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Muscular dystrophies are heritable and heterogeneous neuromuscular dis-

orders characterized by the primary wasting of skeletal muscle, usually

caused by mutations in the proteins forming the link between the cytoskel-

eton and the basal lamina. As a result of mutations in the dystrophin gene,

Duchenne muscular dystrophy patients suffer from progressive muscle

atrophy and an exhaustion of muscular regenerative capacity. No efficient

therapies are available. The evidence that adult stem cells were capable of

participating in the regeneration of more than their resident organ led to

the development of potential stem cell treatments for degenerative disorder.

In the present review, we describe the different types of myogenic stem cells

and their possible use for the progression of cell therapy in Duchenne mus-

cular dystrophy.

Introduction

Skeletal muscle consists predominantly of syncytial

fibres with peripheral, post-mitotic myonuclei. In post-

natal life, the growth and repair of skeletal muscle

fibres is mediated by a resident population of mononu-

clear myogenic precursors, the satellite cells (SCs), that

are located between the sarcolemma and the basal

lamina of the muscle fibre [1]. Following muscle injury,

these cells divide and give rise to SC progeny, the

myoblasts, that fuse to repair or replace the damaged

fibres [2]. The progression of activated SCs toward

myogenic differentiation is controlled by a family of

transcription factors (myogenic regulatory factors;

MRFs), including MyoD, Myf5, myogenin and MRF4

[3]. Even if it was considered that quiescent SCs did

not express detectable levels of MRFs, Crist et al. [4]

recently demonstrated that, in these cells, Myf5

mRNA is sequestered in mRNP granules, where the

presence of miR-31 ensures silencing. Once SCs are
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activated, mRNP granules dissociate and release Myf5

transcripts, leading to the rapid translation and accu-

mulation of Myf5 protein, which promotes myogenesis

[4]. After muscle injury, these cells proliferate and

express Myf5 and MyoD [5,6], whereas myogenin is

expressed later and is associated with fusion and termi-

nal differentiation [7,8].

Numerous types of muscular dystrophy exist

depending on their degree of severity and the muscle

types affected [9]. Duchenne muscular dystrophy

(DMD), the most common form of muscular dystro-

phy, is a lethal X-linked recessive disorder caused by a

deficiency of dystrophin protein [10]. In the early

phase of the disease, the self-renewal potential of

DMD SCs is exhausted by a chronic regenerative pro-

cess. This condition leads to muscular fibrosis in which

most muscle tissue is lost and replaced by connective

tissue and, consequently, progressive muscle weakness

and atrophy arise [11]. Unfortunately, DMD patients

are confined to a wheelchair before the age of 12 years

and eventually die from heart and respiratory failure

[9]. Patients with Becker muscular dystrophy (BMD)

develop musculoskeletal symptoms at a much slower

rate than those with DMD, strictly depending on

mutations of the dystrophin gene and the amounts of

dystrophin protein expressed in muscle. Many BMD

patients remain ambulatory until the third or fourth

decade or later, and develop dilated cardiomiopathy.

The identification and characterization of the dystro-

phin gene led to the development of potential treat-

ments for this disorder [12]. Growth-modulating

agents [13], anti-inflammatory or second-messenger sig-

nal-modulating agents [14], and powerful molecular

devices designed to skip mutations in the dystrophin

gene [15,16] were attempted, although only corticoster-

oids were proven to be effective on DMD patients

[17]. In recent years, stem cells received much attention

for their potential use in cell-based therapies for vari-

ous human diseases, such as leukaemia [18] and Par-

kinson’s disease [19]. For several years after their

discovery, the SCs were considered to be the only cells

responsible for the growth and maintenance of skeletal

muscle. However, the pioneristic work of Grounds

et al. [20] demonstrated that the number of resident

SCs in adult muscle is much smaller than the number

of committed myogenic precursors populating the

muscle tissue soon after injury. It was proposed that

SCs could migrate from adjacent fibres or neighbour-

ing muscles, and that nonmyogenic resident cells could

be recruited to myogenesis [21]. Recently, several cellu-

lar markers were shown to identify and characterize

muscular and nonmuscular multilineage stem cells that

are able to actively participate in myogenesis. In the

skeletal muscle itself, other than SCs, alternative adult

multilineage progenitor cell populations retained myo-

genic potential, such as: muscle-derived stem cells

(MDSCs) [22,23], mesoangioblasts [24] and muscle-

derived CD133+ progenitors [25], mesenchymal stem

cells (MSCs) [26,27] and PW1 interstitial cells [28].

Because the stem cells noted above shared different

peculiarities, we proposed that these committed pro-

genitors represent the steps of differentiation of a com-

mon undifferentiated stem cell whose function is

largely unknown. In this review, we describe several

populations of resident and circulating myogenic stem

cells and we examine how these cells could ameliorate

the progression of the DMD clinical phenotype after

stem cell treatment.

Adult stem cells

SCs

SCs are small progenitor cells that lie between the

basement membrane and sarcolemma of individual

muscle fibres. They originate from somites [29,30],

which are spheres of paraxial mesoderm that also gen-

erate skeletal muscle, although the exact progenitor

that gives rise to SCs remains to be identified. SCs are

normally present in healthy adult mammalian muscle

as quiescent cells and, when activated by oxidative

stress or specific stimuli, they can generate large num-

bers of new myofibres [31] (Fig. 1A). Starting from the

work of Montarras et al. [32], several groups isolated

pure populations of SCs using a combination of differ-

ent markers. Cerletti et al. [33] isolated a population of

skeletal muscle precursors from the SC pool; when

transplanted into dystrophic mice, these cells restored

dystrophin expression and improved contractile func-

tion. Moreover they entered into the SC niche so that

they participated in subsequent rounds of injury repair

[33]. Sacco et al. [34] demonstrated that freshly isolated

SCs contributed extensively to muscle repair. More-

over, SCs were derived from the transplantation of one

intact myofibre and, after transplantation into dystro-

phic mice, these cells were able to proliferate, contrib-

ute to muscle fibres and self-renew into muscle stem

cells [34]. Tanaka et al. [35] identified a rare subpopu-

lation of muscle side-population cells and transplanted

them into regenerating muscle. Muscle side-population

cells engrafted into the host SC niche adhered to iso-

lated myofibres and gave rise both to SCs and myonu-

clear population [35]. The results obtained in the

mouse model led to the investigation of SCs/myoblast

injection in DMD patients in phase I clinical trials.

Autologous transplantation of genetically corrected
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SCs to DMD patients is the theoretical ideal approach

for minimizing the host immune rejection of donor

cells [36]. However, the growth of freshly isolated SCs

in vitro significantly reduced their in vivo myogenic

potential so that it was very difficult to obtain a suffi-

cient quantity of such cells. These trials demonstrated

that myoblast transplantation was an inefficient tech-

nique, as a result of the very low expression of dystro-

phin in DMD muscle fibres (approximately 1%), and

there was no functional or clinical improvement in the

children [37–39].

MDSCs

MDSCs were identified within skeletal muscle: they

possessed the ability to self-renew and differentiated

into mesodermal cell types. From muscle tissue, Sarig

et al. [22] isolated a subpopulation of slow adherent

myogenic cells that formed a monolayer of MyoD+

cells. They differentiated into mononucleated contrac-

tile fibres, expressing muscular proteins such as myosin

heavy chain and myogenin. Moreover, when exposed

to certain signalling molecules, these cells trans-differ-

entiated into osteogenic and adipogenic cells [22]. Simi-

larly, Tamaki et al. [23] isolated CD34� CD45� cells

from skeletal muscle: following transplantation, they

exhibited the capacity to proliferate into myogenic,

vasculogenic and neural cell lineages. Interestingly,

Qu-Petersen et al. [40] isolated three different subpop-

ulations of cells from skeletal muscle: although two of

them exhibited SCs-like characteristics, the third popu-

lation comprised cells that retained their phenotype for

several passages and showed the ability to differentiate

into muscle, endothelial and neural lineages.

The crucial question arose as to whether these cells

contained a subpopulation of committed muscle stem

cells that display a better ability to regenerate skeletal

muscle compared to muscle SCs. We demonstrated

that Sca-1+CD34+ stem cells purified from the muscle

tissues of newborn mice were multipotent in vitro and

differentiated into both myogenic and multimyeloid

lineages. Following intra-arterial transplantation into

dystrophic mice, they adhere to the endothelium of

microvessels of host muscles and participate in muscle

regeneration [41]. Alessandri et al. [42] identified a sub-

population of muscle-derived cells different from SCs.

The cells expressed desmin, vimentin and CD133,

whereas they were negative for endothelial and haemat-

opoietic markers such as CD45, Von Willebrand factor

and Ve-cadherin. Moreover, they were able to differen-

tiate in vitro into skeletal muscle fibres, expressing actin

and desmin, astrocytes and neurones [42]. Among the

muscle-derived stem cells, a poorly adherent subfrac-

tion was isolated, which generated a heterogeneous

population composed of spindle-shaped flat cells and a

low percentage of round cells that performed atypical

division pattern. These cells were called MuStem cells

[43]. They expressed the SC-markers Pax7, CD56 and

b1-integrin, as well as the myogenic regulatory factors

Myf5 and MyoD, and it was suggested that MuStem

cells originated from the SC niche and corresponded

mainly to early myogenic progenitors. Their capacity

of differentiation was not limited to myogenic lineage,

and they gave rise to osteocytes, adipocytes and inter-

stitial cells [43]. When transplanted into muscles of

golden retriever muscular dystrophy (GRMD) dogs,

MuStem cells were abundantly detected in recipient

muscles, recovered the expression of dystrophin and

generated SCs. Importantly, following intra-arterial

injection of MuStem cells, numerous dystrophin+

fibres clustered over the entire section of several mus-

cles. Accordingly, Rouger et al. [43] suggested that the

transplantation of MuStem cells could exert an impor-

tant role in the regeneration of dystrophic muscles even

A B

Fig. 1. (A) Human satellite cells isolated from normal muscle tissue in proliferation medium (910 magnification; DMIR2; Leica

Microsystems, Wetzlar, Germany). (B) Human MSC-like cells isolated from normal muscle tissue. Cells were visualized using IMAGEQUEST

software (Thermo Fisher Scientific Inc., Waltham, MA, USA) (910 magnification; DMIR2).
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if, before extending these results to prospective human

trials, a more detailed functional characterization of

the phenotype of treated GRMD dogs should be

required.

Although other studies are needed to better under-

stand the physiological location of MDSCs, human

MDSCs represent an alternative source for isolating plu-

ripotent stem cells with respect to the development of

cell-based therapies because they are easy to proliferate

in vitro and to migrate through the vasculature [44,45].

Mesoangioblasts

Mesoangioblasts are multipotent progenitors of meso-

dermal tissues, physically associated with the embry-

onic dorsal aorta in avian and mammalian species [46].

Brunelli et al. [47] demonstrated that clonal mesoangio-

blast lines expressed a-smooth muscle actin and also

that they were induced to differentiate into mature

smooth muscle expressing smooth muscle myosin upon

treatment with transforming growth factor-b. More-

over, Dellavalle et al. [48] isolated pericyte-derived cells

from human muscle that, when transplanted into dys-

trophic mice, generated various fibres expressing

human dystrophin. These myogenic progenitors were

found to be associated with microvascular walls and so

it was suggested that these cells represented a correlate

of embryonic ‘mesoangioblasts’ present after birth [48].

Mesoangioblasts were transduced with a lentiviral vec-

tor expressing human microdystrophin and injected

into animal models of DMD. Cossu and Sampaolesi

[49] and Sampaolesi et al. [50] notably obtained the

recovery of dystrophin and also improvements in mus-

cle function and mobility, especially in GRMDs. From

a clinical point of view, they attempted to ameliorate

the migration ability of mesoangioblasts by exposing

them to stromal-derived factor (SDF)-1 tumour necro-

sis factor-a and by enhancing the expression of cyto-

kines such as a4-integrins and L-selectin [51]. In this

way, and after injection into dystrophic mice, these

mesoangioblasts allowed the reconstitution of more

than 80% of a-sarcoglycan-expressing fibres, with a

five-fold increase in efficiency compared to control cells

[51]. More recently, Tedesco et al. [52] treated mdx-

derived mesoangioblasts with a human artificial chro-

mosome vector containing the entire (2.4 Mb) human

dystrophin genetic locus. Once transplanted into dys-

trophic mice, genetically corrected cells engrafted

robustly and differentiated into dystrophin-positive

muscle fibres and muscle-SCs, giving rise to a morpho-

logical/functional amelioration of the dystrophic phe-

notype that lasted for up to 8 months after

transplantation [52].

Based on the evidence suggesting that mesoangio-

blasts ameliorated the pathological phenotype of dif-

ferent animal models of muscular dystrophy [53],

Tedesco et al. [54] studied the effects of these cells in

related diseases, such as limb-girdle muscular dystro-

phy 2D (LGMD2D). Because LGMD2D patients have

a reduced numbers of pericytes, such that it could be

impossible to obtain sufficient mesoangioblasts for

autologous cell therapy, fibroblasts and myoblasts

were reprogrammed from LGMD2D patients. Accord-

ingly, human-induced pluripotent stem cells (iPSCs)

were generated, leading to the development of a proto-

col for the derivation of mesoangioblast-like cells from

these iPSCs. Once obtained, the iPSC-derived mesoan-

gioblasts were genetically corrected in vitro and trans-

planted into a-sarcoglycan-null immunodeficient mice,

generating a-sarcoglycan+ muscle fibres [54]. Because

it is well known that mesoangioblasts could be useful

for treating DMD, as well as also other forms of mus-

cular dystrophies, these cells are currently undergoing

a phase I/II clinical trial (EudraCT no. 2011-000176-

33).

Blood- and muscle-derived CD133+ cells

CD133 is a member of a novel family of cell surface

glycoproteins [55–57] and was recognized to be the

homologue of mouse prominin-1. Miraglia et al. [56]

and Yin et al. [57] identified, for the first time, the

expression of CD133 antigen in haematopoietic sys-

tem-derived CD34+ stem cells. Subsequently, CD133

expression was demonstrated in several different tis-

sues, including retinoblastoma [56], myogenic cells [58],

endothelial progenitors and foetal brain neural stem

cells [59]. In particular, we isolated and characterized a

novel stem cell population (i.e. human circulating

CD133+ cells) that restored dystrophin expression and

eventually regenerated the SC pool in dystrophic scid/

mdx mouse [58].

More recently, we compared the behaviour of two

distinct CD133+ cell populations isolated from blood

and skeletal muscle tissues, and we characterized their

ability to express an exon-skipped version of human

dystrophin after transduction with a lentivirus carrying

a construct designed to skip exon 51 [60] (Fig. 2).

Transplanted into scid/mdx mice, these cells differenti-

ated into muscular and endothelium lineages [25]. In

particular, they allowed the expression of a functional

human dystrophin and restructured the dystrophin-

associated protein complex, as shown by plasmalem-

mal re-expression of a- and b-sarcoglycans proteins.

Muscle-derived CD133+ cells showed a better muscle

regeneration compared to the results obtained with
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blood-derived stem cells [25]. Interestingly, we assessed

the possible SC-like differentiation of transplanted

cells because they were located beneath the basal lam-

ina and distributed along freshly isolated fibres,

expressing M-cadherin. In parallel, we planned a Phase

I clinical trial injecting autologous muscle-derived

CD133 stem cells into DMD muscles. Transplanted

cells remained as mononucleated cells around vessels

and muscle fibres in the dystrophic muscle environ-

ment, promoting an increase in the number of capillar-

ies per muscle fibres [58,61]. More importantly, we

showed, for the first time, that intramuscular trans-

plantation of muscle-derived CD133+ stem cells in

DMD muscle patients is a safe and feasible procedure

[58].

Although the proliferation rate of these cells and the

strategy for delivering myogenic cells to the affected

muscles need to be ameliorated, these results could

represent a first step in future clinical trials for DMD

based on the autologous transplantation of engineered

CD133+ stem cells.

A major limitation in these studies is the heterogene-

ity of stem cell populations because all cells express

two or three antigens and this intrinsic characteristic

determines the efficacy (or not) in clinical protocols

[62]. For this reason, another important point support-

ing muscular tissue functionality is the ability to

recruit resident and circulating progenitors for myo-

genesis: in this sense, CD133+ cells were characterized

for their regenerative potential in vivo, as well as their

ability to repopulate the satellite cell niche.

Negroni et al. [63] identified a highly myogenic

CD133+CD34+ subpopulation. They demonstrated

that, in the interstitial space of muscle injected with

these cells, more human mononuclear cells remained

compared to human myoblasts. The percentage of

undifferentiated interstitial cells confirms that all

CD133+ stem cells are not at the same stage of myo-

genic commitment, and that some of cells never

advance to terminal differentiation [63].

CD133+ cells and mesoangioblasts displayed similar

behaviours under experimental conditions: mesoangio-

blasts [24] and CD133+ cells [64] share the ability to

migrate through the vasculature, meaning that these

cells are good candidates for cell therapy. Such evi-

dence suggests that there may be a probable connec-

tion between the origin and development of these two

kind of progenitors cells.

A B

DC

Fig. 2. (A) Human CD133+ stem cells isolated from normal muscle tissue in proliferation medium. Cells were visualized using IMAGEQUEST

software (Thermo Fisher Scientific Inc.) (910 magnification; DMIR2). (B) Muscle-derived CD133+ cells were plated in differentiation medium

and differentiated into myotubes expressing myosin heavy chains (green). (C) Human CD133+ stem cells isolated from normal blood in

proliferation medium (910 magnification; DMIR2). (D) Blood-derived CD133+ stem cells were plated in the presence of murine myotubes.

Human cells expressing lamin A/C (red) fused with murine myotubes expressing myosin heavy chains (green), giving rise to multinucleated

heterozygous murine/human myotubes (green).
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MSCs

‘Bona fide’ MSCs are isolated from adult and foetal

bone marrow, and comprise clonogenic and adherent

cells. Moreover MSC-like cells were found to reside in

several host tissues and organs [65–67] and differenti-

ated not only into osteogenic, chondrogenic and adi-

pogenic lineages, but also into other mesodermal

(myocyte, endothelium, cardiomyocyte), ectodermal

(neuronal) and endodermal (hepatic, pancreatic, respi-

ratory epithelium) lineages (Fig. 1B). Recently, human

MSC-like cells were isolated from healthy muscle tis-

sue biopsies [68] and surgical waste tissues [69].

Because they were obtained with non- or minimally

invasive-biopsy procedures, skeletal muscle could be

an important clinical source of MSC-like cells for ther-

apeutic applications [70]. MSCs migration to injured

tissue is strictly controlled by several chemokine sig-

nals. SDF-1 is an ubiquitous MSC chemo-attractant

associated with several diverse tissue injuries [71–73].
SDF-1 is able to stimulate the homing of stem cells to

the areas of hypoxia: in myocardial infarction or

stroke, SDF-1 was associated with the mobilization of

stem cells to the periphery and homing to the site of

injury [74,75]. Goncalves et al. [76] genetically modi-

fied human mesenchymal stem cells with a full-length

dystrophin coding sequence so that these cells were

able to participate in myogenesis through cellular

fusion. Based on this important evidence, Gang et al.

[77] isolated MSC-like cells from human umbilical

cord blood and showed that they differentiated into

skeletal muscle, rather than osteoblasts and adipocytes

[78,79]. Cultured in myogenic medium, more than half

of umbilical cord blood-MSC-like cells were positive

for myosin and expressed myogenic markers such as

MyoD and myogenin [77]. As the development of

inflammation and, consequently, the chronic wound

healing response is one of the most important prob-

lems in dystrophic patients, the use of mesenchymal

stem cells as inhibitors of inflammation is conceptually

appealing.

Riordan et al. [80] demonstrated that, in the bone

marrow, one of the main functions of MSCs is the pro-

tection of haematopoietic precursor from inflammatory

damage. Nemeth et al. [81] showed that these cells were

capable of inhibiting one of the most potent inflamma-

tory processes, septic shock, through modulation of

macrophage activity. Furthermore, it was reported that

the injection of syngeneic (or in some cases allogeneic)

MSCs inhibited chronic inflammatory processes in ani-

mal models of autoimmune arthritis and diabetes

[82,83], multiple sclerosis [84,85] and lupus [86]. Differ-

ent studies have explained the multifactorial roles

played by MSCs in controlling inflammation. Song

et al. [87] described the role of synovial fluid in regulat-

ing the migration of MSCs and their control of the

inflammation process in chronic inflammatory diseases

such as rheumatoid arthritis. Rafei et al. [88] studied

the behaviour of MSCs in reversing symptomatic neur-

oinflammation in experimental autoimmune encephalo-

myelitis and found that their role was exerted through

the paracrine conversion of CCL2. Subsequently,

MSCs were used in DMD patients because, in addition

to their anti-inflammatory activity, they possessed the

ability to fuse with recipient muscle fibres and geneti-

cally complement dystrophic muscle, allowing the pro-

duction of trophic factors stimulating the activity of

endogenous cells [89]. As described above, DMD

pathology is characterized by an irreversible muscle

degeneration caused by a progressive decrease in the

number of SCs. Accordingly, the most important aim

of transplanted stem cells could be replenishment of

the SC compartment and restoration of the regenera-

tion potential necessary for muscle tissue homeostasis

and repair [40,90,91]. De Bari et al. [92] demonstrated

that adult human synovial membrane-derived mesen-

chymal stem cells (hSM-MSCs) had myogenic potential

in vitro. More recently De Bari et al. [93] transplanted

hSM-MSCs into nude mouse muscles and found that

these cells contributed to myofibres and functional SC

formation. It was also shown that their differentiation

was regulated by specific cues because hSM-MSCs were

found in several tissues of the recipient animal but

differentiated only within skeletal muscle. Injected

into mdx mice, they ameliorated the dystrophic pheno-

type of these mice and restored the expression of

dystrophin [93].

Conclusions

Subsequent to the discovery of the dystrophin gene, it

was assumed that characterization of the molecular

defects causing DMD and the association with dystro-

phin would result in the development of a therapy for

this neuromuscular disorder. Unfortunately, we have

yet to find an effective therapy for the dystrophic pro-

cess. Although numerous approaches have been investi-

gated, many suffer from a variety of drawbacks. Stem

cell therapy is an attractive method for treating muscu-

lar dystrophy because only a small number of cells,

together with a stimulatory signal for expansion, is

required to obtain a therapeutic effect. From a clinical

point of view, a candidate stem cell must possess a high

rate of proliferation and remain capable of efficient

myogenic conversion [36]. As described above, a stem

cell population with myogenic potential at various

4256 FEBS Journal 280 (2013) 4251–4262 ª 2012 The Authors Journal compilation ª 2012 FEBS

Cell therapy in Duchenne muscular dystrophy M. Meregalli et al.



stages of development has been found and character-

ized from multiple regions of the body.

Unfortunately, one of the most important problems

to be overcome is survival and subsequent migration

from the site of injection to the compromised muscles

of the body. Determination of the mechanisms involved

in the muscle homing of stem cells will aid the develop-

ment of a potential therapy for muscular dystrophies

based on the systemic delivery of stem cells. Accord-

ingly, several research groups have described the role of

adhesion molecules in mediating both rolling and arrest

in vivo in blood vessels [94,95], whereas others have

revealed certain mechanisms and identified specific

growth factors that allow the survival and proliferation

of transplanted stem cells [96]. Mesoangioblasts [24],

muscle side-population [97] and blood derived CD133+

[64] have the ability to migrate through the vasculature,

whereas most other suitable stem cells do not. Recently,

Doherty et al. [98] demonstrated that pericytes, which

are endothelial-derived cells that line the capillaries,

have osteogenic potential. Moreover, they showed that

pericytes represent a population of primitive precursors

cells or multipotent mesenchymal progenitors because

they are capable of differentiating into several cellular

lineages [98]. If pericytes took part in myogenic regen-

eration, this could explain the widespread distribution

of atypical stem cell populations with myogenic poten-

tial [36]. According to the results obtained in animal

models [99,100], SCs were used in cell-based therapy of

muscular dystrophies, although no promising results

were obtained. Nevertheless, Skuk et al. [101] reported

a study conducted in a 26-year-old DMD patient. The

patient was immunosuppressed with tacrolimus and

received normal muscle-precursor cells in biceps bra-

chii: following implantation of stem cells, 27.5% of the

myofibre profiles expressed donor-derived dystrophin

1 month post-transplantation and 34.5% expressed

donor-derived dystrophin 18 months post-transplanta-

tion. The method used in this trial was termed a ‘high-

density injection’ protocol but, unfortunately, it is

applicable only to skeletal muscles accessible from the

body surface [101]. In a double-blind phase I clinical

trial, we transplanted autologous CD133+ cells

extracted from muscle biopsies by intramuscular injec-

tion into eight boys with DMD and took samples after

7 months. The experimental plan aimed only to test the

safety of implanted cells and no adverse effects were

reported [102]. The most important goal of therapeuti-

cal approaches is the reconstruction of functional tis-

sues in skeletal muscles that have been severely

replaced by fat and fibrosis, offering the possibility of

restoring strength in advanced and severely affected

patients. A clear possibility is that the effective manage-

ment and therapy of DMD could only be achieved

through a combination approaches, such as cellular

therapy associated with gene therapy or pharmacologi-

cal treatment. We applied this concept in the DMD

field: we used an exon-skipping technique to allow the

expression of human dystrophin within the DMD

CD133+ cells to permit the use of the patient’s own

stem cells, thus minimizing the risk of immunological

graft rejection [103]. Van Deutekom et al. [104]

described the safety and local dystrophin-recovery

achieved following a single intramuscular injection of

the antisense nucleotide PRO051 that was specifically

designed to skip exon 51. The limited studies performed

so far suggest that intramuscular injection of myoblasts

[105–107] and, above all, muscle-derived CD133+,

appeared to be safe [102]. However, in our opinion, the

intra-arterial injection of a patient’s own transduced

stem cells is the best way to treat degenerative muscular

diseases such as DMD. Indeed, the systemic distribu-

tion of the cells is the only way to deliver them to the

whole body musculature and, consequently, treat

severely affected patients who have a reduced body

mass. Whatever strategy is used, additional efforts will

be necessary aining to increase the proliferation and

capacity of stem cell migration and the amelioration of

safety procedures with respect to gene modifications.
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