it follows

from theorem 5.2 that it lies in Fil0.

As T dR
n := Ker

(
EdR
n+1 → EdR

n

)
is constant, then T dR

n
∼= T dR

n,b ⊗K 1 with T dR
n,b := b∗K

(
T dR
n

)
. By

definition the Hodge filtration on T dR
n is the image of the filtration on T crys

n,b and it is uniquely

determined by the filtration on T dR
n,b . By Corollary 5.4(4) the latter coincides with the image of

the filtration on T cris
n,b via tn. On the other hand, as the GK-representation T et

n,b is semistable by

5.3, following Fontaine we can associate to it a filtered (ϕ,N)-module Dst

(
T et
n,b

)
: it is a K0-vector

space with Frobenius and monodromy operator and a filtration on Dst

(
T et
n,b

)
⊗K0 K. It follows

from 2.1 and 5.3 that Dst

(
Eet
n,b

)
⊗K0 K = T dR

n,b and Dst

(
Eet
n,b

)
⊗K0 K = T dR

n,b as K-vector space.
Then,

Lemma 5.5. (i) We have EdR
n,b = Dst

(
Eet
n,b

)
⊗K0K and T dR

n,b = Dst

(
T et
n,b

)
⊗K0K as filtered K-vector

spaces;
(ii) There is a unique filtration on the system

(
EdR
n

)
n

inducing the filtration on T dR
n,b provided

by the identification with obtained Dst

(
T et
n,b

)
⊗K0 K and such that properties (1)–(3) of Corollary

5.4 hold.

Proof. Claim (i) follows from 2.1, Corollary 5.3 and Corollary 5.4. For claim (ii) one argues as
in [Ha, Prop. 3.3& Lemma 3.6].

6 Proofs of the Theorems in section §1

6.1 The proof of Theorems 1.7 and 1.8

Write Get
(
(XK , NK), bK

)
:= Spec

(
Aet,∨
∞
)
, set Gcrys

(
(X,N), b̃

)
:= Spec

(
Acrys,∨
∞

)
and finally de-

note GdR
(
(XK , NK), bK

)
:= Spec

(
AdR,∨
∞

)
as in §3.7 using the universal systems

(
Eet
n , e

et
n

)
n
,(

Ecrys
n , ecrys

n

)
n

and
(
EdR
n , edR

n

)
n

respectively. Then, Corollary 5.3 and Lemma 5.5 imply that

(i) Aet,∨
∞ = lim

n→∞
Eet,∨
n,b is endowed with an action of GK such that each Eet

n,b is a semistable or

equivalently a Blog-admissible representation of GK (in the sense of §2.1);

(ii) Acris,∨
∞ = lim

n→∞
Ecris,∨
n,b and Ecrys,∨

n,b ⊗̂Ocris
BGK

log is an object in MF
B

GK
log

(ϕ,N) (in the sense of

§2.1) isomorphic to Dlog

(
Eet,∨
n,b

)
for every n;

(iii) AdR,∨
∞ = lim

n→∞
EdR,∨
n,b , each EdR,∨

n,b is a filtered K-vector space, identified with Ecris,∨
n,b ⊗Ocris

K = Dst

(
Eet,∨
n,b

)
⊗K0 K (as filtered K-vector spaces).
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We obtain identifications

Acris,∨
∞ ⊗Ocris

BGK
log
∼= Dlog

(
Eet,∨
n,b

)
of BGK

log -modules, compatibly with Frobenius, monodromy operators N and strictly compatibly
with the filtrations and

AdR,∨
∞
∼= Acris,∨

∞ ⊗Ocris
K ∼= Dst

(
Aet,∨
∞
)
⊗K0 K

as filtered K-vector spaces.
The correspondence as universal objects between Eet

n,b, Ecris
n,b and EdR

n,b , of the sections eet
n ,

ecris
n and edR

n proven in Theorem 5.2 and in Corollary 5.4 and the compatibilities for varying
n imply that the isomorphisms displayed above respect the structures as Hopf algebras over
BGK

log (resp. Hopf K-algebras for the second one). This proves Theorem 1.7 and, using ??, also
Theorem 1.8 except for Theorem 1.7(ii) and Theorem 1.8(iv). These claims follow from (5.1)
and the discussion after Proposition 4.5.

6.2 The proof of Theorem 1.9

First of all we characterize the integrable log connection {∇n,W}n on
{
Ecris
n,X̃

}
n

relative to W(k)
[
p−1
]

extending the universal one relative to Ocris

[
p−1
]

provided by Theorem 5.2.
Consider the exact sequence

0 −→ T cris
n,X̃
−→ Ecris

n+1,X̃
−→ Ecris

n,X̃
−→ 0.

The compatibility of ∇n+1,W and ∇n,W provide an integrable connection on T cris
n,X̃

relative to

W(k). Then,

Proposition 6.1. (1) The logarithmic connection on T cris
n,X̃

relative to W(k) described above is

the unique one for which

a) T cris
n,X̃

is constant, namely the tensor product of an Ocris[p
−1]-module T cris

n,X̃
with log connec-

tion with 1 with the standard derivation;

b) the induced map

T cris
n,X̃

= H0
dR(X0/Ocris, T cris,∨

n,X̃

)
−→ H1

dR(X0/Ocris, Ecris,∨
n,X̃

)
,

which we know to be an isomorphism by the discussion in §3.5, is compatible with respect to the
induced Gauss–Manin connections considering ∇n,W on Ecris

n,X̃
.

(2) Given the connection ∇n,W on Ecrys

n,X̃
and the connection on T cris

n,X̃
relative to W(k) described

in (1), then ∇n+1,W is the unique connection on Ecris
n+1,X̃

which is compatible with the two and

with the universal one relative to Ocris

[
p−1
]

and such that ecris
n+1 is horizontal for the induced

connection on Ecris
n+1,b.
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Proof. (1) The uniqueness is clear. The object T cris
n,X̃

is constant for the connection relative to

W(k) as it coincides with Dar
cris

(
T et
n

)
by 5.2, T et

n is constant and Dar
cris

(
T et
n

)
commutes with tensor

product.
The given connection on T cris

n,X̃
satisfies also property (b) taking the long exact sequence of

de Rham cohomology groups associated to the dual of the short exact sequence displayed before
the lemma.

(2) Suppose we have two connections ∇n+1,W and ∇′n+1,W with the properties in (2). Their
difference provides a homomorphism

Ecris
n,X̃
−→ T cris

n,X̃
⊗Ocris

ω1
Ocris/W(k).

Such morphism must factor via Ecris
1,X̃

= 1 by the discussion in §3.5 and it is determined by the

image of 1 = ecris
1 in the pull back via b̃. As ecris

1 is the image of ecris
n+1 it must be zero.

Let ι0 : Ocrys → R := W(k) [[x]] be the unique morphism of W(k)-algebras sending Z → px.

Thanks to Lemma 3.9 the base change of
(
Ecris
n,X̃

, ecris
n

)
, as ÔDP

X̃
-module with connection and with

section ecris
n , via ιR is isomorphic, as a pointed module with connection on X̂K , to the module

with connection associated to the universal pointed de Rham object
(
EdR
n,R, e

dR
n,R

)
of index ≤ n

on XR (with log poles along NR).
As the base change R

[
p−1
]
→ R′ := K0 [[x]] is flat, the base change of

(
EdR
n,R, e

dR
n,R

)
via the

map R → R′ is the universal object of
(
EdR
n,R′ , e

dR
n,R′

)
index ≤ n on XR′ := XR ⊗R R′ (with log

poles along NR′). The section b̃ defines a section bR ∈ XR(R) and by further base change a
section bR′ ∈ XR′(R

′). Write EdR
n,R′,b for b∗R′

(
EdR
n,R′

)
.

Lemma 6.2. (i) The connections on {EdR
n,R′}n uniquely extend to a compatible, log, integrable

connection relative to K0 satisfying the requirements of Proposition 6.1(2). In particular, EdR
n,R′,b

is endowed with an integrable logarithmic connection ∇n,R′,b relative to R′, considering on R′ the
logarithmic structure defined by x.

(ii) We have isomorphisms Dst

(
Eet
n,b

) ∼= EdR
n,R′,b/xEdR

n,R′, compatible for varying n, as K0-vector
spaces endowed with nilpotent operators, where on the LHS we consider the monodromy operator
and on the RHS we consider the residue of ∇n,R′,b at x = 0.

Proof. (i) The claimed extension follows from 5.2 by base change to R′. The uniqueness follows
arguing as in the proof of Proposition 6.1(2).

(ii) By construction EdR
n,R′,b/xEdR

n,R′ is equal to the base change of Ecrys
n,b via the morphism

Ocrys → K0 sending Z → 0 and the residues of the connections on these two K0-vector spaces
coincide. The second claim follows then from Corollary 5.3 and the description of the monodromy
operator on Dst

(
Eet
n,b

)
starting from the connection on Dlog

(
Eet
n,b

)
provided by Proposition 2.1.

As the special fiber of XR′ at x = 0 has the same dual graph as the special fiber of X in
order to prove Theorem 1.9 we are left to show that:

Proposition 6.3. The special fiber X
′
R of XR′ at x = 0 has good reduction if and only if the

residue of the connection on EdR
n,R′,b is 0 for every n ∈ N.
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Proof. To check this we may replace R′ with the base change K0 [[x]] → C [[x]] obtained by any
field homomorphism K0 → C. Notice that as such morphism is faithfully flat, the formation of
universal de Rham pointed object

(
EdR
n,R′ , e

dR
n

)
commutes with base change. We may then assume

that R′ = C [[x]]. As the choice of X̃ is auxiliary we may proceed as in [O, §2.3] and choose

X̃ → Spf(O) as arising from the completion of a 1-dimensional quotient of the henselization of
the moduli stack of genus g curves at the k-valued point defined by the class of the curve [Xk].
In particular, we may assume that there exists a smooth irreducible affine curve U = Spec(A)
over C, a semistable genus g curve XA over U , a section bA ∈ XU(U) and a point κ of U such
that R′ is the completion of A at κ, XA is smooth over U\{κ} and

(
XR′ , bR′

)
is isomorphic to

the base-change of
(
XA, bA

)
via A→ R′.

We denote by Xan
A → Uan the associated morphism of complex analytic spaces and by

ι : Xan
A → XA the associated map of ringed spaces. Then, arguing as in Lemma 3.9 we have that

(i) The base change of the pointed universal de Rham system
(
EdR
n,A, e

dR
n,A

)
n

on XA via A→ R′

is the pointed universal de Rham system
(
EdR
n,R′ , e

dR
n

)
n
;

(ii) The pull back of the pointed universal de Rham system
(
EdR
n,A, e

dR
n,A

)
n

on XA via ι is the

universal system
(
EdR
n,Uan , edR

n,Uan

)
n

on Xan
A .

The Betti realization: On the analytic side we also have a pointed universal Betti system(
EBe
n,Uan , eBe

n,Uan

)
n

in the category of unipotent local systems in finite dimensional C-vector spaces

on Xan,o
A := Xan

A \Xan
κ . Then EBe

n,Uan⊗COXan,o
A

defines a locally free OXan,o
A

-module with connection

defined by the derivation on OXan,o
A

and by requiring that EBe
n,Uan are horizontal elements. By

universality we get unique morphisms

EdR
n,Uan |Xan,o

A
−→ EBe

n,Uan ⊗C OXan,o
A

, edR
n,Uan 7→ eBe

n,Uan ⊗ 1.

They are compatible for varying n and they are isomorphisms. This description provides EdR
n,Uan,o

with a unique integrable connection relative to C, extending the universal one relative to Uan,o,
such that EBe

n,Uan is the set of solutions. Setting Ean,dR
n,b := b∗A

(
EdR
n,Uan

)
and EBe

n,b = b∗A
(
EBe
n,Uan

)
, we

conclude that
{
Ean,dR
n,b

}
n

is endowed with a connection with log poles at k and that

Ean,dR
n,b |Uan,o ∼= EBe

n,b ⊗C OUan,o , eBe
n,Uan ⊗ 1 7→ edR

n,Uan ,

as OUan\{κ}-modules with connection, compatibly for varying n. Here, Uan,o := Uan\{κ} and
the connection on EBe

n,b⊗COUan,o has EBe
n,b as horizontal sections and is the standard derivative on

OUan,o . Note that we also get an action of π1

(
Uan,o, bA

)
on EBe

n,b and hence on Ean,dR
n,b |Uan,o .

Topological vs algebraic monodromy: Let Xo
A := XA\Xκ and U o := U\{κ}. Arguing as in

the proof of Proposition 6.1(2), one shows by induction on n that the problem of extending the
universal connection on

(
EdR
n,A, e

dR
n,A

)
n

on Xo
A relative to U o to a connection relative to C lives in

the H1
(
Xo
A, EdR

n,AT
dR,∨
n,A ⊗A ω1,∨

Uo/C

)
. As such an extensions exists over Xan,o

A , the pull back of such
an obstruction via ι : Xan

A → XA vanishes and, hence, it is zero. It follows from Proposition 6.1
that its base change via A→ R′ is the extension of the universal connection on Xo

R′ := XR′\Xκ

relative to R′ to a connection relative to C. Putting everything together and base-changing to
R′ = C [[x]], identified with the completed local ring of U and Uan,o at κ, we obtain isomorphisms
of R′

[
x−1
]
-modules, compatible with connections relative to C and compatible for varying n:
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EdR
n,b ⊗R′ R′

[
x−1
] ∼= Ean,dR

n,b ⊗OUan,o R
′[x−1

] ∼= EBe
n,b ⊗C R

′[x−1
]
,

where on the RHS we consider the unique connection relative to C having EBe
n,b as set of solutions.

Note that we also get an action of the fundamental group Iκ ∼= Z of a punctured disk of Uan,o

with center in κ on EBe
n,b and that by construction the connection on EdR

n,b ⊗R′ R′
[
x−1
]

extends to

a logarithmic connection ∇log
n on EdR

n,b .

It follows from [D1, ???] that ∇log
n is regular if and only if its residue at x = 0 is trivial if

and only if the action of Iκ on EBe
n,b is trivial. We are then reduced to prove that Xk is smooth

if and only if the action of Iκ on EBe
n,b is trivial for every n ∈ N.

If Xk then EBe
n,Uan is a local system on the whole of Xan

A and EBe
n,b extends to a representation

of the fundamental group of Uan. It follows that the action of Iκ is trivial.
Viceversa, if Xκ is singular, it follows from [O, Prop. 1.10] that the action of It on EBe

n,b is non
trivial for n large enough. The conclusion follows.
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