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Aims and objectives.

My Ph.D. dealt mainly with the study of halloysite nanotubes (HNT), and their interaction with
molecules and nanoparticles as potential for potential applications either in biomedicine or in catalysis.
A minor part of my Ph.D work was dedicated to the preparation and characterization of Ceria
nanoparticles stabilized with polymers of different charge, to investigate, in collaboration with the
group of prof Della Torre and Binelli, their effect on various animal and bacterial models relative to
their possible toxic effects especially in the aquatic environment.

| started the first part of my thesis by introducing the clay material HNT. HNT is a unique natural
nanomaterial composed of double-layered aluminosilicate with a hollow tubular structure in the micro
range. A preliminary literature survey revealed that HNT, due to their physical and chemical features,
could be suitable for many application fields like medicine and catalysis (Chapter 1). We started our
aim by synthesizing some HNT adducts possibly suitable for hyperthermia applications by selectively
load superparamagnetic iron oxides (SPIONs) into the inner lumen of HNT. The magnetic properties of
the loaded SPIONs did not change after their trapping inside the HNT lumen. The SPION-in-HNT
nanocomposite was synthesized through the pre-modification of the HNT inner lumen such that it
becomes suitable to be suitable to load the apolar SPION as synthesized by thermal decomposition
method without a further step of ligand exchange (Chapter 2). To extend the loading to another kind
of NP for hyperthermia applications, we tried to load gold nanoparticles. The gold NPs can be
synthesized in various shapes; we synthesized spherical and star shapes of gold for our purpose. Gold
can be loaded inside the inner lumen in the studied shapes, but the low concentration of gold
suspension hampered a massive loading into the HNT lumen. (Chapter 3). The second part of the work
with Halloysites was devoted to the preparation and characterization of HNT adducts with luminescent
molecules able to act as photosensitizers for photodynamic therapy (PDT). For this purpose, we were
interested in loading perfluorinated porphyrin, in their non-coordinated- and Zn-coordinated form,
inside the lumen of HNT. The release of the photosensitizer by the inner lumen was slowed down
compared to the release of the perfluorinated drugs adsorbed in the outer surface of HNT. (Chapter
4). To use HNT as a dual vector for drug delivery, we synthesized HNT-Ru photosensitizer. The
photosensitizer was covalently bonded to the silica part of the outer surface of HNT, leaving the inner
lumen free for potentially an extra loading with another drug. The photophysical properties of
synthesized nanocomposite were then tested (Chapter 5). Finally, concerning HNT, we aimed to
synthesize a new synthetic Au-Pt nanoparticle supported over HNT with different Au-to-Pt molar ratios
via a sol immobilization method for catalytic purposes. The synthesized catalyst showed that the
activity toward hydrogenation of C=0 of cinnamaldehyde increased with increasing the molar ratio of
Au/Pt (Chapter 6).

Unfortunately, the product potentially useful for biomedical purposes were not tested at least at
cellular level, and this lack to the work was essentially due to the COVID-19 pandemic situation that
slowed down a lot of collaboration especially with biologist collaborators.

The last part of my thesis was devoted to synthesizing nanoceria and covering it with natural polymer
available in the aquatic system as alginate and chitosan. Ceria NPs surrounded by both Alginate and
Chitosan showed no acute toxicity effects at the average environmental concentration level of the
two tested natural macromolecules (Chapter 7).
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Chapter 1

Halloysite nanotubes Introduction

1. Clay minerals

The phyllosilicates, or sheet silicates, are an important class of minerals that includes the micas,
chlorite, serpentine, talc and clay minerals groups. Phyllosilicate crystals consist of silicon,
aluminum or magnesium, oxygen, and hydroxyl groups, with various associated cations. These
ions and OH groups are organized into two-dimensional structures called sheets, occurring in
two types: tetrahedral sheets (T) and octahedral sheets (O). A continuous (T) sheet formed by
[M,0s]* species, where M (Si**, AI** or Fe**) is placed in the centre of the tetrahedron and the
four oxygen atoms are located in the edges. Three out of the four oxygens from each
tetrahedron are shared with other tetrahedral (Figure 1). In the O sheet, the smallest structural
unit of the octahedral sheets contains three octahedra. If the cations are 2+ ions like Mg?* or
Fe?*, all the three octahedra have cations at their centre and the sheet takes on the structure of
trioctahedral (as Brucite) [M(OH)s], in which each O or OH ion is surrounded by 3 divalent
cations. If the cations are 3+ like AP** or Fe*, only two octahedra are occupied and one
octahedron is vacant and the sheet takes on the structure of dioctahedral (as Gibbsite) [M(OH)s],
in which each O or OH ion is surrounded by 2 trivalent cations (Figure 1).2 Depending on the
ratio of tetrahedral to octahedral sheets in the crystalline unit cell (1:1 or 2:1), the layer-stacking
sequences and the presence of interlayer materials, different phyllosilicates species can be
classified (Figure 2). For the anions, in the case of TO, there are three planes of anions: one plane
consists of the basal 0% ions of the tetrahedral sheet, the second consists of apical 0% ions (being
the fourth tetrahedral corner points in a direction normal to the T sheet) common to both the
tetrahedral and octahedral sheets plus OH- belonging to the octahedral sheet, and the third
consists only of OH belonging to the octahedral sheet.? In the case of TOT sequence, there are
four planes of anions: the outer two planes consist of the basal oxygen (O’s) of the two
tetrahedral sheets, while the two inner planes consist of oxygen atoms common to the
octahedral sheet and one of the tetrahedral sheets, plus the hydroxyls (OH’s) of the octahedral
sheet (Figure 3). The layer repetition defines the doo: (basal spacing or layer stacking), and it is
the fundamental parameter, representing the thickness of the unit cell and this spacing is
characteristic of the type of the present stacking. It is labelled using the Miller indices (=hkl
value), and they are determined by x-ray powder diffraction (XRD).

Since clay minerals like kaolinite, halloysite, bentonite, sepiolite and laponite are available in
large amounts at low cost, they have been used as raw materials for hundreds of industrial
applications such as in pharmaceuticals, cosmetic, paints, dyes, construction, environmental



remediation, food processing and for centuries artisans have been using halloysite clay to make
porcelain, ceramic and other fine china.*®

Tetrahedral sheet of phyllosilicates

Apical Oxygen J ‘\ ! ‘ ‘  “

Basal Oxygen 0 3 ‘ L2 7*F7‘;é_ ’  '~ _’J ) | \
J.J._- &9 @ 9 Lo JQ"‘ d .
QD \’\:) Oxygen @ and @ Silicon
octahedral sheet of phyllosilicates
D D
o2—e b = — 9 @
-8 =52 .6
& Y &
‘ and \’\’\, Hydroxyl ‘ Aluminum

Figure 1 Tetrahedral and octahedral sheets of the phyllosilicates.®”

Figure 2 Schematic classification of phyllosilicate clay minerals.»23
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