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Abstract: This paper aims at presenting the complexity of process of image target-based 
color correction (CC). We present issues encountered from acquisition to rendering using 
colorimetric traditional tools. Target-based CC can be seen as an optimization problem. We 
have tested SHAFT (SAT & HUE Adaptive Fine Tuning) an automated framework for target-
based CC. A key element of SHAFT is an iterative CIEDE2000 variation comparison between 
a reference and target image. In this work we replace the standard CIEDE2000 with the 
Euclidean color-difference formula for small–medium color differences in log-compressed 
OSA-UCS (Optical Society of America's committee on Uniform Color Scales) space. Results 
are presented using both formulae. A discussion on the complexity of scene color departures 
and correction performances concludes the paper. It is shown the effect of real scene complexity 
and how colors are subject to disordered shifts in the color space. Because of this complexity, 
it emerges the role of the CC method as a different color error minimizer. 
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1. Introduction 
Following a theoretical approach, one could think that correcting color in an image can be seen 
as finding a kind of unique shift in a well-ordered series of color difference among patches. 
Real implementations are very far from this ideal situation. Many different factors form a long 
list of potential departures from the value of the scene to acquire, to the point that the many 
patches of a target inserted in the scene for color correction have a sort of chaotic range of color 
shift vectors. It is well known that differences in vector direction make the color shift more 
visible and annoying [1]. 

Usually, color device targeting is considered as the problem to solve, but real-world 
acquisitions are subject to many non-linearities and local variations. Among the many factors 
that affect the acquisition of a scene, lens glare is the one usually responsible of the biggest 
departure [2]. Even if rarely measured, the difference introduced by glare can easily exceed 100 
% in the dark areas [1,2,3,4]. Its characteristic is to affect areas differently, following also their 
mutual spatial distribution. This add a series of local changes that cannot be accounted by a 
global color Look-Up Table (LUT). In fact, different points in the scene with the same radiance 
values can easily end up in different acquired values due to different distances from brighter 
areas in the scene arrangement. In any case, color correction remains a useful step to perform, 
and target-based color correction is a diffused method to compensate unavoidable color 
differences between the scene and its digital image. This happens in many fields of digital 
photography like e.g., portraiture, fashion, furniture design, interior design; among them some 
aims at documenting color like e.g., Architectural Heritage and Cultural Heritage. 

In this paper we want to present and test a color correction method, despite the unavoidable 
limits of the acquisition. 

All the departures from the theoretical value of acquisition, makes the target-based color 
correction an interpolation issue, where the practical impossibility of linear coherent shifts 



gives importance to the minimization of vectorial color differences. Many open issues exist, 
besides the general problem of the mathematical shape of the transformation to map device-
dependent and device-independent spaces with adequate performance (linear transformations, 
multidimensional LUTs, least-squares polynomial regressions, and others), making results 
sometimes unreliable. Moreover, many works consider color differences as a scalar value, 
while it is known how the vectorial direction of the color difference is crucial to link it to its 
actual perceived visual difference (ΔV) [1], especially with the need to interpolate multiple 
color patches, with color shift likely in different directions.  

In this paper we present an example of real-world acquisitions showing the above-described 
problems. We used a color correction technique called SHAFT (SAT & HUE Adaptive Fine 
Tuning) [5], an automated framework for target-based ‘Color Correction’ (CC) benchmarked 
successfully in many and different use-cases mainly related to the Cultural Heritage as that in 
[6]. In SHAFT the optimization process is guided in the original formulation by an iterative 
CIEDE2000 variation comparison. In this work is presented a variant of the framework 
replacing the CIEDE2000 with the Euclidean color-difference formula for small–medium color 
differences in log-compressed OSA-UCS (Optical Society of America's committee on Uniform 
Color Scales) space [7], [8]. Our attempt has been inspired by the study [9], where the UCS 
diagram based on CIELUV color space is used to evaluate two color difference formulae ∆E00 
and ∆EE for measuring the visual data. Authors report that statistically, there is no significant 
difference between the Euclidean ∆EE and the non-Euclidean CIEDE2000 formulae compared 
to the BFD-P data set [10], however, the performance of the CIEDE2000 is found weaker in 
blue and red region compared to the ∆EE. 

2. A short review of the SHAFT technique 
The SHAFT is a software for target-based CC supported by RawTherapee, a cross-platform 
open-source RAW image processing program (https://github.com/Beep6581/RawTherapee) to 
which are entrusted the operations of demosaicing, devignetting, white balance and gamma 
correction. SHAFT is based on the ‘Color Correction’ (CC) linear approach by Bruce Fraser, 
the so-called Adobe Camera Raw (ACR) calibration scripts for calibration by iterative 
approximations. As target are admitted the X-Rite ColorChecker Classic (XCC) (Fig. 1), 
Passport, and Digital SG ColorChecker. The software differs from the original technique for 
the number and the types of tests done along the processing pipeline and for the algorithm used 
to find the best variation from the original values of the selected parameters (exposure, contrast, 
white balance, hue and saturation on each RGB channel). SHAFT is completely written in 
MATLAB to overcome the problem of ACR scripts that are built on Adobe Photoshop. The 
software is completely automated, exploiting a previously proposed solution for the target 
recognition on the image.  

 

 

Fig 1. The target X-Rite ColorChecker Classic. 



To avoid its main limitation (i.e., original highly incorrect images with high chromaticity) 
SHAFT is coupled with a polynomial regression correction based on least squares fitting, a 
solution widely adopted by many color researchers for calculation of the transfer matrix from 
the captured RGB values and their reference XYZ values [11]. Used references spectral 
reflectance values come from Danny Pascale paper [12] for the XCC used before 2016, and 
from measurements accomplished using a Minolta CM-2600d spectrophotometer for the XCC 
used after 2016. L*a*b* to XYZ transformations were accomplished using MathWorks 
MATLAB function lab2xyz where the wp variable was set at D65 illuminant. Polynomial 
regression is simple and effective and in our case is achieved using a per-channel Polynomial 
curve fitting algorithm, the MATLAB Weigthed Polyfit (x,y,n) function that returns the 
coefficients for a polynomial p(x) of degree n. Goodness of fit coefficient and polynomial 
degree are identified using a weighted fit minimizing the RMSE:  
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where ω is the weight of each patch of the XCC. The degree of the polynomial, to increase the 
robustness of the results, has been fixed to two. In our pipeline only the basic processing was 
retained: bad pixel removal; dark frame, bias subtraction, and flat-field correction; green 
channel equilibrium correction; Bayer interpolation. To avoid uncontrolled modification of the 
RAW pixel intensity values we did not allow these on-camera processes: black point 
subtraction; denoising; color scaling; image sharpening; color space conversion; gamma 
correction; format conversion. Our automatic workflow is described in [13] and is as follows: 

1. RAW image 16-bit linearization and devignetting 
2. Image denoise 
3. Color target detection 
4. Exposure equalization and white balance 
5. Polynomial function for CC  
6. Image CC using the new fitting function 
7. SHAFT CC 
8. Image color rendition using the selected color space 

In detail, white balance was performed on the patch 22 of the XCC (Fig. 1), performing a simple 
von Kries-type transformation in XYZ color space. As a white point the D65 illuminant was 
selected. The post camera flat fielding process was performed according to [14] before the 
image denoising. 

3. The color difference formula in target-based CC  
In evaluating color image capture, it is normally a validation effort aimed at determining 
goodness of the color-correction operation. This involves comparing the target colorimetry to 
that predicted from the color profile-processed pixel values. Several visual color difference 
formulae are used to do this. Their use is not limited to the evaluation of the deviation from the 
desired capture of color image information but is part of a calibration function to establish the 
best possible mapping from camera RGBs values to device independent XYZs values (or 
rendered RGB values). A common measurement technique for small color differences is the 
CIEDE2000 color metric, termed ∆E00 computed for each color patch in the CIELAB color 
space given by the CIE in 1976 [15]: 
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The CIEDE2000 formula, recommended by CIE mainly for color differences within the range 
0-5 CIELAB units [16], is the improved version of the CIE Euclidean distance measure in the 



CIELAB color space. In the formula ∆𝐿/ , ∆𝐶/ , and ∆𝐻/are the CIELAB metric lightness, 
chroma, and hue differences, respectively, calculated between the standard and sample in a 
pair. Specific weighting functions known as lightness (SL), chroma (SC) and hue (SH), 
parametric factors (kL, kC, kH), and the rotation term Rt have been added to correct to chroma 
and hue differences in the blue region. The values calculated for these functions vary according 
to the positions of the sample pair being considered in CIELAB color space. The relative 
importance of these five corrections to CIELAB is not the same: it is found that the weighting 
function for chroma is the most important one from a quantitative point of view [17], while the 
proposed weighting function for lightness seems to be relatively controversial [18]. Recent 
papers show improvement to the CIEDE2000 formula (e.g., by simple power functions as in 
[19]; or setting SL = 1 as in [20]), achieving results better about the agreement with visually 
perceived color differences (ΔV) (i.e., the color difference as judged by an experienced person, 
or by a panel of observers with non-defective color vision, between two color samples - 
typically two homogeneous patches, in the simplest case-). However, the statistical differences 
reachable are marginal [21] and then the original formulation remains easier and more reliable. 
Finally, it is important to note that CIEDE2000 has not an associated color space [22] and then, 
potentially, the use of a more perceptually uniform color space as the OSA- UCS system could 
be a solution allowing major improvement in the visual results of the calculations. 

4. Euclidean color-difference formula for small–medium color differences in 
log-compressed OSA-UCS space 

The OSA-UCS is a color order system developed between the years 1947-1974 from an idea 
of Judd and the consecutive works of MacAdam [23]. The intention of the OSA committee was 
to show equally perceptible differences between all pairs of adjacent colors and proposed a set 
of three orthogonal coordinates (𝐿0+1, 𝑗, 𝑔) arranging the color samples according to a cube-
octahedron lattice, which represent lightness, yellowness, and greenness, respectively [24]. The 
OSA-UCS system is defined for the CIE 1964 observer and D65 illuminant. The color 
difference formula developed for this color system, termed 𝛥𝐸2, is Euclidean and was proposed 
by Oleari et al. 35 years after the original work [7]. To achieve a Euclidean color difference 
formula Oleari et al. proposed a set of appropriate transformations of the original coordinates 
𝐿0+1, 𝑔, 𝑗 to have a set of new coordinates 𝐿2 , 𝐺2 , 𝐽2 in the so-called log-compressed OSA-UCS 
space. We recall all of them now. 
Given 𝑋&', 𝑌&', 𝑍&' and 𝑥&', 𝑦&', 𝑧&', 𝐿0+1 is defined as follows: 
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with: 

𝐶 = H+0.042
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with: 

𝐹 = 4.4934𝑥&'# + 4.3034𝑦&'# − 4.2760𝑥&'𝑦&' − 1.3744𝑥&' − 2.5643𝑦&' + 1.8103.  (5) 

From Eqs. 3-4 we can derive 𝐿2 as follows: 
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with: 

𝑎) = 2.89; 𝑏) = 0.015.   (7) 

The coordinates 𝐺, 𝐽 are defined as follows: 
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where 𝑋&', 𝑌&', 𝑍&' are the tristimulus values of the sample. 

From Eq. 8 we can derive  𝐺2 , 𝐽2 as follows: 

𝐺E = −𝐶2 cos(ℎ) 	, 𝐽E = 𝐶2 sin(ℎ),   (10) 

with: 
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𝑎>	 = 	1.256, 	𝑏> = 	0.050, 𝐶0+1 = k𝐺# + 𝐽#.   (11) 

Finally, we can define the Euclidean color-difference formula for small-medium color 
differences in log-compressed OSA-UCS space as follows: 

ΔE = k(Δ𝐿2)# + (Δ𝐺2)# + (Δ𝐽2)#  (12) 

Lower complexity than CIEDE2000 and equally good in the prediction of many available 
empirical datasets [23] have invited the formula to be encapsulated tested in the SHAFT 
framework described above. 

5. Experimental setup 
Image Quality Assessment of color corrected images processed using the two different color 
spaces (CIELAB and log-compressed OSA-UCS space) was made exploiting both objective 
and subjective methods. Tests results of the new solution using a common reference, the target 
XCC [25] are presented showing that a lower number of iterations is required to reach the same 
numerical performance. Experiments with users are presented to evaluate the quality of the 
framework. As final rendered color space we used the sRGB-IEC 61966-2-1 defined with 
respect to CIE illuminant D65. Downsides of the sRGB color space (gamma value 
approximately of 2.2; colors gamut narrower than the human one, not allowing to display 
properly saturated colors such as yellow cadmium and blue cobalt, the color of the patch F3 of 
the XCC clipped) are well balanced by the 100% displayability on today's consumer monitors 
and the full support from the 3D Graphic API enabling a faithful reproduction of color in 3D 
applications. For the experiment, our dataset of 22 XCC RAW images described in [13] was 
used (Fig. 2). The dataset consists of images captured in photo studio, indoor, architectural 
scenarios, and outdoor environment, where natural light characteristics are extremely complex 
and changeable and represent different cases and problems of target-based CC. These targets 
present many types of distortions: noise, glare, uneven illumination typically of the real scene 
capture, but in the dataset are also target captured in a photo studio environment using 
professional cameras. These distortions need to be added to the inaccuracies typical of the 
technique, well surveyed by [26] that demonstrated that between the many signal elements that 
modifies the real camera responses (e.g., ringing, blurring, glare, noise, etc.), the operator errors 
in the capture process, and the problem related to camera orientation with respect to the target 
and the lighting sources, deviations can largely be attributed to operator error.  



 

Fig 2. Dataset of 22 RAW images evaluated. 

Consistency in the capture process and uniform illumination of the target are the primary 
requirements. The uniformity can be mathematically compensated for by capturing an image 
of a diffuse white board in the location of the test target using flat-fielding techniques. 
Vignetting could generate problem just in the case of target covering the whole area of the 
image which practically never happens. Typical problems of the real scene capture are instead 
the color cast appearing in the case of environment with surrounding walls or objects with 
saturated colors and, more important, the glare appearing when the camera is not well oriented 
with respect to the target. Moreover, Lanaro et al. [27] noted that glare is generated by lenses 
producing an incorrect scaling of grey patches in captured images. This acquisition distortion 
affects the subsequent CC. The absolute value of the measurement of the ΔE00 of each target 
reported in Table 1 well represent the number of distortions presents in the current image. 

Objective assessment was performed on the images rendered in the sRGB color space, using 
these image quality factors calculated using the Imatest Master software 
(https://www.imatest.com): 

1. ∆𝐸'' mean excluding the patch F3 which color is outside of the sRGB color space 
2. ∆𝐿 mean of lightness 
3. Exposure error in f-stops measured by pixel levels of patches B4-E4, using gamma 

values measured rather than the standard value for the color space (i.e., in the case 
of sRGB, 2.2) 

4. Processing time 
5. Number of cycles of the SHAFT algorithm. 

Obviously, SHAFT improve over a traditional ‘manual’ CC. In Appendix 1 are reported 
results of a ‘manual’ CC against a SHAFT-based CC on three selected images to see how well 
that compares colorimetrically to the reference and the SHAFT processing. 

The subjective image quality assessment method is based on ISO 20462, of which Part 1 is 
an overview of practical psychophysical components [28]. In practice, we used the 
psychophysical technique of paired comparisons [29], performing two experiments: 

- In the Experiment A (for preference), two versions of the same image processed in the 
two-color spaces were presented along with the original (reference) XCC placed in a 
box. The XCC was positioned within a light booth sized 538x310x273 mm built for 
this experiment colored as the F4 patch of the XCC. The light sources used are two 
high-quality LED Relio2 (https://www.relio.it) illumination devices emitting 
continuous spectrum light at a CCT of 6500K, a neutral white with high color 
rendering, an illuminance of 40000 lux at 0.25 m, and CRI(Ra)>95%. Nineteen images 
among the dataset of 22 XCC were presented to the observer. Three images have been 
discarded because the size of the target was too small for a visual judgement. 



- In the Experiment B (for accuracy) the image of a single patch with its reference XCC 
placed in a box is presented to the observer. To avoid an excessive observer’s fatigue, 
the number of trials has been reduced selecting randomly 4 targets among the 19 
images. For each target, a subset of 9 patches has been chosen, for areas where CIE 
color space is particularly compressed. A total of 72 patches (36 for each color space) 
were presented to the observer. An evaluation of the accuracy of the reproduction of 
each color patch using a categorical judgment was requested. 

 

For the Experiment A we used a ‘forced-choice’ comparison - 3AFC (three-alternative 
forced choice) - displaying both the tests images and reference for a fixed amount of time (15 
seconds). After that, images disappear from the screen and observers will be asked to choose 
the image with higher quality. Observers are always required to choose one image even if both 
images possess no difference. There is no time limit for observers to make the decision. We 
used this approach based on three items, instead of the most common based on two elements, 
fundamentally because the triplet comparison experiment can be judged more quickly than the 
three separate paired comparisons as stated in Annex D of the ISO 20462-2 [28]. 

In the Experiment B the subjective assessment was done using a categorical rating with a 
mean opinion score techniques applied to a double-stimulus experiment. The observer is asked 
to rate the quality of the single patches on an abstract scale containing one of the five categories: 
excellent, good, fair, poor, or not worth keeping [30] [31], mapped to numbers between 5 
(excellent) and 1 (Obvious difference, which is not acceptable). The observers were enabled to 
move a slider allowing a precision of the judgement of 0,01 to allow high granularity. Observers 
then were encouraged to report the results in decimal values, e.g., a color difference of category 
3.8 could be described as a good correspondence. Finally, the Z-score technique is used instead 
a simple mean opinion score (the arithmetic mean over single ratings performed by human 
subjects for the given stimulus) to avoid unreliable results, e.g., caused by the fact that observers 
are likely to assign different quality scales to each scene and even distortion types [32]. 

The Experiment B has been extended, and analysis were made with greater accuracy to 
explore the most problematic patches, the ones which colors are in the more compressed in the 
CIELAB color space, and then being characterized by a smaller area in the MacAdam’s ellipses, 
typically in the blue colors and, less, of the reds. We selected 7 patches form the XCC, typically 
blue or bluish, namely the patches 3, 5, 6, 8, 10, 13, 22 (see figure 1). In this case each pair of 
images was assessed three times by each observer. In total, 168 assessments (7 patches × 2 
techniques × 4 targets x 3 replications) per observer were accumulated. Each observer was 
encouraged to finish one session in 20 min, but there was no time limit for visual assessment 
for a pair of images. A total of 2016 judgments (12 observers × 168 assessments) were obtained. 
These repeated results were used to report intra- and inter-observer variability. Intraobserver 
variability or repeatability error is a deviation among replicated observations of a given 
observer in an experiment, and interobserver variability or observer accuracy can be considered 
as an average deviation between individual results and the mean results of all observers. 

For the Experiment B as the Z-score calculated from the observation data are normally 
distributed, we can utilize classical parametric statistics in the further analysis. To inquire the 
significance of the input images, the experiments (accuracy and preference), and the 
conversions (i.e., the factors) on the observation data, it is profitable to apply the multifactorial 
Analysis of Variance (ANOVA) test [33], allowing to analyze the differences among group 
means in a sample. 

Factors such as display device and lighting condition affect the results of these methods. 
For this reason, we used a set of recommendations for standardized testing methods for 
subjective image quality assessment by the International Telecommunications Union in 2008 
[34]. The evaluated images were displayed on a BenQ PhotoVue Photographer Professional 
monitor with In-Plane Switching (IPS) technology, a 27-inch LED display, in native resolution 
of 3840x2160 pixels. It features a resolution of 163 dpi, luminance of 350 nit, and color gamut 
100% sRGB. During the experiment, the monitor was calibrated daily by an X-Rite I1 display 



pro sensor driven by X-Rite software i1Profiler profiling software to D65 and a gamma of 2.2 
(∆𝐸''= 1.8, average value for the sample set of the XCC). We increased the peak luminance of 
the sRGB color space from the suggested 80 nit to 160 nit to reflect current capabilities of LCD 
displays rather than an average peak brightness of a CRT. Also, the spatial uniformity of the 
monitor was investigated. It was found that the mean ∆E00 at nine considered spatial locations 
was 0.83, with a maximum of 1.86. This result is acceptable considering that the detection 
threshold for assessing image difference in previous literature is >2 CIELAB units [35]. 

Fig. 3 illustrates the experimental setup. The images were assessed by 12 non-expert 
observers who were confirmed to have normal or corrected to normal vision, following the 
observation that currently, researchers on color differences consider that reliable results require 
at least 10 individual observers, with a minimum of 3 replications per observer [36]. 

The observers were both male and female between the ages of 26 and 67, with normal color 
vision, according to the Ishihara test. Prior to the experiment, all observers were trained to 
assess image difference using the category judgment method. After each visual assessment, the 
gray background was presented for a few seconds so that the observers recovered from visual 
adaptation to avoid the afterimage effect before the next visual assessment. 

For additional reliability, all observers repeated each experimental session three times in 
three days, to reduce a possible learning effect. The single experimental session took 
approximately 30 minutes per observer. To build the visual presentation and to record users’ 
answers, we utilized the Python library PsychoPy (https://www.psychopy.org/), a framework 
to develop psychophysics experiments developed by University of Nottingham. The displayed 
size of the image was set to real size of the XCC (273 x 192 mm). The two images in a pair had 
a separation of about 10 mm and the background was set to the XCC patch F4. The sequence 
of images and the position of images on the display (left or right) were randomized. The type 
of the experiment (accuracy or preference) was also randomized, however for a given observer 
it remained constant. 

 

Fig. 3. The experimental environment. Experiment A. On the left side, the target corrected 
with the two methods are presented on the screen; on the right side, there is the physical XCC 

placed in the box.  

6. Test results 
Table 1 shows the results of the objective test. For each image and method, the measurements 
listed at Par. 5 were performed. The confidence level to compare processing time and number 
of cycles with T-Test was set at 95%. The two approaches based on ΔE00 and ΔEE do not show 
a statistically significant difference in performance. 3D plots and images acquired, color 
corrected and using the two techniques are in Appendix 2. 

Tables 2-4 show results related to the Experiment A and Experiment B. In detail, Table 2 
illustrates observers’ preferences of Experiment A. Table 3 presents the mean opinion score per 
observer of Experiment B. Finally, Table 4 presents the mean opinion score per single patch of 



Experiment B. We remark that research conducted on determining the smallest mean opinion 
score difference perceptible to users for digital photographs demonstrated that it is 
approximately 0.46 and is required the 75% of the users to be able to detect the higher quality 
image [37]. From these results emerges that no difference appears both in objective and 
subjective tests between the use of different color spaces for CC. Moreover, the perceived (ΔV) 
and the computed (ΔE) color differences are proportional to each other. 

Table 1. Objective test results. For each image and method (ΔE00-based and ΔEE-based), the measurements 
listed at Par. 5 were performed, using the dataset of 22 XCC RAW images illustrated in fig. 2. 
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_48_R01_ 2.93 1.36 3.58 2.68 0.17 162.00 125 3.33 1.16 4.11 3.31 0.17 158.00 125 

_DSC0134 2.17 1.27 2.16 1.58 0.08 31.25 125 2.31 1.09 1.76 2.05 0.08 35.01 125 

_DSC0136 2.57 1.21 2.96 2.38 0.08 32.29 110 3.41 1.12 3.19 3.73 0.08 36.07 125 

_DSC0945 4.39 2.79 5.12 3.15 0.18 51.00 125 5.23 2.73 5.48 4.31 0.18 51.01 30 

_DSC2118 2.32 1.53 2.05 1.95 0.04 38.86 125 2.68 1.29 1.82 2.58 0.03 40.04 125 

_DSC2416 2.70 1.50 3.03 2.21 0.10 37.64 220 2.85 1.30 3.80 2.53 0.10 36.08 315 

_DSC2524 1.80 0.94 2.11 1.62 0.06 36.05 125 2.04 0.80 2.20 2.10 0.06 40.14 125 

_DSC2801 2.01 0.98 1.98 2.02 0.06 37.40 220 2.38 0.73 2.15 2.76 0.06 40.41 220 

_DSC2935 3.60 2.36 3.78 2.43 0.10 39.44 126 3.71 2.13 4.47 2.73 0.11 39.71 125 

_DSC3197 2.51 1.59 2.08 2.18 0.07 33.21 505 5.47 3.62 4.82 5.43 0.07 34.24 410 

_DSC3630 2.30 1.26 2.04 2.07 0.09 35.28 505 2.98 1.54 2.81 2.74 0.09 34.76 410 

_DSC6062 2.35 1.62 2.81 1.66 0.15 37.84 30 2.84 1.45 2.91 2.47 0.15 40.16 220 

_MG_9935 2.60 1.64 2.97 1.82 0.08 42.01 30 3.26 1.74 3.55 2.67 0.08 44.71 125 

_T4A4626 4.69 4.15 3.50 2.56 0.08 47.48 30 5.11 4.00 3.62 4.02 0.08 49.92 125 

_T4A4846 2.36 1.20 3.16 2.03 0.11 48.18 125 5.11 4.00 3.62 4.02 0.08 50.48 31 

_T4A5900 2.73 1.26 3.23 2.42 0.11 45.27 220 3.00 1.41 2.83 2.89 0.06 48.49 125 

_wb_L5_A 2.33 1.32 2.42 1.97 0.08 48.00 200 3.00 1.10 2.36 3.18 0.08 48.00 200 

1__200Is 1.98 0.96 2.23 1.86 0.08 50.00 125 2.24 0.69 2.00 2.47 0.08 52.44 125 

2__200Is 2.46 1.24 3.91 2.11 0.08 50.73 31 2.84 1.02 3.95 2.69 0.08 53.39 126 

3__200Is 2.20 1.16 2.29 1.72 0.09 50.11 30 2.78 0.70 2.03 3.12 0.09 50.01 125 

APC_0029 3.70 2.20 5.09 2.60 0.14 35.13 126 3.86 2.17 5.54 2.61 0.14 36.32 125 

APC_0033 5.42 3.39 6.34 3.97 0.19 31.45 315 5.93 3.21 7.11 4.68 0.18 37.69 220 

Mean 2.82 1.68 3.15 2.24 0.10 46.39 162.41 3.47 1.77 3.51 3.19 0.10 48.05 167.36 

    T Test on processing time:   0.356617002                       T Test on number of 
cycles:   0.889405395 

 

 

Table 2. Number of XCC image preferences for each observer. 

Observer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total 

ΔE00 11 10 13 8 10 6 10 12 10 7 11 12 120 

ΔEE 8 9 6 11 9 13 9 7 9 12 8 7 108 



Table 3. Mean opinion score corrected with the Z-score technique per each observer on the 72 patches (36 for 
each color space). Average ΔE00 and ΔEE scores are represented as Z-scores for each experimental subject. 

Observer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total 

ΔE00 -0.42 -0.27 -0.43 0.5 0.58 0.23 0.42 0.11 0.22 -0.66 0.56 -0.53 0.03 

ΔEE -0.53 -0.3 -0.49 0.49 0.59 -0.21 0.26 0.12 0.03 -0.51 0.83 -0.58 -0.03 

Table 4. Mean opinion score corrected with the Z-score technique of all observers per each patch (36 for each 
color space). Average ΔE00 and ΔEE scores are represented as Z-scores for each experimental subject. 

Patch name 1 7 13 14 3 15 16 11 17 Total 

ΔE00 -0.26 0.21 -0.77 -0.18 -0.64 0.16 0.33 0.77 0.63 0.03 

ΔEE -0.39 -0.2 -0.8 -0.28 -0.33 0.17 0.15 0.76 0.62 -0.03 

Table 5. One-Way ANOVA. Factor is represented by the different development, based on ΔE00 and ΔEE. MS 
represents the mean of square, DoF represents the Degrees of Freedom, F is Fisher value, Fcrit represents the 
critical value of F distribution. The two groups represent the ΔE00 and ΔEE methods. The significance level 
obtained (0.480845) is below 0.05 (alpha = 0.05), meaning that there is no significant difference between the 

means of the two groups. 

ANALISYS OF VARIANCE 
Origin of variation MS DoF MS F Significance level Fcrit 
Between groups 0.448427 1 0.448427 0.497346 0.480845 3.851445 
Within groups 841.229 933 0.901639    
Total 841.6774 934     

 

However, analyzing in-depth areas in the CIEDE diagram where colors are compressed 
(i.e., the blue colors area) the differences between the two-color spaces result greater and we 
can state that the use of the log-compressed OSA-UCS space could give better results. Shifts 
expressed in raw values plotted in 3D RGB-space and in white patch balanced chromaticity 
values, are reported in Appendix 3. 

Tables 6-7 show results related to the Extended Experiment B. Table 6 presents the mean 
opinion score per observer of Extended Experiment B. Finally, Table 7 presents the mean 
opinion score per single patch of Extended Experiment B. The analysis of the blueish patches 
showed a statistically significant difference between color patches developed using ΔEE and 
ΔE00 as a correction criterion. This difference has been highlighted using one-way ANOVA. 
ANOVA tested two hypotheses: the null hypothesis (H0) assumes equal average scores within 
groups. The alternate hypothesis (H1) assumes a different average in at least one group. To test 
the null hypothesis H0, ANOVA uses a statistical test, known as F test [38]. F test is the result 
of the ratio between two variances: 

𝐹 = ++8
*?&

++@
A?*
m   (11) 

where SSB is the sum of square between groups, k-1 are the degrees of freedom of SSB, SSW 
the sum of square within groups, N is the number of observations, and N-k are the degrees of 
freedom of SSW. The chosen significance level is 5% (α=0.05), assuming a 5% error in 
accepting erroneously the null hypothesis H0. Z-score have been divided in two groups 
according to their development strategy: the first group was related to images developed with 
ΔE00 correction strategy and the second one to images developed with ΔEE correction strategy. 

The results of the ANOVA are summarized in two tables [39] (Tables 5 and 8). Table 5 
does not show significant differences between the average Z-score of the two groups, while 
Table 8 shows statistically significant differences in the average Z-score of the two groups. In 



the latter case, the significance level is 0.014405, which is less than 0.05. This result suggests 
that the performances of the conversions depend on input images and on experiment type, and 
it makes sense to show the results separately for each input image and for each experiment. 

Table 6. Extended Experiment B - Mean opinion score corrected with the Z-score technique per each observer 
on the 168 patches observed (84 for each color space). Average ΔE00 and ΔEE scores are represented as Z-

scores for each experimental subject. 

Observer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total 

ΔE00 0.17 -1.24 0.52 -0.46 0.27 0.39 0.72 0.17 0.22 0.35 -0.6 -0.73 -0.02 

ΔEE 0.22 -1.28 0.52 -0.49 0.3 0.44 0.73 0.17 0.31 0.61 -0.61 -0.7 0.02 

Table 7. Extended Experiment B - Mean opinion score corrected with the Z-score technique of all observers 
per each patch (84 for each color space). Average ΔE00 and ΔEE scores are represented as Z-scores for each 

patch. 

Patch name 13 3 17 5 6 10 8 Total 

ΔE00 -0.32 -0.64 -0.2 0.03 0.09 0.87 0.05 -0.02 

ΔEE -0.26 -0.65 -0.1 -0.01 0.09 0.95 0.1 0.02 

Table 8. Extended Experiment B - One-Way ANOVA. Factor is represented by the different CC solutions, 
based on ΔE00 and ΔEE. MS represents the mean of square, DoF represents the Degrees of Freedom, F is 

Fisher value, Fcrit represents the critical value of F distribution. The significance level obtained (0.014405) is 
below 0.05 (alpha = 0.05). 

ANALISYS OF VARIANCE 
Origin of variation MS DoF MS F Significance level Fcrit 
Between groups 7.241202 1 7.241202 5.997383 0.014405 3.845724 
Within groups 2634.533 2182 1.207394    
Total 2641.774 2183         

 

7. Discussion  
Replacing the traditional CIEDE2000 with a simpler, more recent comparable color difference 
formula, such as the Euclidean color-difference formula for small-medium color differences in 
log-compressed OSA-UCS, is just one step in the way to improve results. In the development 
and optimization of a target-based CC framework, other crucial steps need to be considered. 
CC in practice does not overlap with theory. This is because colorimetry does not consider 
many aspects that influence the results [40] e.g., illuminants are never uniform in real scene 
and cause interactions and interreflections among objects. Besides, also gamut and gamut 
mapping, hidden camera computations, RAW vs jpg non-linearities, ringing, blurring, 
vignetting, and many other phenomena should be considered. Along with these, also different 
types of noise may occur, like e.g., dark current noise. 

A last but not least factor is glare, a systematic departure due to light spread through the 
lens. Its magnitude can be very high and cause a big departure from scene values, especially 
for dark regions.  

A quantitative analysis is performed on the differences between CIEDE2000 and ∆EE. Such 
analysis has been conducted comparing a synthetic set of color chart acquisitions. All images 
have been captured during daytime, and thus a light source very close to D65 illuminant has 
been considered for CIELAB computation. A simple gaussian distributed noise and a simple 
general offset have been added to a synthetic raw XCC to mimic glare. Table 9 and Fig. 4 report 



the results showing the influence of glare and noise on both techniques. Glare and noise affect 
the results in a similar way for both the two experimented techniques. 

Table 9. Quantitative analysis of the influence of increasing glare and noise on the two techniques based on 
ΔE00 and ΔEE measured using ΔE00 units 

  ΔE00     ΔEE  
             Noise 
Glare 0% 5% 10%         Noise 

Glare 0% 5% 10% 

0 0.07 0.1 4.67  0 0.23 0.13 5.91 
10 0.83 0.96 5.03  10 0.92 1.02 6.3 
20 0.96 1.41 6  20 1.02 1.55 6.25 

 

  
Fig. 4. Quantitative analysis of the influence of increasing glare and noise on the two 

techniques based on ΔE00 and ΔEE. Graphical results. 

Table 10. CIELAB values for patch 24. Acquired, CIEDE2000 and DEE from left to right, respectively. 
Reference value are: L*=20.64, a*=0.13, b*=-0.46 

 
Acquired ΔE00 ΔEE 

Image L* a* b* L* a* b* L* a* b* 
_48_R01_ 16.96 0.39 -1.34 23.06 -2.40 1.27 23.12 -2.20 2.04 
_DSC0134 25.59 -1.38 -9.81 21.37 -0.60 -0.17 21.39 -0.63 -0.16 
_DSC0136 6.27 0.24 1.65 19.08 -0.19 0.66 19.02 -0.25 0.43 
_DSC0945 20.65 0.98 -1.89 26.69 -2.22 2.23 26.69 -2.22 2.24 
_DSC2118 25.01 0.07 -5.20 22.05 -0.97 0.70 22.04 -0.97 0.62 
_DSC2416 21.76 1.44 -0.69 21.53 -1.95 0.60 21.57 -1.86 0.59 
_DSC2524 23.23 0.87 -2.21 20.57 0.60 0.34 20.56 0.63 0.29 
_DSC2801 27.38 2.28 1.79 20.28 -0.35 -0.64 20.34 -0.41 -0.57 
_DSC2935 20.67 -0.91 -4.90 25.28 0.04 1.32 25.29 0.06 1.32 
_DSC3197 12.07 0.53 -5.26 20.81 -0.77 -0.43 20.90 -0.89 -0.36 
_DSC3630 36.58 0.19 -6.11 21.24 -1.79 -0.29 21.35 -1.83 -0.05 
_DSC6062 7.83 1.63 3.68 22.99 -0.93 0.27 22.98 -0.91 0.21 
_MG_9935 18.92 0.47 -6.00 23.06 -0.83 1.59 23.03 -0.90 1.48 
_T4A4626 7.82 0.27 -3.55 22.43 -1.00 1.93 22.37 -0.88 1.79 
_T4A4846 16.26 2.52 -6.67 22.06 -1.12 0.60 22.37 -0.88 1.79 
_T4A5900 19.53 1.31 3.97 22.05 -1.11 0.51 20.16 -2.27 0.54 
_wb_L5_A 24.85 2.02 -3.03 19.35 -0.47 -0.32 19.35 -0.49 -0.40 
1__200Is 23.48 -1.18 -6.70 20.06 -0.53 -0.81 20.09 -0.60 -0.77 
2__200Is 25.60 -1.13 -5.18 20.04 0.21 -0.65 20.07 0.17 -0.63 
3__200Is 25.65 0.50 -0.88 20.04 0.27 0.00 20.02 0.29 -0.06 

APC_0029 21.53 0.38 -1.88 24.32 -1.05 1.50 24.35 -0.94 1.47 
APC_0033 21.41 0.11 -0.77 26.47 -2.10 1.94 26.44 -2.29 2.49 
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00
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Table 10 reports the values of the black patch of XCC in different steps of the process: as 
reference value, acquired directly on XCC using the Minolta CM-2600d spectrophotometer, 
the CIELAB value of pixels, averaged on the central part of the patch, for all images, the 
CIELAB value of pixels after SHAFT correction using CIEDE2000, the CIELAB value of 
pixels after SHAFT correction using DEE. Table 11 reports for each scene the Lightness 
difference and ΔE of the XCC black patch (#24) with respect to reference value.  

Table 11. Lightness differences and ΔE for patch 24. Acquired, CIEDE2000 and DEE from left to right, 
respectively. In green values < 1 and in red values > 10, respectively. 

 Lightness differences ΔE 
Image Acquired ΔE00 ΔEE Acquired ΔE00 ΔEE 

_48_R01_ 3.68 -2.42 -2.48 3.79 3.91 4.22 
_DSC0134 -4.95 -0.73 -0.75 10.69 1.07 1.11 
_DSC0136 14.37 1.56 1.62 14.52 1.95 1.89 
_DSC0945 -0.01 -6.05 -6.05 1.66 7.03 7.03 
_DSC2118 -4.37 -1.41 -1.40 6.45 2.13 2.08 
_DSC2416 -1.12 -0.89 -0.93 1.74 2.50 2.43 
_DSC2524 -2.59 0.07 0.08 3.21 0.93 0.90 
_DSC2801 -6.74 0.36 0.30 7.42 0.63 0.63 
_DSC2935 -0.03 -4.64 -4.65 4.56 4.97 4.98 
_DSC3197 8.57 -0.17 -0.26 9.83 0.92 1.06 
_DSC3630 -15.94 -0.60 -0.71 16.91 2.02 2.12 
_DSC6062 12.81 -2.35 -2.34 13.55 2.68 2.65 
_MG_9935 1.72 -2.42 -2.39 5.81 3.31 3.25 
_T4A4626 12.82 -1.79 -1.73 13.19 3.19 3.01 
_T4A4846 4.38 -1.42 -1.73 7.97 2.17 3.01 
_T4A5900 1.11 -1.41 0.48 4.72 2.11 2.64 
_wb_L5_A -4.21 1.29 1.29 5.28 1.43 1.43 
1__200Is -2.84 0.58 0.55 6.98 0.95 0.97 
2__200Is -4.96 0.60 0.57 6.96 0.63 0.60 
3__200Is -5.01 0.60 0.62 5.04 0.77 0.75 

APC_0029 -0.89 -3.68 -3.71 1.69 4.33 4.32 
APC_0033 -0.77 -5.83 -5.80 0.83 6.69 6.94 

Table 12. Lightness ratio between the white patch (#19) and the black patch (#24). Acquired, CIEDE2000 and 
DEE from left to right, respectively. In red values < 4 and in yellow values > 5, respectively. The reference 

value is 4.61. 

Image Acquired ΔE00 ΔEE 
_48_R01_ 5.61 4.12 4.11 
_DSC0134 3.90 4.45 4.44 
_DSC0136 7.89 4.99 5.00 
_DSC0945 4.25 3.48 3.48 
_DSC2118 3.99 4.30 4.30 
_DSC2416 4.40 4.41 4.40 
_DSC2524 4.28 4.62 4.62 
_DSC2801 3.65 4.69 4.68 
_DSC2935 4.59 3.73 3.73 
_DSC3197 5.41 4.58 4.56 
_DSC3630 2.73 4.48 4.46 
_DSC6062 6.00 4.11 4.11 
_MG_9935 4.62 4.11 4.11 
_T4A4626 6.70 4.24 4.25 
_T4A4846 5.99 4.29 4.25 
_T4A5900 4.68 4.30 4.70 
_wb_L5_A 3.98 4.92 4.92 
1__200Is 4.20 4.75 4.74 
2__200Is 3.91 4.75 4.74 
3__200Is 3.90 4.75 4.75 

APC_0029 4.45 3.89 3.88 
APC_0033 4.02 3.52 3.52 



Glare has its paramount effect on the dark areas. It follows that the black patch #24 is the 
place where glare effect is higher. Among the 22 scenes acquired, six images (48_R01_, 
DSC0136, DSC3197, DSC6062, T4A4626 and T4A4846) shows a value greater than 5 and 
thus a higher dynamic range. On the other side, seven images (DSC0134, DSC2118, DSC2801, 
DSC3630, wb_L5_A, 2_200Is, 3_200Is) show a ratio lower than 4, thus a lower dynamic range. 
The remaining ones are the closer to the reference 4.61. After correction (second and third 
column), all rations are compressed and only four images fall below value 4 (in red).  

In general, it is possible to observe noteworthy improvements for all scenes except for 
Image 4 and where we have a degradation in terms of lightness difference. Considering ΔE, 
among the 22 scenes acquired, only image labeled APC_0033 shows a value close to the 
reference. Five images (DSC0134, DSC0136, DSC3630, DSC6062 and T4A4626) instead 
show to be very far from the reference. 

Table 12 reports the lightness ratio between the white patch (#19) and the black patch (#24). 
Among the 22 scenes acquired, six images (48_R01_, DSC0136, DSC3197, DSC6062, 
T4A4626 and T4A4846) shows to have a higher ratio than the reference and thus a higher 
dynamic range. On the contrary seven images (DSC0134, DSC2118, DSC2801, DSC3630, 
wb_L5_A, 2__200Is, 3__200Is) show a lower ratio. After SHAFT optimization with 
CIEDE2000 and DEE, 18 on 22 images show a distance less than 1 to the reference ratio. 

Table 13 reports the Glare Evidence (GE) proposed by [4] and defined as follows: 
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Table 13. The Glare evidence (GE). The reference values are: Black L* =  20.64, White L* = 95.17, B/W Ratio 
= 0.22.  

 Acquired Acquired Acquired GE 
Image Black L* White L* Ratio B/W Ratio Acquired / Reference 
_48_R01_ 16.96 95.09 0.18 0.82 
_DSC0134 25.59 99.77 0.26 1.18 
_DSC0136 6.27 49.45 0.13 0.58 
_DSC0945 20.65 87.78 0.24 1.08 
_DSC2118 25.01 99.74 0.25 1.16 
_DSC2416 21.76 95.69 0.23 1.05 
_DSC2524 23.23 99.34 0.23 1.08 
_DSC2801 27.38 100.00 0.27 1.26 
_DSC2935 20.67 94.81 0.22 1.01 
_DSC3197 12.07 65.29 0.18 0.85 
_DSC3630 36.58 100.00 0.37 1.69 
_DSC6062 7.83 46.96 0.17 0.77 
_MG_9935 18.92 87.45 0.22 1.00 
_T4A4626 7.82 52.40 0.15 0.69 
_T4A4846 16.26 97.36 0.17 0.77 
_T4A5900 19.53 91.47 0.21 0.98 
_wb_L5_A 24.85 98.80 0.25 1.16 
1__200Is 23.48 98.61 0.24 1.10 
2__200Is 25.60 100.00 0.26 1.18 
3__200Is 25.65 100.00 0.26 1.18 

APC_0029 21.53 95.82 0.22 1.04 
APC_0033 21.41 86.03 0.25 1.15 

Glare is rarely considered in color correction practices, but its magnitude is usually too high 
to be ignored. One of the goals of this paper is underlining this effect. Glare evidence measure 
can be helpful in digital color management. 

In conclusion, we can observe that target-based CC in real scene acquisition is subject to a 
complex series of color shifts and a correction method that can only aim at lowering these 
departures. In such complex scenario it is straightforward that the chosen color difference has 



a role, but not the major one, and consequently it makes sense that the results of the two used 
formulae lead to similar results. 

8. Conclusion 
In this paper we have presented the complexity of image target-based CC when processing real-
world scenes where the complexity is very high. 

The main goal is to set a framework where perceptual and mathematical refinements of 
color distances were tested. 

After introducing issues that can be encountered from acquisition to rendering using 
colorimetric traditional tools, we have tested SHAFT (SAT & HUE Adaptive Fine Tuning), an 
automated framework for target-based CC. 

We have replaced the standard CIEDE2000 with the Euclidean color-difference formula for 
small-medium color differences in log-compressed OSA-UCS space in the iterative process of 
variation comparison between a reference and target image. 
Computational load, measured as processing time and number of cycles needed to achieve the 
correction optimization, does not show a statistically significative difference in performance 
between the two formulae. 

From the reported acquisition data, it has been shown the effect of real scene complexity 
and how colors are subject to disordered shifts in the color space. Because of this complexity, 
it emerges the role of the CC method as a different color error minimizer. It follows that the 
chosen color difference plays a secondary role, with similar results from the two tested 
formulae. 

The type of acquisitions here presented have been realized without any preventative 
measures, so to be representative of everyday shots. Glare is demonstrated to affect every 
acquisition device that uses lenses, as well as all the other non-linearities due to e.g., shadows, 
interreflections, etc.  In general, all the differences here presented and described are common 
in every possible acquisition. 
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Appendix 1 
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Fig. Appendix 1. Three images developed through different methods. The first column 

represents the result of a simple white balance using the Von Kries adaptation. In the second 
and the third images have been processed through the entire SHAFT development process. The 

second column the CC is based on ∆E00 in the third column the CC is based on the ∆EE. 
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Fig. Appendix 2. Images acquired on top-right, corrected with ∆E00 on top-right and corrected 
with ∆EE on bottom-left, respectively. On bottom-right distances from reference to acquired 

(blue), to ∆E00 corrected (red), to ∆EE corrected (green), respectively. 
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Fig. Appendix 3. Shifts expressed in raw values. On top-left images acquired; on top-right 
images corrected with ∆E00 and on bottom-left images corrected with ∆EE. On bottom-right 

distances from reference to acquired (blue), to ∆E00 corrected (red), to ∆EE corrected (green), 
respectively. 

 


