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Abstract: Urine proteomic applications in children suggested their potential in discriminating be-
tween healthy subjects from those with respiratory diseases. The aim of the current study was to
combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in
order to establish whether different patterns of respiratory impedance in healthy preschoolers can
be characterized from a protein fingerprint. Twenty-one 3–5-yr-old healthy children, representative
of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children
underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and
no significant differences between LP and T were found. Unbiased clustering, based on proteomic sig-
natures, stratified three groups of children (A, B, C) with significantly different patterns of respiratory
impedance, which was slightly worse in group A than in groups B and C. Six proteins (Tripeptidyl
peptidase I (TPP1), Cubilin (CUBN), SerpinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and
Angiopoietin-related protein 2 (ANGPTL2)) were identified in order to type the membership of sub-
jects to the three groups. The differential levels of the six proteins in groups A, B and C suggest that
proteomic-based profiles of urinary fractionated exosomes could represent a link between respiratory
impedance and underlying biological profiles in healthy preschool children.

Keywords: extracellular vesicle; urine fractionation; proteomics; forced oscillation technique;
preschooler healthy children

1. Introduction

Physiological changes throughout childhood characterize lung function, which is at
least in part influenced by perinatal factors, including prematurity. Significantly, Late
Preterm (LP, 34–36 weeks’ gestational age, GA) children without clinical lung disease may
show deficits in lung function that may persist throughout infancy [1]. Indeed, increased
respiratory impedance was reported in healthy children aged 3–7 years born LP in compar-
ison with age-matched healthy term-born children [2]. Studying the underlying biological
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profiles may provide additional knowledge on this functional picture. In this context,
omics technologies have shown the potential to discriminate healthy schoolchildren from
those with respiratory diseases, unlike lung function tests such as spirometry [3]. No data
have been published so far with regard to healthy preschool children and their respiratory
impedance.

Concerning lung investigations, advances in proteomics have led to the discovery
of several new protein markers, allowing the characterization of proteins from both lung
tissue and urine which are involved in respiratory diseases [4–6]. In particular, the fraction-
ation of urine samples allows the isolation of extracellular vesicles, and the characterization
of their protein profiles is useful to stratify asthmatic patients by specific biomarkers, such
as galectin-3 binding protein [6]. Urine is becoming one of the most attractive bio-fluids
in clinical proteomics because of its high protein and peptide content and also because
procuring it is easy and non-invasive [7]. Indeed, a specific fraction of urine represented
by extracellular microvesicles (EVs) has attracted increasing research interest, given the
high presence in them of proteins involved in intercellular communication and molecular
pathways [8]. Previous studies demonstrated that the proteomic profiling of urine samples
might be applicable to pediatric age. In particular, urine proteomic applications in chil-
dren suggested their potential in discriminating between healthy subjects and those with
obstructive sleep apnea [9]. Of note, the proteomic profiles of urine in healthy preschool
children have not been investigated so far.

The aim of the present study was to verify that proteomics analysis allows protein
profiles useful to characterize the eventual different patterns in healthy preschool children
born late preterm (LP) and full-term (T) and their respiratory impedance. To improve
the specificity of our analysis, we combined proteomics analysis with the isolation of a
specific protein urinary compartment, such as extracellular vesicles, in order to establish
whether different patterns of respiratory impedance can be characterized from a proteomics
fingerprint.

2. Results
2.1. Characteristics of Study Participants

A sub-sample of 21 randomly selected subjects (LP = 12; T = 9) for proteomic analysis
was comparable to the entire sample of 66 children, since no difference was detected for
personal characteristics and Forced Oscillation Technique (FOT) parameters (Table S1).
Among the 21 subjects, no significant differences were found between LP and T, except for
height Z-score and birthweight, which were significantly lower in LP (Table 1). In the same
way, in the total sample (n = 66), no differences were found for the Z-scores of Resistance
of the respiratory system (Rrs) and Reactance of the respiratory system (Xrs) at 6, 8, and
10 Hz and area under the reactance curve (AX) between late preterm (LP) and term (T)
either (data not shown).

2.2. Isolation of Urinary Extracellular Vesicles and Proteomics Analysis

Urinary proteins were fractionated by extracellular vesicles isolation using ultracen-
trifugation, and size assessed by dynamic light scattering, displaying a size distribution
(Figure 1) with a peak occurring roughly at 150 nm typical for extracellular vesicles [10,11].
Urine yielded an amount of extracellular vesicles around 2–3 × 109/mL (Figure 1).

After protein extraction and tryptic digestion, urinary extracellular vesicles were
analyzed by shotgun proteomics, based on nanoLC-MS/MS, and 1127 proteins were
identified (Table S2) in a wide range for both molecular weight and isoelectric point
(Figure S1a). Interestingly, each technical replicate showed both linear correlation and
slope close to a theoretical value of 1 (Figure S1b). From protein lists, an nxm matrix was
prepared, consisting of identified proteins presenting a frequency >25% (out of 42 runs):
hierarchical clustering placed children in three distinct groups (A, B and C) (Figure 2), while
linear discriminant analysis (LDA) extracted 360 proteins (F ratio > 5 and p-value < 0.01)
as discriminants (Table S3). About 74 and 26% proved to be shared or related to a specific
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group, respectively (Figure S2). Identified proteins were compared to the Vesiclepedia
database (http://microvesicles.org/ (accessed on 17 December 2020)), and more than 90%
were known as EV proteins; in addition, gene ontology analysis confirmed the localization
of identified proteins mainly as exosome and extracellular-like (Figure S3).

Table 1. Subject characteristics between late preterm (LP) and term (T) in the study sub-sample (n = 21).

LP T p-Value

n = 12 n = 9

Personal characteristics
Female (%) 5 (41.67) 2 (22.22) 0.640

Z-score Height, mean (SD) −0.92 (1.08) 0.21 (1.03) 0.033
Z-score BMI, mean (SD) 0.64 (1.47) 1.09 (1.09) 0.337
Age, years, mean (SD) 3.67 (0.78) 4.56 (0.73) 0.015

Birthweight, mean (SD), gr 2123.33 (576.78) 3012.22 (829.02) 0.012
Cesarean Delivery, n (%) 10 (83.33) 7 (77.78) 1.000

Maternal diseases in pregnancy, n (%) 2 (16.67) 0 (0.00) 0.592
Respiratory support, n (%) 5 (41.67) 3 (33.33) 1.000

Bronchiolitis 1st year of life, n (%) 4 (33.33) 4 (50.00) 0.780
Upper respiratory infection ever, n (%) 5 (41.67) 4 (44.44) 1.000

Pneumonia ever, n (%) 0 (0.00) 3 (33.33) 0.126
Environmental exposure

Proximity to high traffic road <200 m, n (%), 10 (83.33) 9 (100.00) 0.592
Current parental smoke exposure, n (%), 4 (33.33) 0 (0.00) 0.173

Current pet exposure, n (%), 3 (25.00) 2 (22.22) 0.592
Current mold exposure, n (%), 2 (16.67) 0 (0.00) 0.592

FOT parameters
Z-score

Rrs6 0.98 (1.49) −0.27 (3.79) 0.887
Rrs8 0.75 (1.34) −0.71 (3.86) 0.619

Rrs10 0.92 (1.35) −0.57 (3.85) 0.670
Xrs6 −1.36 (2.33) −0.43 (2.23) 0.522
Xrs8 −1.64 (2.05) −0.86 (2.54) 0.570
Xrs10 −1.55 (1.94) −0.65 (2.22) 0.522

AX 2.06 (2.26) 0.80 (2.92) 0.356

Data are presented as n (%) or mean (SD). *X2 test was used for comparing frequencies; Kruskal–Wallis test for comparing quantitative
variables, bold values are significant. FOT, Forced Oscillation Technique; Rrs6, respiratory system resistance at 6 Hz; Rrs8, respiratory
system resistance at 8 Hz; Rrs10, respiratory system resistance at 10 Hz, Xrs6, respiratory system reactance at 6 Hz; Xrs8, respiratory system
reactance at 8 Hz; Xrs10, respiratory system reactance at 10 Hz; Ax, area under the reactance curve.

Identified proteins from A/B/C groups were compared, and differentially expressed
proteins (DEPs) were extracted using a label free approach based on SpCs (Spectral Counts)
value. In fact, SpC represents the total number of MS/MS spectra assigned to each protein
and, consequently, it reflects protein relative abundance in each analyzed sample. In par-
ticular, the proteins differentially expressed in the three groups were semiquantitatively
evaluated by the DAVE (differential average) and DCI (differential confidence index) al-
gorithms from the MAProMa software. In this way, 232 distinct DEPs were identified:
about 90% of them (212 proteins) were common to discriminants obtained from LDA
(Table S3, Figure S4). In addition, 15 of these proteins proved to be highly confident, in
terms of statistical and differential analysis, for each group, and matched with discriminant
by LDA; in particular, six proteins (Tripeptidyl peptidase I (TPP1), Cubilin (CUBN), Ser-
pinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and Angiopoietin-related protein
2 (ANGPTL2)) were found to be differently distributed among the three groups of children
(Figure 3a). Additionally, the α-value algorithm made it possible to estimate the relative
abundance of selected proteins (TPP1, Serpins and THY1) for each of the 21 subjects, allow-
ing assignment to group A, B or C (Figure 3b and Figure S5) by a set of selected proteins.
In particular, TTP1 and Serpin are higher in groups A and C, respectively, while in these
groups THY1 is very low; on the contrary, group C is characterized by a similar level for the

http://microvesicles.org/


Molecules 2021, 26, 1258 4 of 14

three proteins. Typing confirmation may be obtained by the other three proteins: CUBN
distinguishes group A from B and C; and SerpinA4 and ANGPTL2 differentiate group C
from A and B.

Figure 1. Schematic resume of the extracellular vesicle analysis carried out with nanosight NS300. The tables (a) collect the
data regarding the measurements of preterm and term pregnancy; the highlighted data are the mean and the mode of the
particles recorded by the instrument and the concentration per milliliter of the particles with a diameter lower than 200 nm.
The picture (b) is a representative image taken during the extracellular vesicle analysis with nanosight. The graphs (c) are a
simplified representation of the extracellular vesicle absolute size distribution and nanovesicle concentration per ml linked
to their sizes; the red shadow is the standard deviation and the black line is the mean of 5 separate and consecutive analyses.

Figure 2. Linear Discriminant Analysis (LDA) placed children in three distinct groups called A, B and C.
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Figure 3. Relevant proteins useful to characterize the groups stratified by cluster analysis. (a) Boxplots
of the 6 proteins (TPP1, CUBN, SERPINF1, SERPINA4, ANGPTL2 and THY1), expressed as spectral
count, among groups A (n = 9 children), B (n = 6 children) and C (n = 6 children); (b) α-value
calculation for three selected discriminant proteins.
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Furthermore, eleven CD (Cluster of Differentiation) markers were identified: among
them, six showed confident statistical and differential values. Specifically, CDs always
proved lower and higher in groups C and B, respectively (Figure 4).

Figure 4. (a) Identified Cluster of Differentiation (CD), including average spectral count (aSpC), differential average (DAVE)
and differential confidence index (DCI) values, and LDA; (b) Levels (aSpC) of more abundant CDs in the three groups (A, B
and C). *Positive (red) and negative (blue) DAVE and DCI values indicate proteins upregulated in first and second item of
comparison, respectively, representing confident values (higher than |0.2| and |10|, for DAVE and DCI, respectively).

Finally, in order to identify protein pathways in the three groups (A, B and C), selected
descriptors of the three groups were plotted into the Homo sapiens protein–protein interac-
tion network (Figure S6 and Table S3); in this way, it is possible to evaluate, in a simplified
way, the differences of pathway expression between the groups [12]. Specifically, the
modules related to the immune system, extracellular matrix (ECM), collagens and kinase
proved to be mainly up-regulated in group B and downregulated in group C, while keratin,
lipid metabolic process and carboxylic acid metabolic process proved to be up-regulated in
group C (Figure 5).
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Figure 5. Protein expression per functional cluster. Enrichment of main functional categories of low (blue) and high (red)
abundant proteins (Figure S4) in groups A, B and C. Bubble size is indicative of the number of proteins involved in each
pathway. ECM stands for extracellular matrix.

2.3. Linking FOT Parameters and Proteomics

The Z-scores of resistance and reactance at 6, 8, and 10 Hz and AX in the three groups
(A, B and C) are depicted in Figure 6. After multiple comparisons, groups A and C were
statistically different for all FOT parameters, in particular, the Z-scores for resistance at
Rrs6, Rrs8, and Rrs10 Hz and AX values in group A were higher than in group C. The
Z-scores for reactance at Xrs6, Xrs8, and Xrs10 Hz values in group A were lower than in
group C; groups A and B were statistically different for Z-scores scores reactance at Xrs8
and Xrs10 Hz values, which were lower in group A than in group B (Figure 6).
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Figure 6. Baseline Z-scores of resistance at Rrs6, Rrs8, and Rrs10 Hz and reactance at Xrs6, Xrs8, and Xrs10 Hz and AX in
the three groups A, B and C. p-values come from a Kruskal–Wallis test. On the vertical axes, the labels of FOT measures are
reported, on the horizontal axes the labels of each group are reported. Dashed lines represent the normal limit.

3. Discussion

Here, we report the application of an innovative approach based on urinary pro-
teomics to characterize the respiratory impedance in healthy preschoolers. Analyzing urine
proteome, we were able to link the underlying biological profiles and different patterns of
respiratory impedance observed in healthy preschoolers. Of note, the three proteome-based
groups evidenced significantly different resistance, reactance and AX values measured by
FOT, regardless of being LP or T. Specifically, we identified groups of children with dif-
ferent respiratory impedance based on the molecular stratification of fractionated urinary
proteome. Unlike the entire urine sample used in previous studies by Becker et al. and
Starodubtseva et al. [9,13], we utilized the extracellular vesicle fraction, which is considered
the carrier of functional signals [14], making it possible to identify over 1100 proteins.
Indeed, correct fractionation is confirmed by the level of typical free urinary proteins:
we found that albumin and serotransferrin levels, free proteins in urine samples, were
decreased 5–6 times with respect to the levels usually reported in the entire urine [13]. By
contrast, typical exosomal proteins were detected at a higher level in urinary extracellular
vesicle samples; for example, inter-alpha-trypsin inhibitors, such as ITIH4, increased 5–6
times compared to the level found in the entire urine [13]. Additionally, we identified 9 out
of the top 10 proteins that are often detected in extracellular vesicles (exocarta website;
http://exocarta.org/exosome_markers_new (accessed on 17 December 2020)).

http://exocarta.org/exosome_markers_new
http://exocarta.org/exosome_markers_new


Molecules 2021, 26, 1258 9 of 14

Overall, in our study, the biomarkers characterized in urinary extracellular vesicles
corresponded to about 50% of urinary biomarkers identified by Becker et al. in children
with obstructive sleep apnea [9]. In addition, six out of our 15 highly confident proteins
were confirmed, including Cubilin (CUBN) and Angiopoietin-related protein 2 (ANGPTL2),
which we proposed for typing proteomics groups (A, B and C) by an adapted alpha-value
algorithm. Our proteomic data are in agreement with those published by Starodubseva
and coworkers [13,15], as almost all their identified proteins in newborns correspond to
those characterized in our study. The correspondence is quite high (about 70%) considering
the so-called “core proteome of urine”, including 104 proteins, and it increases to 100%
considering only proteins distinguishing newborns with and without respiratory infectious
disorders [16].

By means of clustering analysis of microvesicle proteome profiles, three subgroups
(named A, B and C) were identified in the overall sample of children. More importantly,
the three proteome-based sub-groups had significantly different resistance, reactance and
AX values measured by FOT. These findings indicate that different patterns of respiratory
impedance were found, being slightly worse in group A than in groups B and C. Therefore,
the analysis of fractionated proteome appeared to be informative in depicting the biological
profiles underlying different patterns of respiratory impedance in healthy preschoolers.

To simplify the monitoring, we selected six proteins (Tripeptidyl peptidase I (TPP1),
CUBN, SerpinF1, SerpinA4, Thy-1 membrane glycoprotein (THY1) and ANGPTL2) for
typing the membership of subjects to the three groups (A, B and C), and three of them
(TPP1, THY1 and SerpinA4) were applied in the alpha-value algorithm. TPP1, which
proved to be higher in group A, is a peptidase localized in type II alveolar epithelial
cells [17]. Interestingly, Ohlmeier et al. found that TPP1 showed high levels in mild to
moderate chronic obstructive pulmonary disease [18]. CUBN, a plasma membrane receptor
expressed on alveolar type II cells involved in endocytic update of vitamin D, proved to
be higher in group A. The finding that the aforementioned urinary proteins proved to be
higher in children with the worst FOT parameters (group A) might suggest their role as
putative biomarkers of small airway impairment.

The two selected SerpinF1 (Pigment epithelium-derived factor, PEDF) and SerpinA4
(Kallistatin) were found to be higher in group C than in subjects in groups A and B. The
role of SerpinF1 has been clarified in animal models, showing that this protein is able to
inhibit eosinophilic airway inflammation, airway hyperresponsiveness and airway remod-
eling [19]. Similarly, SerpinA4 showed anti-inflammatory activity in animal models [20].
These findings in children with the best FOT parameters may be suggestive for a putative
role of these two proteins in preserving lung function.

Children in group B were characterized by higher levels of Thy-1 membrane glyco-
protein (THY1), also known as CD90, and lower levels of angiopoietin-related protein 2
(ANGPTL2) than those in groups A and C. The role of THY1 is as a glycophosphatidyli-
nositol anchored cell surface glycoprotein [21,22], and it has been recently characterized to
be a key regulator of the WNT pathway, attenuating interstitial pulmonary fibrosis and
promoting lung fibroblast apoptosis [23]. ANGPTL2 derived from lung epithelial cells has
a protective role against fibrosis in lungs [24]. Then, we can conclude that the differential
levels of the six proteins in groups A, B and C provide a characterization of the biological
profiles underlying different patterns of respiratory impedance.

The application of network analysis allowed us to find a number of modules that
showed a similar trend for groups A and B: specifically, modules related to cell adhesion,
collagen, kinases, extracellular matrix (ECM) and the immune system showed the same
level in groups A and B, and a higher one in group C. By contrast, only proteases and
histones showed higher levels in group A. It is possible to speculate that the activation
of these pathways, specifically ECM, the immune system and proteases, is related to
inflammation pathways in the lung. Moreover, the detection of higher levels of endopep-
tidase inhibitors, complement and coagulation cascades, keratin and actin pathways in
group C might explain the finding of the best FOT parameters in this group. Altogether,
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our results open new avenues for understanding the role of biological profiling underlying
the respiratory impedance in healthy children. The lack of external validation and the
small sample size are the main limitations of the current study. Therefore, our results
must be considered preliminary and further studies are needed to confirm them in larger
groups of children. It is to be pointed out that this is the first study involving healthy
preschoolers integrating measurements of lung function and proteomics; for the latter,
in addition, in view of the abundance of information retrievable from each subject, the
sample size could be considered adequate for a proof of principle study. An important
strength is the application of unbiased proteomics-based clustering, which identified three
groups characterized by different patterns of respiratory impedance. The ongoing study
will expand the internal validity of the current findings. Although the usual application of
EVs is for investigating kidney-related diseases, recent studies evidenced that EVs can be
used to investigate unrelated urogenital diseases, such as thyroid, bladder and pancreatic
cancers [14,25], asthma [6] and neurological diseases [26].

4. Materials and Methods
4.1. Participants and Study Design

The current cross-sectional study is a part of the ongoing case-control longitudinal
observational study “PREmaturely born preschool children-Asthma and Allergic Rhinitis”
(PRE-AR). A total of 21 3–5-yr-old consecutively enrolled healthy children were preliminary
evaluated: 9 born full-term (T) and 12 born LP. The local ethics committee approved the
study (AOUP Paolo Giaccone, Palermo, Italy, n.9/2014), and written informed consent was
obtained from parents or legal guardians prior to testing. This study was performed in
accordance with the Declaration of Helsinki and Good Clinical Consent for publication. The
approved study was entered into the central registration system ClinicalTrials.gov (identi-
fier: NCT02636933). Inclusion criterion for both T and LP was 5 years old ≤ age ≥ 3 years
old. Exclusion criteria for both T and LP were the following: (i) bronchopulmonary dys-
plasia (BPD); (ii) malformation of upper respiratory tract; (iii) immunological and/or
metabolic and/or neurological diseases; (iv) any reported respiratory tract infection within
4 weeks prior to enrolment; (v) topical or systemic therapies with antibiotics, antihistamines
and corticosteroids in the 30 days prior to enrolment; (vi) patients not able to perform lung
function tests.

Information on socio-demographic characteristics, maternal disease in pregnancy
(urinary infections, gestational diabetes, pre-eclampsia), mode of delivery, neonatal res-
piratory support, bronchiolitis within the 1st year of life, history of upper respiratory
infections and pneumonia ever and current environmental exposure proximity to a high
traffic road <200 m/parental smoke/pet/mold) was obtained from parents through an
interviewer-administered questionnaire.

4.2. Forced Oscillation Technique (FOT)

Each subject underwent FOT measurement through a commercial device (Quark i2m®

Forced Oscillation Measurement system, Cosmed, Italy) based on a pseudo-random noise
signal between 4 and 48 Hz. Measurements were performed according to international
guidelines [27]. Only measurements with a 95% minimal coherence function were consid-
ered valid. Three acceptable measurements were taken, and the mean value was reported
for each child at the frequencies of 6, 8, and 10 Hz. The obtained values were transformed
into Z-scores according to reference equations [28].

4.3. Isolation of Urinary Extracellular Vesicle

About 100 mL of morning urine was collected and centrifuged at 17,000× g for 10 min
at 4 ◦C; then, 5 mL of supernatant fractions was collected and subjected to ultracentrifu-
gation at 200,000× g for 1 h at 4 ◦C to obtain extracellular vesicles for nanosight and
proteomic analyses.
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4.4. Nanosight Extracellular Vesicle Analysis

Isolation of EVs from urine samples was performed with a series of ultracentrifu-
gations as already indicated above, replacing the resuspension buffer with 500 µL of
phosphate-buffered saline PBS 1X filtered 0.1 µm. Evaluation of the vesicle size distribu-
tion profiling was performed with the Nanoparticle Tracking Analysis (NTA) technique
(Nanosight NS300, Malvern Instruments Limited, Worcestershire, UK). The NTA measure-
ment settings were set as follows: temperature 23.75 ± 0.5 ◦C; viscosity 0.91 ± 0.03 cP;
measurement time of 60 s for each of the five repeated records per sample; infusion flow
speed 30 and camera level 13. All extracellular vesicle samples were diluted with PBS 1X
filtered 0.1 µm; the dilution factor was adapted in accordance with the initial concentration
of the sample in order to perform all the analysis in a range of 20 to 120 particles per frame.

4.5. Proteomics Analysis of Urinary Extracellular Vesicle

The isolated EVs from urine samples were resuspended in 0.1 M ammonium bicarbon-
ate (Sigma-Aldrich Inc., St.Louis, MO, USA company, city, state abbrev if USA, country),
pH 7.9, and were trypsinized according to procedures previously reported [29], using
50 ± 0.5 µg of proteins from each sample.

One microliter (about 1 µg injected) of trypsin-digested mixtures was analyzed by
nano-cromatography equipped with a cHiPLC-nanoflex system (Eksigent, AB SCIEX,
Dublin, CA, USA city, state abbrev, USA) coupled to a Q-Exactive mass spectrometer
(Thermo Fisher Scientific, San José, CA city, state abbrev, USA), through a 65 min gradient
of 5–45% of eluent B (eluent A, 0.1% formic acid (Sigma-Aldrich Inc., St Louis, MO,
USA company, city, state abbrev if USA, country) in water; eluent B, 0.1% formic acid in
acetonitrile (Sigma-Aldrich Inc., St Louis, MO, USA company, city, state abbrev if USA,
country)), at a flow-rate of 300 nL/min.

Full mass spectra were recorded in positive ion mode over a 400–1600 m/z range at a
70,000 FWHM (full width at half maximum) resolution, followed by 10 MS/MS spectra, at a
resolution of 17,500 FWHM, generated in a data-dependent manner on the most abundant
ions.

All data generated were searched using Proteome Discoverer 2.1 platform (Thermo-
scientific) based on SEQUEST search engine and human protein database (70,726 entries,
downloaded on January 2017 from UNIPROT website, www.uniprot.gov (accessed on 17
December 2020)).

The obtained protein lists were aligned, normalized [30] and then processed by means
of Linear Discriminant Analysis (LDA) [31]. For assigning each subject to a specific group,
the α-value parameter was calculated according to the extracted marker proteins [32] (for
more details, see Supplementary Materials).

The cellular component enrichment of proteins in the examined conditions and the
comparison versus the Vesiclepedia database were achieved using FunRich (version 3.1.3,
company, city, state abbrev if USA, country) (open access standalone software download-
able from http://www.funrich.org/ (accessed on 17 December 2020)).

4.6. Network Analysis

Starting from the list of proteins selected by differential and LDA procedures, the
corresponding Homo sapiens Protein–Protein Interaction (PPI) network was extracted,
and by means of the Cytoscape plug-in, STRING 8 database [33], known interactions were
retrieved from several databases such as Prolink, DIP, KEGG and BIND. In addition, PPI
was examined using Cytoscape 3.5 [34], and only experimentally verified interactions with
>0.15 score were retained. Finally, Bingo 2.44 [16] was used to emphasize modules based
on functionally organized gene ontology GO terms.

4.7. Statistical Analysis

The criteria for the identification of peptide sequences and related proteins were
the following: trypsin was used as an enzyme; three missed cleavages permitted per

www.uniprot.gov
http://www.funrich.org/
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peptide; mass tolerances of 10 ppm for precursor ions and ±0.05 Da for fragment ions were
applied. A percolator node was used with target-decoy strategy to give final false discovery
rates (FDR) at a Peptide Spectrum Match (PSM) level of 0.01 (strict) based on q-values,
considering a maximum deltaCN of 0.05 [35]; a minimum peptide length of six amino
acids and rank 1 were considered, and protein grouping and strict parsimony principle
were applied.

Differences of categorical variables were evaluated using the X-squared test. The
Kruskal–Wallis test was applied for comparing quantitative variables. Analyses were
performed using R (3.5.2) statistical analysis software; a p-value < 0.05 was considered
statistically significant.

A spectral counts (SpCs) based quantitative approach, although sometimes it is less
accurate that other methods, is more easy to apply, and it is enough for statistical analysis
if it is applied to evaluate differential expression comparing the same proteins and its
value [36], combined with statistical analysis, such as by t-test, too [37]; proteins selected by
both LDA and MAProMA (Multidimensional Algorithm Protein Map) were evaluated by
hierarchical clustering [38,39], applying Ward’s method and the Euclidean distance metric.
LDA using common covariance matrix for all stratified groups and Mahalanobis distance
and hierarchical clustering were performed by JMP 5.1 software (SAS Institute, Cary, NC,
USA company, city, state abbrev if USA, country)). To select proteins discriminating the
stratified children groups, we considered those with the largest F ratio (≥5) and smallest
p-value (≤0.01). Based on direct correlation between the spectral counts (SpC, also called
PSM) and the relative abundance of identified proteins, DAve (Differential Average) and
DCI (Differential Coefficient Index) indices of MAProMa software [4] were used to process
the average (aSpC) corresponding to each analyzed children group. The threshold values
imposed were DAve > |0.2| and DCI > |5|.

5. Conclusions

Protein fractionation, by the isolation of urinary extracellular vesicles, allowed an in-
teresting statistically confident proteomic-based stratification of healthy preschool children.
These samples are of primary importance to perform investigations involving children,
reducing the invasiveness of collection; however, the biogenesis of urinary EVs remains
unknown, so it will be important to investigate their biogenesis and release. The obtained
childhood groups resulted in good agreement with the respiratory impedance and underly-
ing biological profiles in the corresponding healthy preschool children. To our knowledge,
the present study involves a higher number of healthy children investigated for urinary
proteomics, and although these data are based on a limited number of subjects, they rep-
resent a proof-of-principle about the importance of an appropriate protein fractionation,
such as extracellular vesicle purification from urine. Of course, future studies are needed
to increase the number of analyzed subjects and to understand any roles of the selected
proteins in the evaluation of physiological changes in lung function throughout childhood.

Supplementary Materials: The following are available online. Figure S1: Mapping and repeatability
of urinary extracellular vesicles by proteomics analysis, Figure S2. Proportional Venn diagram of
protein distribution in the three stratified groups: A, B and C, Figure S3. Enrichment analysis of
proteins identified in the three groups by nLC-MS/MS, Figure S4. Volcano-like plot using Dave and
DCI values of proteins with p-value < 0.01 from LDA, Figure S5. Calculation of α-value algorithm
using TPP1, Serpin and THY1 in the 21 patients analyzed, Figure S6. Identification of protein
pathways in the three groups A, B and C, Table S1. Subject characteristics of the random sub-sample
vs. the rest of the sample, Table S2: List of all proteins identified in the samples analyzed, Table
S3 Complete list of the differentially expressed proteins among the three groups examined and the
descriptors identified by LDA; three comparisons are considered; A vs. C, B vs. C and A vs. B.
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