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We present a first attempt to design a quantum circuit for the determination of the parton content of the
proton through the estimation of parton distribution functions (PDFs), in the context of high energy physics
(HEP). The growing interest in quantum computing and the recent developments of new algorithms and
quantum hardware devices motivates the study of methodologies applied to HEP. In this work we identify
architectures of variational quantum circuits suitable for PDFs representation (qPDFs). We show
experiments about the deployment of qPDFs on real quantum devices, taking into consideration current
experimental limitations. Finally, we perform a global qPDF determination from collider data using
quantum computer simulation on classical hardware and we compare the obtained partons and related
phenomenological predictions involving hadronic processes to modern PDFs.
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I. INTRODUCTION

Quantum computing is a new computation paradigm
that exploits the laws of quantum mechanics to provide
new strategies for addressing problems that are nowadays
considered to be difficult. The first quantum algorithms
showing any advantage over their classical counterparts
date from the 1990s, being Shor’s algorithm for integer
factorization and Grover’s search the most prominent ones
[1,2]. During the last decade, we have witnessed an impres-
sively fast development of quantum computing, both for
theoretical work and hardware implementation perspectives.
Nevertheless, currently existing quantum devices are not
powerful enough to run competitive quantum algorithms,
with respect to the state of the art of the classical ones.
Recent achievements such as quantum supremacy [3]

have introduced the so-called noisy intermediate-scale
quantum (NISQ) stage [4]. NISQ devices suffer from
errors due to decoherence, noisy gates and erratic read-
out measurements, and thus, its performance is limited.
However, even at this early stage, quantum technologies
may provide useful tools for a broad range of applica-
tions. On the one hand, some standard fully determined

algorithms are well suited for NISQ processors [5–9]. In
particular, there also exist some examples of quantum
algorithms designed to address some problems in high
energy physics (HEP) [10–13]. On the other hand, the
approach usually taken to harness the computational power
of these imperfect machines is based on hybrid methods
combining quantum and classical resources. For example,
variational algorithms can be created whose purpose is to
optimize some quantity encoding a solution for a specific
problem. Among the great variety of quantum variational
algorithms it is possible to find examples in quantumchemistry
[14–18], quantum simulation [19–21], combinatorial optimi-
zation [22], solving linear systems of equations [23–25] and
state diagonalization [26,27]. Some of these examples are
already characterized as quantum machine learning (QML)
applications, based on variational [28–32] and nonvariational
[33–35] approaches. Furthermore, QML is a field that is
expected to surpass the current performance and ubiquity of
classicalmachine learning (ML)when thecurrent limitationsof
quantum devices will be overcome.
The QML approach to quantum computing is an

interesting research topic which can be adapted and tested
on research problems already addressed by ML techniques.
Motivated by this idea, we propose to investigate the
possibility to use quantum computing for the determination
of parton distribution functions (PDFs). In perturbative
QCD, PDFs are used to describe the nonperturbative
structure of hadrons [36,37]. These functions are typically
determined by means of a supervised regression model
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which compares a wide set of experimental data
with theoretical predictions computed with a PDF
parametrization.
In this work we first propose the most suitable QML

architecture for PDFs representation and then perform
experiments about its deployment on real quantum devices,
taking into account the current experimental limitations.
Then, we adapt the NNPDF methodology [38–44], based
on ML techniques, to operate in a QML environment,
replacing neural-networks with quantum circuits.
The novel quantum circuit parametrization for PDFs,

that we call qPDFs in the next paragraphs, follows the
quantum model described in Ref. [28]. The model is
constructed as a parametrized quantum circuit (PQC)
whose inner parameters depend both on PDF data and
trainable parameters. A PQC whose parameters are train-
able is known as a variational quantum circuit (VQC). The
circuit is applied to an initial quantum state, for instance the
ground state j0i, and the output state contains information
on PDFs. The determination of the circuit parameters is
done with standard classical optimization methods, using a
predefined cost function.
There are different reasons for attempting a qPDFs

determination. First, quantum computing is expected to
have a reduced energy consumption when compared to an
equivalent classical computer, and thus, we may expect
saving power and reducing its environmental impact.
Second, as we show in this work, the number of parameters
needed to obtain an acceptable PDF fit is in average lower
with quantum models in comparison to modern PDF
models. Furthermore, the qPDF approach may take advan-
tage from quantum entanglement, since the potential out-
standing power of quantum computing emerges from there.
Finally, quantum hardware may bring performance
improvements in terms of running time for this model
when compared to the standard ML approach since the
number of operations needed to obtain an acceptable
solution is lower and the model has an exact hardware
representation. On the other hand, we consider the qPDF
model presented in this work as proof-of-concept for future
implementations, given that the performance of quantum
simulation on classical hardware and the stability of real
quantum device measurements are not competitive with the
ML tools used by modern PDF determinations.
The paper is structured as follows. Section II provides an

overall description of the quantum circuit model for PDFs,
while in Sec. III we identify its best architecture. In Sec. IV
we discuss about the deployment of qPDFs on real
quantum devices. In Sec. V we integrate the qPDF model
in the NNPDF fitting framework and perform a first global
qPDF determination using data from experiments such as
Tevatron or LHC. In Sec. VI we compute Higgs observable
predictions using the qPDF fit. Finally, in Sec. VII we
present our conclusion and future development directions.

II. QUANTUM CIRCUITS FOR PDFs

Quantum circuits are mathematically defined as oper-
ations acting on an initial quantum state. Quantum com-
puting usually makes use of quantum states constructed
out of qubits, that is, binary states represented as jψi ¼
αj0i þ βj1i. The states of a quantum circuit are commonly
defined by its number of qubits n, and, in general, the initial
state of the circuit jψ0i is the zero state j0i⊗n. A quantum
circuit implements an inner unitary operation U to the
initial state jψ0i to transform it into the final output state
jψfi. For some algorithms, this U gate is fully determined
[1,2], while other algorithms define its inner operation by
means of some fixed structure, so-called Ansatz, and
tunable parameters UðθÞ [14,23,24]. Those are known as
parametrized quantum circuits (PQC). This kind of circuits
is useful in the NISQ era of quantum computing, since they
provide a great flexibility and allow to approximate unitary
operations up to arbitrary precision [45,46]. The parameters
defining the PQCs can be trained using an optimization
procedure known as a variational quantum circuit (VQC). It
is possible then to use classical computational resources to
find the optimal configuration of a quantum circuit.
A VQC follows roughly three steps to solve a given

problem, as schematically shown in Fig. 1. First, a PQC
UðθÞ is constructed using a small set of single- and two-
qubit parametric gates. The Ansatz of such circuit may
follow a particular path exploiting the special features of
the problem, or may also be a general one. After the Ansatz
is applied to the circuit, we must perform some measure-
ments on the output quantum state to extract information.
Those measurements are used to evaluate a loss function
LðθÞ encoding the problem. The loss function should reach
its minimum as the problem is perfectly solved. The loss
function LðθÞ is passed to a classical optimizer that looks
for the value

θ� ¼ argminðLðθÞÞ: ð1Þ

Classical optimizers need several function evaluations, thus
when modifying the set of parameters θ the Ansatz UðθÞ is

FIG. 1. Operational scheme of a variational quantum circuit.
A unitary gate U, depending on some parameters θ, transforms
the initial j0i state into some output state. This state is measured
and used to compute a loss function LðθÞ. The classical optimizer
performs an update on the parameters to minimize the value of
LðθÞ. New parameters are then sent to the quantum circuit and the
loop starts again.
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updated and new measurements are performed. Although
the general scheme for variational circuits is pretty simple,
lots of details can be deployed regarding the three pieces of
this algorithm.
We propose a model based on the general framework of

VQC to tackle the problem of fitting one or several PDFs
flavors using quantum computers. In this case, the problem
to be solved is mathematically reduced to approximate
arbitrary one-dimensional functions within a certain target
accuracy. That is, we define the PDF model to be para-
metrized by a VQC as

qPDFiðx;Q0; θÞ; ð2Þ

where x is the momentum fraction of the incoming hadron
carried by the given parton with flavor i (quarks and gluon),
so 0 ≤ x ≤ 1, at a fixed initial energy scale Q0. Following
this definition, we propose some superficial modifications
to adjust the VQC to this particular problem.
First, we need to introduce the value of x into the circuit.

Thus, we modify the definition of the Ansatz to depend on
θ and x, that is UðθÞ → Uðθ; xÞ. This x value is introduced
as inner circuit parameters following the reuploading
procedure in Ref. [28]. The effect of the quantum circuit
is then defined as

Uðθ; xÞj0i⊗n ¼ jψðθ; xÞi; ð3Þ

which produces a significant change in the output state,
since it depends now on x and not only on θ. The key
ingredient in this approach is that, as the variable x serves as
input several times in every circuit, it is possible to obtain
nonlinear mathematical structures that allow arbitrary
fittings. The exact design of some Uðθ; xÞ Ansätze are
further explained in Sec. III B.
The second ingredient in our model is the way PDF

information is extracted from the quantum circuit. We use
the Z Pauli gates to define a series of Hamiltonians to
perform measurements with. Let us consider a n-qubit
circuit to run our variational algorithm on. The set of
Hamiltonians to build is

Zi ¼ ⊗
n

j¼0
Zδij ; ð4Þ

where δij is the Kronecker delta function.
The choice of this Hamiltonian is heuristic. This model

creates as many Hamiltonians as qubits are available in the
circuit, and those Hamiltonians are created by measuring a
certain qubit with the Z Pauli matrix, while all other qubits
remain unmeasured. These observables measures the pop-
ulation of the states j0i and j1i of a particular qubit. The
Hamiltonian is proposed in order to encode the PDF
functions within the probability of measuring a certain
qubit in its excited state. Following the Hamiltonians
previously stated, we can define the function

ziðθ; xÞ ¼ hψðθ; xÞjZijψðθ; xÞi: ð5Þ

The next step is to relate these zi functions to the PDF
values. We associate each function ziðθ; xÞ to only one
parton i. That is, if the model aims to fit n partons, the
circuit width must be n qubits. We define the qPDF model
for flavor i at a given ðx;Q0Þ as

qPDFiðx;Q0; θÞ ¼
1 − ziðθ; xÞ
1þ ziðθ; xÞ

: ð6Þ

With this choice only positive values are available,
although there is no upper bound. The reason to choose
this particular definition is heuristic and is supported by
empirical results detailed in a later section. It is, however,
not a hard constraint, as it is possible to drop this positivity
constraint with a simple rescaling. A theoretical motivation
can be drawn from the fact that PDF functions can be made
non-negative [47] but their values may in principle grow to
any real value, see for instance the gluon PDF in Fig. 4.

III. IMPLEMENTATION

A. Workflow design

In order to achieve our goal to determine a set of PDFs
based on quantum circuits, we have defined a workflow
based on a step-by-step procedure composed by three
stages: (1) the identification of the most adapted quantum
circuit Ansatz for qPDF parametrization, (2) the feasibility
study to deploy the qPDF model into real quantum devices,
and finally, (3) the integration of the quantum circuit model
in a global PDF fitting framework.
In Fig. 2 we show schematically the three stages we

followed. First, we perform simulations to identify the best
model architecture and capacity to represent PDF-like func-
tions. This stage is similar to the usual hyperoptimization

FIG. 2. Schematic workflow for the implementation of qPDF.
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tune performed in machine learning applications. However,
in our context, we do not have a specific initial Ansatz
assumption, thus empirical tests and fine-tune is required.
These simulations are done by computing the exact wave-
function of all quantum states involved in the middle steps
of the algorithm using classical hardware. The expected
values for Hamiltonians are also exactly computed and not
measured. The model is then trained to fit PDF input data
generated from the NNPDF3.1 set of PDFs [42]. In the next
section we discuss the details of the procedure and identify
the best model architecture for the qPDF determination.
The second stage studies the possibility to deploy the

qPDF model in an actual quantum device. For this step, we
introduce measurements and noise models, and identify the
required number of shots and trials for an acceptable
representation of PDFs.
Finally, as a third and last stage, we use this model in an

actual PDF fit based on experimental data (mainly com-
prised of LHC measurements). We have integrated the
qPDF model from stage 1 in the NNPDF fitting framework
[37,38]. This implementation opens the possibility to
perform fits on the same datasets of modern PDF releases.
All calculations involving quantum circuits are per-

formed using the quantum simulation tool Qibo [48,49]
on classical hardware. The qPDF model is publicly
available through the Qibo API. The experimental imple-
mentation of this model was done using Qiskit [50] from
the OpenQASM [51] code generated by Qibo. The process-
ing of experimental data from the LHC experiments is done
with the N3FIT [38] code.

B. Ansatz determination

We discuss now the different Ansätze that are considered
in this work. Two main different kinds of Ansätze were
designed. The first one, named weighted Ansatz, is directly
inherited from Ref. [28], and introduces the x variable

using the weights and biases scheme, similarly to neural
networks. The second one, called Fourier Ansatz, inspired
in Ref. [52], is related to harmonic analysis and uses linear
and logarithmic scaling to satisfy all values of x involved in
PDF determination, in particular for small and large values
of x, where experimental data suffers from larger uncer-
tainties. The main difference between both Ansätze is the
presence or absence of tunable weights.
In the weighted case, the single-qubit gate serving as

building block for the whole Ansatz is

Uwðα; xÞ ¼ Rzðα3 logðxÞ þ α4ÞRyðα1xþ α2Þ; ð7Þ
where α is a four-component set of parameters. Notice that
two different axis are involved in the definition of this gate.
This is due to the fact that any two different Pauli matrices
do not commute and leads to the rising of nonlinear
mathematical structures, allowing the approximation to
be uniformly accurate [28,53,54]. The presence of both
axis allows the possibility to introduce x and logðxÞ
dependencies to the same gate.
In the Fourier case, we define the gate

Ufðα; xÞ ¼ Ryðα4ÞRzðα3ÞRyð−π=2 log xÞRyðα2Þ
× Rzðα1ÞRyðπxÞ ð8Þ

where the values of the coefficients preceding the x and
logðxÞ depend on our dataset. For the specific PDF
determination problem presented here, the values of x
are constrained to lie between 10−4 and 1, thus the gates are
evaluated at angles between 0 and 2π.
We use these single-qubit gates to construct layered

Ansätze to fit the PDFs. The reason for this procedure is
that we expect to cast more accurately the output quantum
state as more layers are added to the quantum circuit. The
layers have two pieces. First, a layer of as many single-
qubit parallel gates as qubits is applied. Second, a set of

(a) (b)

FIG. 3. On the left we show an example of one layer architecture. On the right we present the scheme of a full Ansatz circuit including
8 qubits and entangling gates. The Ulðθl; γl; xÞ from the left figure enters the full ansatz as Ul. Note that the last layer does not have any
entangling gate.

ADRIÁN PÉREZ-SALINAS et al. PHYS. REV. D 103, 034027 (2021)

034027-4



entangling gates is added to the circuit. All entangling gates
are controlled RzðγÞ gates, where γ is also a tunable
parameter. Entangling gates connect one qubit with the
next one and then with the previous one, or vice versa. All
layers include the entangling pieces except for the last one.
A scheme depicting the structure of such this circuit can be
viewed in Fig. 3. The parameters entering in every gate are
independent for all the other parameters, and all of them are
to be optimized simultaneously. Note that single-qubit
circuits cannot have any entanglement by definition.
For this first tuning stage, we drop the circuit layer

with measurement gates and use simulated final states.
The optimization procedure then uses the Pearson’s χ2 loss
function [55] to compare the qPDF predictions to the
target central values fi of NNPDF3.1 NNLO [42]. In this
exercise we always consider a grid of x-points distributed
between ½10−4; 1� at Q0 ¼ 1.65 GeV and a maximum
of 8 flavors for quarks, antiquarks and the gluon:
i ∈ fs̄; ū; d̄; g; d; u; s; cðc̄Þg. The χ2 covariance matrix is
set to a diagonal matrix containing the σfiðx;Q0Þ uncer-
tainty of the target set.
Results summarized in Tables I and II show the values

for Pearson’s χ2 function both for the weighted and the
Fourier Ansätze respectively. In both cases, the left column
shows an average fit for all the flavors in a one-by-one
fashion, while the right column shows an optimization for

all flavors simultaneously. These table compare the per-
formance between circuits with similar number of param-
eters, that is, in every pair unentangled circuits have a larger
number of layers than entangled circuits. The reason to
compare circuits in this way is because entanglement is
expected to improve the overall quality of the fits. The
calculations were in this case made by simulating all the
operations on quantum circuits, and the optimization
procedure was done in two steps. First, the CMA genetic
algorithm is used to find optimal solutions for single-flavor
optimizations [56]. In the multiflavor scenario we used the
L-BFGS-B function from SciPy [57,58]. The multiflavor
optimizations start from the corresponding single-flavor
results and add the entangling gates, allowing for a better
fitting. In addition, some results for the final fitting are to be
viewed in Figs. 4 and 5.
There are several interpretations that can be claimed

from those results. First, it is clear that entanglement does
not suffice to obtain good approximations. Entanglement
can be understood as a quantum resource to extract the
correlations between different qubits, which in this case
encode the information of qPDFs within. On the other
hand, every layer of variational gates provides a new step in
nonlinearity, which is necessary to represent arbitrary
functions. Thus, entanglement may help to achieve better
fittings, as seen in Tables I and II for models with the same

FIG. 4. Multiflavor qPDF fits using the weighted Ansatz (orange curves) and the Fourier Ansatz (blue curves) with 5 layers and 8
qubits. The mean value and 1σ uncertainty of the target PDF data is shown by means of a solid black line and a shaded grey area.

TABLE I. Comparison of χ2 values for the weighted Ansatz
model between the average of all single-flavor fits (left) and the
corresponding multiflavor fit (right).

Single-flavor fit Multiflavor fit

Layers (Parameters) χ2 χ2 Layers (Parameters)

1 (32) 28.6328 1 (32)
2 (64) 1.0234 … …
3 (96) 0.0388 0.1500 2 (72)
4 (128) 0.0212 0.0320 3 (112)
5 (160) 0.0158 0.0194 4 (152)
6 (192) 0.0155 0.0154 5 (192)

TABLE II. Comparison of χ2 values for the Fourier Ansatz
model between the average of all single-flavor fits (left) and the
corresponding multiflavor fit (right).

Single-flavor fit Multi-flavor fit

Layers (Parameters) χ2 χ2 Layers (Parameters)

1 (32) 900.694 1 (32)
2 (64) 57.2672 … …
3 (96) 0.0410 47.4841 2 (72)
4 (128) 0.0232 0.0371 3 (112)
5 (160) 0.0165 0.0216 4 (152)
6 (192) 0.0156 0.0160 5 (192)
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number of layers. However, a sufficient number of layers is
also mandatory. Second, data unveils the goodness of the
weighted Ansatz with respect to the Fourier one. Built-in
weights grant the model a great representability, especially
in the cases with a small number of layers.
As final Ansatz, we will retain the weighted one with

5 layers both in the single-flavor and multiflavor scenarios.
For the sake of comparison, equivalent Fourier Ansätze
are chosen. In the remainder of this work, we are using the
5-layers multiflavor Weighted Ansatz. This circuit has got
5 layers of single-qubit gates and 4 layers of entangling
gates interspersed with the single qubit layers, up to a total
amount of 192 parameters, which is a manageable number.

A detailed comparison in the number of parameters is
deployed in Tab. III. The entangling gates are controlled-Rz
gates with one inner parameters, and single-qubit gates are
parameterized through the scheme wxþ b, where x is the
variable for the PDFs. Logarithmic and linear scales are
used together in the same quantum gate. This configuration
is also the first one allowing for a path between all qubits of
the circuit. Results depicted in Table I and Figs. 4 endorse
the use of this Ansatz. In addition, tests run on both Ansätze
reveiled that the Weighted Ansatz is easier to train using
efficient gradient-based methods such as L-BFGS-B.

IV. EXPERIMENTAL CONFIGURATION

The previous section showed that a low-depth variational
Ansatz is capable of expressing the full set of PDF
functions, this section investigates how well that expres-
sibility transfers to a realistic quantum computer. In order to
understand the effects of noise on the model, the trained
single-flavor model was compiled on the IBM Athens
quantum processor [50]. In the single-flavor model, each
qubit/parton is fit independently of the others, and therefore
the circuit can be efficiently represented as a rotation of the
Bloch sphere. This fact makes the single-flavor model robust
to single-qubit gate errors. Each parton was evaluated at 20
logarithmically spaced points between 10−4 < x < 1. At
eachpoint, the expectationvalue, zi ¼ hψ jZijψi, is estimated
using 8192 shots. The evaluation of each point was repeated
five times in order to probe the statistical uncertainty in
estimation, it was found that the estimation was robust to
statistical noise. Figure 6 shows the comparison of running
the experiment, and the simulation results. From this figure
we deduce that the single-flavor model produces acceptable
results on currently available quantum computers, and that
the Qiskit noise simulation environment does a good job
of predicting the outcome of the experiment.
In order to gain an understanding of how the proposed

multiflavor model performs on a quantum computer, the
optimized circuit was simulated with a realistic noise model.
The first step of this simulation is to explicitly include the
measurement gates in the circuit as can be seen inFig. 3. Each
qubit represents a particular parton, and therefore the qubits
should be measured independently. The goal of the meas-
urement is to estimate zi ¼ hψ jZijψi, this is achieved in a
given number of shots by subtracting the number of
occurrences of measuring 1 from the number of occurrences
of measuring 0, and normalizing by number of shots.
The ability of the circuit to reproduce the PDF was first

simulated on an ideal quantum computer using Qiskit
[50]. The simulation was performed with 8192 shots as this
value corresponds to the maximum number of shots
permitted per run on IBM quantum processor. It was found
that this number of shots was more than sufficient to
converge the estimate of hψ jZjψi, and thus accurately
reconstruct the PDF. This is shown in Fig. 7.

FIG. 5. Comparison between single-flavor fits (left) and multi-
flavor fits (right) for the gluon, up and strange quarks PDFs.
For the single-flavor fits the weighted Ansatz (orange curves)
and Fourier Ansatz (blue curves) are composed by 1 qubits and
6 layers. On the other hand for the multiflavor fits, the Ansätze
are composed by 8 qubits and 5 layers. The mean value and 1σ
uncertainty of the target PDF data is shown by means of a solid
black line and a shaded grey area.

TABLE III. Summary for the Ansätze chosen for this work. The
preferred number of l ayers was chosen as a compromise between
small χ2 and number of parameters. Results depicted in Tables I
and II determine that the multiflavor weighted Ansatz is our best
candidate model.

Single-flavor Multiflavor

Weighted Fourier Weighted Fourier

Qubits (q) 1 (per flavor) 8

Layers (l) 5 5

Parameters 2 · l · q weights 4 · l · q 16 · l weights 32 · l
2 · l · q biases 16 · l biases

No entanglement 8ðl − 1Þ entangling
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In order to simulate the effect of a realistic noise model,
the IBM Melbourne quantum processor was chosen [50].
The Melbourne processor is the only device that is publicly
available through the IBM Quantum Experience that has
enough qubits to fit the optimized circuit. The 8 qubit
optimized circuit was mapped onto Melbourne in such a
way to minimize the χ2.
The errors on the Melbourne device were found to

drastically deteriorate the estimation of the PDF as can
be seen in Fig. 7. This analysis has shown that while it is
possible in theory to fit a PDF using a quantum computer,
the noise in the current state-of-the-art quantum processors
is still too high to reconstruct the PDF accurately.
Another question that can be asked is, how robust must

the quantum device be in order to have an acceptable
representation of the PDF? To answer this question, a
simplified version of the Melbourne device was created. In
this simplified Melbourne, all the qubits and connections
were taken to have identical noise characteristics, specifi-
cally all single gate, double gate, and readout errors were
set to the best values from the real Melbourne processor.

With this simplified device, the noise models can be
uniformly scaled down to interpolate between an ideal
quantum computer and a Melbourne-like device using a

FIG. 6. Single-flavor fit for all flavors, using the weighted Ansatz, for 5 layers and 8 qubits, that is one qubit per flavor. The red lines
represent the prediction of the qPDF model with simulated noise from the IBM Athens processor [50]. Green points are the results of
running the circuit on the Athens quantum processor. The mean value and 1σ uncertainty of the target PDF data is shown by means of a
solid black line and a shaded grey area.

FIG. 7. Multiflavor fit for all flavors, using the weighted Ansatz, for 5 layers and 8 qubits, that is one qubit per flavor. Blue lines are the
mean and the blue shadowed area the 1σ uncertainty of the circuit measurement results for an ideal noise free quantum device. The red
curve refers to simulated circuit measurements using the noise model for the IBMMelbourne processor [50]. Similarly, green and orange
curves show simulation results with noise reduced by 50% and 90% respectively. The mean value and 1σ uncertainty of the target PDF
data is shown by means of a solid black line and a shaded grey area.

FIG. 8. The error as a function of the error interpolation
parameter terror. The y-axis is given as the ratio between the
error, χ2, and the error on an ideal quantum computer, χ2ideal.
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parameter terror, where terror ¼ 0 corresponds to an ideal
quantum computer, and terror ¼ 1 corresponds to the
simplified Melbourne device. Figure 8 shows what happens
to the cost function χ2 as terror is varied.

V. PDF DETERMINATION FROM
EXPERIMENTAL DATA

In the previous sections we have described the process of
finding a final Ansatz which can encode the full complexity
of the physical PDFs by training to already known results.
Furthermore, we have verified the possibility to deploy
such model on real quantum devices. These steps corre-
spond with stages 1 and 2 of our workflow (Fig. 2) where
the PDF is treated as a known quantity. In reality, however,
the only data that one has access to are the experimental
measurements of physical observables performed at experi-
ments (for instance, physical cross sections measured at
the LHC).
The next stage of this work is to prove that this

methodology can also replace the neural networks at the
core of the NNPDF methodology for fitting PDFs.
Although still far from being of practical usaged (see for
instance Fig. 4) we show, in the simulator, that a hybrid
VQE could indeed replace neural networks as an universal
function approximator for complex problems such as the
one posed by parton distribution functions.
In this final section we start by describing the NNPDF

methodology and what changes are needed to its latest
implementation (described in [38]) to perform a full fit. We
use the NNPDF3.1 dataset which includes deep-inelastic
scattering (DIS) and hadronic collider data. We end with a
comparison between our resulting PDF (qPDF) and the
latest NNPDF release (NNPDF3.1) and prove that the
results are perfectly usable in an actual computation of
physical observables.

A. The NNPDF fitting methodology

The two main aspects that define the NNPDF method-
ology are the Monte Carlo approach to the uncertainties
of experimental measurements and the usage of neural
networks (hence the name) to model the PDFs. In this
section we outline some of the most relevant aspects of the
NNPDF methodology, for a more in-depth review please
consult [43].
The first step of the methodology is the generation of

“data replicas.” This procedure propagates the experimental
uncertainties into the PDF fit by leveraging the covariance
matrices provided by the experiments by creating between
100 and 1000 artificial copies of the data as if they were
produced by independent measurements.
The full PDF fitted in this methodology follows the

functional form for each parton i:

fiðx;Q0Þ ¼ x−αið1 − xÞβiNNiðxÞ; ð9Þ

where the fitted NN is prepended by a preprocessing factor
per parton x−αð1 − xÞβ. This factor ensures the correct
behavior at very small (close to 0) and very large (close
to 1) values of x, where there might not be enough
experimental data to properly constraint the NN. This
function constrains all free parameters that define the
behavior of the PDF. The functions defined in Eq. (9)
however cannot be directly compared to experimental data,
instead one would have to convolute them with the partonic
cross section in order to obtain a physical prediction that
can be compared to the result of an experiment,

P ¼
Z

dx1dx2fi1ðx1; q2Þfj2ðx2; q2ÞjMijðfpngÞj2; ð10Þ

where x1, x2 are the momentum fraction carried by the two
colliding partons and the indices i and j run over all
possible partons. Mij is the matrix element for the given
processes and fpng represents the phase space for a n-
particles final state. Performing this integral numerically
per training step, per experimental data point, would be
completely impracticable. Instead the theoretical predic-
tions are approximated as a product between the PDF
model and a fastkernel table (FK table) encoding all the
relevant information on the computation as described in
Refs. [59,60].
The optimization of the function defined in Eq. (9)

consists then in the minimization of a χ2 defined as:

χ2 ¼
XNdat

i;j

ðD − PÞiσ−1ij ðD − PÞj; ð11Þ

whereDi and Pi are respectively the ith data point from the
training set and its theoretical prediction and σij is the
experimental covariance matrix provided by the experi-
mental collaborations.
This procedure is then repeated for each of the artificial

replicas. Note that the theoretical predictions are always the
same, so the only change between replicas is in the experi-
mental data points. The final central value for the PDF is
then the average over all replicas, while the error bands are
given by taking the envelope that contains 68% of all
replicas.

B. Qibo-based N3FIT

The latest implementation of the latest iteration of the
NNPDF methodology is described in Ref. [38]. This
implementation is very modular and one can seamlessly
swap the TensorFlow based back end by any other provider.
Qibo, which is also partially based on TensorFlow can be
easily integrated with the NNPDF methodology.
Note that all results in this section corresponds to the

simulation of the quantum device on classical hardware.
Such a simulation is very costly from a computational point
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of view which introduces a number of limitations that need
to be addressed in order to produce results in reasonable
time frames.

FK reduction: the definition of the quantum circuit
depends on both the set of parameters θ and the value
of the parton momentum fraction x [see Eq. (3)] which
means the circuits needs to be simulated once per
value of x. The union of all FK tables for all physical
observables [following Eq. (10)] amounts to several
thousand values of x. Since such a large number of
evaluations of the quantum circuit is impracticable, we
introduce a further approximation where each partial
FK table is mapped to a fixed set of 200 nodes in the
x-grid. This simplification introduces an error to the
total χ2 of the order of Δχ2 ¼ 0.14� 0.01 when
averaged over PDF members. This error on the cost
function is however negligible for the accuracy
reached in this work.

Positivity: in the fitting basis, as defined in Sec. II,
the PDF cannot go negative. Physical predictions
however are computed in the flavor basis [61] where
the rotation between basis can make some results go
negative. However, physical observables (differential
or total cross sections) cannot be. This physical
constraint is included in NNPDF3.1 via fake patho-
logical datasets. These have not been implemented
for qPDF as they correspond to a fine-tuning of
the methodology which is beyond the scope of this
work.
The removal of the positivity constraint from the fit

introduces an unphysical distortion to the results as
the PDF could produce negative predictions for
physical predictions. Such results are unphysical
because they would correspond to situations in which
the probability of finding a particular phase space
configuration is negative, which makes no sense. In
Fig. 9 we compare the “negativity” between qPDF and

a version of NNPDF3.1 with the positivity constraints
removed. We observe that both fits behave similarly,
proving such unphysical results are a consequence of
the removal of the constraint rather than a problem in
the qPDF methodology.

Momentum sum rule: the PDFs as defined in Eq. (9) are
normalized such that [43],

R
1
0 dxxfgðx;Q0Þ

1 −
R
1
0 dxxfΣðx;Q0Þ

≃ 1; ð12Þ

this equation is known as the momentum sum rule
and it is imposed in N3FIT through an integration over
the whole range of x which is impracticable in this

FIG. 9. Predictions for a toy ss̄ initiated Drell-Yan process with
qPDF and a simplified version of NNPDF3.1 where the positivity
constraint has been removed.

FIG. 10. χ2=N per experiment grouping. There is a deteriora-
tion of the goodness of the fit (measured by the χ2) for some of
the experiments for the central value. The goodness of the fit is
very similar between the reference and qPDF for most of the
experiments being considered.
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implementation for the reasons mentioned above.
Instead, in qPDF these are only checked afterwards,
finding a good agreement with the expected values
(despite not being imposed at fitting time). Indeed, for
qPDF the result for the average over all replicas is:

R
1
0 dxxfgðx;Q0Þ

1 −
R
1
0 dxxfΣðx;Q0Þ

¼ 1.01� 0.01: ð13Þ

which is to be compared with the NNPDF3.1 result of
1.000� 0.001, where the constraint was imposed at
fit time.

C. qPDF

Once all ingredients are implemented, we are in a
position to be able to run a NNPDF3.1-like fit using the

new prescription based on the VQE and the Qibo library.
As a base reference for the comparison we take the
NNPDF3.1 NNLO fit [42], which is the latest release by
the NNPDF collaboration. The plots comparing the
NNPDF sets with qPDF are then produced using a
reportengine [62] based internal NNPDF tool.
The dataset included in this fit correspond to that of

NNPDF3.1, which is detailed in Section 2.1 of [42] and
includes data from deep-inelastic scattering experiments,
fixed-target Drell-Yan-like data and hadronic collider data
from experiments at Tevatron and LHC.
We can start by comparing the χ2=N result for the

datasets that have been considered in the fit, shown in
Fig. 10. One would expect a perfect fit when χ2=N ¼ 1,
however this is not the case even in the reference and it is
due to a combination of missing higher order corrections
(a lack of a better theory) or inconsistencies in the
experimental results.
The similarity on the phenomenological results obtained

by both fitting methodologies as shown in Fig. 10 is well
understood as well by looking at the distance plots between
the qPDF and the reference in Fig. 11,

d2ðfi; riÞ ¼
hfii − hrii

1
Nf

σðfiÞ2 þ 1
Nr
σðriÞ2

; ð14Þ

where i is the flavor being considered and f and r
corresponds to qPDF and the reference (NNPDF3.1)
respectively. The central value is taken over the N replicas
of the set, generally of the order of 100.
Indeed, for most partons the difference between both fits

are under the 1-σ level (distance equal to 10 for 100
replicas) growing up to 2-σ for the u and s quarks.
This point is clearly seen in Fig. 12 where we compare

the published PDFs (with their corresponding error bars)
for the gluon and the d and u quarks. We note that for these
quark flavors the qPDF central result is almost always
within the 1-σ range of the reference, with an overlapping
error band for the whole considered range.

FIG. 11. Distance [as defined by Eq. (14)] between qPDF and
NNPDF3.1. When the distance is kept under dðfi; riÞ ¼ 10 the
two fits are 1-σ compatible. All partons except for u and s are
below or around the 1-σ distance for the entire range considered.
Note however, by comparing to Fig. 4 that the fits for both the
u and s quarks are compatible in the most relevant regions for
these particles.

(a) (b) (c)

FIG. 12. Fit results for the gluon and the u and s quarks. As previously seen in Fig. 4, qPDF is able to reproduce the features of
NNPDF3.1. We now see this is also true when the fit performed by comparing to data and not by comparing directly to the goal function.
The differences seen at low-x can be attributed to the lack of data in that region.
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In Fig. 13 we show specifically a comparison between
the reference NNPDF3.1 and qPDF for selected datasets,
we also provide the LHAPDF-compatible PDF grid. We
observe that the accuracy of the qPDF central value is
similar to that of NNPDF3.1. Furthermore, the error bars
for the predictions of both PDF set overlap with the
experimental error bars, and, in some cases, also among
themselves.
Finally, in Fig. 14 we compute the PDF correlations for

NNPDF3.1 and qPDF replicas using Pearson’s coefficient
in a fixed grid of 100 points distributed logarithmically
in x ¼ ½10−4; 1�.
This leads us to conclude that the methodology described

in this paper can be used for regression problems to
unknown functional forms such as the proton internal
structure and produce results that are perfectly coherent,
from a phenomenological point of view, with the state of
the art. In addition we believe that with adequate tuning one
could achieve the same level of accuracy of the classical
approach.
We finalize this section by showing phenomenological

results where the LHAPDF grids produced with this
approach are used for a full fixed order prediction. In
summary going back circle to the master equation, i.e.,

computing numerically Eq. (10) with no approximations
using state of the art tools.

VI. PHENOMENOLOGICAL RESULTS

In order to access the phenomenological implications of
the qPDF fit, obtained in the previous section, we compute
and compare predictions for the most common Higgs
production channels.
The theoretical predictions are stored and computed with

the PineAPPL [68,69] interface to MadGraph5_aMC@NLO

[70]. Cross sections have been computed for the LHC
Run II kinematics, with a center-of-mass energy offfiffiffi
s

p ¼ 13 TeV. In particular, we have generated NLO
Higgs productions tables for total cross-sections for gluon-
fusion, vector-boson fusion, associated production with W
andZ bosons and associated productionwith top quark pairs.
NoHiggs decays are included, sincewe are only interested in
the production dynamics. We have assumed a Standard
Model Higgs boson with mass mH ¼ 125 GeV, and lepton
cuts pT;l > 10 GeV and jηlj < 2.5.
In Table IV we present cross-section predictions for

NNPDF3.1 NNLO and qPDF. We observe that results are
compatible and close to each other.

FIG. 14. PDF correlation matrix for flavors in a grid of x points
for NNPDF3.1 NNLO (left) and the qPDF (right).

TABLE IV. The cross-sections for Higgs production at 13 TeV
in various channels at NLO using the settings described in the
text. From top to bottom: gluon fusion, tt̄H production, WH
production, ZH production and vector boson fusion. We have
assumed a Standard Model Higgs boson with mass
mH ¼ 125 GeV.

Channel NNPDF3.1 NNLO qPDF

ggH 31.04� 0.30 pb 31.71� 0.51 pb
tt̄H 0.446� 0.003 pb 0.464� 0.008 pb
WH 0.133� 0.002 pb 0.135� 0.002 pb
ZH 0.0181� 0.0002 pb 0.0184� 0.0002 pb
VBF 2.55� 0.03 pb 2.62� 0.04 pb

(a) (b) (c)

FIG. 13. Theoretical predictions computed with the method describe in [60] in order to compare the same prediction with three
different PDF sets. We note that the predictions for the qPDF set is compatible with both the experimental measurements and the
released PDF set. The parton-level calculation has been performed with the NLOjetþþ [63] and MCFM [64] tools. (a) Atlas jets
data dierential in rapidity [65]. (b) CMS Z dierential in rapidity for xed value of pT [66]. (c) LHCb, Z cross section dierential in
rapidity [67].
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VII. CONCLUSION

In this work we proposed variational quantum circuit
models for the representation of PDFs in the context of high
energy physics (HEP). We have investigated and identified
the most suitable Ansatz for the parametrization of PDFs
and defined a qPDF architecture. Using quantum circuit
simulation on classical hardware, we show that qPDFs are
suitable for a global PDF determination.
We highlight some advantages of the qPDF model when

compared to the standard machine learning methodology.
Firstly, the availability of entanglement helps to reduce the
number of parameters required to obtain a flexible PDF
parametrization, in particular when compared to the num-
ber of parameters used by an equivalent neural networks
approach. Secondly, from a hardware implementation point
of view, the possibility to write the specific qPDF circuit in
a quantum processor, using its primitives (gates), will
accelerate the evaluations and training performance of
PDFs. We expect that real quantum devices will be more
efficient in terms of energy power than classical hardware
based on hardware accelerators such as graphical process
units (GPUs).
Furthermore, we propose a reconstruction method for

evaluating the qPDF model in a real quantum device
using measurements. This procedure brings all the diffi-
culties that are typical of experimental quantum hardware,
including noise, error corrections and decoherence. The
implementation of accurate and stable qPDFs in a real
quantum device still requires the development of hardware
architecture with lower gate error tolerances in comparison
to the current available machines.

On the other hand, our results should be considered as a
proof-of-concept exercise, given that the quantum simu-
lation performance are still not competitive with an
equivalent machine learning implementation. The qPDF
approach may show advantages when more precise quan-
tum devices will be available.
Nevertheless, this is a first attempt to bridge the power of

quantum machine learning algorithms into the complexity
of PDF determination. We auspicate that the approach
presented here will inspire new HEP applications which
may benefit from quantum computing.
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