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ABSTRACT: We present an optimized approach for the calculation of the density of fully coupled vibrational states in high-
dimensional systems. This task is of paramount importance, because partition functions and several thermodynamic properties
can be accurately estimated once the density of states is known. A new code, called paradensum, based on the implementation of
the Wang−Landau Monte Carlo algorithm for parallel architectures is described and applied to real complex systems. We test the
accuracy of paradensum on several molecular systems, including some benchmarks for which an exact evaluation of the
vibrational density of states is doable by direct counting. In addition, we find a significant computational speedup with respect to
standard approaches when applying our code to molecules up to 66 degrees of freedom. The new code can easily handle 150
degrees of freedom. These features make paradensum a very promising tool for future calculations of thermodynamic properties
and thermal rate constants of complex systems.

■ INTRODUCTION

The vibrational density of states of a chemical system is the
number of vibrational states per unit of energy. This quantity is
of paramount importance in molecular and chemical physics.
All information about energetics, thermodynamics at equili-
brium, as well as molecular spectroscopy can be obtained from
the knowledge of the density of states ρ(E). More specifically,
the vibrational density of states yields the vibrational partition
function upon Laplace transform

∫β ρ= β−Q E e E( ) ( ) dE
vib vib (1)

where β = 1/kBT, kB being the Boltzmann constant and T the
temperature of the system. Qvib(β) is used to compute not only
specific heats but also thermal rate constants. More generally,
statistical kinetic theories of dynamical processes, such as
energy transfer and reactivity,1−6 employ the density of states in
their formulation.
Unfortunately, quantum densities of states can be calculated

exactly by direct counting of quantum states only for low-
dimensional systems or can be obtained only for a restricted

number of separable systems. When the BS algorithm is
combined with the Stein Rabinovitch (SR) one, the
combination of the two (BSSR) enables very fast calculations
for separable models of high-dimensional systems.7 Such
models may include not only harmonic degrees of freedom
(consisting of uncoupled harmonic oscillators), but also highly
anharmonic ones, such as Morse oscillators or hindered internal
rotations. An alternative route consists in inverting eq 1 and
calculate ρvib(E) as the Inverse Laplace Transform (ILT) of the
canonical partition function. Clearly, this approach is advanta-
geous when the partition function can be determined via
computationally affordable Monte Carlo methods. In this
paper, we will test the ILT approach and show that its
successful application is limited in dimensionality and in energy
range, as already pointed out elsewhere.8 A more widely used
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method is based on Steepest Descent approximations.9,10

Nevertheless, ILT is a viable tool, which has already been
employed in several cases to estimate microcanonical densities
of states.11−14 Other more manageable (but approximated)
approaches have been developed in the past. For example, in
the so-called Simple Perturbation Theory (SPT) of Isaacson et
al.,15 an effective harmonic frequency for each mode is defined
as

∑ν ν̅ = + +
≠

X X2
1
2i i ii

j i
ij

(2)

where νi is the harmonic frequency of the i-th mode, and Xij is
the i,j element of the matrix of anharmonic couplings. SPT
approximates ρvib(E) as that of a set of uncoupled harmonic
oscillators of frequencies provided by eq 2.
In general, to calculate ρvib(E) directly and with high

accuracy for large systems is a difficult task. The challenge
ahead of us is to include not only anharmonicities but also
intermode couplings and quantum effects in the calculation of
ρvib(E). This goal can be reached, at least in part, by using a
perturbative approach, where the energy of the quantized
vibrational levels is expanded around a stationary point up to
the second order, including the anharmonic coupling terms as
follows

∑ ∑ω= + + + +
= =

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠E v X v v

1
2

1
2

1
2i

i i
i j

ij i j
1

nvib

, 1

nvib

(3)

where E is the vibrational energy, nvib is the number of
vibrational degrees of freedom, ωi is the i-th element of the
vector ω of harmonic frequencies, vi is the vibrational quantum
number of the i-th mode, and Xij is the i,j element of the X-
matrix of anharmonic couplings. In principle, adoption of eq 3
would permit the calculation of ρvib(E) via Monte Carlo
sampling.16−19 However, a straightforward application of the
Monte Carlo approach is hindered by a drastic increase of the
variance with the number of degrees of freedom.18,19 As an
alternative, Basire et al.20 first, and Nguyen and Barker21 later,
showed that the Wang−Landau (WL) method,22 in which
Monte Carlo walker visits are driven by the criterion of uniform
histogram of visits, can successfully be applied to calculate not
only classical but also quantum ρvib(E). In particular, Barker et
al.23 implemented the WL approach for ρvib(E) calculations in
the code adensum of the MultiWell suite. This program suite
can also solve the internal energy master equation for complex
unimolecular reactions systems, calculate exact ρvib(E) (doloops
code) and approximate ones using the BSSR algorithm (code
DenSum), and estimate thermal rate constants and other
thermodynamic quantities.24

Quite recently, there has been a significant boost in the WL
application provided by its parallelization.25−31 Vogel et al.25

showed how the WL algorithm can be systematically
implemented for application to large-dimensional problems.
Their parallelization idea is based on the splitting of the total
energy range into smaller windows with large overlaps between
adjacent windows. Multiple independent walkers are sampled in
each energy window, and replica exchanges between walkers
across overlapping windows are allowed. There is no a priori
limit on the number of windows, and this parallel WL scheme
can scale up to thousands of CPUs. We find this hierarchical
parallel framework potentially advantageous for vibrational
density of states calculations.

This paper describes how to best implement the parallel WL
scheme in a code (called paradensum) for application to large
molecular systems. First, we show the details of this
implementation and describe the paradensum pseudo code.
Then, we test paradensum for analytical and exactly solvable
systems up to hundreds of degrees of freedom. Finally, we
apply paradensum to real molecules with up to 66 vibrational
degrees of freedom, and we show that it can potentially be
employed for even larger systems. Whenever possible, results
are compared with exact calculations. In the last section, we
briefly discuss results and conclude the paper.

■ THE PARADENSUM ALGORITHM
The quantum molecular density of vibrational states ρvib(E) can
be estimated by counting the number of vibrational eigenstates
ΔNvib(E) per energy interval ΔE within the interval [E, E +
ΔE], i.e.

ρ = Δ ΔE N E E( ) ( )/vib vib (4)

To perform the counting, the exact vibrational eigenvalues
should be known in advance. When eigenvalues are calculated
with grid methods, such as Discrete Variable Representation
methods,32−34 the complexity of the system is usually confined
to a few atoms. For higher-dimensional systems, one can either
rely on semiclassical approximations35−43 or perturbation
expansions around the molecular minimum geometry.44

The perturbation approach approximates the vibrational
energy with the well-known Dunham expansion.16,17 Here, nvib
normal modes are coupled to each other and quantum effects
are included by the quantum numbers v = (v1,v2,...,vi,...,vnvib).
Since the first occupied quantum state is at the zero point
energy value (EZPE), a convenient expression for the vibrational
energy relative to the zero-point one (E′) can be derived from
eq 3

∑ ∑ω

′ = −

= + + + + −
= =

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

E E E

v X v v E
1
2

1
2

1
2i

i i
i j

ij i j

ZPE

1

nvib

, 1

nvib

ZPE

(5)

Harmonic frequencies and the X-matrix have to be supplied as
input and can be computed with quantum chemistry codes
(see, for instance, refs 45,46). All combinations of vibrational
quantum numbers v providing bounded states, i.e. with energy
in between the ZPE and the dissociation energy, are counted.
However, eq 5 is not accurate near the dissociation threshold or
above. The number of states ΔNvib(E) for each interval of
vibrational energies between E and E+ΔE will provide the
density of states ρvib(E) according to eq 4.
The doloops code in MultiWell is based on a direct counting

of the number of vibrational states by using as many nested do
cycles on the vibrational quantum numbers as the number of
degrees of freedom. The algorithm is useful for small-size
systems (up to 4 atoms), whereas for larger systems, the
computational overhead quickly becomes unaffordable. For this
reason, Basire et al.20 first, and Nguyen and Barker21 later,
implemented the calculation of ρvib(E) within a Wang Landau
Monte Carlo scheme.22 The algorithm is based upon the
observation that the histogram of visits H(E) will be flat when
the probability of visiting each energy level for a random walk
in the space of the quantum numbers is proportional to 1/
ρvib(E). In this way, the random walk is forced to visit regions
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with low density of states and is not trapped in high density
zones. The Wang Landau algorithm is rigorously proven to
converge,47 and it has been shown to be even suitable for
building the density of states of rough energy landscapes.22

After a starting guess ρvib(E) = 1, random walks are performed
in energy space with an acceptance probability p from a
vibrational state with energy Ei to another at Ef given by

ρ
ρ

→ =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p E E

E

E
( ) min

( )

( )
, 1i f

i

f

vib

vib (6)

Once a given energy bin Ei is visited, ρvib(Ei) is multiplied by
the modification factor f. Initially, f 0 = e. During each random
walk, the histogram H(E) of visits of each energy level is
updated together with ρvib(E). The procedure halts when the
flatness of H(E) is within a cutoff value. Once the flatness
criterion for the j-th iteration is satisfied, the modification factor
is reduced using a monotonically decreasing function of the
type =+f fj j1 , and a new random walk begins starting from

the last estimate of the density of states ρvib,j(E). A sort of WL
rule of thumb22,25 is to take the whole algorithm completed
after 21 such iterations, because after that, the modification
factor has reached a value really close to 1 and the density of
states does not change anymore when it is updated in the limit
of numerical precision used in molecular system calculations.
The main advantage of the WL algorithm is that it can be
employed for the calculation of the density of states of any
system.48 Regarding the problem of calculating the density of
vibrational states of a molecule, ρvib(E) is normalized by setting
the width of the first ground state energy bin to contain only
the ground vibrational state.
The adensum code of the MultiWell suite23,24 represents the

state-of-the-art for molecular density of states calculations. Each
quantum number vk of the k-th degree of freedom has an upper
limit provided by the equation ∂E/∂vk = 0, which enforces the
system to be bound along the k-th degree of freedom.21

Vibrational modes associated with hindered rotations are
convoluted as rotations in the vibrational states counting.
Nguyen et al.21 also tested the possible expression of the
transition probability of eq 6 and they finally set p = MIN(1/
N,0.25), since the result standard deviation is quite stable with
respect to the choice of p. The critical issues of the adensum
code are that the number of random walkers over the entire
energy space is restricted to a single one and that there is no
flatness requirements over the histogram, since the total
number of Monte Carlo iterations is fixed either at 102, 103,
104, or 105 times the energy bin number.21

To overcome the limitations of the MultiWell adensum code,
we modify the present algorithm structure and then implement
it for parallel architectures by using the MPI (Message Passing
Interface) API (Application Programming Interface). The code
structure does not allow for a straightforward parallelization,
since the outer do cycle is the evaluation of ρvib(E), with the j-th
iteration starting from the converged ρvib,j−1(E) value of the (j−
1)-th iteration. Instead, the parallelization strategy we employ is
to divide the energy range into windows and set the
calculations of ρvib(E) for each window on a single processor.
This strategy is dictated by the observation that less random
sampling events and reduced computational effort is needed for
Monte Carlo convergence in a restricted energy range. We
choose all windows to have the same width. The number of
processors is given by the choice of windowing. Since the WL

density of states is notoriously biased at the edges of small
energy windows,25 we always keep a percentage of overlap
between neighbor windows. We call the new code paradensum,
and its structure is sketched in Figure 1. The code supports the

possibility to run multiple walkers for each energy window. A
preliminary single walk is performed on the entire energy range
to pick up the initial configuration of each walker in each
window. Given the uniformly distributed probability in energy
space, this single walk is quite efficient in providing initial
quantum numbers configurations. After choosing the starting
configuration in each window as described above, unique
random number generator seeds are created from the processor
ID for each task and random walks start. In the adensum code, f
is updated after a fixed number of Monte Carlo sweeps. Instead,
in paradensum the WL flatness criterion is applied and
monitored separately for each window. In case of multiple
walkers, they average out their estimate of ρvib(E) before the
update of the modification factor f and the beginning of a new
iteration. This setup makes paradensum quite flexible and able
to fit the energy domain better than the adensum code. As a
general strategy to better handle the data in this parallelization
scheme, we set arrays of dimensionality equal to the number of
windows. ρvib(E) and H(E) are represented as three-dimen-
sional arrays where the indexes define the number of grains per
window, the number of walkers per window and, a third index,
the window number. In this way, each processor accesses the
array part corresponding to its own window without
interferring with other tasks. At the end of the random walks,
MPI reduction is invoked to merge each processor array into a
global unique one that includes the results of all walkers. This
strategy is depicted in Figure 2. Following Barker et al.,21 we set
the number of energy bins for the lowest energy window such
that the lowest energy bin contains just a single quantum state,
i.e. the ZPE one. In this way ρvib(EZPE) = 1/ΔE for that energy
bin and the values of ρvib(E) for the other bins are rescaled
accordingly. A matching between the overlapping energy
window bins allows to extend this normalization to all
windows. The final rescaled density profile Ttot(E) is built by
joining the ρvib(E) of different windows where the inverse
microcanonical temperature d ln(ρvib(E))/dE matches more

Figure 1. Paradensum code structure. Emin and Emax are, respectively,
the minimum and maximum energy E for ρvib(E) evaluation. The
energy range is divided into overlapping windows, and each energy
window contains the same number of bins. Black continuous lines
represent random Monte Carlo walks, and green lines the averaging of
ρvib(E) and the rescaling of the modification factor.
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accurately, as described in ref 25. The paradensum pseudo code
is reported in Figure 3.

■ RESULTS AND DISCUSSION
In this section, we describe the results of the calculation of
ρvib(E) for several systems. First, we consider model systems to
check the correctness and the scalability of the code
paradensum. Then, we justify the choice to perform
calculations by means of a single walker per energy window
with strict requirement for the histogram flatness. Finally, we
turn into real and complex molecule calculations to show the
computational advantages of paradensum with respect to other
codes for density of states calculations.

Model Systems. The calculation of the density of states
ρvib(E) for harmonic model systems, i.e. uncoupled harmonic
oscillators, is only in part analytical. While the harmonic
partition function is analytical, ρvib(E) is obtained by a
convolution in energy space. This integration is not analytical
unless the single mode density of states is approximated. This is
the case of the classical approximation where the one-
dimensional harmonic ρvib(E) = 1/ℏω is convoluted into the
N-dimensional expression to obtain

ρ
ω

=
− ! ∏ ℏ

−

=

E
E

N
( )

( 1)

N

j
N

j
vib

1

1 (7)

which is famously employed in the classical RRKM theory.49

Alternatively, we can consider that the cumulative sum of states
Nvib(E) is related to the partition function by the inverse
Laplace transform:

∫π β β ω
β=

∏ ℏ
σ

σ
β

− ∞

+ ∞

= ( )
N E

i
e

d( )
1

2 2 sinh
i

i
E

N
j
N

j
vib

1
1
2 (8)

and that ρvib(E) = dNvib(E)/dE. To exploit this route, we
perform the inverse Laplace transform numerically, using an
algorithm based on an expansion in Fourier Series.50 We found
this approach useful to manage the cumulative sum of states up
to 20 uncoupled harmonic oscillators. The main limitation of
this approach is that the inversion of the Laplace transform is
numerically stable only within a small energy range, and reliable
results of Nvib(E) are limited to energies up to around 1500
cm−1 above the zero point energy. Given the inaccuracy of eq
7,9,10,51,52 an alternative approach for higher energies, the
Whitten and Rabinovitch semiempirical approximation, can be
employed.53,54

In Figure 4, we consider a 1-d harmonic oscillator.
Paradensum correctly reproduces the results provided by the
exact counting of states. The classical results, labeled as CL,
reproduce on average the discrete quantum mechanical
counting given by the straight line. The ILT can manage the

Figure 2. MPI reduction scheme.

Figure 3. Paradensum pseudo code. Here the variable g indicates the
logarithm of the vibrational density of states.

Figure 4. Cumulative sum of the density of states Nvib(E) =
∫ 0
Eρvib(E′)dE′ for the one-dimensional harmonic oscillator. Exact

results are the “Exact Count” ones. CL stands for classical, paradensum
for the present WL calculations and ILT for the inverse Laplace
transform approach.
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exact counting up to an energy threshold. For higher energy,
ILT results are on the top of the CL results. However, within
this limitation, ILT is going to be useful for higher-
dimensionality systems where the “Exact Count” approach
becomes unfeasible.
We then consider the calculation of the cumulative sum of

vibrational states Nvib(E) for uncoupled harmonic systems of
increasing dimensionality. The harmonic frequencies have been
chosen randomly within a range from 100 to 4000 cm−1 which
is representative of typical molecular vibrations, and the
anharmonicity matrix elements Xij are set to 0. Up to four
dimensions, exact calculations can be performed. The typical
quantum mechanical staircase profile of Nvib(E) is still visible
for such a low dimensionality. As reported on the top panel of
Figure 5, paradensum and ILT faithfully reproduce the staircase

exact results. Instead, CL calculations overestimate ρvib(E) at
low energies while reproducing the exact results at higher
energy ranges. The reasons of this deviation are explained by
the approximation employed to obtain eq 7. The convolution
summation over all possible quantum numbers is approximated
as an integration over a continuum of energies and
corresponding fictitious fractional quantum numbers. This
overcounting is severe at low energies where the density of
states is low, while it is moderated at higher energies where the
density of states is higher and the variation over the quantum
numbers generates a quasi-continuum of states. A comparison

between the three panels in Figure 5 also shows that the CL
approximation at low energies becomes less accurate as the
dimensionality is increased. Paradensum and ILT are in
excellent agreement up to 20 dimensions. When the
dimensionality is further increased, the ILT approach can no
longer be applied, and an implementation of the SPT of eq 2 is
not even possible.
In Figure 6, we look at the cumulative sum of states Nvib(E)

for a system of 80 (Figure 6a,b) and 150 (Figure 6c,d)
uncoupled harmonic oscillators. We check how paradensum
performs for different windowing strategy and which WL
flatness criterion is more suitable. For this purpose, we compare
the left panels calculations where a 80% (Figure 6a,c) of flatness
criterion for the histogram H(E) is applied to right ones where
a 95% (Figure 6b,d) flatness criterion is employed. For each
panel, Nvib(E) is calculated with different numbers of windows
and reported in logarithmic scale. The inset of each panel
reports the percentage deviations for different choices of
window numbers. An increase in WL flatness criterion
significantly reduces standard deviations of the windowing
and guarantees that the results are independent of the
windowing choice. We will show below how computational
costs decrease when increasing the number of the windows.
The original adensum code is limited to systems of about 100
degrees of freedom, while paradensum can easily allocate 150
degrees of freedom, and this is not yet an upper bound, since
further increment in the dimensionality of the problem is
achievable.
The main conclusion of this section is that paradensum is not

only able to reproduce exact cumulative vibrational sums of
states for low-dimensionality systems, as calculated by means of
the “Exact Count” approach, but it can also be successfully
applied to significantly more complex systems.

Influence of Flatness Criterion and Multiple Walkers.
We now investigate the possibility to exploit multiple walkers as
a possible parallelization strategy. We chose the water molecule
as a test case, since the exact ρvib(E) can be obtained by direct
counting. We employed the experimental vibrational data for
the exact counting.55 Figure 7 reports the percent error
deviation of different paradensum setups. For all simulations
reported, the energy range has been divided into 20 windows
made of 338 energy bins each (including the overlap). We
observe that the accuracy is roughly linear with respect to the
energy variation, except for a few bins. However, accuracy is
still preserved within 35%.
We wonder if greater accuracy can be achieved by increasing

the number of walkers. We performed these tests for a given
80% flatness of the WL algorithm and compare the results to a
single-walker 95% flatness simulation. Indeed, the more
numerous the walkers employed, the greater the accuracy.
However, Figure 7 clearly shows that a single-walker simulation
with a 95% flatness criterion provides by far more accurate
results than simulations based on a larger number of walkers,
but with a weaker flatness constraint. Computational overheads
must also be taken into account for a fair assessment of the
most efficient setup. A typical WL simulation for water at 80%
of flatness requires ∼104 Monte Carlo sweeps for each f
iteration, for a total of 2.1 × 105 sweeps. Considering a
parallelization strategy where multiple walkers are placed on
different cores with different seeds, the total computational cost
is a multiple of the number of walkers. For instance, if 100
walkers are employed, the number of total Monte Carlo sweeps
is 2.1 × 107. In comparison, when simulating the same molecule

Figure 5. Cumulative sum of states Nvib(E) calculations. Four (upper
panel), 10 (middle panel) and 20 (lower panel) uncoupled harmonic
oscillators. “Exact Count” are the exact results (continuous black line),
CL stands for the classical approximation of eq 7 (continuous red
line), and ILT for the Numerical Inversion of Laplace transform of eq
8 (green diamonds). Paradensum results are reported as blue squares.
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with the much stricter flatness criterion of 95% but with a single
walker, after 21 iterations, we find a total number of Monte

Carlo sweeps of ∼3 × 104, which is almost 3 orders of
magnitude smaller than the 100-walker simulation. With
respect to these considerations, it is without a doubt more
important to adopt a parallelization strategy based on energy
windowing, as we have done in our code paradensum, than one
based on multiple walkers.

Molecules. We now turn to real and more complex
molecule calculations, aiming at estimating the cumulative sum
of the number of vibrational states in the bound-state energy
region. We have investigated several molecules of increasing
complexity, i.e. the HOCO radical, N-methylmethanimine
(CH2NCH3), naphtalene (C10H8), triethylphosphine (P-
(CH3CH2)3), and anthracene (C14H10). The number of
vibrational degrees of freedom involved are 6, 18, 48, 60, and
66 respectively. Results are reported in Figure 8, where each
panel shows the cumulative sum of vibrational states and the
percentage deviation of the windowing strategy as defined
above (see caption of Figure 6).
The needed harmonic frequencies ω and anharmonic Xij

coupling parameters have been calculated using either the
Gaussian0945 or Cfour46 codes and are reported in the
Supporting Information. In particular, Gaussian09 has been
employed to calculate frequencies and anharmonic coupling
parameters at the MP2/cc-pvdz level for CH2NCH3 and

Figure 6. Paradensum code results for uncoupled harmonic oscillators systems with increasing degrees of freedom. (a) and (b) refer to 80 oscillators,
and (c) and (d) refer to 150. Flatness criterion is 80% for (a) and (c), 95% for (b) and (d). Insets report the values of the percentage deviation of

Nvib(E) calculated with different window partitioning δ = × ∑ −=E N E N E N E( ) 100 ( ( ) ( )) / ( )i
W

i1 vib, vib
2

vib where = ∑ =N E N E( ) ( )
W i

W
ivib

1
1 vib, and

W is the number of windows.

Figure 7. Percentage error deviation for Nvib(E) calculation of water
molecule. Black, red, and orange dots are for WL 80% flatness
simulations employing respectively 1, 10, and 100 walkers. Green dots
are for a single walker WL simulation at 95% flatness criterion.
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C10H8, and B3LYP/cc-pvdz level for P(CH3CH2)3 and C14H10.
Furthermore, we have employed Cfour at the CCSD(T)/
ANO1 level for the HOCO radical. Results for different
numbers of windows are within 10% using a flatness criterion of
80%, and the agreement is stricter, i.e. within 5%, for a 95%
flatness choice. This value is comparable to what is expected
from the WL Monte Carlo statistical deviation, so it clears the
field from any possible systematic error that may have been
introduced by windowing or parallelization. In other words,
such a statistical interval of confidence for systems of
dimensionality up to 66 degrees of freedom proves the
reliability of the parallelization strategy adopted in the

paradensum code. Higher-energy ranges are not plotted
because eq 5 cannot be applied.

Timing and Scalability. We now look at the computa-
tional time scaling of the code paradensum with the number of
cores employed for the systems presented in the previous
Sections. We have performed single-walker simulations with a
95% flatness constraint. The computational speed up generated
by partitioning the energy range into windows is reported on
the two upper panels of Figure 9.
The efficiency of the strategy based on multiple windows is

analyzed on the lower panels of the same figure, and it is
calculated as the ratio between the corresponding windowing

Figure 8. Cumulative sum of states for five molecules of increasing complexity: HOCO radical, N-methylmethanimine, naphtalene,
triethylphosphine, and anthracene. In the right column, the percent deviations of Nvib(E) are reported for a WL flatness choice of 80% (black
dashed) and 95% (red dashed). A single walker per energy window has been employed.
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speedup and the number of processors. We start by looking at
the harmonic oscillators simulations reported on the left panels.
Here the computational speed up is almost ideal (dashed line),
except for the relatively low-dimensional 10- and 20-harmonic
oscillator systems. The almost ideal scaling makes sense by
considering that the energy space for a set of uncoupled
harmonic oscillators is quite trivial. The unfavorable scaling of
the lower-dimensional systems can be explained by the more
accentuated sparsity of their energy levels at low energy. As a
consequence, bins within the low-energy windows are
characterized by bigger differences in the density of states,
thus requiring a higher number of Monte Carlo sweeps before
the flatness criterion is satisfied, and creating a bottleneck for
the whole calculation. Indeed, the lower left panel confirms that
paradensum outperforms serial codes like adensum, even if its
efficiency deteriorates when too many energy windows are
employed for the lower-dimensional systems. When consider-
ing real molecules, the rationalization of the results is more
cumbersome, because one needs to consider that the spacing of
the vibrational levels is quite different for different molecules.
We observe again that for small molecules, the parallelization is
not very efficient, as reported on the lower right panel. From
Figure 9, it is clear that the strategy adopted in paradensum
becomes more and more convenient as the number of degrees
of freedom of the molecule increases. However, the speedup
does not monotonically increase with the number of degrees of
freedom. For example, the parallelization efficiency for
naphtalene (C10H8) is greater than that of both P(CH3CH2)3
and C14H10, even if the vibrational space dimensionality of
naphtalene is smaller. Actually, naphtalene presents super-
scalability, as it scales with parallelization even better than a set
of uncoupled harmonic oscillators. We believe that the reason
for naphtalene superscalability lies in the rigidity of this
molecule, which is responsible for its quite high vibrational
frequencies if compared to those of other molecules where
internal floppy modes are present. As described above, the

frequencies of the uncoupled harmonic oscillators were chosen
randomly in a range of frequencies that includes floppy modes.
This explains the better scalability of naphtalene even with
respect to the harmonic systems tested.

■ SUMMARY AND CONCLUSIONS

This paper introduces a computational approach for the
calculation of the vibrational density of states of molecular
systems. To exploit the possibility of calculations on parallel
architectures and open up the possibility to calculate the
density of states of high-dimensional systems, we have adapted
a WL algorithm parallelization strategy.25 After describing in
detail the implementation of the algorithm (see Figure 3) that
we call paradensum, we have tested it on a common ground
with other codes and assessed its accuracy. We have then
applied the new code to real molecules and examined its
computational speedup and efficiency. We have found
paradensum able to exhibit almost ideal efficiency and to be
significantly advantageous with respect to other codes
commonly employed to deal with high-dimensional systems.
Remarkably, in the case of naphtalene, paradensum exhibits a
superscalability trend. We believe that the method described in
this paper is an important and useful tool for the physical
chemists community, since the density of states is ubiquitous
and of paramount importance in physical chemistry applica-
tions. To foster widespread diffusion and application of
paradensum, the code is freely available upon request to the
authors56 and it is implemented in MultiWell suite of codes.24

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpca.5b12364.

Input data of program paradensum consisting of
harmonic frequencies, X-matrixes, and separable degrees

Figure 9. Computational speedup and efficiency with respect to the number of cores for several systems. Left panels report results for uncoupled
harmonic oscillators, and the right panels are for molecules.
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