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Abstract
CERN, the European Organization for Nuclear Research, is the most important labora-
tory for particle physics in the world. It requires cutting edge technologies to deliver sci-
entific discoveries. This paper investigates the time span needed for technology suppliers 
of CERN to absorb the knowledge acquired during the procurement relation and develop 
it into a patent. We estimate count data models relying on a sample of CERN suppliers 
for the Large Hadron Collider (LHC), a particle accelerator. Firms in our sample received 
their first LHC-related order over a long-time span (1995–2008). This fact is exploited to 
estimate the time lag that separates the beginning of the procurement relationship and the 
filing date of patents. Becoming a supplier of CERN is associated with a statistically sig-
nificant increase in the number of patent applications by firms. Moreover, such an effect 
requires a relatively long gestation lag in the range of five to eight years.
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1 Introduction

The term “Big Science” identifies the style of scientific analysis characterizing research in 
physics, astronomy and molecular biology after World War II (Dennis, 2017). Big Science 
Centers (BSC) rely on large-scale research instruments and infrastructures, have a long list 
of participating institutions, attract generous funding from governments and rely on public 
procurement to develop technologies required for scientific research.

BSC’s industrial partners face both challenges and opportunities. In fact, public procure-
ment through BSC is a form of Public Procurement for Innovation (PPI) with its own dis-
tinctive characteristics, not shared in other contexts (Georghiou et al., 2014; Hameri, 1997; 
Vuola & Hameri, 2006). In the medium and long-term, innovation and entrepreneurship 
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might emerge from BSC through three main channels: (1) technological breakthroughs 
leading to start-ups and spin-offs involving BSC’s employees and collaborators; (2) inven-
tions and patents filed by researchers at universities and firms collaborating with the BSC; 
(3) new business opportunities for BSC’s industrial partners.1

BSC’s suppliers are required to deliver new products with technology specifications 
developed for scientific purposes and for which a market might not exist yet. Consequently, 
there are risks related to the specificity of such technologies and a long time might be 
required for suppliers to absorb the knowledge acquired during their collaboration with the 
BSC and to translate it into an innovation output, such as a patent application.

This paper investigates the effect of procurement through BSC on firms’ innovation out-
put. We analyze a sample of suppliers of the European Organization for Nuclear Research 
(CERN) with the aim of estimating the average time lag that separates the beginning of 
the procurement relationship with CERN and the subsequent filing of a patent, if any. We 
label this time span as “gestation lag of innovation” (or, more shortly, “gestation lag”). We 
create a unique dataset with information on firms collaborating at the development of the 
world biggest research infrastructure, the Large Hadron Collider (LHC). The fact that firms 
in our sample received the first LHC-related order over a long-time span (1995–2006) 
delivers a natural partition of industrial partners into “suppliers” and “not-yet-suppliers”. 
The variation over time of firms’ status is then exploited to trace the impact of CERN on 
patent applications and to estimate the time lag that runs from the beginning of the pro-
curement relationship to the filing date of the patent. Our econometric analyses show that 
there is positive and statistically significant effect of CERN on patent applications only 
with a delay of 5  years from the beginning of the procurement relationship and, hence, 
highlight the existence of a sizeable gestation lag.

The paper contributes to two different strands of the literature. First, we refer to the 
literature investigating the time needed to translate private and public research into innova-
tion output and for its commercial exploitation. It is shown that estimates of such time lag 
are highly heterogeneous and depend on the underlying assumptions (i.e. definition of time 
lag), level of analysis (e.g. country vs. industry) and industry (e.g. pharmaceutical vs com-
puter science). However, to the best of our knowledge, this is the first paper investigating 
the “gestation lag of innovation” in BSC.

Second, our study contributes to the literature on the economic effects of BSC (Bat-
tistoni et al., 2016; Florio & Sirtori, 2016; Helmers & Overman, 2017) focusing on PPI 
through BSC as a channel of transmission of benefits to firms (Georghiou et  al., 2014; 
Hameri, 1997; Vuola & Hameri, 2006). The consensus view emerging from this litera-
ture points to the existence of a positive association between PPI through BSC and firms’ 
economic performance and innovation output (Autio et al, 2004; Castelnovo et al., 2018; 
Schmied, 1977). Our paper advances knowledge on the innovative outcomes generated 
by PPI through BSC, shedding new light on the time required for the BSC suppliers to 
“absorb” the technological content of the order and translate it into a patent application.

The rest of the paper is organized as follows. Section 2 reviews the literature on the ges-
tation lag of innovation and PPI through BSC and outlines our research hypotheses. Sec-
tion 3 presents the data, descriptive statistics and the econometric model, while results and 
robustness checks are discussed in Sect. 4. Section 5 concludes. An Appendix completes 
the paper.

1 In some cases, these three channels may overlap (e.g. suppliers employing former BSC staff or that are 
spin-offs of universities involved in experiments at the BSC).
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2  Literature review and research hypotheses

2.1  Gestation lag of innovation

In this paper we focus on the time distance that runs from the beginning of the procure-
ment relationship with CERN to the filing date of a patent. We refer to this time lag as the 
“gestation lag of innovation”. Timing is relevant for policy makers who decide how much 
to invest in BSC; in fact, estimates of both the social and private rates of return to research 
depend on the definition and quantification of such time lags, Griliches (1979).2 As shown 
in Table 1, while several papers investigated the time lag needed to translate private, public 
and academic research into innovation output or to exploit it commercially, there is no pre-
vious literature on the gestation lag of innovation that is specific to BSC.

Mansfield (1991, 1998) reported that the mean time interval between relevant academic 
research and the first commercial introduction of new products or processes deriving from 
it is 6–7 years. The estimated time span between the appearance of academic research and 
its effect on productivity in the form of knowledge absorbed by an industry might be even 
longer, on average approximately 20  years (Adams, 1990). In the case of computer sci-
ence and engineering—two cases especially relevant for what concerns CERN—the time 
lag is 10 years (Adams, 1990). Heher (2006) showed that it can take up to 10 years for an 
institution, and 20 years for a country, to attain a positive rate of return from an investment 
in research and technology transfer. In the pharmaceutical industry, the time-lag between 
research, development, and commercialization can reach up to 20  years (see Sternitzke, 
2010 and Toole, 2012). In contrast, earlier analyses by Pakes and Griliches (1980), Haus-
man et al. (1984), Hall et al. (1984) reported that about a year is necessary for translating 
R&D expenditure by firms into a patent application. Rapoport (1971) and Wagner (1968) 
distinguished between the lag from project inception to completion and the lag from pro-
ject completion to commercial application, finding a total lag of around 2–3 years.

2.2  Public procurement for innovation

Providing empirical evidence about the economic effects of procurement through BSC is 
key for governments contributing to their budgets (Florio et al., 2018; Florio et al., 2018). 
In fact, BSC are financed not only because of the promise of significant scientific discover-
ies, but also in the hope that a radical technological innovation—yielding spillovers in dif-
ferent application domains (Dahlin & Behrens, 2005)—might arise as a side-effect, while 
attempting to advance human knowledge (Hallonsten, 2014). The search for breakthrough 
or general-purpose technologies is a relevant target of innovation policies (Edler & Fager-
berg, 2017). Being sources of aggregate productivity growth (Crépon et al., 1998), R&D 
and innovation represent key drivers of short and medium-term business cycle fluctuations 

2 Mansfield (1968) used time lags between the investment in academic research and the industrial utiliza-
tion of their findings in the computation of the social rate of return to academic research. Pakes and Schan-
kerman (1984) provided a different definition of “gestation lag”. These authors decompose the “total R&D 
lag” into the lag between project inception and completion—the “gestation lag”—and the time from project 
completion to commercial application—the “application lag”. They showed that the time lag between the 
deployment of research resources and the beginning of the stream of private revenues from their commer-
cial applications heavily influences the private rate of return to research.
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(Basu et al., 2006; Comin & Gertler, 2006; Kung & Schmid, 2015) and forces affecting 
long-run economic growth (Bresnahan & Trajtenberg, 1995; Schaefer et al., 2014).

Although a fast-growing strand of the literature highlights that procurement through 
BSC is quite distinct from other public procurement practices (Georghiou et  al., 2014; 
Hameri, 1997; Vuola & Hameri, 2006), our analysis can be cast in the broader debate 
about public procurement and PPI (see e.g. Lember et  al., 2015). Public procurement 
entails the purchase of goods or services by governments, public institutions and state-
owned enterprises; as such, it can be seen as a policy tool aimed at boosting a country’s 
internal demand. A distinction is usually made between regular procurement and PPI. The 
former involves the purchase of “off-the-shelf” products and services that do not require 
research and development activities, while PPI refers to public authorities requiring prod-
ucts or services that are not yet available, but which could be developed within a reason-
able timeframe (Edquist et al., 2000).

PPI represents an important demand-side innovation policy (Edler & Georghiou, 2007; 
Edquist & Zabala-Iturriagagoitia, 2012; Edquist et  al., 2015; Uyarra & Flanagan, 2010) 
having the potential of fostering technical change and supporting the development of novel 
technologies. This is particularly true when the development of sophisticated products is 
required (Salter & Martin, 2001) and in industries characterized by high-risk that cannot be 
borne entirely by the private sector (Mazzucato, 2016). The demand-pull effects of PPI on 
innovation seem more effective than other policies such as R&D subsidies and tax credits 
(Litchtenberg, 1990; Guerzoni & Raiteri, 2015). Moreover, PPI can either be a comple-
ment or an alternative to supply-side policies (Edler & Georghiou, 2007). For instance, 
Aschhoff and Sofka (2009) compared four public policies to stimulate innovation: public 
procurement, regulation, R&D subsidies, and subsidies to universities and research insti-
tutions. They found a positive effect of public procurement on market opportunities, and 
no difference between public procurement and access to knowledge created by universities 
and research institutes, while the other channels seem to be less effective. Raiteri (2018) 
exploited patent data to investigate the role of PPI in supporting private innovation activi-
ties, concluding that it may lead to—or accelerate—the deployment of a new general-pur-
pose technology.

In most cases public organizations do not take part directly in the innovation process 
carried out by their suppliers, on the contrary, CERN makes available to suppliers its infra-
structures and know-how to carry out experiments, and often takes an active part in the 
design and development of the products demanded (Nielsen & Anelli, 2016). While we 
focus specifically on CERN procurement, it is worth mentioning that there is a growing 
literature that studies the impact of other BSCs procurement on firms’ innovation output 
and economic performance.3 The evidence mainly comes from surveys to suppliers. Fer-
nandes et al. (2014) examined the impact of the European Southern Observatory procure-
ment, uncovering technological benefits that they impute to technical challenges posed by 
collaborations. Castelnovo and Dal Molin (2020) investigated the benefits for 150 suppliers 
of the Italian Institute of Nuclear Physics (INFN), confirming the existence of technologi-
cal learning. Several studies analysed the economic impacts of Danish companies’ involve-
ment and cooperation with the European Space Agency (see e.g. Cohendet, 1997; Bach 
et  al. 2002; Danish Agency for Science, 2008), focusing mainly on the economic return 

3 For an extensive review of the effect of technology transfer and knowledge spillovers from Big Science 
see Scarrà and Piccaluga (2020).
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(utility-expenditure ratio) generated by this intergovernmental organisation rather than on 
its innovation impact.

2.3  CERN procurement and its economic effects

CERN—founded after World War II with the aim of studying the basic constituents of mat-
ter—operates the largest particle physics laboratory in the world and is a leading example 
of BSC. CERN research is publicly funded by 23 Member States.4 In turn, Member States 
expect an industrial return proportional to their contribution to CERN annual budget. The 
construction cost of the LHC was more than 4 billion of Swiss Francs and involved almost 
1300 firms (CERN, 2019).

CERN procurement contracts often require cutting-edge technologies and radical inno-
vations combined with an intense collaboration with its industrial suppliers. CERN sup-
pliers are exposed “to a highly diverse knowledge environment” (Autio et al., 2004: 110) 
which could positively impact on their expected future innovativeness, productivity and 
profitability. Procurement through CERN is thus not a form of “general public procure-
ment” (i.e. buying off-the-shelf products), but rather a form of PPI with its own specific 
features.

The effects of CERN procurement on the innovation output of its industrial partners 
have been investigated with a variety of methodologies ranging from case studies to econo-
metric analyses: the consensus view emerging from this strand of the literature points to a 
positive association between CERN procurement and firms’ innovation output. CERN’s 
procurement has led to technological advances in superconductivity, cryogenics, electro-
magnets, ultra-high vacuum, distributed computing, rad-resistance materials, and fast elec-
tronics (Evans, 2009; Giudice, 2010).

A survey of CERN suppliers showed that collaboration with CERN contributed—along 
with other factors—to product innovation and new R&D (Autio, 2014). Castelnovo et al. 
(2018) relied on a simultaneous equation model to show that, after becoming CERN indus-
trial partners, firms generally experienced a rise in R&D, patents, productivity, and prof-
its. Closely related contributions are those by Amaldi (2012), Nielsen and Anelli (2016), 
and Battistoni et al. (2016) who highlighted that, thanks to the collaboration with CERN, 
several firms were subsequently able to develop new products for customers in other mar-
kets. Florio et al. (2018), Florio et al. (2018) showed that CERN procurement significantly 
affected suppliers’ innovative performance when a relational governance is in place through 
cooperative relations (i.e. exchanges implying that CERN and suppliers regularly cooperate 
to deal with complex information that is not easily transmitted or learned). Based on evi-
dence from 14 Swedish firms, Aberg and Bengston (2015) pointed out that firms’ product 
and process innovation occurs mostly when a development project is in place (i.e. when 
CERN invites firms to participate in developing products that cannot be bought off-the-
shelf). Vuola and Hameri (2006, p. 3) relied on nine in-depth case studies and concluded 
that CERN is “a most fertile ground to enable and boost industrial innovation”. Autio et al. 

4 As of November 2019, CERN’s Member States are: Austria, Belgium, Bulgaria, Czech Republic, Den-
mark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, 
Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus and Slovenia are 
Associate Member States in the pre-stage to Membership. Croatia, India, Lithuania, Pakistan, Turkey and 
Ukraine are Associate Member States (see: https:// home. cern/ about/ who- we- are/ our- gover nance/ member- 
states).

https://home.cern/about/who-we-are/our-governance/member-states
https://home.cern/about/who-we-are/our-governance/member-states
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(2014), based on three in depth case-studies, discovered innovation benefits accruing to the 
firms involved by CERN through prototypes’ mocking-up and experimentation.

2.4  Research hypotheses

Collaborating with a BSC involves a risk-return trade-off. Firms engage in contracts with 
a BSC—such as CERN—not mainly for an immediate profit, but also because they fore-
see future competitive advantages. Technological learning and reputational effects gained 
through CERN procurement can be exploited in the relations with other BSC, or with cus-
tomers in different markets. CERN features a unique combination of both PPI and cutting-
edge research. Its suppliers face entirely new technological challenges that often require 
advancing the technological frontier, acquiring new scientific knowledge through R&D and 
developing radical innovations. This is possible only in virtue of the close collaboration 
and frequent meetings with CERN.

However, entering in a contract with a BSC is not entirely without risk. In fact, pro-
curement of technologies required for the purpose of scientific research is often not profit-
able in the short-term; moreover, how benefits and costs will be balanced in the medium 
and long-term is uncertain. The probability that firms can profit from their collaboration 
with CERN in the medium or long-term depends on their ability to enrich their absorptive 
capacity over time. Absorptive capacity captures firms’ ability to absorb external knowl-
edge and hence to benefit from the interaction process with CERN (Cohen & Levinthal, 
1990). Lastly, because of the complexity and novelty of the requests from CERN, the pro-
cess of absorption of new ideas might be relatively slow. This suggests that there might 
be a significant time lag that separates the beginning of the relation with a CERN and its 
impact on a firm’s innovation output, if any.

A recent survey by Sirtori et  al. (2019) collected 28 case studies with in-depth inter-
views to representatives of firms that have received at least one order from CERN. Most 
of the interviewees declared that the relation with CERN improved the technical know-
how and the reputation of firms. However, they also highlighted some side-effects of PPI 
through BSC: it is an expensive process that involves frequent interactions with the BSC, 
additional R&D, financial risk, specific fixed investment and training costs. Moreover, cus-
tomized solutions may not be profitable in other markets. The high degree of uncertainty 
about how, when and whether these costs will be balanced by additional gains has inspired 
our research hypotheses and the econometric design used to assess the existence of a gesta-
tion lag separating the beginning of the procurement relationship with CERN and the sub-
sequent filing of a patent, if any.

In the light of these considerations and evidence from earlier literature, we formulate the 
following research hypotheses. Firstly, firms engaged in a procurement relation with CERN 
experience a learning process that ultimately leads to an innovation output. Secondly, given 
the complexity and novelty of a Big Science Centre technological requirements, the pro-
cess of absorption of new ideas might be relatively slow, leading to a significant gestation 
lag of innovation.

Both the research hypotheses rely on the number of patent applications filed by CERN 
suppliers as empirical proxy of innovation output. Patents are widely used as a proxy of 
innovation output (Aghion et al., 2013; Crépon et al., 1998; Jia et al., 2019; Raiteri, 2018), 
although we are aware that they may underestimate the innovation effect of BSC procure-
ment since many firms might not patent their innovations or use alternative forms of intel-
lectual property protection (see Hall et al., 2014 and Dziallas & Blind, 2019 for a critical 
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overview of innovation indicators). In fact, as it has been observed in other contexts, inno-
vation can take a more indirect pathway, when a patent cites non-patent literature arising 
from scientific advances (OECD, 2009), including knowledge created at BSC (see Florio, 
2019, page 140 and Catalano et  al., 2020 for a recent application to a synchrotron light 
source facility).

3  Data, statistical methods and preliminary analyses

3.1  Data

We have collected information on a sample firms collaborating at the development of the 
world biggest research infrastructure: the LHC. The LHC project was approved by the 
CERN council in December 1994. The experiments at the LHC started in September 2008 
and in July 2012 the discovery of the Higg’s boson—for which François Englert and Peter 
Higgs were awarded with the 2013 Nobel Prize in physics—was announced to the public.

Our dataset summarizes information from three main sources. First, we identified firms 
that over the 1995–2006 period received at least one LHC-related order above 10,000 CHF 
from the database maintained by the CERN Procurement and Industrial Services Group.5 
From this source, we also retrieved the date marking the beginning of the procurement 
relationship, the “activity codes” used by CERN to classify purchases from its suppliers, 
the number and the total amount of LHC-related orders supplied by the firm. Second, we 
sourced balance-sheet data from the ORBIS database maintained by Bureau van Dijk. We 
collected information on the geographical location, size, incorporation date and sector of 
activity (based on NACE 2 digits codes) of firms, as well as data on the amount of their 
intangible fixed assets.6 Lastly, we collected information on patents filed by LHC suppli-
ers over the 1993–2006 from the PATSTAT and ORBIS Intellectual Property databases. 
Specifically, we obtained data about patents’ application date, patent office(s) where they 
were filed and patents’ families (in case of multiple applications). Patent families are built 
according to the DOCDB simple patent family concept,7 that is a collection of related pat-
ent applications covering the same technical content.

Over 1200 entities are recorded in the CERN procurement data in relation to the LHC 
construction, but most of them played a relatively minor role, as they are university depart-
ments, research institutes, small companies or other entities for which financial data are not 
available in ORBIS. The screening process and the careful merging of data from different 
sources resulted in a panel dataset of 263 firms.8

With count data models we aim to quantify the incremental number of patents that firms 
filed after the beginning of their relationship with CERN. Hence, in our preferred specifi-
cation we focus on firms have filed at least one patent since their incorporation (38% of our 

6 We rely on unconsolidated financial statements.
7 https:// www. epo. org/ searc hing- for- paten ts/ data/ bulk- data- sets/ docdb. html
8 The reduction is sample size is mainly driven by missing observations for some control variables, notably 
intangible assets.

5 The rationale for excluding low value orders is that they are unlikely to generate knowledge spillovers for 
firms. Moreover, we notice that experimental collaborations, such as ATLAS and CMS, have some procure-
ment autonomy, so their orders are not considered, except when they are directly managed by CERN. For 
additional details see: http:// procu rement. web. cern. ch/ procu rement- strat egy- and- policy

https://www.epo.org/searching-for-patents/data/bulk-data-sets/docdb.html
http://procurement.web.cern.ch/procurement-strategy-and-policy
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sample) and exclude those that have never filed any patents. As a result, our main analysis 
is carried out on a sample of 100 firms that filed patent applications. A robustness check is 
performed on the larger sample of 263 companies.

Since firms have received their first LHC-related order over a long time-span, we have 
a natural partition of statistical units into “suppliers” and “not-yet-suppliers”. The sam-
ple period of our analyses begins in 1993 when the procurement for the LHC had not yet 
started (i.e. all firms where not-yet-suppliers) and ends in 2006 so that we are left with 27 
entities that still have the “not-yet-supplier” status and act as a control group. Firms in this 
group received the first order form CERN in 2007 or 2008.

3.2  Empirical strategy

The dependent variable in our regressions is the yearly number of patent applications 
filed by firms. Further details about the definition of this outcome variable are provided 
in Sect.  3.2.1. The expected number of patents applications pi,t—for i = 1, …, 100 and 
t = 1993, …, 2006—can be written as follows:

Table  2 describes the variables entering our main empirical specifications. All 
regressions include a set of dichotomous variables ( CERNk

i,t
 ) capturing the time-var-

ying effects of CERN procurement on firms’ patent applications. The dummy variable 
CERNk

i,t
 is set to one if the procurement relation with CERN started k years ago, while 

is zero otherwise. Estimates of the coefficients on these variables quantify the gestation 
lag of innovation for CERN suppliers. In fact, the time variation of the status of LHC’s 
suppliers can be exploited in the econometric analysis to evaluate how CERN procure-
ment has affected their patenting activity. The date when the first order is awarded 

(1)E
(
pi,t|�isc,t

)
= exp

(
∑

k

�kCERN
k
i,t
+ �i,t� + �pctc,t +

∑

s

�s +
∑

c

�c +
∑

t

�t

)

Table 2  Variables used in the empirical analysis: 1993–2006

Variable Description

pit Yearly number of patent applications (based on patent families)
CERN

k

i,t
Dummy = 1 if procurement relation with CERN started k years ago

Hi-Techi Number of orders classified as hi-tech by CERN experts
Mediumi Dummy = 1 if the company is classified as “medium-size” in the ORBIS database
Largei Dummy = 1 if the company is classified as “large” in the ORBIS database
V Largei Dummy = 1 if the company is classified as “very large” in the ORBIS database
Avg. pi Average number of patent applications per year before 1993
IFAit Logarithm of Intangible Fixed Asset
Orderi Logarithm of the total amount of LHC orders received by firm i
pctc,t Contribution of country c to CERN budget in year t – expressed as percentage of 

the total contribution of Member States
αc Dummy = 1 if firm is in country c
αs Dummy = 1 if firm is in sector s
αt Dummy = 1 if year = t
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marks the beginning of the procurement relationship, while the filing date of the patent 
proxies the time when the innovation output is produced.

The empirical investigation relies on a panel dataset for the 1993–2006 period. Fig-
ure 1 shows the cumulative share of suppliers per year from 1993 to 2006.

The beginning of the observation period pre-dates the start of the construction of 
the LHC because we are interested in the timing of the “CERN effect”. To be sure that 
such effect does not precedes the start of the procurement relation, our main empiri-
cal specifications include a set of dummy variables taking value one if the statisti-
cal unit will become a CERN supplier in one or two years. The coefficients of such 
dichotomous variables—that act as leads—should never be statistically distinguish-
able from zero in case of a causal interpretation of the “CERN effect” on firms’ patent 
applications.

Our empirical design needs to deal with some specific features of the CERN pro-
curement process. First, the transition from the status of “not-yet-supplier” to that of 
“CERN supplier” does not happen in a single year common to all firms. Second, the 
highly specialized nature of firms collaborating with CERN and the characteristics 
of goods and services they provide makes it impossible to find a meaningful control 
group of entities that are structurally similar to CERN suppliers in our sample. In fact, 
observable covariates, such as firms’ financial and technological profile are based on 
broad classifications that would lead only to a spurious match with CERN’s suppliers. 
Lastly, we are mainly interested in estimating the average time lag that separates the 
beginning of the procurement relationship with CERN for each firm and the subse-
quent filing of a patent, therefore the usual DiD approach would not allow to estimate 
the gestation lag. We thus draw our empirical strategy from the approach developed by 
Stevenson and Wolfers (2006). For our purposes, such approach entails estimating the 
coefficients on a set of dichotomous variables measuring the years from the start of the 
collaboration with CERN. This is a natural strategy to be adopted in our setting. Fur-
ther details are provided in the next sections.
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irm
s

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Suppliers Not-yet-suppliers

Fig. 1  Cumulative share of suppliers per year
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3.2.1  Dependent and control variables

3.2.1.1 Dependent variable The dependent variable is the yearly number of patent appli-
cations filed by LHC’s suppliers. There are different ways of counting patent applications 
(see OECD, 2009; Oldham, 2019): we rely on patent families, specifically on the DOCDB 
simple patent family concept. Hence, our dependent variable counts either patent family 
applications covering the same technical content or individual patents that do not belong to 
any family. Focusing on patent families allows both to avoid over-counting patents that are 
members of the same family (i.e. patents referring to the same or similar inventions), and to 
associate to each patent family a unique priority filing (i.e. the oldest priority date) which 
should in principle be the one closer to the invention.

Descriptive statistics highlight that most companies have filed a limited number of 
patents over the time span considered: 23% of suppliers filed just 1 patent, 53% up to 5 
patents, while only 24% filed more than 10 patents. This implies that patents are quite 
homogenously distributed among suppliers, hence results should not be driven by few large 
companies that filed most of patents in our sample.

3.2.1.2 Control variables We consider several control variables in our regressions. The 
vector Xi,t includes firm-level variables used to capture factor that might affect the absorp-
tive capacity of firms (Cohen & Levinthal, 1990). Following Autio et al. (2004), we posit 
that industrial learning effects of BSC are generated by their dyads with firms (i.e. a “dyad” 
is a relationship between organizations). Whether firms are able to exploit knowledge spillo-
vers will depend both on the firms’ absorptive capacity and on the absorptive capacity of the 
dyad (Lane & Lubatkin, 1998), namely the sum of relation-specific assets that facilitate both 
knowledge disclosure and knowledge communication within the dyad.

The effect of firm size on the probability to patent is captured by dichotomous variables 
classifying firms into small (i.e. that is the reference category, accounting for 6% of the 
total), medium (21%), large (47%) and very-large (26%).9 Firm size is expected to be posi-
tively associated with the probability to patent since large firms can exploit economies of 
scale, have access to a broader pool of highly qualified collaborators (Fernández-Olmos & 
Ramírez-Alesón, 2017), have more financial resources to afford the costly process of pat-
ent application (Blind et al., 2006; Block et al., 2015; Leiponen & Byma, 2009, among the 
others).

Next, we include a discrete variable (Hi-techi) that specifies the number of orders classi-
fied as hi-tech by CERN experts received by each firm.10 Firms receiving high-tech orders 
might have higher absorptive capacity and be more capable of translating hi-tech orders 
from BSC into marketable innovations (Castelnovo et al., 2018; Edquist & Hommen, 2000; 
Hameri & Vuola, 1996). In our sample, firms receiving at least one high-tech order account 
for 70% of the total; high-tech orders account for more than one-half in 65% of the firms, 
and 53% of the firms are entirely involved in high-tech orders.

We also consider the (logarithm of) total amount of LHC orders received by each firm 
(Orderi) as a proxy of the involvement and continuity of the procurement relationship with 
CERN (Åberg & Bengtson, 2015). Firms in our sample have supplied to CERN up to nine 

9 This classification—provided in the ORBIS database—exploits information on the amount of total assets, 
operating revenues and the number of employees.
10 Details on the construction of this variable are presented in the Appendix A1.



 A. Bastianin et al.

1 3

LHC-related orders with median value above 67,000 CHF. In fact, as previously men-
tioned, long-lasting collaborations for hi-value orders often involve repeated interactions 
with CERN that might boost the learning effects of procurement (Autio et al., 2004; Florio, 
Bastianin et al., 2018; Florio et al., 2018).

Moreover, following Blundell et al. (1999), we use the mean pre-sample patent count 
(i.e. Avg. pi, the average number of patent applications per year before 1993) to capture 
firms’ unobserved propensity to patent. Avg. pi measures unobservable firm-specific fixed 
effects, reflecting any permanent differences in the level of innovation across firms which 
are independent of CERN procurement (see e.g. Hausman et al., 1984 and Aghion et al., 
2013).

Last but not least, firm-level variables include (the logarithm of) Intangible Fixed 
Asset11 (IFAi,t) as a proxy of expenditure in R&D (Chan et al., 2001; Leoncini et al., 2017; 
Marin, 2014). R&D expenditure is a key control variable for analysing patent activity 
(Aghion et al., 2013; Gurmu & Pérez-Sebastián, 2008; Hall et al., 1984; Hausman et al., 
1984), but, unfortunately, our proxy features many missing observations. To include IFAi,t, 
while maintaining the size of the panel dataset reasonably large, we excluded firms report-
ing more than 4 missing values.12 Due to the presence of a large number of zeros (approxi-
mately 21% of the observations), the sampling distribution of IFAi,t is highly skewed with 
sample average equal to 1170 thousand Euros and sample median equal to 43 thousand 
Euros.

To control for country heterogeneity, we include the contribution of country c to CERN 
budget in year t—expressed as percentage of the total contribution of Member States—
pctc,t. This variable captures the fact that firms located in countries contributing more 
might have a higher probability of receiving an order and hence, to benefit from knowledge 
spillovers. In fact, CERN procurement rules are designed to try to balance orders across 
its Member States. Additional factors capturing unobservable country-specific heterogene-
ity are modelled with country dummy variables, αc. Similarly, we include sector specific 
dummy variables, αs, whose aim is to allow for heterogeneity at the sector-level, and add 
time dummies (αt) to control for common macroeconomic shocks hitting all firms in the 
sample. In fact, macroeconomic conditions are expected to affect the profitability of firms, 
the business environment where they operate and the relationship between technology col-
laboration networks and innovation performance (Fernández-Olmos & Ramírez-Alesón, 
2017).

3.3  Preliminary analyses

3.3.1  A first look at the gestation lag

Figure 2 displays the number of patent applications per firm over “relative years”, denoted 
as “k”. A relative year is the number of years after (positive distance) or before (negative 
distance) the procurement event, which is set, firm by firm, as year zero. Therefore, k > 0 
for a specific firm indicates that the first LHC order was received k years ago in our data. 

11 Intangible fixed assets recorded in the Orbis database include all intangible assets such as formation 
expenses, research expenses, goodwill, development expenses and all other expenses with a long-term 
effect.
12 To have a balanced panel dataset, missing observations have been substituted with zeros and a dummy 
variable taking value one for such observations is included in regressions.
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The two horizontal lines in Fig. 1 are sample averages for k ≤ 0 and k > 0. Before the begin-
ning of the relationship with CERN (i.e. k ≤ 0), the sample average is 2.2 patent applica-
tions per firm, while after receiving the first LHC order (i.e. k > 0) the sample average rises 
to 6.8. Lastly, we emphasize that the figure exhibits three sharp peaks in correspondence 
of k = 6, 7, ≥ 8 thus suggesting that a sizeable gestation lag separates the procurement event 
and any sizeable impact on the number of patents. All in all, the figure provides evidence 
that a positive association between CERN procurement and innovation shows up after 
some years from the beginning of the relationship with CERN.

3.3.2  The relationship between CERN orders and patents

For the internal validity of our results, a crucial point is to assess to what extent patents 
filed by firms in our sample are related with the orders that CERN awarded to them. We 
conduct such a check in several ways. First, we check if the patent applications of firms 
in our sample cite as prior-art patents filed by the CERN itself or other CERN contrac-
tors. We searched in Orbis IP patents filed by CERN. These are just 331 because CERN’s 
policy is generally against the use of patents. These 331 patents have been cited in 1210 
other patents; however only 8 firms in our database are the owner of patents citing CERN’s 
patents. Second, we check if the activity code of the CERN contract is compatible in terms 
of technological area to the patent application considered for that contract. For this pur-
pose, we collected detailed data about patent applications for the sample of firms used in 
our empirical analysis. We restrict the analysis to approximately 19,200 patent applica-
tions by firms that started filing patents after they were awarded the first LHC-order and 

Fig. 2  Patent applications per firm: relative years Notes “Relative years (k)” measures the time distance 
from the first LHC order. Therefore, k > 0 indicates that the first order was received k years ago and k < 0 
indicates that the order will be received in k years. For each k the figure reports the number of patents per 
firm. The dashed line denoted as “Avg(− 11,0)” represents average number of patents per firm over relative 
years k = − 11,…,0, that is before the start of the LHC procurement. Similarly, the dash-dotted line denoted 
as “Avg(1,11)” represents average number of patents per firm over relative years k = 1,…,11, that is after 
the start of the LHC procurement. On the x-axis we use “ > 8” (“ < − 8”) to denote relative years k = 9,10,11 
(k = − 9,− 10,− 11)
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consider applications until 2019.13 We sourced the title of patents filed in any patent office 
and the patents’ technological classification—as provided by the World Intellectual Prop-
erty Organization (WIPO)—from the ORBIS Intellectual Property database. Moreover, we 
classify each firm using the CERN activity code associated to its first LHC related order.14

Figure 2 displays the distribution of patents across CERN activity codes (Panel a) as 
well as across WIPO codes (Panel b). Relying on activity codes provided by CERN, it can 
be seen from Fig. 3a that the three most frequent classes are associated with orders related 
to “refrigeration equipment”, “storage and transportation of cryogens” and “measurement 
and regulation”. Focusing on Fig. 3b, we see that the four most frequently observed WIPO 
codes are “chemical engineering”, “mechanical elements”, “materials—metallurgy” and 

Fig. 3  Distribution of patents over CERN activity codes and WIPO codes Notes both in panel (a) and (b) of 
the figure the category labelled as “Other” is a residual class that collects codes where there is less than 1% 
of the total number of patents (approx. 19,000)

13 While this might somehow speak to a causal interpretation of our results, we stress that there might 
be confounding factors that we do not control for. A more extensive analysis of the causal nexus between 
orders and patent applications is beyond the scope of the paper.
14 Note that the number of firms whose orders are assigned to more than one activity code is small. See 
Appendix A1.
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“measurement”. In terms of hi- vs lo-tech classification of firms, descriptive statistics show 
that 97% of the patents are associated to firms classified as hi-tech. Comparison of the two 
panels shows that LHC orders are technologically related with the patent applications filed 
by firms in our sample. A summary of the association between WIPO codes and CERN 
activity codes is provided by the Cramér’s V measure for categorical variables. This sta-
tistic shows the strength of the association between two categorical variables. The value of 
the Cramér’s V between WIPO codes and CERN activity codes is 39% (p-value = 0.000) 
and is statistically distinguishable from zero at common significance levels, thus confirm-
ing our finding.15

4  Results

4.1  Is there an innovation gestation lag?

The existence of a gestation lag of innovation for CERN suppliers is investigated in 
Tables 3, where we regress the number of patent applications per year on a set of dummy 
variables that track the timing of CERN impact on patents, while controlling for several 
covariates that might act as confounding factors. Since we want to be sure that the change 
in firms’ patenting activity post-dated the beginning of the collaboration with CERN, all 
specifications also include the leads of the dummy variable marking the beginning of the 
procurement relationship. More precisely, the variable denoted as CERN(−2,−1)

i,t
 indicates 

that firm i will receive the first order from CERN in at most a couple of years.16

Negative Binomial models reported in Table 3 are well suited for capturing the count 
nature of the dependent variable. In fact, empirical evidence presented at the bottom of 
Table 3 highlights that our data might be over-dispersed and therefore violate the assump-
tion of equi-dispersion underlying the Poisson regression model. The Poisson model would 
imply that the variance of the number of patents in each period is equal to its expected 
value during the same time frame (i.e. equi-dispersion). The Negative Binomial distribu-
tion includes the Poisson as a special case and allows for both under- and over-dispersion. 
Over-dispersed variables have variance greater than the expected value.

Column 1 reports our baseline specification. The coefficients of CERNk
i,t

 are statistically 
significant at the 95% confidence level only for k ≥ 5. This suggests that there is a consider-
able time lag separating LHC procurement from changes in the number of patent applica-
tions. Moreover, the coefficient on CERN(−2,−1)

i,t
 is never statistically distinguishable from 

zero. This is consistent with the expectation that any impact of LHC procurement on firms’ 
patents should post-date the start of the relationship with CERN and strengthen the causal 
interpretation of our results. The remaining columns include robustness checks and are 
commented in Sect. 4.2.

Potential selection bias arising from a not randomized sample have been mitigated with 
a large set of control variables including firm, sector and time-fixed effects. For instance, 

15 As pointed out by one of the reviewers the standard Cramér’s V measure could overestimate the level 
association and a correction might thus be needed to address such bias. This correction is inversely propor-
tional to the number of instances (more than 17,000 in our example). The corrected Cramér’s V measure is 
equal to 33%.
16 Results in the paper aggregate leads and lags in blocks of two or more years. For instance, CERN(1,2)

i,t
 

identifies firms that received LHC one or two years before time t. Results available from the authors upon 
request highlight that estimates of the gestation lag are not affected by such aggregation and remain valid 
even when using dummy variables for each lead and lag.
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sector- and time-fixed effects should absorb the effect of non-random selection of firms by 
CERN depending on the LHC project schedule. Similarly, firm-level controls and fixed-
effects might help absorbing any bias due to the non-random selection of firms by CERN 
depending on their expected ability to fulfil its requests.

4.2  Robustness checks

In this section we consider robustness checks that confirm the main results from our base-
line specification (Table 3, columns 2–6).

4.2.1  Number of missing observations

Baseline results in Column 1 rely on a sample design that excludes firms reporting more 
than 4 missing values in IFAit. As a robustness check, in column 2 we changed this arbi-
trary threshold from 4 up to 5 missing values per firm. Setting the exclusion rule to 5 miss-
ing observations yields a sample of 112 firms (or 1568 observations). The main findings on 
the timing of the CERN effect on patens are unaffected by this change.

4.2.2  Zero‑inflated model

Our main results use a sample of firms that have filed at least one patent since their incorpora-
tion. We now rely on a larger sample that also includes firms that have never filed a patent. 
This increases the number of firms to 263 and the sample size to 3682 units, but also intro-
duces a greater number of zero observations in our regressions. To handle the fact that in this 
case the number of “zeros” in the data might exceed those that can be predicted with a Nega-
tive Binomial model, we rely on a Zero-Inflated Negative Binomial (ZINB) specification. In 
this case the number of patents is predicted supplementing the Negative Binomial distribution 
with a logit model that describes the probability to observe a zero. A nil observation can thus 
occur either as a realization of the count density or as a realization of the binary process. The 
ZINB involves estimating two equations one for the binary model and one of the count speci-
fication. Since the number of parameters is quite large, the model might be subject to curse of 
dimensionality and maximization of the likelihood function quickly becomes hard for numeri-
cal routines. For these reasons, we deliberately kept the binary model simple, positing that the 
probability of observing a zero is influenced only by firm size and IFAit.17 These variables are 
excluded from the negative binomial estimation step. Note that also the variable measuring the 
pre-sample patent count (Avg. pi) is excluded from the set of regressors because it corresponds 
to the value (i.e. zero) of the dependent variable for companies that have never filed any patent. 
Column 3 of Table 3 shows that our main conclusions concerning timing of CERN procure-
ment on patent applications are not qualitatively different, although the effect starts being sta-
tistically distinguishable from zero a little earlier than in the main specification.

4.2.3  Removing leads

In column 4 we exclude the set of dummy variables acting as leads that were introduced 
to be sure that the “CERN effect” post-dates the beginning of the procurement relations. 
Results are unaffected by this model modification.

17 The estimate of the selection equation is reported in Appendix A2 Table 4.
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4.2.4  Start‑up firms

Lastly, we add to our baseline specification two different proxies of whether a firm can 
be considered a young start-up or not. We control for the age of firms with a variable 
that counts the years running from the incorporation date to the year of beginning of the 
relationship with CERN (see column 5). In the second specification in column 6 we con-
sider a dichotomous variable that is equal to one for firms whose age is less than 15 years. 
On average, the age of firms in our samples is 28 years, with 30% of firms being less the 
15 years old when they received the firs LHC-related order. Results in columns 5 and 6 
highlight that none of these variables affect our main findings.

5  Conclusions

This paper contributes to the literature on PPI through BSCs studying the impact of CERN 
on the innovation output of its suppliers. We have exploited a unique dataset to empirically 
test the impact of CERN procurement on the innovative output of its industrial partners. 
Patent applications have been used as a proxy of innovation output in count data models 
that provide estimates of the timing of CERN procurement impact on the number of pat-
ents filed by LHC’s suppliers. Since collaborating firms in the sample have received their 
first order from CERN over a long time span, we have a natural partition of statistical units 
into “suppliers” and “not-yet-suppliers” that allows to investigate the timing of the “CERN 
effect”.

Our results show that a “CERN effect” on patent applications does exist, it is posi-
tive and statistically significant with a delay of at least 5 years from the beginning of 
the procurement relationship. The existence of such a lag between procurement from 
BSC and innovation might signal that learning from technology at the frontier of sci-
ence and translating such knowledge into commercial applications is a medium-long 
run process.

There is an important consideration in this perspective. Sometimes the R&D is 
implemented by the CERN in the first place and, during the procurement relationship, 
firms absorb radically new concepts and solutions required for the scientific purposes. 
After the end of the procurement relation, firms reconsider what they have learnt and 
have to understand whether and where new market opportunities may arise in the 
future. Only at the end of this “learning by interacting process”, BSC industrial part-
ners’ own R&D for the production of an innovation output—with possible commercial 
applications—may start. The key point is that this process is quite different from the 
one driving the established R&D-patents correlation in the usual business environ-
ment (such as in the seminal paper by Hausman et al. 1984); in fact, it requires patient 
firms to invest to for producing an innovation output from the new knowledge acquired 
through BSC procurement. What makes procurement for innovation at the frontier of 
science special is that it poses new technological challenges, triggering a sort of ‘sur-
prise’ learning mechanism for firms, in the meaning of Solow (1997). This has poten-
tially interesting implications as a complement to other, more established, innovation 
policies.

The existence of a sizeable time lag between procurement from BSC and subsequent 
benefits for collaborating firms is in line with the findings in related strands of the liter-
ature. Griliches (1979), in his survey of econometric analyses of the R&D-productivity 
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nexus, highlighted that a bell-shaped lag structure connects firm R&D to changes in 
productivity; such a shape is due to the fact that it takes time before research can be 
fruitfully exploited by firms. This points to an absorption mechanism requiring pro-
tracted learning and adaptation. As underlined by Hameri and Vuola (1996: 131), 
while incremental innovation may easily access the market, “the incubation times for 
revenues from a new technological application range from several years up to a dec-
ade, depending on the novelty of the solution”. In this perspective, the Big Science 
context is an ideal testing ground of this hypothesis, as it often poses extreme chal-
lenges to firms.

Lastly, we point out that this paper leaves some related interesting questions unan-
swered. While we have analyzed the impact of BSCs on the innovation activity focus-
ing on the number of patents, it would be equally interesting to assess whether BSCs 
affect the content of patents filed by firms. A metric based on the quality of the pat-
ents—such as the citations—could be used for this purpose. We leave this investigation 
for future research.

Second, as discussed by Bastianin and Del Bo (2020) other EU BSCs—including 
the European Space Agency and the European Molecular Biology Laboratory—have 
procurement rules inspired by the same principles as those enforced by CERN. More-
over, much like CERN they have a long list of industrial partners with which they 
strictly collaborate to develop frontier technologies required for research purposes. 
Therefore, another issue that is worth investigating relates with the external validity of 
our results. Whether our results can be generalized to other BSCs across the world and 
in other research area, as we may suggest, is another interesting question for a future 
research agenda.

Appendix

See Table 4.

Table 4  Inflate equation in the 
zero-inflated negative binomial 
model

* p < 0.1, **p < 0.05, ***p < 0.01

Zero patents

Mediumi  − 2.730**
(1.177)

Largei  − 2.586**
(1.164)

V Largei  − 8.902***
(2.205)

IFAit 0.005
(0.060)

Sector F.E Yes
Country F.E Yes
Year F.E Yes
N 3682
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Classification of hi‑ and lo‑tech orders

In the original database CERN orders are classified by an “activity code” identifying 
each product type with a highly detailed 3-digit level. We used the 2-digit classification, 
which covers around 100 items and was sufficiently detailed for our purposes. In some 
cases, we also inspected the 3-digit classification to better interpret the technological 
content.

After a preliminary analysis of the overall distribution of order codes, we followed 
Florio et al. (2016) in identifying the specific activity codes most likely to be associated 
with high-tech goods and services for the construction of the LHC. In some instances, 
the code descriptors were generic (“28-Electrical engineering,” say, or “45-Software”). 
To minimise classification errors, we sampled 300 orders for a more in-depth analysis. 
These orders were placed with 207 different suppliers, 16% of all those who received at 
least one order for the LHC during the period under analysis. The orders thus sampled 
were then evaluated in detail by CERN experts and classified, according to their techno-
logical intensity, along a five-point scale designed to capture differences in both product 
specificity and closeness of the supplier’s collaboration with CERN:

• Class 1 Most likely “off-the-shelf” orders of low technological intensity;
• Class 2 Off-the-shelf orders with average technological intensity;
• Class 3 Mostly off-the-shelf but usually high-tech and requiring some careful speci-

fication;
• Class 4 High-tech orders with moderate to high intensity of specification activity to 

customise products for the LHC;
• Class 5 Products at the technological frontier, with intensive customisation and co-

design involving CERN staff.

We defined high-tech codes as Classes 3, 4 and 5. The data indicate that the first 
order is generally a good predictor of the technological intensity of subsequent ones.

The vast majority of firms in our sample—about 86.9%—has supplied to CERN 
either only hi-tech (55.7%) or only lo-tech (31.2%) orders. Moreover, an additional 3.5% 
the sample has received at least 80% of the orders classified as hi-tech. Similarly, an 
additional 1.9% (of firms has received at least 80% of the orders classified as lo-tech.
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