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Abstract

Automatic acoustic monitoring of machine health comprises a relevant field
as, unfortunately, such equipment often suffers from faults, malfunctions, ag-
ing effects, etc. However, it is still an unexplored domain of research where
the majority of existing works relies on traditional machine learning based
approaches. After providing a critical survey of the available methods, this
work highlights the most relevant limitations and designs a solution specifi-
cally addressing them. We introduce the one-shot learning paradigm into the
specific domain and suitably extent it to a) classify machine states, b) de-
tect novel ones, and c) incorporate them in the class dictionary online. The
backbone of the present system is a Siamese Neural Network (SNN) com-
posed of convolutional layers. Conveniently, every processing stage depends
on a standardized feature set free of domain knowledge, i.e. spectrograms.
Interestingly, we enhance SNN’s classification ability by an appropriately de-
signed data selection scheme. The proposed solution is applied on a publicly
available dataset of vibration signals representing four states of a drill bit, i.e.
healthy state, chisel wear, flank wear, and outer corner wear. After extensive
experiments thoroughly examining every aspect of the proposed solution, it is
shown to achieve state of the art results while using limited amount of train-
ing data. Importantly, at the same time it is able to operate under evolving
environments. Last but not least, we show that the obtained predictions are
interpretable, a property which is rapidly becoming a requirement in modern
machine learning based technologies.

Keywords: Machine acoustics, machine health condition monitoring,
one-shot learning, fault diagnosis, deep learning, online learning.

Preprint submitted to Expert Systems With Applications February 15, 2021



1. Introduction

The field of machine acoustics aims at assessing the health of generic
machine equipment based on its acoustic and/or vibration emissions (Nandi
and Ahmed, 2019; Yang et al., 2019). Unfortunately, industrial (and not
only) equipment suffers from aging effects, faults, malfunctions, etc. which
might have serious consequences not only in terms of production but also
w.r.t human lives and/or property loss (Gurina et al., 2020; Lasisi et al.,
2019; Xue et al., 2019; Pontoppidan et al., 2019) and other interconnected
devices in the IoT context (Zanella et al., 2014; Liu et al., 2020; Alippi et al.,
2016; Ntalampiras, 2018). Thus, machine health assessment technologies are
becoming attractive since they can provide accurate and real-time diagnos-
tics regarding the machine of interest without relying on human supervision
(Nasir et al., 2019). Following the principles of generalized sound recognition
technology (Ntalampiras, 2019), machine acoustics pipeline typically encom-
passes a signal processing and a pattern recognition phase (Wunderlich et al.,
2018). The first is responsible for capturing characteristic properties of the
involved signals, while the second aims at identifying patterns of normal and
abnormal operation.

Interestingly, such solutions have provided reliable performance including
advanced diagnostics in a series of automated machine condition monitoring
applications, e.g. drill bit (Rafezi and Hassani, 2018), bearings (Zhou et al.,
2007; Wang et al., 2017; Fu et al., 2018), wind turbine gearbox (Yang et al.,
2018), petrochemical unit (Xiong et al., 2018), etc. As a thorough overview
of such solutions is out of the scope of this work, we point out here the typ-
ical line of thought. The signal processing phase is based on handcrafted
features, which heavily depends of domain knowledge. Such features may
belong to time, frequency, or wavelet domains, while they could be also em-
ployed simultaneously (Dai et al., 2014; Lashari et al., 2019). Subsequently,
a variety of discriminative and non-discriminative pattern recognition tech-
niques have been used to model the distribution exhibited by the extracted
features. Discriminative ones seek boundaries separating the categories exist-
ing in the training data (Nandi and Ahmed, 2019); these primarily embrace
decision trees, artificial neural networks including deep learning (Shevchik
et al., 2019), and support vector machines. Non-discriminative ones process
the data of each class independently with respect to the rest while most
techniques are based on probabilistic theory, e.g. hidden Markov models
(Ntalampiras, 2015).

2



2D Conv ReLU MaxPool 2D Conv ReLU MaxPool 2D Conv ReLU

FC Sigmoid

3@  x 

3@ x

SIMILAR

DISSIMILAR

64@55 x 116 64@28 x 58 128@22 x 52 128@11 x 26 128@8 x 23

10 x 10 kernel 2 x 2 kernel 7 x 7 kernel 2 x 2 kernel 4 x 4 kernel
FC

1 x4096

2D Conv ReLU MaxPool 2D Conv ReLU MaxPool 2D Conv ReLU

64@55 x 116 64@28 x 58 128@22 x 52 128@11 x 26 128@8 x 23

10 x 10 kernel 2 x 2 kernel 7 x 7 kernel 2 x 2 kernel 4 x 4 kernel
FC

1 x4096

Figure 1: The pipeline of the proposed one-shot learning scheme using Siamese neural
networks. Each input is passed though a series of convolutional, ReLU and max-pooling
layers completed by a common end based on binary cross-entropy loss.

This paper focuses on drill bit monitoring which is an interesting problem
of increased relevance as regards to automation in manufacturing industries,
where excellent quality and efficiency requirements need to be met (Vununu
et al., 2018; Sangeetha B. and S., 2019; Xu et al., 2014). As such, the
present problem has attracted the interest of the scientific community. The
authors of (Verma et al., 2015) present a drill bit monitoring system based
on a support vector machine with a radial basis kernel function elaborating
on carefully designed features coming from the frequency domain. Interest-
ingly, in (Rafezi and Hassani, 2018) a tricone bit health monitoring system
is presented. Vibration signal analysis is carried out via wavelet packet de-
composition feeding an artificial neural network. Moving on, in (Dai et al.,
2014) the authors present a condition monitoring system for bone drilling by
elaborating the standard deviation of wavelet coefficients. Their case study
includes evaluation through the drilling operation in in vitro porcine spines.
Last but not least, a paper on drill bit monitoring using deep learning and
spectral analysis of acoustic emissions is presented in (Vununu et al., 2018).

The following gaps are observed in the related literature:

❼ poor data availability : most existing solutions elaborate on proprietary
datasets not available to the research community limiting reproducibil-
ity and comparability. At the same time, obtaining data representative
of faults, malfunctions, aging effects, etc. presents increased difficulty,

❼ mandatory domain knowledge: the majority of existing works is based
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on profound knowledge of the problem specifications and the available
dataset to properly design the employed features,

❼ inability to operate in the concept drift environment : the related lit-
erature assumes complete knowledge of a stationary class dictionary
during both training and testing (Ditzler et al., 2015).

The solution proposed in this work closes the above mentioned gaps by
suitably modifying the one-shot learning paradigm. One-shot learning is
defined as the classification task strictly bounded by the condition that we
may observe only a single sample belonging to each class in order to make
inference(s) regarding test samples. In essence, the problem is solved by
training a mechanism able to make predictions on the similarity of the test
samples to those a-priori available. Such a line of thought has been explored
in image recognition (e.g. handwritten character recognition (Lake et al.,
2015), feature learning (Zhu et al., 2020), etc.) reaching state of the art
results. In acoustic signal processing, one-shot learning is still unexplored
with the exception of generative speech concepts (Lake et al., 2014).

We demonstrate the efficacy of one-shot learning via exhaustive experi-
ments including the case of non-stationary environments. More specifically,
we consider a drill bit monitoring application including four states (one
healthy and three faulty) using a publicly available dataset. The main novel
points of this work are:

❼ removes the need of handcrafted features,

❼ reaches state of the art accuracy using a small amount of training data,

❼ designs a reliable mechanism to detect and react to changes in the
environment,

❼ incrementally updates the class dictionary in an online manner, and

❼ provides an interpretation of the predictions made by the proposed
machine learning based solution.

In the following, we a) formalize the problem, b) delineate the proposed
solution, c) describe the experimental protocol along with a detailed analysis
of the obtained results, and d) draw conclusions and briefly discuss potential
extensions.
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Outer corner wear
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Figure 2: Representative spectrograms extracted out of the four types of machine condi-
tions considered in this work, i.e. a) flank wear, b) chisel wear, c) outer corner wear, and
d) normal.

2. Problem formulation

We suppose a single-channel vibration signal y containing machine emis-
sions is available, while dictionary D comprises the set of machine health
states D = {S1, . . . , Sm}, where m is the number of a-priori known states.
No assumption is made regarding composition and size of D which is un-
bounded and may alter at any point in time. Moreover, we suppose that
emissions representative of a specific state follow a consistent, yet unknown
probability density function Pi, i ∈ [1,m] (Ntalampiras and Potamitis, 2019;
Umapathy et al., 2005; Stowell et al., 2015; Ntalampiras, 2016).

The last assumption is the availability of an initial training dataset TS =
yt, t ∈ [1, T0] with labeled pairs (yt, Si), where t is the time instant and Si

the machine state with i ∈ [1,m]. On the contrary, we make no assumption
regarding as to if/when an unknown machine state might occur. The ultimate
goal is to identify the machine state accurately and update dictionary D
appropriately.

3. One-shot learning for acoustic change detection, dictionary learn-

ing and machine state identification

The backbone of the proposed system is a Siamese Neural Network (SNN)
suitably learning similar and dissimilar relationships using training data in
TS. Interestingly, when there functionalities are appropriately exploited,
they can serve classification purposes. In addition, such a method can be
followed in classification tasks involving data of different modalities (e.g. text,
infrared, video, etc.) with only slight alterations. The following subsections
describe the SNN architecture, feature extraction module, as well as the
processes for change detection and machine state identification.
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3.1. Siamese Neural Networks

SNNs were first presented in (Bromley et al., 1994) with application onto
the signature verification problem. An SNN is composed by a twin network
connected to a shared ending point (Tian et al., 2020). However, each twin
processes diverse inputs as illustrated in Fig. 1. The ending point includes
calculation of a predetermined metric based on the highest-level representa-
tion learned by each twin. Thus, the networks aim at satisfying the same
goal with a unique optimization function leading to tied weights and assuring
that analogous inputs are going to be closely located in the feature space. It
is worth noting that the twins have symmetric topologies meaning that they
are interchangeable. In other words, the same metric value will be produced
even if we reverse (top/bottom) networks’ positions and/or inputs. As re-
gards to the metric function, we employed binary cross entropy loss followed
by a sigmoid activation, conveniently normalizing the output into the [0,1]
interval.

Following the advances in literature related to audio signal processing
(Purwins et al., 2019), each twin in SNN is composed of convolutional layers.
Convolutional neural networks (CNNs) have been very successful in gener-
alized audio classification, including speech and music, and combined with
their implementation simplicity, have become quite popular with the specific
research community. Motivated by these observations, we decided to employ
them for vibration signal processing due to the existing similarities.

CNNs include simple alterations in the traditional multilayer perceptron
model, i.e. a) their topology includes several stacked layers, while b) each
convolutional layer is succeeded by a max-pooling one. The interesting prop-
erty of CNNs is that stacked convolutional layers customize the neurons so
that locally limited structures are emphasized in the 2D plane. That said,
each hidden unit ’sees’ only a small part of the input instead of its totality.
This part is typically referred to as unit’s receptive field. Weights charac-
terizing the hidden units are learned based on the presented set of inputs
and construct a feature map capturing their properties. Given that the di-
mensionality of such feature maps could be excessive, max-pooling layers are
inserted where the maximum value of neighboring units is retained to repre-
sent the entire neighbor. Interestingly, this operation is proven to render the
network robust to translational shifts (Piczak, 2015). Finally, we considered
rectified linear units (ReLu), i.e. the activation function is f(x) = max(0, x).
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1. Input: test vibration signal yt, trained SNN N , dictionary
S = {S1, . . . , Sm}, while each class is represented by extracted

spectrograms 〈F i
S〉

i=|S|
i=1

;
2. Extract spectrogram s of yt ;
3. Initialize similarity vector V = [];
4. for j=1:m do

5. for i=1:|S| do
6. Query N with the pair {s,F i

j} and get similarity score

V (j, i);

end

end

7. Predict the class maximizing the similarity score
S∗ = argmax

S
{V (:, i)} and assign it to yt;

Algorithm 1: The proposed machine state identification algorithm using
vibration signals based on one-shot learning (| • | denotes the cardinality
operator).

3.2. Model architecture

The present SNN is composed of 3 layers as depicted in Fig. 1 (experi-
menting with more layers did not provide improved performance). The first
two convolutional layers are followed by ReLu and max-pooling ones; the last
one however, is succeeded by a fully-connected one. A distance operation con-
cludes the SNN along with a fully-connected layer and a sigmoid function
deciding on the inputs’ relationship (similar/dissimilar) via thresholding.

The filters composing convolutional layers have varying size with a sta-
tionary stride equal to 1. At the same time, max-pooling layers have 2 × 2
kernels with stride = 2. SNN is concluded by a flattening layer collecting
the entirety of units included in the last convolutional twin layers and the
distance calculation follows.

During the training process, binary cross-entropy loss among network’s
prediction and ground truth is computed towards updating the SNN. The
process is based on the standard version of backpropagation algorithm where
the gradient sums the weights of each twin network. Minibatch size is suitably
selected based on the training set, while learning rate is 6e−5. Weights and
biases are initialized using narrow normal distributions with zero-mean and
0.01 standard deviation, while the maximum number of permitted epochs is
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Table 1: Confusion matrix (in %) obtained while considering 75% of training data.

Presented

Predicted
Similar Dissimilar

Similar 95.9 4.1
Dissimilar 2.5 97.5

2000.

3.3. Feature extraction

In the related literature, vibration emissions of machines are characterized
by features extracted from the frequency domain. Towards eliminating the
need of any feature engineering process, we make use of the entire spectro-
gram without any type of post-processing. To this end, we employ short time
Fourier transform with FTT size equal to 1024. Spectrograms representative
of the four considered machine states are shown in Fig. 2.

3.4. Change detection and machine state identification

The above described SNN learns the similar/dissimilar relationship be-
tween pairs of spectrograms extracted from the available vibration emissions.
Based on this property, we propose a direct extension of the one-shot learning
paradigm facilitating change detection and classification applications. Under
such a learning scheme, a change is detected in case a novel spectrogram is
recognized as dissimilar to every state existing in D. Subsequently, the spe-
cific sample forms an additional class which increments D. On the opposite
case, the class with the maximum similarity score is predicted to characterize
the novel spectrogram. The SNN can efficiently address classification tasks
in poor data availability environments.

When the change detection test does not signal a change, the proposed
algorithm continues to machine state identification following Alg. 1 which
requires fours arguments (Alg. 1, line 1)

❼ an vibration signal to test, denoted as yt,

❼ the trained SNN N ,

❼ the dictionary D = {S1, . . . , Sm}, while each class is represented by

extracted spectrograms 〈F i
S〉

i=|S|
i=1

, and
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Table 2: Ms (in %) achieved by while employing 75% of training data in stationary
conditions (maximum rates are emboldened).

Input 1

Input 2
Flank Chisel Outer corner Normal

Flank 88.5 5.1 6.4 -
Chisel 4 92.5 - 3.5

Outer corner 5.9 - 90.1 4
Normal - 5.1 5.4 89.5

❼ the available spectrograms 〈F i
S〉

i=|S|
i=1

.

The proposed algorithm extracts the spectrogram s of yt (Alg. 1, line 2)
and initializes similarity vector V (Alg. 1, line 3). Subsequently, we query
N using the existing pair combinations which outputs the corresponding
similarity scores, thus updating V (Alg. 1, line 4-6). The last step of the
algorithm assigns to yt the label of the class using the maximum similarity
score existing in V (Alg. 1, line 7).

4. Experimental set-up and results

This section describes the a) employed dataset, b) suitably formed figures
of merit, c) contrasted methods, d) obtained results in both stationary and
evolving environments and e) interpretation of SNN’s operation towards class
assignment.

4.1. Dataset

In order assess extensively the performance achieved by the proposed
method we used a dataset specifically designed for drill bit monitoring. In-
terestingly, the dataset is available to the research community facilitating
reproducibility (Verma et al., 2015). There, an experimental protocol is pro-
posed as well for comparability purposes.

During a drilling process, the following parts are required: a) a drilling
machine, b) a work piece, c) a fixture, and d) a cutting tool. A drill bit
is characterized by a cone structure including chisel edge, cutting lips, web,
flute, heels, body and shank. The drill bit contacts and crack the work piece
by means of chisel edge. After the penetration stage, the drill bit enters
the material, the so-called steady stage. Naturally, drill bit suffers from
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Figure 3: Recognition rate vs. size of training set under stationary conditions.

aging effects and malfunctions when used for large periods of time, hence
deformations appear. The present dataset includes four states, i.e. a healthy
one and three faulty:

a) Chisel wear : due to extreme stress, the temperature at chisel point reaches
very high levels and its edge debilitates,

a) Flank Wear : the friction between the work piece and flank of drill bit
causes erosions, which worsen as cutting speed escalates, and

a) Outer corner wear : the enormous impact forces and friction existing
among drill bit and hole’s inner head affect the outer corner which abrades
and, over time, gets destroyed.

More information on the dataset is available in (Verma et al., 2015).
Conveniently, the dataset is perfectly balanced across classes with 30 samples
per class of equal duration. As the size is not particularity large, applying
the proposed one-shot learning algorithm could be beneficial as very deep
networks may suffer from overfitting. We used the preprocessing conducted
in (Verma et al., 2015). The sampling frequency is 12kHz, while we used
frames of 0.02ms overlapping by 50% to compute STFT and extract the
spectrograms depicted in Fig. 2.
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Table 3: Md (in %) achieved by while employing 75% of training data in stationary
conditions (minimum rates are emboldened).

Input 1

Input 2
Flank Chisel Outer corner Normal

Flank 11.5 94.9 93.6 100
Chisel 96 7.5 100 96.5

Outer corner 94.1 100 9.9 96
Normal 100 94.9 94.6 10.5

4.2. Figures of merit

We employed effective and widely-used figures of merit assessing the per-
formance of every method thoroughly. One interesting detail for the case of
one-shot learning is that we can additionally employ confusion matrices at
the entire dataset level demonstrating the efficacy of the method in recog-
nizing similarities and dissimilarities. To this end, the following matrix was
defined:

Ms =

[

s11 s12
s21 s22

]

, (1)

where

❼ s11 (in %) denotes the number of times that samples fed in the first
input of SNN were identified as similar to samples coming from the
same class,

❼ s12 (in %) denotes the number of times that samples fed in the first
input of SNN were identified as dissimilar to samples coming from the
same class,

❼ s22 (in %) denotes the number of times that samples fed in the second
input of SNN were identified as similar to samples coming from the
same class,

❼ s21 (in %) denotes the number of times that samples fed in the second
input of SNN were identified as dissimilar to samples coming from the
same class.
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Figure 4: Recognition rate vs. number of classes in D under non-stationary conditions.

In this case, the objective it to maximize the values in the diagonal. A matrix
assessing the dissimilarities Md can be defined in an analogous way with the
difference being that we are aiming at minimizing its diagonal. Interestingly,
the sum of similarity and dissimilarity matrices characterizing the accuracy
of a given method is 100%, i.e. Ms +Md = 100 for every element.

4.3. Contrasted method

The proposed method is contrasted against the one presented in (Verma
et al., 2015) which represents the state of the art in vibration based machine
health diagnosis. There, the authors, after exploring time, frequency and
wavelet domain features, they show that frequency based ones modeled by
an SVM with RBF kernel offer the best performance reaching 95.5% in a
4-fold cross validation scheme. Towards a reliable comparison, we followed
the specific experimental protocol unless specified otherwise. Furthermore,
we do not make any differentiation between steady and penetration states
aiming at a generically applicable system. In addition, we applied a Gaussian
mixture model (GMM) based classification scheme, where the number of
components was selected from the set {2, 4, 8, 16, 32, 64, 128} following the
maximum recognition rate criterion. As regards to the respective learning
process, GMMs with diagonal covariance matrices were constructed, while
the number of k-means iterations for cluster initialization was set to 100. The
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Figure 5: The three convolutional layers as they are activated by spectrograms represen-
tative of every considered class, i.e. normal state, flank, chisel, and outer corner wear.

highest recognition rate was achieved by the GMM formed by 8 components
and was equal to 85.8%.

4.4. Experimental design under stationary conditions

During the specific experimental phase, we assume knowledge of every
class, i.e. D includes all states described in section 4.1. We focus on the
impact that the amount of training data has on the recognition rate, thus
we employ the following splits split = {10%, 30%, 50%, 75%, 90%}. The case
of 75% follows the splitting used in the contrasted method. The experiment
associated with each split was iterated 50 times with randomly chosen data
among iterations. Fig. 3 reports average and standard deviation of the
recognition rate w.r.t each split setting. As regards to the SNN, the maximum
number of permitted epochs is 2000 with early stopping, the mini bath size
50, test batch 200 while the number of similarity/dissimilarity tests is 20.
It should be noted that similar and dissimilar input pairs were produced
randomly and have equal sizes.

4.5. Performance under stationary conditions

Fig. 3 demonstrates the recognition rates achieved w.r.t various percent-
age splits along with the corresponding standard deviations. At this stage,
complete knowledge of D is assumed. We observe that the proposed scheme
is able to provide rates ranging from 65%-96.1% as the amount of training
data increases. Interestingly, even at the 10% setting, i.e. only 3 training files
per class, the average rate is substantially higher that chance. At the same
time, it should be taken into account that the SNN is not trained specifically
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for classification but only for similarity assessment. In the 75% percentage
split, SNN provides 91.5±4% which is at similar levels with the state of
art classification method. At the same time, it surpasses the GMM-based
classification scheme.

Table 1 tabulates the confusion matrix including similarities and dissim-
ilarities w.r.t the 75% split. We see that the SNN is better at recognizing
dissimilarities (97.5%) than similarities (95.9%). Furthermore, M s and M s

are presented in Tables 2 and 3 respectively. We observe that chisel are
correctly classified as similar with the highest rate and dissimilar with the
lowest one. On the opposite side, flank is classified as similar with the lowest
rate and dissimilar with the highest one. Overall, we observe analogous rates
among the considered classes.

4.6. Experimental design under non-stationary conditions

This phase assumes no knowledge regarding composition and cardinality
of dictionary D; the only assumption requests that TS includes data com-
ing from at least 2 classes allowing the SNN to learn similar and dissimilar
relationships. It comes out that SNN will be tested on data belonging to
classes unseen during training. To the best of our knowledge, this is the first
time that the specific scenario is considered in the related literature. Such
a necessity arises from the fact that it is unreasonable to assume complete
knowledge of every fault, malfunction, aging effect, etc. the drill will undergo
in the future. The performance of the proposed solution was evaluated with
a varying number of unknown classes. Each experimental configuration was
carried out 50 times, and here we present average and standard deviation
value of the recognition rate. It should be mentioned that classes in TS were
selected randomly w.r.t each iteration.

This experimental phase was carried out by considering every possible
pair of classes in TS, while the rest comprised the testing classes. As regards
to the SNN settings, the number of epochs had an upper limit of 2000 (early
stopping was included), the minibatch size is 50, test batch 100, while and
the number of tests per class quantifying similarity/dissimilarity was 10.
Following the previous experimental phase, random generation of similar
and dissimilar input pairs is balanced.

4.7. Performance under non-stationary conditions

Fig. 4 shows the recognition accuracy (average and standard deviation)
as the number of known/unknown classes varies. As expected, the rate in-
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creases as population in D surges. At the same time, the rates are lower with
higher standard deviation values than those achieved under stationary con-
ditions. The highest rate concerns having knowledge of 3 classes (74.8±6.8).
Nonetheless, the performance depends significantly on the composition of the
test and train class sets. More specifically, performance is boosted when TS

includes data satisfying two conditions a) high intraclass similarities and b)
high interclass dissimilarities. During this experimental phase, sample se-
lection was random resulting to high standard deviation values. Motivated
by this observation, section 4.9 presents a simple technique maximizing the
potential of the proposed one-shot learning based solution.

4.8. Convolutional filters

This section investigates in detail the exact way SNN processes the input
spectrograms via its convolutional filters localizing the parts mostly facilitat-
ing machine state identification. Fig. 5 how the three convolutional layers
are activated by spectrograms representative of every considered class, i.e.
normal state, flank, chisel, and outer corner wear.

We can see that each layer provides a simplified view of the obtained
input, while concentrating on a distinctive part able to discriminate the con-
sidered classes. From the spectrograms, we observe that not every part of the
spectrum is equally descriptive for all classes, hence SNN focuses on different
parts depending on the given class. More specifically,

❼ for normal state spectrograms, SNN gives high importance to two dis-
crete low-frequency bands and low values to a specific high-frequency
band,

❼ for chisel wear spectrograms, SNN focuses on late appearing low-frequency
bands without any type of discretization, and considers equally unim-
portant most high-frequency bands,

❼ for outer corner wear spectrograms, SNN concentrates on low-frequency
bands in a relatively discrete way, while specific high-frequency are con-
sidered important, and

❼ for flank wear spectrograms, SNN gives significantly more importance
on low-frequency bands w.r.t the high ones; interestingly, its focus is
uniform.
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A careful examination of the convolutional filters provides a meaningful in-
terpretation of SNN’s operation, which is a highly desired property towards
reliable and trustworthy machine learning based solutions leading to wider
acceptance of such automated systems (Garbuk, 2018; European Commis-
sion, 2020).

4.9. Distance-based selection of training data

Motivated by the findings in section 4.7 we designed an algorithm facili-
tating appropriate selection of training data. Given TS and D, i.e. training
samples, composition and number of known classes, the objective is to dis-
cover the most central w.r.t each class distribution samples and, at the same
time, the most distant samples to the rest of the classes. Fig. 6 illustrates the
available feature space using t-SNE operating on features of reduced dimen-
sionality thanks to PCA. To this end, we compute the within-class sum of
squared distances for every available sample and the corresponding interclass
sum as follows

w =

i=|S|
∑

i∈S,i=1

||x− xi||
2, n =

i=|D|
∑

i/∈S,i=1

||x− xi||
2.

Finally, we select the samples minimizing the quantity (w − n) to populate
TS. Interestingly, such an approach was applied under stationary conditions
and improved the performance. More specifically, we obtained 94.2±0.3%
after following a 4-fold cross validation experimental protocol as done in
(Verma et al., 2015). The present technique is rather simple, computationally
inexpensive for small-sized datasets (which is the typical application scenario
for one-shot learning based solutions) and generically applicable to other
datasets of homogeneous or heterogeneous modalities.

5. Conclusion

This article described an one-shot learning based solution specifically de-
signed to identify machine health state from vibration signals. Interestingly,
the proposed solution is able to offer state of the art results without consid-
ering any type of feature engineering based on domain knowledge. At the
same, it is able to operate satisfactorily in non stationary environments via a
suitably designed change detection mechanism allowing the system to react
to the appearance of new machine states and incorporate them in the class
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Figure 6: t-SNE plot of the feature space reduced to 50 PCA components including data
coming from every class (normal state, flank, chisel, and outer corner wear).

dictionary on-the-fly. Importantly, the system is not specifically trained for
classification but only learns the relationship similar/dissimilar between in-
put pairs. A thorough experimental campaign was followed on a publicly
available dataset including four machine health states. Towards assessing
every aspect of the proposed system, apart from figures of merit widely used
in the related literature, a novel one was designed able to demonstrate the
capability in identifying similar and dissimilar input pairs. Last but not
least, we analyzed the convolutional layers towards isolating spectrograms’
regions relevant for identifying each class. It was shown that such regions are
easily interpretable by humans contributing to wider acceptance of machine
learning based solutions. Such a feature is rapidly becoming a standard re-
quirement in machine learning based solutions (Gu et al., 2020). We argue
that a relevant part contributing to the success of this solution is its ability
to consider both similarities and dissimilarities to known classes at the same
time.

In the future, we are going to work on the following extensions: a) given
the flexibility of the proposed solution, we wish exploit it to solve different
problems of similar requirements, b) investigate sufficient conditions w.r.t
data composition and quantity towards improving the performance achieved
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in non-stationary environments, c) develop an advanced method to optimally
select data samples w.r.t every class available during training considering re-
strictions related to both intraclass similarities and interclass dissimilarities
combined with poor data availability, and d) extent the current theoreti-
cal framework towards including data coming from heterogeneous modalities
which could potentially offer improved performance.
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