1	Università degli Studi di Milano, Via Celoria, 10 – 20133	Milano Italy
2		
3 4 5 6 7	This is the post-print of the paper published in: Reproduction in Domestic Animals, 2017, 52: 83-88. doi: 10.1111/rda.12806	REVISED
8		
9		
10	A THREE-DIMENSIONAL ALGINATE SYSTEM FOR IN VIT	TRO CULTURE OF
11	CUMULUS-DENUDED FELINE OOCYTES	÷
12		
13	Maria Giorgia MORSELLI ^a , Sabrina CANZIANI ^a , Daniele VIGO ^b ,	Gaia Cecilia LUVONIª
14	^a Dipartimento di Scienze Veterinarie per la Salute, la Produzione A	nimale e la Sicurezza
15	Alimentare; ^b Dipartimento di Scienze Veterinarie e Sani	tà Pubblica
16		
17		
18		
19	e-mail: mariagiorgia.morselli@unimi.it, sabrina@cug.it, daniele.vigo	@unimi.it,
20	cecilia.luvoni@unimi.it	
21		
22		
23		
24		
25		
26		
27		

28 AbstractContents

In the case of high valuable individuals with very precious genetic material, widening the 29 genetic pool including gametes with poor morphological characteristics, as cumulus-30 31 denuded oocytes (CDOs), could be an option. To improve the in vitro culture of low--competence feline CDOs, an enriched three-32 dimensional (3D) system in association with competent cumulus-oocyte complexes 33 (COCs) was developed. For this purpose, domestic cat CDOs were cultured with or 34 without companion COCs in the 3D barium alginate microcapsules. The overall viability 35 36 and the meiotic progression of feline CDOs co-cultured with COCs or cultured separately in 3D or in 2D (traditional microdrops) system were compared. The 3D system was able 37 38 to support viability and meiotic resumption of the feline oocytes, as well as the 2D 39 microdrops. In 3D microcapsules, the presence of COCs resulted in a higher viability of CDOs (91.1%, p < 0.05), than that obtained without COCs or in 2D microdrops (71.2% 40 and 67.3%, respectively), but the percentages of meiotic resumption were similar of those 41 of CDOs cultured separately (55.4% vs. 40.4%, p.>_0.05). It is notable that the presence 42 of CDOs seemed to enhance the meiotic progression of the associated COCs. 43 44 In conclusion, the 3D barium alginate microcapsules are a suitable system for feline oocytes in vitro culture, but more specific enriched conditions should be developed to 45 improve the CDOs full competence in vitro. 46 47

- 48 Keywords
- 49 Domestic cat; low competence oocytes; in vitro maturation; 3D system.
- 50 Abridged title: 3D in vitro culture of feline oocytes.
- 51
- 52

53 <u>I</u>Introduction

54	Cumulus-denuded oocytes (CDOs) are generally not included in the in vitro procedures due to
55	their poor nuclear and cytoplasmic competence caused by the lack of surrounding cumulus
56	oophorus cells. These closely associated cumulus cells (CCs) form an intimate network with
57	the oocytes, thus, the somatic-germinal two-way transfer of different small molecules is
58	ensured through the highly specialized projections through the zona pellucida, that are i.e. gap
59	junctions (Eppig 1982). The structural integrity of CCs and the functional coupling between
60	the two compartments are is of crucial importance for the successful subsequent embryo
61	development (Fagbohun and Downs 1991; Tanghe et al. 2002; Luciano et al. 2004).
62	Several attempts have been made to improve the in vitro performances of oocytes with poor
63	developmental potential, as well as oocytes deprived of CCs. The co-culture with companion
64	cumulus-oocyte complexes (COCs) seemed to have beneficial effects on the CDOs [*] in vitro
65	outcomes. In the bovine species, the presence of intact COCs during both in vitro maturation
66	and fertilization promoted the restoration of CDOs2 competence, although the blastocyst rates
67	remained low (Luciano et al. 2005). Co-culture of feline CDOs with cumulus cells clumps
68	enhanced the resumption of meiosis, although the frequency of complete nuclear maturation
69	was lower than that of competent COCs (Chigioni et al. 2005).
70	In the case of high valuable individuals with very precious genetic material, widening the
71	genetic pool including gametes with poor morphological characteristics, as CDOs, could be
72	an option. Therefore, enriched conditions for the culture of these lowcompetence oocytes
73	should be further developed.
74	

The traditional culture systems for follicles and oocytes are based on microdrops of medium,
but this condition seemed to lead to a non-physiological cells conformation and biological
activity. To mimic more faithfully the in vivo follicular architecture and cellular spatial
arrangement, bioengineering and nanotechnology researches have been focused on

79	developing different in vitro conditions. With the support of natural or synthetic polymers,	
80	three-dimensional (3D) innovative culture systems were developed to enhance the adhesion,	
81	the proliferation and the release of secreted factors by cultured cells (Desai et al. 2010; Antoni	
82	et al. 2015). The 3D environment also resulted in cell behaviour, signalling and gene	
83	expression profiles that most resemble those observed in living cells (Cukierman et al. 2002).	
84	It has been demonstrated that the encapsulation of follicles and oocytes in biocompatible	
85	<u>3D</u> three-dimensional systems allows the maintenance of their physiological structure and	
86	functional integrity in different species (mouse, Pangas et al. 2003; human, Combelles et al.	
87	2005 ₂₅ pig, Munari et al. 2007).	
88	The domestic cat is an excellent animal model for wild felids reproductive biotechnologies,	
89	but in this species, only few studies were focused on the improvement of the in vitro	
90	performances of low-competence oocytes and on the use of 3D systems for oocyte culture	
91	(Godard et al. 2009; Fujihara et al. 2012).	Codice can
92	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system	
92 93	Thus, th <u>is e present study</u> was performed to investigate: (<u>ia</u>) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (<u>iib</u>) whether 3D	
92 93 94	Thus, th <u>is e present study</u> was performed to investigate: (<u>ia</u>) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (<u>iib</u>) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured	
92 93 94 95	Thus, th <u>is e present study</u> was performed to investigate: (<u>ia</u>) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (<u>iib</u>) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately.	
92 93 94 95 96	Thus, th <u>is e present study</u> was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (<u>iib</u>) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately.	
92 93 94 95 96 97	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately.	
92 93 94 95 96 97 98	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. <i>2_Materials and methods</i> The study was approved by the Ethical Committee of the Università degli Studi di Milano	
92 93 94 95 96 97 98 99	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. 2. Materials and methods The study was approved by the Ethical Committee of the Università degli Studi di Milano (December 9th, 2014), and all animals were enrolled following written consent by the owner.	
92 93 94 95 96 97 98 99 100	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. <i>2_Materials and methods</i> The study was approved by the Ethical Committee of the Università degli Studi di Milano (December 9th, 2014), and all animals were enrolled following written consent by the owner.	
92 93 94 95 96 97 98 99 100 101	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. 2.Materials and methods The study was approved by the Ethical Committee of the Università degli Studi di Milano (December 9th, 2014), and all animals were enrolled following written consent by the owner. 2.1 Chemicals and reagents	
92 93 94 95 96 97 98 99 100 101 102	Thus, this e-present-study was performed to investigate: (in) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. 2.Materials and methods The study was approved by the Ethical Committee of the Università degli Studi di Milano (December 9th, 2014), and all animals were enrolled following written consent by the owner. 2.1 Chemicals and reagents All chemicals and reagents were purchased from Sigma Chemical Company (St. Louis, MO,	
92 93 94 95 96 97 98 99 100 101 102 103	Thus, this e present study was performed to investigate: (ia) the suitability of a 3D system (barium alginate microcapsules) for feline oocytes in vitro culture; and (iib) whether 3D system would improve in vitro maturation of CDOs co-cultured with COCs or cultured separately. 2.Materials and methods The study was approved by the Ethical Committee of the Università degli Studi di Milano (December 9th, 2014), and all animals were enrolled following written consent by the owner. 2.1 Chemicals and reagents All chemicals and reagents were purchased from Sigma Chemical Company (St. Louis, MO, USA), unless otherwise stated.	

Codice campo modificato

105 <u>2.2</u> Animals and collection of feline oocytes-

107	Ovaries (n. 131) from domestic cats were harvested at random stages of the oestrous cycle	
108	during routine ovariectomy at veterinary clinics. After surgery, ovaries were immediately	
109	placed in a phosphate_buffered saline (PBS) with a mixture of antibiotics (AB) and	
110	antimycotics (100 IU/ml of penicillin G sodium, 0.1 mg/ml of streptomycin sulphfate, and	
111	$0.25 \ \mu g/ml$ of amphotericin B) ₅ and transported to the laboratory at room temperature (RT)	
112	where they were processed.	
113	Feline COCs (n. 402) were obtained by mincing of the ovaries in PBS and AB with 0.1%	
114	(w/v) polyvinyl alcohol $(PVA)_2$ and only grade I COCs were selected for the experiments.	
 115	The CDOs were obtained by mechanical deprivation, with a small bore pipette, of COCs'	
116	cumulus cells.	
117		
118	2.3 In vitro maturation in 3D and 2D systems.	
119	The feline oocytes were matured in vitro for 24 $h\underline{r}$ in a controlled atmosphere (38.5°C and 5%	
120	CO2 in air) in modified Kreb's-Ringer bicarbonate-buffered salt solution with AB (b-	
121	mKRB) supplemented with 3 mg/mlL of bovine serum albumin (BSA), 0.5 IU/mL of equine	
122	chorionic gonadotropin (eCG), 1 IU/mlL of human chorionic gonadotropin (hCG), 10 ng/mlL	
123	of epidermal growth factor (EGF) and 0.6 mM cysteine (complete maturation medium, c-	
124	mKRB).	
125	For the 3D system, a two-steps encapsulation technique in <u>barium alginate (BA)</u> was	
126	developed, as a modification of the protocol previously described for living_cell (Conte et al.	
l 127	1999; Vigo et al. 2004). The Na-alginate powder (0.5%) was dissolved into the different	
128	solutions reported below, to obtain the melting solution (MS) at medium viscosity (3-500 cP,	
l 129	centipose). A saturated solution of BaCl2 was then added to an aliquot of a different medium	
130	(see below) to obtain the dropping solution (DS) of $BaCl_2$ (40 mM) that was dropped at RT	

- 131 with a 25-G needle into the MS maintained stirred for 30-40 minutes. The microcapsules were
- then collected, washed twice in PBS and suspended in the c-mKRB for immediate use, or
- 133 maintained at 4°C in a petri dish with PBS until use.
- 134 To obtain the BA microcapsules, the following working conditions were tested:
- 135 (i)1+: MS with b-mKRB and DS with b-mKRB. (ii)2-: MS with c-mKRB and DS with c-
- 136 mKRB. (iii)3: MS with sterile water and DS with b-mKRB. (iv)4. MS with sterile water and
- 137 DS with c-mKRB.
- 138 The feline oocytes were injected into the inner core of the microcapsule (Fig. 1) by a small
- 139 bore pipette and subsequently immersed in the c-mKRB in a multiwell dish.
- 140 For the 2D culture system, traditional microdrops of c-mKRB (50-100µl) were placed in a
- 141 petri dish and covered by mineral oil.
- 142
- 143 2.4 Assessment of viability and maturation rates-
- 144 After 24 hr of in vitro maturation, COCs and CDOs were evaluated for overall viability and
- 145 nuclear maturation rates. Sequential stainings with fluorescein diacetate/propidium iodide
- (FDA/PI) for viability and bis-benzimide (Hoechst 33342) for chromatin configuration wereperformed.
- 148 For the viability, the oocytes were maintained at dark in 50 μ l of the staining solution (PI: 10
- 149 mg/ml; FDA: 5 mg/ml) for 5 min and then evaluated under a fluorescent microscope
- 150 (Axiovert 100, Zeiss, Arese, Italy). The FDA maximum excitation wavelength was 490 nm
- and the emission wavelength was 520 nm, whereas the PI maximum excitation wavelength
- 152 was 536 nm and the emission wavelength was 617 nm. This differential staining allowed the
- 153 evaluation of viable (bright green fluorescence) or dead cells (red fluorescence).
- 154 After washing, CDOs and COCs (deprived of <u>CCs eumulus cells</u> by mechanical displacement
- 155 with a small bore glass pipette) were placed on a slide with a minimum amount of c-mKRB;
- and then covered by $10 \,\mu$ l of Hoechst solution. After 5 min of incubation in the dark, the

157	Hoechst solution was removed and the oocytes were covered with an anti-fade reagent	
158	(Fluoromount TM Acqueous Mounting Medium, Sigma Chemical Company). The fixed	
 159	oocytes were then observed under a fluorescent microscope at 400x magnification for nuclear	
160	evaluation. The Hoechst 33342 maximum excitation wavelength was 352 nm ₂ and the	
 161	emission wavelength was 461 nm.	
162	The chromatin configurations were classified as follows (Bolamba et al. 1998; Hewitt and	
163	England 1999):	
164-	Germinal vesicle (GV): identification of nucleolus and very fine filaments of chromatin;	
165-	Germinal vesicle break down-Aanaphase I (GVBD-AI): identification of different patterns of	
 166	chromatin condensation (GVBD) or identification of bivalents (AI);	
167-	Telophase I-Mmetaphase II (TI-MII): identification of two groups of chromosomes moving	
 168	to opposite ends of meiotic spindle (TI) or two sets of chromosomes clearly visible (MII);	
169-	Degenerated: collapsed nucleus or irregular nuclear conformation.	
170		
171	2.5 Experimental design	
172	2.5.1 Experiment I	ha formattato: Nessuna sottolineatura
 173	To investigate the suitability of a 3D system for the oocyte in vitro culture, barium alginate	
174	(BA) microcapsules were prepared with different working conditions and a scoring method	
175	was applied to evaluate the physical properties of the obtained microcapsules.	
176	Fresh feline COCs were in vitro cultured in the 3D system or in traditional microdrops of	
177	medium (2D system) for 24 hr. At the end of the in vitro maturation, viability and maturation	
 178	rates of feline COCs were evaluated.	
179		
180	2.5.2 Experiment II	ha formattato: Nessuna sottolineatura
 181	To verify whether the 3D system would improve the in vitro maturation of cumulus-denuded	
182	oocytes, fresh feline CDOs were co-cultured with COCs or cultured separately in 3D or 2D	

1		
183	system. After 24 hr, the viability and maturation rates of CDOs and COCs in co-culture, and	
184	of CDOs cultured separately were evaluated.	
185		
186		
187	2.6 Statistical analysis-	
188	Data for physical properties of the microcapsules were reported as mean value and standard	
189	deviation (SD), the viability and maturation rates of COCs and CDOs in coculture or cultured	
190	<u>separately</u> , $CDOs(+)$, $CDOs(-)$ and $COCs(+)$ were analyzed by <u>c</u> Chi-square test _a and the level	
191	of significance was set at $p \leq 0.05$.	
l 192		
193		
194	<u>3</u> Results-	
1		
195		
195 196	<u>3.1</u> Experiment I	ha formattato: Nessuna sottolineatura
195 196 197	<u>3.1</u> <i>Experiment I</i> For the physical evaluation of the microcapsules, the following properties were recorded:	ha formattato: Nessuna sottolineatura
195 196 197 198	 <u>3.1</u> Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: - dimensions (mm): length, width; 	ha formattato: Nessuna sottolineatura
195 196 197 198 199	 <u>3.1</u> Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: - dimensions (mm): length, width; - shape: R (round), E (elongated); 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200	 <u>3.1</u> Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201	 <u>3.1</u> Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201 202	 <u>3.1 Experiment I</u> For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for encapsulation of Na-alginate 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201 202 202 203	 <u>3.1 Experiment I</u> For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for encapsulation of feline oocytes encapsulation (Table 1). The dissolution of Na-alginate powder in sterile water and the dropping of BaCl₂ in b-mKRB was the proper combination. 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201 202 203 203 204	 3.1 Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for encapsulation of feline oocytes encapsulation (Table 1). The dissolution of Na-alginate powder in sterile water and the dropping of BaCl₂ in b-mKRB was the proper combination. Although the dropping solution made with c-mKRB (working condition 4) allowed the 	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201 202 203 203 204 205	3.1 Experiment I For the physical evaluation of the microcapsules, the following properties were recorded: - dimensions (mm): length, width; - shape: R (round), E (elongated); - consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for encapsulation of feline oocytes encapsulation (Table 1). The dissolution of Na-alginate powder in sterile water and the dropping of BaCl ₂ in b-mKRB was the proper combination. Although the dropping solution made with c-mKRB (working condition 4) allowed the formation of BA microcapsules, their shape and consistency were not as good as in working	ha formattato: Nessuna sottolineatura
195 196 197 198 199 200 201 202 203 204 205 206	 3.1 Experiment 1 For the physical evaluation of the microcapsules, the following properties were recorded: dimensions (mm): length, width; shape: R (round), E (elongated); consistency: E (excellent), G (good), L (low). The working condition 3 showed the best physical properties of BA microcapsules for encapsulation of feline oocytes encapsulation (Table 1). The dissolution of Na-alginate powder in sterile water and the dropping of BaCl₂ in b-mKRB was the proper combination. Although the dropping solution made with c-mKRB (working condition 4) allowed the formation of BA microcapsules, their shape and consistency were not as good as in working condition 3. On the other hand, the dissolution of Na-alginate powder in b- or c-mKRB 	ha formattato: Nessuna sottolineatura

208	The results of in vitro maturation of the COCs cultured in both 3D and 2D systems (Table 2)	
209	showed that they maintained a similar high viability ($p_2 = 0.05$) and no differences were found	
210	in their meiotic resumption, nor full maturation (TI-MII stages) rates ($p \ge 0.05$).	
211		
212	<u>3.2</u> Experiment II	h
213	The results presented in Table 3, showed that the overall viability was similar in 3D and 2D	
214	systems (p 0.05). In 3D microcapsules, the presence of COCs resulted in a higher viability	
215	of co-cultured CDOs, than that obtained in CDOs cultured separately or in 2D microdrops (p	
216	= 0.007 and p = 0.002 , respectively).	
217	The 3D system was able to support the meiotic resumption of the feline oocytes, as well as the	
218	2D microdrops (Table 4). The group of $CDO_{\underline{S}}$ did not benefit from the co-culture in 3D	
219	microcapsules, as the percentages of meiotic resumption were similar of those of $\text{CDO}_{\underline{S}}$	
220	cultured separately. The highest values were reached by COCs in co-culture in both 3D and	
221	2D system (p_< θ .05). This group achieved better results of full maturation (TI-MII stages)	
222	than the associated CDOs (p= 0.005) and the CDOs cultured separately (p= 0.003).	
223		
224	<u>4</u> Discussion	
225	The present study was aimed at developing an enriched culture system to improve the in vitro	
226	performances of low-competence feline oocytes that lost their surrounding eumulus cellsCCs	
227	(cumulus-denuded oocytes, CDOs). At very low rates, these gametes reach the full	
228	cytoplasmic and nuclear competence because the functional and metabolic support of their	
229	somatic cells is missed. The subsequent in vitro fertilization and embryo development areis	
230	also highly compromised (Tanghe et al. 2002; Luciano et al. 2005).	
231	The enriched culture system used for CDOs in this work consisted in a of three-	
232	dimensional <u>3D</u> microcapsules of barium alginate (BA) in association with fresh feline	
 233	cumulus-oocytes complexes (COCs).	

ha formattato: Nessuna sottolineatura

234	To obtain the 3D BA microcapsules, different working conditions were tested. The results
235	showed that the dissolution of Na-alginate powder in sterile water and the subsequent
236	dropping of BaCl ₂ dissolved in the basic maturation medium (b-mKRB), wereas the best
237	protocol to obtain round microcapsules with a solid inner core useful for encapsulation of
238	feline oocytes-encapsulation. The working conditions that involved media with hormones and
239	growth factors supplementation (c-mKRB), as melting or dropping solution, seemed to inhibit
240	the complete dissolution of Na-alginate powder and the ionic interactions with BaCl2,
241	compromising the effective creation and use of the microcapsules. However, the metabolic
242	effect of nutrients, growth factors and hormones on the encapsulated oocytes was ensured by
243	the immersion of the BA microcapsules in c-mKRB. The effective exchange of different
244	molecules through these systems has been documented (Vigo et al. 2004).
245	A similar viability and maturation rate of feline COCs cultured in these proper BA
246	microcapsules compared to those cultured in 2D microdrops, proved that the 3D system was a
 247	suitable culture condition for feline oocytes.
247 248	suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in
247 248 249	suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of
247 248 249 250	suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human
247 248 249 250 251	suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the
247 248 249 250 251 252	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu
247 248 249 250 251 252 253	suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in
247 248 249 250 251 252 253 254	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis progression until MII stage
247 248 249 250 251 252 253 254 255	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis progression until MII stage (Combelles et al. 2005; Munari et al. 2007).
247 248 249 250 251 252 253 254 255 256	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis progression until MII stage (Combelles et al. 2005; Munari et al. 2007). In the present study, the CDOs co-cultured with COCs showed a higher viability in 3D than in
247 248 249 250 251 252 253 254 255 256 257	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis progression until MII stage (Combelles et al. 2005; Munari et al. 2007). In the present study, the CDOs co-cultured with COCs showed a higher viability in 3D than in 2D system, but no beneficial effects of this association was observed in meiosis resumption
247 248 249 250 251 252 253 254 255 256 257 258	 suitable culture condition for feline oocytes. Many authors reported the efficiency of 3D systems for mammalian follicles and oocytes in vitro culture. In vitro growth and development (i.e. the proliferation and the differentiation of theca and granulosa cells, the steroid secretion and markers expression) of murine and human follicles were enhanced after in vitro culture in 3D alginate microcapsules, and the achievement of the full competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis progression until MII stage (Combelles et al. 2005; Munari et al. 2007). In the present study, the CDOs co-cultured with COCs showed a higher viability in 3D than in 2D system, but no beneficial effects of this association was observed in meiosis resumption and full maturation (TI-MII stages) rates. Instead, the associated COCs had the highest

- 260 Present data differed from previous studies in the domestic cat and in other species (Luciano
- et al. 2005; Ge et al. 2008; Godard et al. 2009) in which the presence of COCs during in vitro
- 262 maturation and in vitro fertilization seemed to promote the achievement of MII stage and of
- 263 the subsequent embryo development of CDOs.
- 264 In this study, fresh feline COCs were mechanically deprived of the surrounding cumulus
- 265 <u>cellsCCs</u> to obtain the CDOs. This method, that differs from those of the aforementioned
- studies in which vortex or incubation with hyaluronidase were used, could have influenced
- 267 the results. It remains to investigate how the oocytes without cumulus cells, and not
- 268 denudated ad hoc, behave in the same culture conditions.

269 It could also be hypothesized that the feline CDOs need different conditions to improve their

- 270 performances in vitro, as the formulation of more specific maturation media.
- 271 It is notable that the presence of CDOs seemed to enhance the meiotic competence of the
- associated COCs. In bovine and murine model, this positive effect of denuded oocytes in the
- 273 same culture condition as companion cells of COCs has been already reported (Hussein et al.
- 274 2006; Gilchrist et al. 2008). It is well known that the oocytes themselves produce some
- 275 specific paracrine factors, known as the oocyte-secreted factors (OSFs), which act specifically
- 276 on surrounding cumulus cells, regulating their differentiation, functional activity and gene
- 277 expression. In the present study, these factors could have provided some beneficial support to
- ameliorate the maturation rates of COCs in both 3D and 2D culture conditions.
- 279 In conclusion, the 3D barium alginate microcapsules could support the in vitro culture of the
- feline oocytes, as well as the traditional 2D system. Since As the in vitro maturation rates of
- 281 CDOs remain low, more specific and designing ad hoc in vitro conditions for these low-
- 282 competence oocytes should be adopted.
- 283 The more physiological microenvironment, i.e. that is the maintenance of oocytes architecture
- 284 ensured by the 3D culture, represents an enriched condition that might also modulate the
- 285 molecular expression of some oocyte quality markers, as the OSFs. The genetic expression of

ha formattato: Tipo di carattere: Non Corsivo

these factors in oocytes cultured in 3D or 2D system should be investigated for improving the

287 feline oocytes in vitro performances.

289	Author contributions-
290	MGM, VG and GCL contributed to design the study, analysed the data and draft the
291	papermanuscript. MGM and SC performed the experiments. All authors have approved the final
l 292	version.
293	
294	Conflict of interest-
295	None of the authors have any conflict of interest to declare. of this article has a financial or
296	personal relationship with other people or organizations that could inappropriately influence
297	or bias the content of the paper.
298	
299	Corresponding author:
300	Gaia <u>Cecilia C.</u> Luvoni
301	Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza
302	Alimentare; Università degli Studi di Milano
303	Via Celoria 10, 20133 Milan, Italy.
304	Phone +39 02.503.18147
305	Fax +39 02.503.18148
306	e-mail <u>cecilia.luvoni@unimi.it</u>
307	

309	References-
310	
311	Antoni D, Burckel H, Josset E, Noel G, 2015: Three-dimensional cell culture: a breakthrough
312	in vivo. Int J Mol Sci Suppl 16, 5517-5527.
313	
314	Bolamba D, Borden-Russ KD, Durrant BS, 1998: In vitro maturation of domestic dog oocytes
315	cultured in advanced preantral and early antral follicles. Theriogenology Suppl 49, 933-942.
316	
317	Chigioni S, Perego L, Luvoni GC, 2005: Companion cumulus-oocyte complexes for in vitro
318	culture of denuded oocytes in the cat. In: Farstad W, Arus J (ed.), Proc 4th Ann Congr
319	EVSSAR. Amsterdam (The Netherlands), 14 April 2005, pp. 24-25.
320	
321	Combelles C, Fissore RA, Albertini DF, Racowsky C, 2005: In vitro maturation of human
322	oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum
323	Reprod Suppl 20, 1349-1358.
324	
325	Conte U, Torre ML, Maggi L, Giunchedi P, Vigo D, Maffeo G, Russo V, 1999:
326	Microcapsules containing seminal material for artificial insemination in pigs. European Patent
327	Application EP0922451 (16/6/1999) CAS 131, 49474v.
328	
329	Cukierman E, Pankov R, Yamada KM, 2002: Cell interactions with three-dimensional
330	matrices. Curr Opin Cell Biol Suppl 14, 633-639.
331	
332	Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman J, Falcone T, 2010:
333	Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design
334	parameters and future directions. Reprod Biol Endocrinol 8, 119-131.

225	
222	

336	Eppig JJ, 1982: The relationship between cumulus cell-oocyte coupling, oocyte meiotic
337	maturation, and cumulus expansion. Dev Biol Suppl 89, 268-272.
338	
339	Fagbohun CF, Downs SM, 1991: Metabolic coupling and ligand-stimulated meiotic
340	maturation in the mouse oocyte-cumulus cell complex. Biol Reprod Suppl 45, 851-859.
341	
342	Fujihara M, Comizzoli P, Wildt DE, Songsasen N, 2012: Cat and dog primordial follicles
343	enclosed in ovarian cortex sustain viability after in vitro culture on agarose gel in a protein-
344	free medium. Reprod Domest Anim Suppl 47, 102–108.
345	
346	Ge L, Sui HS, Lan GC, Liu N, Wang JZ, Tan JH, 2008: Coculture with cumulus cells
347	improves maturation of mouse oocytes denuded of the cumulus oophorus: observations of
348	nuclear and cytoplasmic events. Fertil Steril Suppl 90, 2376-2388.
349	
350	Gilchrist RB, Lane M, Thompson JG, 2008: Oocyte-secreted factors: regulators of cumulus
351	cell function and oocyte quality. Hum Reprod Update Suppl 14, 159–177.
352	
353	Godard N, Pukazhenthi BS, Wildt DE, Comizzoli P, 2009: Paracrine factors from cumulus-
354	enclosed oocytes ensure the successful maturation and fertilization in vitro of denuded
355	oocytes in the cat model. Fertil Steril Suppl 91, 2051-2060.
356	
357	Hewitt DA, England GCW, 1999: Synthetic oviductal fluid and oviductal cell coculture for
358	canine oocyte maturation in vitro. Anim Reprod Sci Suppl 55, 63-75.

360	Hussein TS, Thompson JG, Gilchrist RB, 2006: Oocyte-secreted factors enhance oocyte
361	developmental competence. Dev Biol Suppl 296, 514-521.
362	
363	Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S, 2005: Developmental
364	capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte
365	complexes: role of cumulus cells, cyclic adenosine 3',5'-monophosphate, and glutathione. Mol
366	Reprod Dev Suppl 71 , 389–397.
367	
368	Luciano AM, Modina S, Vassena R, Milanesi E, Lauria A, Gandolfi F, 2004: Role of
369	intracellular cyclic adenosine 3',5'-monophosphate concentration and oocyte-cumulus cells
370	communications on the acquisition of the developmental competence during in vitro
371	maturation of bovine oocyte. Biol Reprod Suppl 70, 465–4672.
372	
373	Munari E, Asti A, Colombani C, Benzoni E, Faustini M, Torre ML, Riccardi A, Villani S,
374	Sesso L, Conte U, Vigo D, 2007: Competence of swine oocytes matured by three-dimensional
375	gonadotropin free co-culture. Vet Res Commun Suppl 31 , 181-184.
376	
377	Pangas SA, Saudye H, Shea LD, Woodruff TK, 2003: Novel approach for the three-
378	dimensional culture of granulosa cell-oocyte complexes. Tissue Eng Suppl 9, 1013-1021.
379	
380	Shikanov A, Xu M, Woodruff TK, Shea LD, 2011: A method for ovarian follicle
381	encapsulation and culture in a proteolytically degradable 3 dimensional system. J Vis Exp 49,
382	1-9.

384	Tanghe S, Van Soom A, Nauwynck H, Coryn M, De Kruif A, 2002: Mini review: functions
385	of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol Reprod

386 Dev Suppl **61**, 414-424.

566 VIGO D. TOHE WIL, FAUSTIII WI, WILHAH E, KUSSO V, NOIDEILI K, VIIIAIII S, ASU A, DIII	388	Vigo D. Torre ML	. Faustini M. Munari	E, Russo V, Norberti R	. Villani S. Asti A. Bini P
---	-----	------------------	----------------------	------------------------	-----------------------------

- 389 Conte U, 2004: Barium alginate capsules for 3D immobilisation of living cells: morphology,
- membrane properties and permeability. J Drug Deliv Sci Technol Suppl 14, 167-172.
- 391
- 392 Xu M, Barret S, West-Farrel E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff TK,
- 393 2009: In vitro grown human ovarian follicles from cancer patients support oocyte growth.
- 394 Hum Reprod Suppl **24**, 2531–2540.
- 395
- 396 Xu M, West E, Shea LD, Woodruff TK, 2006: Identification of a stage-specific permissive in
- 397 vitro culture environment for follicle growth and oocyte development. Biol Reprod Suppl 75,
- 398 916-923.
- 399

400 FIGURE AND TABLES

401

402 Figure 1

- 403 Domestic cat cumulus-denuded oocyte (CDO) co-cultured with cumulus-oocyte complex
- 404 (\overline{COC}) in the three-dimensional (3D) barium alginate microcapsule.

407 Table 1.

408 Physical properties of the barium alginate (BA) microcapsules in different working

- 409 conditions.
- 410

Working conditions	Width, mm	Lenght, mm	Shape	Consistency	
	(mean±SD)	(mean±SD)	(R,E)	(E,G,L)	
1					
MS with b-mKRB	0	0	-	-	
DS with b-mKRB					
2					
MS with c-mKRB	0	0	-	-	
DS with c-mKRB					
3					
MS with sterile water	15.8 ± 1.81	24.12 ± 4.12	R	Е	
DS with b-mKRB					
4					
MS with sterile water	15.03 ± 2.47	31.52 ± 3.98	R and E	G and L	
DS with c-mKRB					

411

412 MS: melting solution of Na-alginate (0.5%); DS: dropping solution of BaCl₂ (40 mM); b-

413 mKRB: modified Krebs-Ringer bicarbonate-buffered salt solution with antibiotics; c-mKRB:

b-mKRB supplemented with 3 mg/ml of bovine serum albumin (BSA), 0.5 IU/ml of equine

415 chorionic gonadotropin (eCG), 1 IU/ml of human chorionic gonadotropin (hCG), 10 ng/ml of

416 epidermal growth factor (EGF) and 0.6 mM cysteine; Shape: R (round), E (elongated);

417 Consistency: E (excellent), G (good), L (low).

Table 2.

Viability and nuclear status of feline cumulus-oocyte complexes (COCs) after in vitro

maturation in 3D or 2D system.

System	em Viability Immature		Meiotic resumption	Full maturation	Degenerated	
		(GV)	(GVBD-MII)	(TI-MII)		
	No. of oocytes (%)	No. of oocytes (%)	No. of oocytes (%)	No. of oocytes (%)	No. of oocytes (%)	
3D	41/47 (87.2)	8/47 (17)	32/47 (68.1)	7/47 (14.9)	7/47 (14.9)	
2D	37/44 (84)	9/44 (20.5)	26/44 (59.1)	7/44 (15.9)	9/44 (20.5)	

GV, germinal vesicle; GVBD, germinal vesicle break down; TI, telophase I; MII, metaphase II.

No statistical differences.

3D: barium alginate microcapsules; 2D: microdrops of maturation medium.

430	Table	3.
		-

431 Viability of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs)

432 cultured in 3D or 2D system.

433

Groups	Viability in 3D system	Viability in 2D system		
	No. of oocytes (%)	No. of oocytes (%)		
CDOs in co-culture	51/56 (91.1) ^{a,x}	35/52 (67.3) ^{b,x}		
COCs in co-culture	45/47 (95.7) ^x	44/48 (91.7) ^y		
CDOs cultured separately	37/52 (71.2) ^y	46/56 (82.1) ^{x,y}		
Overall Viability	133/155 (85.8)	125/156 (80.1)		

434

435 ^{a,b}Different superscripts indicate significant differences within rows (p < .05).

436 x.yDifferent superscripts indicate significant differences within columns (p < .05).

437 3D: barium alginate microcapsules; 2D: microdrops of maturation medium.

439 Table 4.

440 Nuclear status of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) cultured in 3D or 2D system.

Groups	Immature		Meiotic resumption		Full maturation		Degenerated	
	(G	V)	(GVBD-MII)		(TI-MII)			
	No. of oocytes (%)		No. of oocytes (%)		No. of oocytes (%)		No. of oocytes (%)	
	3D	2D	3D	2D	3D	2D	3D	2D
CDOs in co-culture	18/56 (32.1) ^x	18/52 (42.9) ^x	31/56 (55.4) ^x	27/52 (51.9) ^x	4/56 (7.1) ^x	4/52 (7.7) ^x	7/56 (12.5)	7/52 (13.5)
COCs in co-culture	3/47 (6.4) ^y	5/48 (10.4) ^y	39/47 (83) ^y	40/48 (83.3) ^y	19/47 (40.4) ^y	25/48 (52.1) ^y	5/47 (10.6)	3/48 (6.3)
CDOs cultured separately	21/52 (40.4) ^x	20/56 (35.7) ^x	21/52 (40.4) ^x	23/56 (41.1) ^x	3/52 (5.8) ^x	2/56 (7.1) ^x	10/52 (19.2)	13/56 (23.2)

441

- 442 GV, germinal vesicle; GVBD, germinal vesicle break down; TI, telophase I; MII, metaphase II.
- 443 No differences within rows.
- 444 ^{x,y}Different superscripts indicate significant differences within columns (p < .05).
- 445 3D: barium alginate microcapsules; 2D: microdrops of maturation medium.

446