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ABSTRACT

Thirty-two whole genome DNA sequences of cows 
were analyzed to evaluate inter-individual variability in 
the distribution and length of copy number variations 
(CNV) and to functionally annotate CNV breakpoints. 
The total number of deletions per individual varied 
between 9,731 and 15,051, whereas the number of du-
plications was between 1,694 and 5,187. Most of the 
deletions (81%) and duplications (86%) were unique to 
a single cow. No relation between the pattern of vari-
ant sharing and a family relationship or disease status 
was found. The animal-averaged length of deletions was 
from 5,234 to 9,145 bp and the average length of dupli-
cations was between 7,254 and 8,843 bp. Highly signifi-
cant inter-individual variation in length and number of 
CNV was detected for both deletions and duplications. 
The majority of deletion and duplication breakpoints 
were located in intergenic regions and introns, whereas 
fewer were identified in noncoding transcripts and 
splice regions. Only 1.35 and 0.79% of the deletion and 
duplication breakpoints were observed within coding 
regions. A gene with the highest number of deletion 
breakpoints codes for protein kinase cGMP-dependent 
type I, whereas the T-cell receptor α constant gene had 
the most duplication breakpoints. The functional an-
notation of genes with the largest incidence of deletion/
duplication breakpoints identified 87/112 Kyoto Ency-
clopedia of Genes and Genomes pathways, but none of 
the pathways were significantly enriched or depleted 
with breakpoints. The analysis of Gene Ontology (GO) 
terms revealed that a cluster with the highest enrich-
ment score among genes with many deletion breakpoints 
was represented by GO terms related to ion transport, 

whereas the GO term cluster mostly enriched among 
the genes with many duplication breakpoints was 
related to binding of macromolecules. Furthermore, 
when considering the number of deletion breakpoints 
per gene functional category, no significant differences 
were observed between the “housekeeping” and “strong 
selection” categories, but genes representing the “low 
selection pressure” group showed a significantly higher 
number of breakpoints.
Key words: copy number variation, Gene Ontology 
term, Kyoto Encyclopedia of Genes and Genomes 
pathway, next-generation sequencing

INTRODUCTION

Genomes contain various types of DNA variation 
that form the molecular basis of the phenotypic varia-
tion. Such polymorphisms range from single-nucleotide 
changes in DNA such as SNP, oligonucleotide inser-
tions and deletions, multiplication of oligonucleotide 
fragments such as short tandem repeat polymorphisms 
and variable number tandem repeat polymorphisms, 
up to long-scale copy number polymorphisms involving 
thousands of nucleotides termed structural variations. 
Among structural variations, copy number variations 
(CNV), which are defined as the gains (duplications) 
and losses (deletions) of longer DNA fragments, are 
a major source of genetic diversity in mammals. The 
CNV sequence length ranges from 50 bp to several Mbp, 
enabling them to cover many functional elements of the 
genome including whole genes or regulatory sequences, 
and thus they may markedly affect phenotypes of in-
dividuals by changing gene structure, modifying gene 
expression by alterations in gene copy number, influ-
encing gene regulation, and exposing recessive alleles 
(Zhang et al., 2009; Mills et al., 2011; Liu and Bickhart, 
2012; Bickhart and Liu, 2014; Shin et al., 2014). It has 
been found that CNV often occur in gene-rich regions 
(Bickhart et al., 2012; Choi et al., 2013). Several CNV 
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have been shown to play a role in natural phenotypic 
variability and in disease susceptibility in humans (Ait-
man et al., 2006; Fellermann et al., 2006; Le Maréchal 
et al., 2006; Yang et al., 2007; Stankiewicz and Lupski, 
2010) and in livestock. Cattle phenotypes affected by 
CNV include pigmentation and coat color, olfaction 
and immune response traits, pathogen and parasite 
resistance, lipid transport, and metabolism (Bickhart 
et al., 2012; Bickhart and Liu, 2014; Shin et al., 2014).

On a genome-wide scale, CNV have been mostly 
detected based on comparative genomic hybridization 
(aCGH) or oligonucleotide (i.e., SNP) arrays. Liu and 
Bickhart (2012) provide a list of array-based studies 
applied to bovine genomes, which has recently been 
expanded by Jiang et al. (2013) and Gurgul et al. 
(2015). However, the major limitation with SNP and 
CGH arrays is their low resolution, which is restricted 
by probe numbers and locations, which typically do not 
fully cover the whole genome. Copy number variation 
discovery based on whole genome sequence data, de-
spite being computationally intensive, is becoming in-
creasingly popular. Recent advances in next-generation 
sequencing (NGS) methods provide a more accurate 
approach to identify not only common, but also rare 
CNV. Furthermore, NGS provides CNV regions at a 
base-pair resolution (Bickhart et al., 2012). Studies 
based on NGS have discovered smaller, previously un-
known fragments of structural variants not identified 
by array-based methods (Alkan et al., 2011).

Studies involving large groups of individuals to detect 
CNV based on NGS data for bovine genomes are still 
very uncommon (Bickhart et al., 2012; Shin et al., 2014; 
Boussaha et al., 2015). Therefore, the main goal of this 
study was the analysis of 32 cow genomes from the 
Polish Holstein-Friesian breed to increase information 
available on bovine CNV and to analyze their func-
tional significance. The focus is on assessing the inter-
individual variability in the distribution and length of 
CNV and genomic annotations of CNV breakpoints.

MATERIALS AND METHODS

Data Set

Thirty-two cows representing the Polish Holstein-
Friesian breed were selected from a data set of 991 
cows consisting of individuals diagnosed with clinical 
mastitis and their healthy herd-mates (Wojdak-Maksy-
miec et al., 2013). This experimental design included 
16 paternal half-sibs matched by the number of pari-
ties, production level, and birth year, but differing in 
their mastitis resistance. Mastitis-resistant cows had no 
incidence of clinical mastitis through their production 

life, whereas mastitis-prone cows underwent multiple 
clinical mastitis cases. Whole-genome DNA sequences 
of the 32 cows were obtained using the Illumina HiSeq 
Next Generation Sequencing platform (Illumina, San 
Diego, CA). The total number of raw reads generated 
for a single animal varied between 164,984,147 and 
472,265,620. The average coverage varied between 5× 
and 17× per cow. A detailed description of the data 
set and the sequencing procedure are given by Szyda 
et al. (2015). Sequence files corresponding to this data 
are publicly available through the National Center for 
Biotechnology Information BioProject database under 
the following accession ID: PRJNA359667.

Bioinformatics Pipeline

Raw fastq files from Szyda et al. (2015) were analyzed 
with the FastQC software (Andrews, 2010) for quality 
and were not trimmed before alignment. The following 
analysis pipeline consisted of the following steps: (1) 
alignment to the reference genome, (2) data processing 
after alignment, (3) CNV detection, and (4) CNV raw 
data set filtering. In the first step, BWA-MEM software 
(Li and Durbin, 2009) was used to align sequences with 
the reference genome (UMD 3.1; Zimin et al., 2009). 
In the second step, before further processing, each file 
generated during the alignment process (binary align-
ment map) was sorted and indexed, and PCR dupli-
cates were removed using a combination of tools from 
the Picard (http://broadinstitute.github.io/picard/) 
and SAMtools (Li et al., 2009) packages. In the third 
step, the CNVnator software (Abyzov et al., 2011) was 
used for CNV detection that analyzes genome cover-
age and defined regions with high or low coverage as 
CNV (Alkan et al., 2009; Medvedev et al., 2009). This 
implies that CNV in form of duplications or deletions 
are defined in comparison to the UMD3.1 reference 
genome. More specifically, CNVnator divides the entire 
genome into nonoverlapping bins of identical size and 
counts the number of mapped reads within each bin as 
the RD signal. After that, the signal is partitioned into 
segments with presumably different underlying CNV. 
To predict true CNV, statistical significance tests are 
used for those segments. As recommended by Abyzov 
et al. (2011), for samples with coverage that ranges 
approximately from 20 to 30, the window size of 100 
bp was used. As a consequence, CNV regions identified 
had a resolution of 200 bp in breakpoint prediction. In 
the last step, to exclude false positive (FP) variants be-
ing a consequence of artifacts of the reference genome, 
deletions shared by at least 15 cows were filtered out 
if they overlapped by at least 50% with gaps in the 
reference genome.

http://broadinstitute.github.io/picard/
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Statistical Analysis

The null hypothesis that the length sizes and number 
of deletions or duplications are normally distributed 
was tested using the Shapiro-Wilk test. Next, to check 
whether the number and the length of CNV was depen-
dent on the coverage of the genome, different regression 
models were tested. Models with the best fit consisted 
of a linear-log model: Y Xi

N N N
i i

N( ) = + ( )+β β ε0 1 log , and 

a log-log model: log logY Xi
L L L

i i
L( ) = + ( )+β β ε0 1 , where 

Yi
N  denotes the number of CNV, Yi

L is the total length 
of CNV in a genome, β0

X is the intercept term, β1
X is the 

slope, Xi is a genome-averaged coverage for an individ-
ual i, and εi

* is the corresponding residual. A Spearman 
correlation test was performed to test the null hypoth-
esis assuming that deletions and duplications are inde-
pendent H rS0 0: =( ) versus H rS1 0: :s :≠( )
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with Ri and Si denoting ranks of the number of dele-
tions and duplications for ith cow and n representing 
the number of cows. The null hypothesis of the test can 
be approximated by the t-Student distribution with (n 
− 2) degrees of freedom. This approximation is possible 
for the condition n > 10, which is satisfied in this data 
set. Differences in the percentage of genome/autosomes 
covered by CNV were tested using the χ2 test. The null 
hypothesis was based on the assumption that the same 
percentage of the genome covered by CNV is expected 
for all autosomes. Corresponding tests for multiple pro-
portions were performed for each cow separately using 
the following formula:
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and pi denotes the observed percentage of the ith given 
autosome covered by CNV, di is the length of ith auto-
some, and k = 29, the number of bovine autosomes. Un-
der the null hypothesis, this test statistic follows the F 
distribution. Nominal P-values resulting from the test 
were subjected to the Bonferroni correction for multiple 
testing. The χ2 test of goodness of fit was used to assess 
whether the number of CNV is uniformly distributed 
across the genome:
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where Oi denoted the number of duplications or dele-

tions for ith cow and E m
i = 29

, where m was defined as 

the number of all possible deletions or duplications. 
Heat maps of deletions and duplications were generated 
by the R package (R Development Core Team, 2013) 
for the number of polymorphisms along the entire ge-
nomes of all 29 individuals for which CNV categorized 
as identical were defined based on the exact equity of 
breakpoint positions. To check whether the distribution 
of CNV lengths was the same for all animals 
H R n0 1 2: / ,= +( )



  the Kruskal-Wallis test was applied:
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where ki is the number of duplications or deletions for 

ith cow, and k k
i
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, n is the number of cows, and Ri 

denotes the sum of ranks for deletion/duplication 
length corresponding to ith cow. The test statistic is 
approximately χ2 distributed with k − 1 degrees of 
freedom (Lehmann, 2006).

Functional Annotation of the CNV

Genomic position of breakpoints defined as start 
or end positions of CNV were annotated using the 
UMD3.1 reference genome by variant effect predictor 
(McLaren et al., 2010). Each position was assigned to 
1 of the 28 Sequence Ontology (SO) terms (Eilbeck et 
al., 2005) characterizing functionally different regions 
of the genome. For the purpose of our study, SO terms 
were grouped into 8 more general categories consisting 
of (1) protein coding sequences, (2) noncoding tran-
script sequences, (3) intron sequences, (4) splice region 
sequences, (5) untranslated region (UTR) sequences, 
(6) noncoding upstream gene regions, (7) noncoding 
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downstream gene regions, and (8) noncoding intergenic 
variants. Details of grouping the SO terms are given 
in Supplemental Table S1 (https://doi.org/10.3168/
jds.2016-11987). The detailed analysis of breakpoint 
distribution in 16 genes representing 3 functional 
groups: (1) housekeeping, (2) under low selection pres-
sure, and (3) strongly selected genes, was performed. 
The housekeeping category (1) included genes primar-
ily important for basic metabolic functions. In this 
study, housekeeping genes considered were from the 
commercial bovine housekeeping gene array by Qiagen 
(RT2 Profiler PCR array cow housekeeping genes; Qia-
gen, Hilden, Germany). The “low selection pressure” 
category (2) consisted of genes proximal to short tan-
dem repeat markers that do not have large effects on 
dairy cattle production traits (data not shown). Genes 
belonging to the “strongly selected genes” category (3) 
exhibit a very large effect on production traits in dairy 
cattle, and therefore are likely to be under strong unidi-
rectional selection pressure over many generations. The 
list of genes in each category is given in Table 1. To 
check whether the average number of deletion break-
points in genes is the same in the different functional 
categories, an empirical null hypothesis on distribution 
was constructed by permutation of the numbers of 
breakpoints in genes from given categories.

The logarithmic function of genes versus the total 
number of CNV breakpoints as well as transcripts ver-
sus the total number of CNV summed over all cows 
was fitted using the SAS software version 9.4 (SAS 

Institute Inc., Cary, NC). To identify genes/transcripts 
that exhibited a particularly high number of break-
points/CNV overlap, a cutoff point was set for which 
the first derivative was equal to −1, meaning that the 
estimated rate of decline in the number of breakpoints 
was more than 1 breakpoint/CNV overlap per gene/
transcript up to this point. Genes/transcripts with a 
large number of CNV breakpoints/CNV overlaps were 
assigned to Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and GO terms using KOBAS software (Mao 
et al., 2005), which was also used to identify the total 
number of KEGG/GO terms represented by the whole 
Bos taurus genome. For each KEGG pathway, a bino-
mial test was applied to assess whether it was under- or 
overrepresented among genes/transcripts characterized 
by a high breakpoint/CNV overlap count:

 Z
p pb g
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=
−

( )
σ

, ~ , ,N 0 1  

where pb represents the probability of observing a given 
KEGG pathway within the set of genes/transcripts 
with a high number of breakpoints/CNV overlaps, pg is 
the corresponding probability within the set of Bos 
taurus genes defined by the UMD3.1 reference genome, 

σpb
 is the standard error of pb given by 
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g

1−( )
. 

where Ng = 456 denotes the number of genes/tran-
scripts with a high number of breakpoints/CNV over-

Table 1. The list of genes selected for comparison and the number of breakpoints located within them

Gene

BTA

Breakpoints of

NCBI ID1  Acronym  Name Deletions Duplications

Housekeeping
 280979 ACTB Actin, β 25 6 0
 280729 B2M Beta-2-microglobulin 10 0 21
 281181 G3PDH Glyceraldehyde-3-phosphate dehydrogenase 5 5 0
 515614 HMBS Hydroxymethylbilane synthase 15 1 0
 767874 HSP90AB1 Heat shock 90kDa protein 1, β 23 25 0
 444874 UBC Ubiquitin C 17 1 0
Strong selection
 767906 ARL4A ADP-ribosylation factor-like 4A 4 1 0
 407216 BMP4 Bone morphogenetic protein 4 10 6 0
 282609 DGAT1 Diacylglycerol O-acyltransferase 1 14 22 11
 535043 ITGA6 Integrin, α 6 2 3 0
 444881 MYD88 Myeloid differentiation primary response 88 22 0 0
Low selection2

 534958 AGTPBP1 (HEL9) ATP/GTP binding protein 1 8 30 4
 520250 ANKRD32 (ILSTS006) Ankyrin repeat domain 32 7 37 1
 533894 LRP1 (ETH10) Low density lipoprotein receptor-releated 

protein 1
5 8 0

 540504 SYNE2 (INRA037) Spectrin repeat-containing, nuclear 10 48 1
 515119 URI1 (INRA063) URI1, prefoldin-like chaperone 18 3 0
1National Center for Biotechnology Information identification number.
2A name of the short tandem repeat marker corresponding to a particular gene is given in parentheses.

https://doi.org/10.3168/jds.2016-11987
https://doi.org/10.3168/jds.2016-11987
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laps. The GO terms were clustered using DAVID with 
medium classification stringency (Huang et al., 2009a,b) 
to identify enrichment of biological processes among 
the genes/transcripts exhibiting a large number of 
breakpoints/CNV overlaps.

RESULTS

Preliminary Analysis

A highly significant relation between genome aver-
aged sequencing depth and the number of CNV de-
tected per individual (P = 1.96 × 10−6) and the length 
of CNV (P = 0.01) was identified (Figures 1 and 2). 
As may be expected, higher sequence depth resulted 
in a significantly larger number of CNV being detected 
and the ability to identify shorter CNV. As a conse-
quence, to balance between the number of analyzed 
genomes and CNV accuracy, we excluded 3 individuals 
with average genome coverage below 10 from further 
analyses. Additionally, 30.48% of deletions that had a 
50% overlap with gap sequence in the reference genome 
were removed. Therefore, the final data set consisted 
of 29 animals for which 435,594 CNV were detected 
consisting of 373,805 deletions and 61,789 duplications. 
The lengths of deletions or duplications for each chro-
mosome were not normally distributed and therefore 
nonparametric tests were incorporated throughout the 
study.

CNV Variability Across the Genome

The CNV lengths ranged between 200 to 724,000 
bp for deletions and 200 to 439,300 bp for duplica-
tions. Note that variants shorter than 200 bp could 
not be detected by the CNVnator algorithm due to 
the parameters set for the analysis. Depending on the 
individual, deletions covered from 2.52 to 5.89% of the 
whole genome, whereas duplications accounted for 0.51 
to 1.58%. A significant variation between autosomes 
was observed in the percentage of a genome covered 
by CNV.

CNV Variability Across Individuals

The total number of deletions identified per individual 
was between 9,731 and 15,051 and markedly exceeded 
the number of duplications, which varied between 1,694 
and 5,187 (Figure 3A). Spearman correlation between 
the number of duplications and number of deletions 
was significantly negative (P = 0.01) and amounted to 
−0.5. In other words, for an individual genome, more 
deletions corresponded to fewer duplications. A highly 
significant inter-individual variation was observed both 

in the number of duplications (P = 2.2 × 10−16) and in 
the number of deletions (P = 2.2 × 10−16).

The estimated CNV frequencies varied from 0.034 
(representing a variant unique for only 1 cow) to 1.000 
(representing a variant present in all cows, but not in 
the reference genome). Most of CNV, consisting of 81% 
of all deletions and 86% of all duplications, were only 
found in 1 individual, whereas CNV identical for all 

Figure 2. Dependency of the copy number variation (CNV) length 
and the averaged coverage, explained by the log-log regression.

Figure 1. Dependency of the number of copy number variations 
(CNV) and the averaged coverage, explained by the linear-log regres-
sion model.
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analyzed animals were rare, and represented only 0.03% 
of all deletions. Thus, we found 5 deletions present in 
all 29 animals, located on BTA1, BTA10, and BTA19, 
respectively, with BTA9 harboring 2 common deletions. 
No duplications common to all 29 animals were found. 
Frequency plots of CNV identified for at least 2 animals 
are shown in Supplemental Figure S2 for deletions and 
Supplemental Figure S3 for duplications (https://doi.
org/10.3168/jds.2016-11987).

The extent of shared variants along entire genomes 
for all 29 animals is summarized in Figure 4A (dele-
tions) and Figure 4B (duplications). A subset of 14 
cows with a large number of deletions in common shared 
an average of 2,057 pairwise deletions that varied from 
1,819 to 2,336, depending on the animal pair compared. 
In the second subset, consisting of the remaining 15 
animals, the number of common pairwise deletions was 
lower and varied from 724 to 1,372 with an average of 
1,047. Moreover, 1 cow (denoted as H9 in Figure 4) 
shared a low number of CNV with all other individuals, 
and had a total number of CNV lower than all the 
others compared with the reference genome. In the case 
of duplications, the distinction between the subsets was 
not evident. Nevertheless, 2 groups, 1 of 14 animals and 
1 of 5 animals, that shared a higher number of duplica-

tions within the groups than with the other individuals 
were identified. No visual correlation between the pat-
tern of CNV sharing and family relationship or disease 
status was observed.

The average length of deletions per animal varied 
from 5,234 ± 16,086 bp to 9,145 ± 22,925 bp, whereas 
the median of deletion length was lower varying from 
1,600 to 2,800 bp. For duplications, which generally 
represent longer DNA fragments, the average length 
varied between 7,254 ± 8,990 bp and 8,843 ± 12,409 
bp. Median of duplication length ranged from 4,600 
to 5,900 bp. Averages and medians of deletions and 
duplications calculated separately for each animal are 
summarized in Figure 3.

The inter-individual variation of CNV length across 
the whole genome was highly significant for both de-
letions and duplications. However, a more complex 
pattern emerges by separate comparison of each auto-
some. The variation of lengths of deleted regions was 
significant for all autosomes with P-values ranging from 
7.50 × 10−56 to 1.66 × 10−15. Seven autosomes (BTA1, 
BTA2, BTA5, BTA6, BTA10, BTA12, and BTA22) 
showed a significant variation of duplication length 
among cows with P-values ranging from 1.06 × 10−12 
to 3.09 × 10−4.

Figure 3. (A) The total number of detected autosomal duplications (black) and deletions (gray) for 29 cows. (B) The median (black) and 
mean (gray) lengths of deletions found on all autosomes for 29 cows. (C) The median (black) and mean (gray) lengths of duplications found on 
all autosomes for 29 cows.

https://doi.org/10.3168/jds.2016-11987
https://doi.org/10.3168/jds.2016-11987


Journal of Dairy Science Vol. 100 No. 7, 2017

COPY NUMBER VARIATIONS IN CATTLE GENOMES 5521

Functional Annotation of the CNV

The CNV breakpoint positions (defined by a base pair 
corresponding to the beginning or end of a CNV) were 
mapped to the functional elements of the UMD3.1 ref-
erence genome. Breakpoints were assigned correspond-
ing SO terms, which were further categorized as coding 
sequence, intron, splice region, noncoding transcript 
sequence, 5′ and 3′ UTR, upstream gene sequence, 
downstream gene sequence, and intergenic sequence 
(Supplemental Table S1; https://doi.org/10.3168/
jds.2016-11987). The highest numbers of deletion 
breakpoints were located in intergenic regions and in-
trons, which contained 613,006 (57.85%) and 261,570 
(24.68%) breakpoints, respectively. The lowest numbers 
were reported for noncoding regions of gene transcripts: 
316 (0.03%), and no breakpoints were located within 
splice regions. 13,150 (1.24%) of the breakpoints were 
found within coding regions. For duplications, the 
proportion of breakpoints in each functional group was 
similar to deletions. Most duplications were located in 
intergenic regions: 86,962 (70.37%) and introns: 26,740 
(21.63%), whereas the fewest were detected in splice: 46 
(0.37%) and noncoding transcript regions of genes: 137 
(0.11%). Nine hundred eighty-two (0.79%) duplication 
breakpoints were found in coding regions. The numbers 
of all the annotated breakpoints within each functional 
category are summarized in Figure 5.

A detailed analysis of noncoding parts of transcripts 
based on the Ensembl noncoding gene cattle database 
(ftp.ensembl.org/pub/release-80/fasta/bos_taurus/
ncrna/) and the miRBase repository for cattle (ftp://
mirbase.org/pub/mirbase/CURRENT/genomes/bta.
gff3) revealed that 87 duplication breakpoints and 189 

deletion breakpoints were annotated to small noncoding 
RNA. The distribution of breakpoints across noncoding 
regions is highly nonrandom: 30% of those duplication 
breakpoints (24 breakpoints) were assigned to the same 
gene coding for small nucleolar RNA SNORD116 lo-
cated on BTA21. In total, this chromosome contains 
68% of all duplication breakpoints observed in noncod-
ing segments. Twelve percent of deletion breakpoints 
were located within bta-mir-2887–1, a gene encoding a 
microRNA molecule, located on BTA18.

The numbers of CNV breakpoints located within 16 
selected genes representing different functional catego-
ries varied from 0 to 48, with no breakpoints in B2M 
and MYD88 (Table 1). The number of duplication 
breakpoints ranged from 0 to 21. Duplications were 
only present within 4 genes: B2M, DGAT1, ANKRD32, 
and SYNE2. The number of deletion breakpoints per 
functional category was not significantly different 
between the “housekeeping” and “strong selection” 
categories, but genes representing the “low selection 
pressure” group showed a significantly higher number 
of breakpoints (P = 0.03).

To gain a better insight into the interplay between 
CNV formation and genome function, the logarithmic 
curve was fitted to gene ID versus the total number 
of deletion or duplication breakpoints summed over 
all cows (Figure 6). The highest number of deletion 
breakpoints (1,934) was observed within the gene 
coding for protein kinase cGMP-dependent type I 
(PRKG1; ENSBTAG00000018404), which is located 
on BTA26. Moreover, the 2 transcripts of this gene, 
ENSBTAT00000024490 and ENSBTAT00000030539, 
overlapped with the highest number of deletions 
amounting to 518 and 449 CNV, respectively. The 

Figure 4. (A) The heat map of deletions for the number of shared polymorphisms along entire genomes of all 29 animals. Numbered S and 
H (e.g., H1 and S1, H2 and S2, and so on) denote half-sibs. (B) The heat map of duplications for the number of shared polymorphisms along 
entire genomes of all 29 animals. Numbered S and H (e.g., H1 and S1, H2 and S2, and so on) denote half-sibs. Color version available online.

https://doi.org/10.3168/jds.2016-11987
https://doi.org/10.3168/jds.2016-11987
ftp.ensembl.org/pub/release-80/fasta/bos_taurus/ncrna/
ftp.ensembl.org/pub/release-80/fasta/bos_taurus/ncrna/
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/bta.gff3
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/bta.gff3
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/bta.gff3
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former transcript encodes a protein composed of 671 
AA and the latter: a somewhat longer protein of 686 
AA. The majority of duplication breakpoints (7,164) 
were located within T-cell receptor α constant (TRAC; 
ENSBTAG00000000432), located on BTA10, which also 
corresponds to the transcript (ENSBTAT00000002757) 
harboring the highest number of CNV duplications. We 
found 398 duplication CNV overlapping with this tran-
script, which encodes a 274-AA-long protein and is one 

of the 5 transcripts of this gene. It can be hypothesized 
that such a high number of genomic duplications may 
be an evolutionary tool for increasing the variability of 
transcripts due to the phenomenon of V(D)J recombi-
nation of immune-response-related genes.

The functional analysis revealed 45 genes with a 
large number of deletion breakpoints and 224 genes 
with a large number of duplication breakpoints. Nei-
ther the 86 KEGG pathways corresponding to genes 

Figure 5. The number of annotated deletion and duplication breakpoints. The abbreviated names of 8 categories are (1) cod = coding 
sequences, (2) int = introns, (3) spl = splice regions, (4) ncod = noncoding transcripts, (5) utr = 5′ and 3′ untranslated regions, (6) upg = 
upstream gene regions, (7) dwg = downstream gene regions, and (8) ing = intergenic variants.

Figure 6. The total number of breakpoints located within a gene (gray) and the corresponding logarithmic function fitted (black).
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with many deletion breakpoints, nor the 112 KEGG 
pathways corresponding to genes with many duplica-
tion breakpoints were significantly overrepresented or 
depleted as compared with the pathway representation 
underlying the entire bovine transcriptome. Similarly, 
no significant KEGG enrichment was detected for 
transcripts overlapping with CNV. The set of GO 
terms representing genes with many duplication break-
points revealed 11 functional clusters, among which 
the cluster with the highest enrichment score was 
composed of 3 terms (GO:0030246, GO:0030247, and 
GO:0001871) related to binding of macromolecules. 
The gene set with many deletion breakpoints revealed 
4 functional GO clusters, among which the cluster with 
the highest enrichment score was composed of 5 terms 
(GO:0006811, GO:0030001, GO:0006812, GO:0015672, 
and GO:0046873) related to the biological process of 
ion transport and the corresponding molecular function 
consisting of ion transmembrane transporter activity. 
No GO term clusters were identified for terms corre-
sponding to transcripts with a high number of CNV 
deletions or duplications.

DISCUSSION

Genomic Landscape of CNV

Using whole-genome sequences of 29 Polish Holstein-
Friesian cows, we systematically investigated the dis-
tribution and lengths of CNV. A very similar sample 
size was available to Shin et al. (2014), who reported 
6,811 deletions, which is much lower than 373,805 dele-
tions identified in the present study. The discrepancy 
is expected to arise mainly due to different breeds 
that were analyzed in both studies (Holstein Friesian 
and Hanwoo) and different CNV detection software 
(CNVnator and Genome STRiP). Previous reports 
observed that structural deletions are more common 
events than duplications (373,805 vs. 61,789), which is 
in agreement with the data reported here. A possible 
biological explanation provided by Turner et al. (2008) 
is that a nonallelic homologous recombination, one 
of the major sources of CNV, generates more deleted 
than duplicated regions. However, the difference in the 
number of deletions and duplications identified may 
also be an artifact of the CNV detection software algo-
rithm, which applies more stringent criteria for calling 
duplications as they are susceptible to the systematic 
read mapping bias caused by unmapped regions in the 
reference genome (Abyzov et al., 2011).

The genome-wide CNV distribution is nonuniform. 
Previous studies have suggested that CNV are formed 
in hotspots along the genome (Bickhart and Liu, 2014). 
In the present study, nonuniform formation of CNV 

was investigated in a functional context along the 
whole bovine genome. We observed that, especially for 
deletions that have a potentially much higher effect 
than duplications, CNV breakpoints occur predomi-
nantly in nontranscribed regions such as introns and 
intergenic sequences. Moreover, when CNV breakpoints 
within genes with different potential functional effect 
on phenotypes were considered, genes under low selec-
tion pressure showed a significantly higher number of 
breakpoints. It can be hypothesized that the latter 
represent the true rate of variation, whereas housekeep-
ing genes and genes under strong artificial selection in 
dairy cattle are attributed to selection against CNV.

A large variation was observed in the length of du-
plicated/deleted regions; the maximum length reported 
here was 724 Kbp for deletions, which is similar to 
the longest CNV observed by Bickhart et al. (2012). 
Nevertheless, the detection of CNV based on the NGS 
data is characterized by a relatively high number of 
FP results (Meacham et al., 2011; Li, 2014), revision of 
CNV lengths should be done as additional data become 
available.

Validation of CNV

A major problem in CNV detection is a low accuracy 
in determining the location of breakpoints. Zhan et al. 
(2011) compared CNV detected for the same individual 
using 3 different methods (NGS, oligonucleotide array, 
CGH array) and observed a maximum of 23% overlap. 
A validation of CNV by PCR was also attempted by 
Shin et al. (2014), who detected that ~20% of variants 
were wrongly determined by a NGS-based method. 
These findings emphasize the importance of applying 
stringent statistical methods to identify CNV to take 
account of sampling and technical errors present in the 
data. Common deletions may be artifacts of the refer-
ence genome or may be Hereford- or Dominette-specific 
real variants. A deletion common to all of 62 bulls was 
reported by Boussaha et al. (2015). In our data set, we 
found 5 deletions present in all 29 animals, whereas 
2 of them also overlapped with deletions reported on 
BTA10 by Boussaha et al. (2015; DGVdatabase ID: 
esv3900619, www.ebi.ac.uk/dgva) and on BTA19 re-
ported by Liu et al. (2010) and Boussaha et al. (2015; 
DGVdatabase ID: esv3900619 and esv3894430).

Another important aspect of CNV detection is the 
occurrence of FP calls. Although several factors influ-
encing FP have been mentioned, all of them were linked 
to the structure of the reference genome. Based on the 
Illumina BovineHD Genotyping BeadChip, Zhou et al. 
(2016) demonstrated that in a data set consisting of 
a mixture of female and male animals, FP CNV were 
reported in genomic regions that in the UMD3.1 as-

www.ebi.ac.uk/dgva
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sembly correspond to sequences from sex chromosomes 
(mainly BTAY) misassembled to autosomes. Fadista et 
al. (2010) observed a significant overlap between CNV 
regions defined for cattle based on a CGH array and 
gaps in the BT4 reference genome. The latter problems 
were also observed in our study in which 30.48% of de-
letions were located in unsequenced regions of UMD3.1. 
These were categorized as FP and removed from further 
analyses. For example, 3 of the deletions excluded from 
our study as FP were reported by Boussaha et al. (2015) 
in the DGVa database. All of them are almost entirely 
located in gaps of the reference genome (Supplemental 
File S4; https://doi.org/10.3168/jds.2016-11987). Yet 
another problem for CNV detection is the presence 
of false duplications in reference genomes, which are 
artifacts resulting from assembling a haploid reference 
sequence from a diploid DNA in a heterozygous region 
(Kelley and Salzberg, 2010).

Relation of CNV to Genome Function

The very large number of deletion breakpoints iden-
tified within protein kinase, cGMP-dependent, type I 
is presumably due to the length of this gene, which 
is 1,441,876 bp and therefore may not have a clear 
biological basis. On the other hand, most duplication 
breakpoints were identified within a TRAC gene, which 
plays a role in the immune system because it encodes a 
protein located on the surface of type T lymphocytes. 
This observation is in accordance with the importance 
of the immune system and especially its genetic vari-
ability, which is here shown to be also promoted by 
frequent CNV formation.

An enrichment of duplications among genes responsi-
ble for molecule binding may promote a diversification 
of immune response. Another interesting finding is the 
high frequency of CNV duplications identified within 
small nucleolar RNA SNORD116. In knockout mice 
increased food intake accompanied with increased en-
ergy expenditure was demonstrated by Qi et al. (2016). 
When extrapolated to cattle it can be hypothesized 
that duplication of the gene results in an opposite effect 
of more food efficient energy utilization.

CONCLUSIONS

The analysis of data showed that the genomic land-
scape of CNV is very dynamic. Not only does a con-
siderable variability exist between animals, but CNV 
breakpoints are also distributed nonuniformly along the 
genome. It is demonstrated that a different selection 
pressure exists for deleted and duplicated regions. A 
between-animal variability causes large sequence varia-
tions among animals, which is likely to have an effect 

on phenotypes. Therefore, a population-wide associa-
tion analysis between complex phenotypes and CNV 
would be an interesting follow-up to the study. The 
nonuniform distribution of CNV breakpoints needs 
to be explored to understand in what extent it has 
arisen from functional genomics, evolutionary pressure, 
varying degree of DNA sequence complexity, or other 
causes.
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