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Abstract

Recent advances in highly multiplexed immunoassays have allowed systematic large-scale

measurement of hundreds of plasma proteins in large cohort studies. In combination with

genotyping, such studies offer the prospect to 1) identify mechanisms involved with regula-

tion of protein expression in plasma, and 2) determine whether the plasma proteins are likely

to be causally implicated in disease. We report here the results of genome-wide association

(GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), mea-

sured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide sig-

nificant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate

validation studies (n = 2,639 individuals). Using automated text mining, manual curation,

and network-based methods incorporating information on expression quantitative trait loci
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(eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a poten-

tial post-translational regulation of stem cell factor by matrix metalloproteinase 9 and recep-

tor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further

evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several

potentially causal associations. Overall, a majority of the plasma proteins studied showed

evidence of regulation at the genetic level. Our results enable future studies of the causal

architecture of human disease, which in turn should aid discovery of new drug targets.

Author summary

Several proteins that circulate in blood have been linked to cardiovascular disease through

the use of classic epidemiology and correlation studies. If individuals with higher risk of

disease have higher levels of a protein, the protein may be associated with disease. How-

ever, this does not necessarily mean that the protein causes disease; it may merely be an

innocent bystander or a consequence of the disease process. To establish whether a pro-

tein causes disease, a genetic approach, insensitive to reverse causation, can be used.

Instead of correlating the levels of the protein itself, gene variants that regulate the protein

levels are used in the analysis. This approach requires prior knowledge of which genetic

variants are linked to individual proteins. Therefore we completed a map of how common

genetic variants affect the blood concentration levels of 83 proteins that have been impli-

cated in cardiovascular disease. By using this map of cause-to-effect findings, we gained

insights into the regulation of a majority of the proteins under study and how they relate

to risk of coronary artery disease. This study provides a map of genetic regulation of

important cardiovascular plasma proteins, insights into their upstream regulatory envi-

ronment, as well as novel leads for cardiovascular drug development.

Introduction

Cardiovascular disease (CVD), especially coronary artery disease (CAD) is a leading cause of

human morbidity and mortality. Data from the World Health Organization (WHO) showed

that CVD caused approximately 17.5 million deaths in 2012, corresponding to 31% of all

deaths globally. Of these 7.4 million were estimated to be due to coronary heart disease and 6.7

million to stroke [1].

Specific and mechanistically relevant biomarkers are important tools in risk prediction, dis-

ease diagnosis and successful development of new therapies [2]. Proteins in the circulation

have been extensively explored as biomarkers across numerous disease conditions, not least

because of the relative ease with which blood plasma and serum can be accessed, stored and

analysed in observational studies and randomized controlled trials.

The usefulness of a plasma biomarker in disease prediction, or as surrogate endpoint in a

clinical trial, depends on its specificity and sensitivity. These metrics reflect the relationship of

the biomarker with a pre-specified disease endpoint, but are inherently influenced by biologi-

cal factors such as the tissue expression, stability, regulation and variability of the biomarker.

The genetic contribution to the variability of plasma biomarkers can be explored in genome-

wide association (GWA) studies using single nucleotide polymorphisms (SNPs), and this

approach has been applied to uncover numerous such relationships [3–5]. For distinct plasma
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biomarkers such as circulating proteins, the associations are also known as protein quantitative

trait loci (pQTLs) [6–9].

Genetic loci for biomarkers and pQTLs have wide applicability in research. Firstly, pQTLs

in trans can identify previously unknown regulatory pathways. Using trans-pQTLs to discover

regulatory pathways is beneficial because it is based on in-vivo human observations that have

well-established direction of causality, flowing from SNP to protein [7]. This approach has

been extensively used in-vitro, for example in yeast studies [8], and the overall goal of such

analysis is a deeper understanding of the regulatory check-points giving rise to a particular bio-

marker concentration. For a biomarker that is causally involved in disease, e.g. low-density

lipoprotein cholesterol (LDL-C), this is crucial knowledge as it allows targeting of upstream

factors, e.g. HMG-CoA reductase.

Secondly, GWA study loci associated with circulating levels of plasma biomarkers that are

predictive of disease risk enable evaluation of whether the biomarker association with disease

is likely to be a causal relationship, using Mendelian randomization (MR). For example,

although both C-reactive protein (CRP) and LDL-C predict risk of CVD and are lowered by

treatment with statins, MR studies have concluded that plasma LDL-C is an aetiologically

important factor, while plasma CRP is a biomarker that is not causally related to CVD [10,11].

Similarly, all efforts towards HDL-cholesterol lowering drugs have failed, consistent with MR

results showing that SNPs affecting HDL-levels are unrelated to risk of CVD [12]. Based on

these experiences of pharmacological treatment lowering the LDL-C concentration, one may

suggest that a biomarker which is both predictive and causal provides a more attractive target

for novel therapeutics. Numerous associations between biomarkers and disease have been

described in the literature, but the potential causal involvement of these biomarkers has only

been addressed for a limited number, partly due to a lack of robust genetic predictors for

many plasma proteins.

In the present study, we analyzed 83 plasma proteins using the Olink ProSeek CVD array in

3,394 European subjects with at least 3 established CVD risk factors. The majority of these pro-

teins are strong candidates for involvement in atherosclerosis, plaque rupture or thrombosis

and many are upregulated in CVD patients compared to controls or predict future risk of

CVD events, such as CAD. The proteins analysed included well-known candidates such as

interleukin-6, interleukin-18, CD40 ligand, and NTproBNP: a full list is available as supple-

mentary S3 Table.

The aims of the study were to i) identify genetic loci for circulating plasma proteins that

have previously been connected with CVD, ii) explore the mechanisms underpinning novel

loci by integrating genetics with other biological information and iii) apply the tools to test

causality in CAD.

Results

Of 83 proteins selected for known involvement in vascular disease and inflammation [13], we

observed 79 SNP-trait associations, consisting of 78 SNPs and their associations with 56 pro-

teins (Fig 1 and Table 1). Of the 79 associations, 41 were cis effects, where the index-SNP is

within 500 kb of the gene encoding the measured plasma protein. The functional effect at each

of these 41 loci is likely to be a direct effect either on the sequence of the plasma protein or on

regulatory variants proximal to the encoding gene. Additionally, we identified 38 trans effects,

all acting over distances more than 100 MB or at different chromosomes from the gene encod-

ing the associated protein. Both cis and trans findings represent new understanding of the

direct regulation of candidate CVD proteins, with trans findings additionally providing an

opportunity for new insight into regulatory pathways.
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We could replicate all but 6 of the pQTLs at nominal significance (P<0.05) in meta-analyis

performed in three independent cohorts (n = 2,639). All but 16 of the measureable pQTLs

were found to be reproducible at P<0.0007 (Bonferroni corrected value). An additional 8

pQTLs were not measured in the replication cohorts. All 79 SNP-trait associations are reported

in Table 1 along with indication of replication status. Detailed replication statistics is available

in supplementary S1 Table.

Finally we attempted to quantify the narrow-sense heritability explained from the measured

SNPs using Genome-Wide Complex Trait Analysis [14]. For 23 of the proteins, measured

SNPs explained 10% or more of the variability, but it should be noted that sample size imposes

limitations on these conclusions (supplementary S3 Table).

Protein quantitative trait loci acting in trans

For each of the reported trans associations, we evaluated the most likely cis-gene intermediary,

and investigated pathways in the direction of the plasma protein (Table 2). Cis-gene interme-

diary we define as a gene within 500 kb of the index SNP that is likely to be the first step in con-

veying the effect on plasma protein levels, according to the hypothesis that an effect on a

proximal gene is a likely first step.

Fig 1. Genome-wide association strength of all measured plasma proteins. The extent of each stack

indicates the negative log P of association between the plasma protein and SNPs. Stacks with black dots and

black text labels indicate cis-associations. Stacks with hollow circles and grey text labels indicate trans-

associations; their targets are indicated with central colour coded lines. Consequently, plasma proteins having

both cis- and trans-effects can be identified as those with a black dot stack as well as connecting lines from

hollow dots, e.g. XPNPEP2 or CCL4. Fully drawn circle shows P = 5e-8. Dashed circle shows 1e-15. A

detailed table of the genome-wide significant associations in this figure is available as supplemental S1 Table.

A zoomable and interactive version of this figure is available at www.olink-improve.com.

https://doi.org/10.1371/journal.pgen.1006706.g001
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Table 1. Overview of pQTL associations.

SNP id Trait -log(P) SNP id Trait -log(P)

Cis-acting loci Trans-acting loci

rs1580006‡ ADM 14.69 rs184243355* CCL3 7.65

rs2070600‡ AGER (RAGE) 9.52 rs73062378 CCL4 12.35

rs549596* BNP 13.76 rs62625034 CCL4 40.51

rs2188974 CCL3 17.31 rs28601761 CHI3L1 8.3

rs6607368 CCL4 30.2 rs200373 CTSL1 8.37

rs1569723 CD40 48.52 rs6993770 DKK1 8.79

rs2153101 CHI3L1 107.13 rs495828 F3 9.34

rs17610659 CSF1 9.19 rs200433550* F3 9.25

rs35285321 CSTB 42.93 rs1260326 FST (Follistatin) 8.69

rs111693235 CTSD 25.69 rs4672375 GAL 10.15

rs670211 CX3CL1 11.13 rs76519098† GDF15 9.95

rs74544699 CXCL1 11.88 rs693918 IL18 10.62

rs35186877 CXCL16 8.76 rs7599125‡ IL18 7.95

rs72650832 CXCL6 41.21 rs35166255 IL1RL1 8.93

rs982764 FAS 11.7 rs11599750 IL27 9.85

rs3195944 GDF15 7.65 rs10947260† IL6 9.74

rs6555820 HAVCR1 86.89 rs4810479 KITLG 10.35

rs13236526 HSPB1 16.96 rs7928577 LGALS3 8.67

rs139879640* IL16 61.53 rs1169306‡ LGALS3 8.19

rs75649625 IL18 20.84 rs33988101‡ LGALS3 8.45

rs1420101 IL1RL1 131.69 rs12570111† MMP1 7.33

rs4905 IL27 79.93 rs492602 MMP10 8.11

rs4129267 IL6R 264.67 rs12469459 MUC16 44.15

rs62115757 KLK11 61.91 rs61598054* NGF 7.42

rs11667946 KLK6 14.47 rs75416436† NGF 7.38

rs9323280 LGALS3 61.25 rs6557662* NPPB 7.83

rs471994 MMP1 34.63 rs140000161 PAPPA 9.84

rs17368659 MMP12 96.26 rs16873402‡ PDGFB 7.62

rs7946057 MMP3 107.92 rs635634 PECAM1 44.72

rs56378716 MPO 8.73 rs117538444† PGF 8.18

rs35207557* NPPB 24.59 rs635634 SELE (E-selectin) 219.02

rs880949‡ PGF 7.8 rs8176741 TEK 49.06

rs116661163 REN (Renin) 7.99 rs8176693 THBD 9.95

rs1969539 SPON1 21.82 rs241771‡ TNFRSF11B 9.22

rs79250370 TEK (TIE2) 12.71 rs142552223 TNFSF11 (TRANCE) 16.47

rs3176123 THBD 23.64 rs7813952 TNFSF11 (TRANCE) 15.67

rs6469811 TNFRSF11B (Osteprotegerin) 10.54 rs35538083† XPNPEP2 7.51

rs76769120‡ TNFRSF1B (TRAIL) 10.87 rs11150189‡ XPNPEP2 13.16

rs344560 TNFSF14 17.53

rs2050011* XPNPEP2 67.62

rs2271025 AGRP 8.63

More commonly used non-systematic names indicated in parenthesis for some proteins.

* pQTL that was not measured in replication cohorts,
† pQTL that was measured in replication cohorts, but did not replicate at P<0.05,
‡ pQTL that did not replicate at Bonferroni corrected value of P<0.0007.

A more detailed version of this table is found as supplemental S1 Table.

https://doi.org/10.1371/journal.pgen.1006706.t001
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Table 2. Systematic analysis of potential mechanisms behind trans-pQTL associations.

trait-

protein

SNP cis-gene Distance

(kb)

Dist-

rank

Coding-proxy Cis-eQTL Un-

weighted-

pathway

eQTL-weighted-

pathway

Literature-

score

CCL4 rs62625034 CCR5 0 1 rs62625034

(R2 = 1)

59

CTSL1 rs200373 IFI30 0 1 Monocytes+LPS

(P = 2.6e-05),

Monocytes+IFN

(P = 1e-04)

MAST3 24 5 rs8108738 (R2

= 0.64)

F3 rs495828 SURF6 43 2 Monocytes (P = 2.9e-

05), B-cells (P = 3.4e-

05)

MED22 53 3 Via PPARD

(P = 0.00321)

FST rs1260326 GCKR 0 1 rs1260326 (R2

= 1)

KRTCAP3 62 4 B-cells (P = 3.4e-08)

GDF15 rs76519098 MAPK8 283 4 Yes Yes, short

IL18† rs693918 XDH -231 3 Via TLR4

(P = 0.00085)

IL18 rs7599125 LTBP1 -311 3 Via TGFB2

(P = 0.00321)

NLRC4 -371 5 Yes Yes, short

IL1RL1 rs35166255 TIRAP 137 4 Yes Yes, short

RPUSD4 -220 8 Monocytes+IFN

(P = 0.00034)

IL27 rs11599750 CWF19L1 187 6 4 eQTL-sets show cis-

eQTL effect

IL6‡ rs10947260 BTNL2 0 1 rs60263670

(R2 = 1)

NOTCH4 -181 6 Via CCND1

(P = 0.00427)

AGER -221 9 64

ATF6B -277 18 Via ATF3

(P = 0.00349)

KITLG rs4810479 PLTP -4 1 Liver (P = 4.2e-09), B-

cells (P = 4.3e-07)

PCIF1 -18 3 Monocytes+IFN

(P = 5.4e-05)

ACOT8 -59 9 Monocytes+IFN

(P = 0.00021)

MMP9 -92 12 Yes Yes, short

LGALS3 rs7928577 TIRAP 63 3 Via IL6

(P = 0.000463)

CDON -295 9 Via CTNNB1

(P = 0.00494)

LGALS3 rs1169306 HNF1A 0 1 rs2464196 (R2

= 0.71)

C12orf43 3 2 5 eQTL-sets show cis-

eQTL effect

LGALS3 rs33988101 RASIP1 6 2 rs2287922 (R2

= 0.88)

(Continued )
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Table 2. (Continued)

trait-

protein

SNP cis-gene Distance

(kb)

Dist-

rank

Coding-proxy Cis-eQTL Un-

weighted-

pathway

eQTL-weighted-

pathway

Literature-

score

FUT2 9 3 rs602662 (R2

= 0.68)

FGF21 -41 6 Via EGFR

(P = 0.000853)

BCAT2 80 10 Via GAPDH

(P = 0.000584)

MMP10 rs492602 FUT2 0 1 rs601338 (R2

= 0.99)

RASIP1 17 3 rs2287922 (R2

= 0.68)

PPP1R15A -169 18 Via GADD45A

(P = 0.0045)

BAX -252 26 Via TNF

(P = 0.00461)

MUC16 rs12469459 GAL3ST2 0 1 rs12469459

(R2 = 1)

D2HGDH 8 2 Monocytes (P = 9.6e-

06)

NGF* rs61598054 FOXO3 -70 2 Via AKT1

(P = 0.00376)

PAPPA rs140000161 PRG2 0 1 Monocytes+IFN

(P = 5.4e-06)

Yes Yes, short

PECAM1 rs635634 SURF6 43 2 B-cells (P = 1.7e-05),

Monocytes (P = 3.3e-

05)

SELE rs635634 SURF6 43 2 B-cells (P = 1.7e-05),

Monocytes (P = 3.3e-

05)

MED22 53 3 Via PPARD

(P = 0.00277)

TEK rs8176741 ABO 0 1 rs8176747 (R2

= 0.98)

MED22 76 5 Via ALB

(P = 0.00266)

RPL7A -84 6 Via UBC

(P = 0.000421)

GBGT1 -92 9 Via ALB

(P = 0.00266)

THBD rs8176693 ABO 0 1 rs8176746 (R2

= 1)

TNFSF11 rs7813952 TNFRSF11B -159 3 Yes Yes, short 626

For each of 41 SNPs that had an effect in trans, cis-genes within 500 kb were analysed using 5 different methods for evaluation of mediator cis-gene: 1)

presence of non-synonymous coding SNP in LD with index SNP at R2>0.6, 2) presence of FDR5% cis-eQTL effect, 3) presence of significant pathway to

trait-gene shorter than 95% of randomly permuted pathways, 4) presence of eQTL-weighted pathway to trait-gene shorter than 95% of randomly permuted

pathways and/or 5) literature matching score above 50. A total of 1618 SNP-cis-gene pairs were considered, but only pairs that satisfied at least one of the

tests are shown.

* Fig 2A,
† Fig 2B,
‡ Fig 2D.

https://doi.org/10.1371/journal.pgen.1006706.t002
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Analysis of coding proxies revealed that 10 trans loci had missense mutations in linkage dis-

equilibrium (LD) with the index-SNPs, providing an obvious explanatory model for a cis-gene

intermediary mechanism of action.

The analysis of cis-eQTLs in 11 large cardiovascular eQTL data sets provided evidence for

an additional 13 mediator cis-genes. The basic eQTL analysis investigates if the expression of a

gene is associated with the genotype of a proximal index SNP, and is motivated by common

cases of cis-genes not being the gene closest to the index SNP [15,16]. Some of the findings

were remarkably independent of tissue and cell-type, and showed concordant results in several

of the 11 eQTL datasets under analysis, as indicated in Table 2. At each locus with significant

cis-eQTL association, we additionally investigated neighbouring eQTL and pQTL effects as

LocusZoom plots (supplementary S2 Fig). In some cases, like rs4810479/KITLG, the index-

SNP shows both the strongest association with KITLG and the strongest cis-gene association

(PLTP in liver). However, cases also exist, like rs200373/CTSL1, where stronger eQTL effects

for the candidate cis-gene intermediary exists from other SNPs, with low LD between the

SNPs precluding straightforward interpretation. Further studies would be required to address

this issue.

In pathway analysis using the String-database of protein interactions, an additional 6 trans-

genes were highlighted as possible mediator genes through functional protein connections.

The criterion in this analysis was that less than 5% of randomly re-wired networks had shorter

distance, dictating simply that connections of length 1 from a cis-gene to the trait gene should

be selected. Additionally, a more sophisticated weighted network analysis was performed

where each path through the network was weighted by the strength of the (trans) eQTL of the

index-SNP. The eQTL values were calculated using a large collection of eQTL databases with

tissues and cells relevant to cardiovascular disease. Like in the unweighted network analysis

permutation was used to determine significance threshold. Through this weighted network

analysis approach we discovered 11 additional mediator candidates, examples being the

rs61598054 -> FOXO3 -> AKT1 -> NGF and the rs693918 -> XDH -> TLR4 -> IL18 that are

illustrated in Fig 2A and 2B.

Systematic literature mining suggested an additional 5 possible mediators. Co-occurrence

in scientific abstracts can indicate real biological relationships that may be missing from the

String network. Interestingly, across all trans-pQTL loci, the largest number of abstract co-

occurrences was 626 for the receptor-ligand pair encoded by TNFSF11 and TNFRSF11B, a

protein-protein interaction also reported in String-db.

The results of these five cis-gene mediator approaches are summarised in Table 2. While

examples given above provide relatively clear indications of trans mechanism, more challeng-

ing cases do exist: several strong SNP-protein associations gave no evidence of pathway or cis-

gene intermediary, including the disease-relevant rs16873402 -> -> -> PDGFB association.

Clearly alternative non-obvious mechanisms must be responsible for these. Other findings

gave vague and discrepant results, such as the rs10947260 -> -> -> IL6 association, which

pointed to several candidate cis-mediator genes: BTNL2, NOTCH4, AGER, and ATF6B, each

with different types of evidence and in the context of non-significant replication for this SNP-

protein association (Fig 2D). We conclude that in all these cases further experimentation is

required to establish the main mechanism in this case.

Pleiotropy of loci affecting protein levels

Inspection of potential pleiotropic effects of index SNPs on measured protein traits as

described in Methods revealed 6 distinct candidate loci (supplemental S1 Fig). The ABO
locus affecting THBD, TEK, F3, PECAM1, and SELE in our dataset and the FUT2 locus

Novel loci for the plasma proteome
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Fig 2. String-database network connections between proximal cis-gene and target plasma protein. All short String paths that

connect proximal cis-genes with the target plasma protein are shown. The colour intensity of each gene shows the eQTL association-

strength with the index-SNP. The nodes highlighted with bold border show paths that satisfy P<0.05 in network permutation analysis. A) the

rs61598054-SNP is harboured in an intron of the LACE1 gene, but have no paths to the target gene NGF and a more likely mechanism is

therefore FOXO3 -> AKT1 ->NGF, which involves a rs61598054-trans-eQTL effect on AKT1. In permutation analysis of re-wired networks

this is stronger than 95% of random networks. B) Similarly for rs693918, while located between SRD5A2 and MEMO1, the path XDH ->
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affecting MMP10, F3, and LGALS3 are well known for their pleiotropic effects [17]. Further-

more, all SNPs affecting BNP levels seem to also impact NPPB levels. This likely indicates an

effect on steps before cleavage of the precursor protein. NTproBNP is a prohormone with an

inactive N-terminal part that is cleaved to produce the active BNP. However, because of its

half-life NTproBNP is typically used as a prognostic biomarker. A locus within the ZFPM2
gene seems to have a strong effect on PDGFB, DDK1, and, to a lesser extent, on VEGFA.

Finally, the cluster of cis-acting variants in the MMP1, MMP3, and MMP12 loci are not spe-

cific to only one of the proteins but seem to impact all three of the metalloproteinases in this

genomic region.

Additionally, we investigated the known associations of the index-SNPs with a broad range

of other phenotypes, as previously reported in literature (supplemental S2 Table).

Associations between plasma proteins and cardiovascular risk

To assess a potential causal involvement of each protein in CAD, we calculated genetic risk

scores from the publically available CARDIoGRAMplusC4D GWAS data with the aim to con-

struct a more powerful genetic instrument for those markers for which there were multiple

SNPs. First, a systematic look-up of all reported pQTL-SNPs was performed to test for associa-

tion with CAD (Table 3). Then, we further explored proteins with multiple independent loci

by calculating pooled SNP scores per protein, thus creating more powerful instruments to

TLR4 -> IL18 is a more likely mechanistic path, supported by eQTL effects on both XDH and TLR4. C) The rs61598054-AKT1 trans-eQTL

from panel A in 235 IFN-stimulated monocytes and the rs10947260-ATF3 trans-eQTL from panel D in 89 mammary artery samples. D)

Example of ambiguous findings regarding the rs10947260 -> -> -> IL6: The SNP has a coding-proxy in BTNL2, literature mining evidence for

the AGER gene, but also eQTL-weighted pathway evidence for both ATF6B and NOTCH4.

https://doi.org/10.1371/journal.pgen.1006706.g002

Table 3. Association between pQTLs and Coronary Artery Disease (CAD) risk. Each SNP from supplemental S1 Table was investigated in the CARDIo-

GRAMplusC4D data, and the P-values for the pQTL and CAD risk were extracted. An additional pooled analysis was performed in cases where one plasma

protein had multiple pQTLs,. The table shows all pQTLs for which either a single-SNP or pooled CAD association had a P<0.05. P-values highlighted in italics

indicate that the association was also significant after FDR correction for multiple testing.

SNP Trait-protein Cis / trans Pprotein βCAD PCAD βCAD-pool PCAD-pool

rs635634 PECAM1 trans 1.9E-45 0.08 4.47E-11

rs635634 SELE trans 9.6E-220 0.08 4.47E-11

rs495828 F3 trans 4.5E-10 0.07 1.29E-10

rs4129267 IL6R cis 2.1E-265 0.05 2.21E-07

rs28601761 CHI3L1 trans 5.1E-09 0.05 1.00E-06 0.03 2.3E-05

rs1169306 LGALS3 trans 6.5E-09 0.03 5.69E-04 0.02 5.9E-05

rs7928577 LGALS3 trans 2.2E-09 0.06 1.28E-03 0.02 5.9E-05

rs17368659 MMP12 cis 5.5E-97 0.05 1.39E-03

rs16873402 PDGFB trans 2.4E-08 0.03 1.47E-03

rs6993770 DKK1 trans 1.6E-09 0.03 6.90E-03

rs880949 PGF cis 1.6E-08 0.02 2.00E-02 0.02 2.0E-02

rs17610659 CSF1 cis 6.5E-10 0.02 2.25E-02

rs112579976 CCL4 trans 2.5E-13 0.05 3.03E-02

rs9323280 LGALS3 cis 5.6e-62 0.02 3.20E-01 0.02 5.9E-05

rs2153101 CHI3L1 cis 7.5E-108 0.01 4.68E-01 0.03 2.3E-05

rs33988101 LGALS3 trans 3.6E-09 0.01 5.16E-01 0.02 5.9E-05

rs117538444 PGF trans 6.5E-09 0.01 7.64E-01 0.02 2.0E-02

https://doi.org/10.1371/journal.pgen.1006706.t003
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analyze the causality for proteins with multiple SNPs. Results show that of the SNPs contribut-

ing to the concentrations of proteins (Table 1), eight were also significantly associated with

risk of CAD at FDR corrected significance levels (Table 3). These findings suggest a causal role

for these proteins, and whilst the cis IL6R finding confirms previous observations [18], the

other observations extend our knowledge of important factors in CVD. Results from pooled-

scores include highlights such as the multi-SNP support of LGALS3 and the contradiction of

CHI3L1 having a CAD-associated trans-effect but no CAD-association in the cis-loci (Table 3

and data from [19]).

Discussion

In this study, we identified 79 pQTLs by measuring 83 plasma proteins of cardiovascular inter-

est in a cohort of 3,394 subjects with multiple risk CVD risk factors, which may increase the

power to detect genetic variants associated with CAD-associated proteins. The study provided

novel insights into 57 of the plasma proteins under investigation, including cis- and trans

genetic regulation and effects of long-distance regulation networks and tentative evidence for

causal involvement in CVD.

To the best of our knowledge only a few of the findings were previously known; however

reassuringly these replicated as expected: IL18/rs75649625 and rs4129267/IL6R [20], as

well as AGER/sRAGE, CD40 and LGALS3 cis associations [17,21,22] and the rs8176741/

TEK trans association [23], and the rs635634/SELE [24]. In contrast, six of the 79 pQTLs

did not replicate. There are several explanations for the lack of replication, with the most

important being differences between the IMPROVE study and the replication studies

PIVUS/ULSAM and NSHPS. The replication studies were smaller which may have led to

insufficient statistical power to detect association, and the IMPROVE study included a high

proportion of patients with diabetes, high blood pressure, high cholesterol and high body

mass index. We cannot exclude the possibility that some pQTLs interact with disease

status.

Of the 79 pQTLs detected in the present investigation, 16 (20%) explained more than

5% of the total protein level variability, and another 11 over 2%. With two exceptions, the

pQTLs explaining more than 5% of the variability appeared to be cis-acting, which high-

lights the importance of proximal regulatory mechanisms. This observation suggests that

large sample sizes will be needed to detect trans-acting pQTLs. This was also the conclusion

reached when trying to quantify narrow-sense heritability for all proteins (supplementary

S3 Table).

Whilst recognizing that human complex traits have different genetic architectures, are not

equally easy to accurately measure, and that the proteins investigated in the present study may

not be representative for other plasma proteins, our observations suggest that the relative

importance of SNPs for circulating proteins is on average greater than for other biochemical

traits. For example, the R46L variant in the PCSK9 gene explained 1.19% of the LDL-C vari-

ability in a fine-mapping experiment involving over 10,000 subjects. In the same report it was

shown that a combination of all the 8 lead SNPs for LDL-C association explained only 7.1% of

the variability [25]. One may speculate that since many of the proteins found in circulating

blood exist in both membrane-bound and soluble forms, because of alternative splicing or

active shedding, SNPs acting in both cis- and trans play a significant role in these processes.

Ultimately, systematic mapping of pQTLs for a wider range of human proteins in large sam-

ples and in other matrices such as urine, cerebrospinal fluid or whole-cell lysates from biopsy

material, followed by functional experiments, are needed to elucidate genetic regulation of the

human proteome.
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Insights into specific trans-effects

A proteomics GWA study provides an interesting opportunity for the study of trans-regulatory

effects, because the trait is a well-defined biological entity. In some cases, the trans-pQTL

investigating methods in Table 2 converged on a very plausible candidate gene. For example,

at the CCL4-rs62625034 locus the effector transcript is probably the CCR5 gene, while at the

TNFSF11-rs7813952 locus, the effector transcript is likely the TNFRSF11B gene, two examples

of known ligand-receptor pairs. Another example is the IL27-rs4905 variant, which sits within

the EBI3 gene. The IL27 and EBI3 genes encode the two subunits of the IL27 cytokine

complex.

The effector transcript at the KITLG-rs4810479 locus may be MMP9, which encodes a

metalloproteinase that cleaves the KITLG gene product, a membrane-bound stem cell factor

[26]. Thus this trans pQTL may represent an example of genetic regulation via post-transla-

tional modification.

At a few loci, we found either nothing or multiple lines of evidence suggesting different

mediator genes at the same locus. This is not biologically impossible, nor is it uncommon in

the literature [27], but it does require more careful analysis. The challenge is illustrated by the

IL6-SNP rs10947260, for which separate lines of evidence pointed to three candidate cis-medi-

ator genes. As shown in Fig 2D, a criticism against concluding on the importance of a pathway

to IL6 through the CCND1 gene is that NOTCH4 has many neighbours in the String-network,

thereby increasing the risk of a spurious discovery.

While these examples seem specific, they illustrate challenges that have major consequences

for the general interpretation of any genetic association result. Analyses such as these have

driven the development of popular risk-gene assignment tools (e.g. [28]). Our findings illus-

trate the increased power of knowing a certain pathway destination through the use of pQTL.

Insights into potential causal involvement of the plasma proteins in CVD

The study provided an important opportunity to systematically test each of the plasma proteins

for a potential causal role in CVD by investigating whether identified pQTLs also were associ-

ated with CAD risk. If an instrumental variable, e.g. a SNP or a set of SNPs, exclusively affects

one factor, and also affects an overall phenotype, such as disease risk–then it may be deduced

that the protein is causally involved in the development of this disease. According to this prin-

ciple, eight proteins (PECAM1, SELE, F3, IL6R, CHI3L1, LGALS3, MMP12, and PDGFB)

showed evidence of potentially causal involvement in CAD. The connection between IL6R and

CAD has already been described [18], and several drug trials are underway to test whether an

ILR6-inhibitor (tocilizumab) is effective in treatment of CAD (clinicaltrials.org). In light of

this, the remaining proteins could be of interest as therapeutic targets.

However, there are some important limitations to the approach, as compared to a formal

MR. A formal MR study requires that the genetic instrument is specific, is not in LD with

other functional variants, and that there are no hidden population strata [29]. There is no rea-

son to suspect that the second and third requirements were violated; the study was based on

high-resolution imputation of cohorts that were ethnically homogeneous. Importantly, the

specificity requirement was not always satisfied, weakening the findings for some proteins.

This includes all the trans associations, as well as proteins for which pleiotropy was detected

(supplemental S1 Fig and supplemental S2 Table). In addition, association between plasma

protein concentrations per se and future CVD risk has not been carefully investigated for the

majority of proteins included in the present study.

These limitations leave LGALS3, MMP12 and PDGFB as candidates for having a causal

effect on CAD. Of the three SNPs affecting levels of LGALS3, rs1169306, rs7928577 and
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rs33988101 in trans, only the first two also contribute to CAD risk, resulting in a pooled CAD

association P-value of P = 1.46e-4. For MMP12 and PDGFB, the results are based on single

SNPs showing associations with protein levels. Of the three, only MMP12 is a cis effect thereby

strengthening the case for it being a specific MR instrument. These limitations notwithstand-

ing, the map of pQTLs presented here, and in particular those acting in cis, should provide the

means to systematically assess potential causal roles of these biomarkers in other common

complex diseases. Additionally, we highlight the online resource found at www.olink-improve.

com where the data pQTL can be browsed in greater detail. This may in turn help to prioritise

drug targets for development of disease-modifying therapies.

Conclusion

In conclusion, the main contributions of this paper are: i) identification of 79 pQTLs regulat-

ing important circulating cardiovascular plasma proteins, ii) novel evidence of the regulatory

mechanisms underpinning at least half of these novel loci and iii) evidence of potential causal

roles in CAD development for several plasma proteins. We believe that these three principal

findings provide a strong contribution to the field of cardiovascular biomarkers and beyond.

Materials and methods

The IMPROVE study

The IMPROVE study is a multicentre, observational study, which recruited 3,711 men and

women aged between 55 to 79 years with at least three cardiovascular risk factors but without

symptoms of CVD (previously described [30]). Serum and plasma from the study participants

were collected at baseline, dispensed in polypropylene tubes and frozen at –80˚C prior to ship-

ment for centralized biochemical analyses and biobanking at the Karolinska Institutet in

Stockholm, Sweden. The study was conducted in accordance with the declaration of Helsinki

and all participants gave written informed consent. The individuals in the discovery cohort,

IMPROVE, were recruited in 7 different centres in Finland, France, Italy, the Netherlands,

and Sweden. The relevant permits were given by ethical committees for each the 7 different

centers as follows: Kuopio Research Institute of Exercise Medicine, Finland. Kuopio University

Hospital, Finland. Karolinska Institute, Stockholm. University Medical Center Groningen,

Groningen, the Netherlands. Groupe Hospitalier Pitié-Salpétrière, Unités de Prévention Car-

diovasculaire, Paris, France. Dipartimento di Scienze Farmacologiche e Biomolecolari, Milan.

University of Perugia, Italy. The ethics and sampling of this cohort have been further docu-

mented in prior publications, e.g. [33]. The individuals in the replication cohorts, NSPHS,

PIVUS and ULSAM were likewise recruited following informed written consent. The relevant

permits were all given by the regional ethics committee at Uppsala University, Sweden. The

ethics and sampling of these cohorts have been further documented in prior publications

[31,32].

Genotyping, quality control and imputation

DNA genotyping in the IMPROVE study was performed using the Illumina CardioMetabo-

chip and Immunochip arrays. The combined SNP genotyping data from both platforms were

merged and subjected to the following quality control (QC) using PLINK 1.7: SNPs were

excluded for probe to genome mismatch, incorrect assignment of allelic variants in the array

design, failed Hardy-Weinberg Equilibrium test at 1x10-6, call rate<95% or failed Illumina

genotype calling QC. Samples were excluded if they showed evidence of gender mismatch,

abnormal inbreeding coefficient, failed cryptic relatedness test or had an overall sample call
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rate<95%. After quality control, a total number of 3,394 subjects remained for analysis. Impu-

tation was performed with MACH 1.0 algorithm with 1000 genomes CEU v3 as reference

panel. The pre-imputation data set contained 244,814 SNPs and the post-imputation data set

contained 5,270,624 SNPs.

Plasma protein determinations and quality control

In total, there were 3,394 IMPROVE participants for whom quality controlled genotype infor-

mation and plasma samples were available. Plasma concentrations were measured in baseline

EDTA plasma samples using the ProSeek CVD array I (Olink Biosciences, Uppsala, Sweden),

according to the standard protocol. The ProSeek method is based on the highly sensitive and

specific proximity extension assay (PEA), which involves the binding of distinct polyclonal oli-

gonucleotide-labelled antibodies to the target protein followed by quantification by real-time

quantitative PCR [13]. In addition to the controls provided by Olink Biosciences, a pooled

plasma control was included in all plates to enable further quality control (QC) such as calcula-

tion of variation coefficients. Prior to statistical analyses, we excluded individual assays with

more than 20% of samples below the lower detection limit and those with final inter-plate coef-

ficients of variation above 25%. After QC, a total number of 83 proteins out of the 92 remained

for analysis (full overview in supplementary S3 Table). The native scale of Olink protein mea-

surements is log(2) but additional log(10) transformations were performed to ensure normally

distributed variables. Overview of standard curves for all proteins are given in supplemental S1

Dataset. Validation of the OLINK method has been conducted [13], and the method has been

used to validate previous findings obtained with established protein quantification methods

[31,34].

Genome-wide quantitative trait locus discovery

Plasma protein readings were log10 transformed prior to analyses. Standardized residuals for

each of the 83 plasma proteins were calculated using a linear model adjusting for age, sex,

recruitment centre, protein analysis batch, smoking, diabetes and hypertension at baseline. To

merge loci in Table 1 and supplementary S1 Table, signals with R2 higher than 0.1 and distance

within 250 KB were omitted, retaining only the strongest signal in each block, referred to as

the index SNP. The standardized residuals were used in a Wald-test in PLINK 1.9 to test asso-

ciation between genetic data and each plasma protein, using a significance threshold of

P< 5e-8. All summary statistics can be downloaded at www.olink-improve.com, or from the

Zenodo data-repository (DOI 10.5281/zenodo.264128).

Narrow-sense heritability for all proteins was calculated using Genome-Wide Complex

Trait Analysis [14]. A genetic relationship matrix was calculated using all measured autosomal

SNPs with, less than 1% missingness and allele frequency above 5%, using the restricted maxi-

mum likelihood analysis (REML). Attempts at quantifying heritability using imputed data

failed for 37 of 83 measured proteins.

Replication of pQTL effects

Replication studies of all pQTLs were performed in three community-based cohorts in which

Olink array protein data and genotypes were available. These cohorts were the NSPHS [32],

the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) and the Uppsala

Longitudinal Study of Adult Men (ULSAM) [31], consisting of samples from 976, 933 and 730

participants, respectively. Statistics were calculated according to additive association models,

and findings were matched either directly on imputed SNP-id (96% of cases) or using a proxy
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with R2 > 0.8 linkage disequilibrium. Replication P-values were calculated using the METAL

meta-analysis software (version 2011-03-25).

Expression quantitative trait analysis

For each index-SNP, cis- and trans-eQTL data were calculated from the following sources:

aorta intima-media, aorta adventitia, liver, mammary artery, and heart from the ASAP study

[35], monocytes and B-cells from the Fairfax et al study [36], and monocytes stimulated with

LPS-2h, LPS-24h and interferon-2h from another Fairfax et al study [37]. Each of these 11

data sets had information from gene expression microarrays and genotyping microarrays as

described in the respective references. The mean sample size was 223 with a range of 89–

367. Data from genotyping microarrays were imputed using the MACH 1.0 algorithm with

1000 genomes CEU v3 data as reference (mean rsq quality score 0.89) [38]. The strength of

eQTL association was calculated using a linear additive model between log2-transformed

expression value and numerically encoded genotype data. For cis-eQTL associations, un-

corrected p-values from cis-eQTL were reported if the association was stronger than

P < 0.0005 (corresponding to a false discovery rate (FDR) <5%). For all significant cis-

eQTL associations, locusZoom plots were generated showing regional effect differences

between eQTL and pQTL studies [39].

Network analysis

The network analysis was performed based on the String database network (version 10) [40],

using all edges with a confidence score above 400. For all genes within 0.5 MB of an effect-SNP

(“cis-genes”), the shortest path length was calculated between the cis-gene and the gene encod-

ing the measured protein biomarker (“trait-gene”) using the igraph package in R (version

1.0.1). This was done both with an unweighted version of the Stringdb-network as well as with

a weighted version, wherein each gene along the path was weighted by the trans-eQTL strength

calculated from the effect-SNP (scored as 1, except if PeQTL < 0.05 which gave score 0.8, and if

PeQTL < 0.005, which gave score 0.6).

For both weighted and unweighted networks, significance of a path was calculated as the

fraction of 1000 randomly permuted networks that obtained a shorter path length than the

one tested. Random networks were generated using permutation of the original scores and

random rewiring of the network using the igraph rewire function, as detailed in code reposi-

tory http://github.com/lassefolkersen/olink-improve. Given our data, only paths of length 1,

i.e. direct links in String-db, were significant at a 0.05 level in the unweighted case. For the

weighted case, only paths of length 2 with an intermediate trans-eQTL gene reached signifi-

cance. Paths were subsequently checked for biological plausibility.

Literature analysis

To support the assignment of potential causal genes in pQTLs, we mined the literature for top-

ical co-occurrences of each gene in a pQTL (defined by a window extending 500kb in both

directions) with its associated protein. The Pfizer-internal LitMS tool can provide such

matches based on all PubMed abstracts, a large synonym dictionary and manually curated

rules that limit findings to more relevant articles, e.g. those in which gene and protein occur in

the abstract’s title. The system outputs the number of co-occurrences and underlying article

references for each gene-protein input pair. We then reviewed the literature findings to assign

the most plausible causal genes where possible.
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Pleiotropy

To understand the specificity of all reported index-SNPs we inspected all index SNPs that had

at least 2 associations with distinct proteins at P<0.05 / (83� 79) = 7.7e-6. This cutoff reflects a

conservative approach to the multiple testing burden for all identified index SNPs (79) with all

tested protein traits (83). The resulting association matrix was then clustered and visualized

based on the negative log10 of the p-values of association. For the clustering, we used a com-

plete-linkage hierarchical clustering approach based on the negative log10 of the p-values with

Pearson correlation coefficients as a metric. In addition, index-SNPs were investigated for

other associations in publically available GWAS databases.

Calculation of genetic risk scores

To assess the effect on disease, the publicly available CARDIoGRAMplusC4D 1000G imputed

data was interrogated [19]. The goal was to perform in silico analysis for every SNP that

showed significant associations with any of the measured traits. For traits that had multiple

associated SNPs, pooled scores per affected protein were calculated using the R-package gtx
version 0.0.8. Specifically for the pooled risk scores, the alleles of each protein were encoded so

that the coded allele was increasing CAD risk regardless of its protein concentration effect.

This ensured that pooled effect sizes reflected uniform directionality on CAD risk.

Supporting information

S1 Fig. Potential pleiotropy between genome-wide significant SNPs and measured trait

proteins. This figure shows all lead SNPs that have at least 2 associations with distinct proteins

at P<0.05 / (83� 79) = 7.7e-6. This cutoff reflects a conservative approach to the multiple test-

ing burden for all identified lead SNPs (79) with all tested protein traits (83). Protein traits are

not displayed if they have no associations with the selected SNPs at the defined threshold. Red

colour indicates the main effect as reported in S1 Table. Grey-scale colours indicate the effect

strength on a–log10(P) scale as indicated.

(PDF)

S2 Fig. LocusZoom plots of eQTL and pQTL effects, for each locus with significant cis-

eQTL association according to Table 2.

(PDF)

S1 Table. Overview of all associations between plasma protein and SNPs significant at

genome-wide level. Trait–the plasma protein target; Dist (kb)–if cis, the distance between

SNP and protein encoding gene; Likely mediator gene–the most likely cis-mediator gene. In

cis-cases protein-encoding gene, but in trans-cased based the analyses presented in Table 2;

Discovery P–the pQTL association P-value from the Olink-Improve discovery cohort

(n = 3,394); Discovery Beta–the Olink-Improve effect size; R2 –proportion of the protein level

variance that is predictable from genotype; A1/A2 –encoded allele and alternative allele; A1

freq–frequency of encoded allele; Imputation quality–the Rsq imputation quality score

(MACH 1.0); Protein name; Replication P—the pQTL association P-value from the replication

cohorts (n = 976, n = 933,n = 730); Combined P–the meta-analysis P-value of both discovery

and replication; Directions—for replication meta-analysis are indicated as IMPROVE (discov-

ery), NSPHS (replication), ULSAM-PIVUS (merged replication). †while 530.7 kb is formally

outside of the pre-defined cis-limit of 500 kb, the AGRP association was classified as cis-acting.

All other pQTL associations were either acting across chromosomes or at distances more than

100 MB.

(PDF)
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S2 Table. Pleiotropy of reported trait protein SNPs with findings from previously pub-

lished GWAS studies. Publically available studies were investigated and associations were

reported for proxy SNPs with r2 LD above 0.6 and association P-value stronger than 5e-8.

Other trait–the trait investigated in the published GWAS; Other SNP–the index SNP in the

published GWAS; r2 (EUR 1000G)–linkage disequilibrium between Olink-improve study

index SNP and the other SNP; Other P-value–P-value as reported in published GWAS;

Pubmed ID–the pubmed ID of the published GWAS; Olink SNP–the index SNP of the Olink-

improve study; Olink Trait Protein–the trait protein associated in the Olink-improve study;

Olink P-value–the P-value as also reported in Table 1.

(PDF)

S3 Table. Overview of all 92 measured proteins, with quality control parameters, descrip-

tive statistics and heritability estimates. All descriptive statistics are reported on the log10--

transformed data that was used for analysis; #samples below LOD–the number of samples

below limit of detection; CV%—coefficient of variation; Included–final choice on inclusion in

analysis; Mean (SD)–mean and standard-deviation; Median (IQR)–median and inter-quartile

range; V(G)/Vp–The GCTA calculated narrow-sense heritability, given as estimate ± standard

error (P-value). Note also that negative heritability estimates are reported as 0%, reflecting esti-

mate artefacts down to -4.30%. When applying the algorithm to imputed data, it fails for 37 of

83 proteins.

(PDF)

S1 Dataset. Overview of standard curves for all proteins measured with the olink-platform.

(XLSX)
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(DOCX)
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