1 Johne's disease in cattle: an in vitro model to study early response to infection of 2 Mycobacterium avium subsp. paratuberculosis using RNA-seq.

- 3
- 4 Rosanna Marino^{a,b,e,*}, Rossana Capoferri^b, Simona Panelli^{c,1}, Giulietta Minozzi^{c,2}, Francesco
- 5 Strozzi^{c,3}, Erminio Trevisi^{d,e}, Gustavo G. M. Snel^c, Paolo Ajmone-Marsan^{d,e}, John L. Williams^f
- 6
- 7 Affiliations:
- ^a Centro di ricerca Zootecnia e Acquacoltura (CREA-ZA), Consiglio per la ricerca in agricoltura e
 l'analisi dell'economia agraria, Via Antonio Lombardo 11, 26900 Lodi, Italy
- 9 l'analisi dell'economia agraria, Via Antonio Lombardo 11, 26900 Lodi, Italy
- ^b Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027 Rivolta d'Adda, Cremona, Italy
- 11 ^c Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy
- ^d Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122
 Piacenza, Italy
- ^e Nutrigenomics and Proteomic Research Center PRONUTRIGEN, Università Cattolica del S.
- 15 Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
- ¹⁶ ^f Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide,
- 17 Roseworthy, SA 5371, Australia
- 18
- 19
- 20 E-mail addresses: rosanna.marino@crea.gov.it (R. Marino), rossana.capoferri@istitutospallanzani.it
- 21 (R. Capoferri), <u>simona.panelli@gmail.com</u> (S. Panelli), <u>giulietta.minozzi@unimi.it</u> (G. Minozzi),
- <u>francesco.strozzi@ptp.it</u> (F. Strozzi), <u>erminio.trevisi@unicatt.it</u> (E. Trevisi), <u>goisvet@yahoo.com</u>
 (G. G.M. Snel), <u>paolo.ajmone@unicatt.it</u> (P.A. Marsan), <u>john.williams01@adelaide.edu.au</u> (J.L.
 Williams).
- 25
- 26
- 27
- 28

*Corresponding author at: Centro di ricerca Zootecnia e Acquacoltura (CREA-ZA), Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Via Antonio Lombardo 11, 26900 Lodi, Italy Telephone: +39 0371 450120; e-mail:

rosanna.marino@crea.gov.it.

Abbreviations: ARG2, arginase 2; CIITA, class II major histocompatibility complex transactivator; CD, Crohn's disease; CSFs, colony-stimulating factors; CISH, cytokine inducible SH2-containing protein; CSF2, granulocyte-macrophage colony-stimulating factor; CSF3, granulocyte colony-stimulating factor; DE, differentially expressed genes; $\gamma\delta$ T cells, gamma delta T cells; GO, gene ontology; IFNG, interferon gamma; IFNGR1, interferon gamma receptor 1; IFNGR2, interferon gamma receptor 2; IL, interleukin; iNOS, nitric oxide synthase 2; ITGA2, integrin subunit alpha 2; ITGB3, integrin subunit beta 3; JD, Johne's disease; MAC, membrane attack complex; MAP, *Mycobacterium avium* subsp. *paratubercolosis*; MDM, monocyte-derived macrophages; MHC, major histocompatibility complex ; OLR1, oxidized low density lipoprotein receptor 1; OSM, oncostatin M; PBMC, peripheral blood mononuclear cells; PBS, phosphate buffered saline; PI, post infection; RBC, red blood cells; SOCS3, suppressor of cytokine signaling 3; TNF α , tumor necrosis factor.

Current addresses:

¹ Dipartimento di scienze della terra e dell'ambiente, Università degli studi di Pavia, via Ferrata 1, 27100 Pavia, Italy

² Department of Veterinary Sciences and Public Health (DIVET), University of Milano, Via Celoria 10, 20133 Milano, Italy

³ Enterome Bioscience, 94/97 Avenue Ledru-Rollin, 75011 Paris, France

29 Abstract

- 30 Johne's disease is a chronic granulomatous enteritis caused by *Mycobacterium avium* subsp.
- 31 *paratubercolosis* (MAP) which affects ruminants worldwide and has a significant economic impact.
- 32 MAP has also been associated with human Crohn's disease, although this connection is not well
- 33 established. MAP is highly adapted for survival within host macrophages and prevents macrophage
- 34 activation, blocks phagosome acidification and maturation, and attenuates presentation of antigens
- 35 to the immune system. The consequence is a very long silent infection before clinical signs are
- 36 observed.
- 37 The present work examined the transcriptome of bovine monocyte-derived macrophages (MDM)
- 38 infected with the L1 strain of MAP at 2h, 6h and 24h post infection using RNA-Seq. Pathway over-
- 39 representation analysis of genes differentially expressed between infected *vs.* control MDM
- 40 identified that immune related pathways were affected. Genes belonging to the *cytokine-cytokine*
- 41 receptor interaction pathway and members of the JAK-STAT pathway, which is involved in the
- 42 regulation of immune response, were up-regulated. However, in parallel inhibitors of immune
- 43 functions were activated, including suppressor of cytokine signalling (SOCS) and cytokine-
- 44 **inducible SH2-containing protein** (*CISH*), which most likely suppresses IFNγ and the JAK/STAT
- 45 signaling cascade in infected MDM, which may favour MAP survival.
- 46 After exposure, macrophages phagocytise pathogens, activate the complement cascade and the
- 47 adaptive immune system through the antigen presentation process. However, data presented here
- 48 suggest that genes related to phagocytosis and lysosome function are down regulated in MAP
- 49 infected MDM. Genes of MHC-II complex and complement pathway were also down-regulated.
- 50 This study therefore shows that MAP infection is associated with changes in expression of genes
- 51 related to the host immune response that may affect its ability to survive and multiply inside the
- 52 host cell.
- 53
- 54 <u>Keywords</u>: Bovine, Johne's disease, macrophage, *Mycobacterium avium* subsp. *paratubercolosis*,
 55 paratuberculosis, RNA-sequencing.
- 56

57 **1. Introduction**

- 58 Mycobacterium avium subsp. paratubercolosis (MAP) is the causative agent of a granulomatous,
- 59 inflammatory chronic bowel disease in ruminants (cattle, goats, sheep, buffalo and deer), known as
- 60 Johne's disease (JD) or paratuberculosis. JD was first described in 1895 by Johne and Frothingham,
- 61 who demonstrated the presence of mycobacteria in the intestines of affected cattle in Germany
- 62 (Chiodini 1993). MAP is a gram-positive, aerobic, non-spore-forming, non-motile, acid-fast

bacillus. It has a complex relatively impermeable cell wall composed of 60% lipids, including 63 mycolic acids that are characteristic of the Mycobacteriaceae family. This cell wall enhances MAP 64 65 resistance to extremes of pH, chemicals and heat, and promotes its survival in the environment. The 66 thick cell wall also restricts the uptake of nutrients, hence the organism is very slow growing, with a 67 generation time of over 20 hours even in ideal conditions, making it difficult to culture in the 68 laboratory. 69 JD is common worldwide and it has now been reported on every continent. In Europe, although many epidemiological studies have been carried out, true MAP prevalence estimations are difficult 70 71 to obtain (Garcia and Shalloo 2015; Nielsen and Toft 2009). Most animals in an infected herd will 72 be in the silent preclinical phase of the disease and infection is only likely to be detected when an 73 animal reaches the clinical stage, typically between 2 and 5 years of age in cattle. This long latent 74 phase is a problem for monitoring and controlling the disease. Nevertheless, during the period 75 between infection and clinical manifestation of JD, infected animals may shed MAP in faeces and 76 milk, contaminating the environment and infecting other animals, and possibly humans. JD has a 77 considerable impact on the global economy, e.g. in dairy cattle herds it results in a decrease in milk 78 production, which when corrected for lactation number and herd of origin can be 1.87 kg/d, or 79 equivalent to 5.9% of the yield (McAloon et al 2016). JD is also associated with herd health 80 problems, especially mastitis and low fertility, leading to premature culling, and a reduced slaughter 81 value of the carcass (Beaudeau et al. 2007; Gonda et al. 2007; Hendrick et al. 2005; Villarino et al. 82 2011). At an international level, JD causes considerable damage to commerce resulting from the 83 limitation of trade of animals from infected farms. 84 It has been suggested that MAP is involved in Crohn's disease (CD). There are similarities in

85 symptoms and lesions between JD in ruminants and CD in humans, and MAP has been isolated

from the tissues of many CD patients (Abubakar et al. 2008; Sechi et al. 2005; Singh et al. 2008).

87 However, MAP has also found in samples from healthy humans. MAP could be the causative agent

88 of CD, a co-factor in development of the disease, or may be more prevalent in CD patients as the

result of immune dysfunction related to the disease (Rosenfeld and Bressler 2010). Despite

90 considerable research, the evidence linking MAP with Crohn's disease remains inconclusive

91 (Atreya et al. 2014; Bach 2015; Das 2012; Feller et al. 2007; Hermon-Taylor 2009; Liverani et al.

92 2014; Rosenfeld and Bressler 2010).

93 Animals are most susceptible to MAP in the first months of life, when they ingest contaminated

94 colostrum, milk and faecal material. Infection *in utero* has also been reported (Whittington and

95 Windsor 2009). This early susceptibility to infection may be due to the limited ability of young

96 animals to control intracellular pathogens (Windsor and Whittington 2010), while adult cattle seem

to be refractory to infection (Begg and Whittington 2008; Rankin 1961). After the ingestion of 97 98 MAP, the pathogen colonizes the ileum. It was then thought to cross the intestinal mucosa through 99 M-cells (specialized non-villous epithelial cells), located in Peyer's patches (Plattner et al. 2011). 100 However, it has recently been demonstrated that MAP can cross the gut wall in areas with and 101 without Peyer's patches, suggesting that it can enter the body through enterocytes in addition to M 102 cells (Bermudez et al. 2010; Sigurðardóttir et al. 2005). Once on the submucosal side of the 103 intestinal epithelium MAP organisms are phagocytised by macrophages. MAP is able to survive 104 and proliferate within phagosomes and inhibits apoptosis and phagosomal maturation in infected 105 macrophages. In this phase, macrophages need to become activated to enhance their ability to kill 106 intracellular MAP and control infection. Activation is achieved through the production of gamma 107 interferon (IFNy) and other cytokines by Th1 type T-helper lymphocytes (Khalifeh and Stabel 108 2004; Zurbrick et al. 1988). It is likely that some exposed cattle are successful in eliminating the 109 MAP infection, however MAP persists within macrophages of many infected animals (Hestvik et 110 al. 2005). This early "silent" infection period (stage I) can last for 2 or more years, during which 111 time the infection is contained. The presence of the pathogen may trigger a local inflammatory 112 response, which results in granulomatous lesions, usually in the gut and gut associated lymphoid 113 tissue, which disrupt the mucosal structure and function. When the infection overcomes the host 114 defences there is usually a switch from the Th1 to a Th2-dominated immune response where 115 cytokines, including IL-4 and IL-10, trigger antibody production. At this point infected cattle enter 116 into stage II, in which the pathogen spreads to other tissues and large numbers of MAP are shed in 117 the faeces.

- 118 Several in vitro and in vivo studies in monocyte-derived macrophages (MDM) and peripheral blood 119 mononuclear cells (PBMC) have investigated how the immune system responds to MAP infection (Bannantine and Talaat 2010; Borrmann et al. 2011; MacHugh et al. 2012; Purdie et al. 2012; 120 121 Weigoldt et al. 2011). However, knowledge of the control of the host immune response to MAP as 122 well as the genetic properties of the bacterium affecting its virulence remains incomplete (Gollnick 123 et al. 2007). It is now possible to investigate MAP-host interaction at the level of the whole 124 transcriptome by deep sequencing. In the present study RNA-seq was used to explore the response 125 of bovine MDM cultured in vitro to MAP infection. The genes differentially expressed between 126 infected and control MDM were analysed to identify host cellular pathways involved in the 127 interaction with this pathogen.
- 128

129 2. Material and methods

130

131 **2.1. Experimental animals**

132 Animals used were housed on CERZOO experimental farm, in San Bonico (CERZOO - Research

- 133 Centre for Animal Production and Environment, Italy). The farm adheres to a high standard of
- 134 veterinary care and is under the control of the Italian Official Veterinary Service. The study was
- carried out in 2011-2012 and complied with Italian laws on animal experimentation (DL n. 116,
- 136 27/01/1992) and ethics. Blood was collected from 68 Italian Holstein cows ranging in age from 24
- to 50 months during veterinary screening for paratuberculosis by indirect absorbed ELISA (Id
 Screen® Paratuberculosis Indirect-ID.vet). All animals on the farm were negative to the ELISA
- 139 screening. The immune status with regard to MAP infection is repeatedly monitored by ELISA and
- 140 there have been no JD affected animals on the farm. Monocytes used in the study were prepared
- 141 from blood collected from four control animals involved in the search for blood biomarkers to
- assess rumen functions (prot. N. 31425 of 31/05/2010). All the blood samples used were verified
 serum negative to Johne's disease by ELISA.
- 144

145 **2.2. Isolation of bovine MDM and MAP infection**

PBMC were isolated from 350 ml of blood collected in acid citrate dextrose as anticoagulant in
repeated blood collections. Blood was centrifuged for 15 min at 750 g in 50 ml conical tubes. Buffy

148 coats were collected and phosphate buffered saline (PBS) (Sigma-Aldrich) added to 30 ml final

volume, then transferred to ACCUSPIN System-Histopaque-1077 tubes (Sigma-Aldrich) and

- 150 centrifuged for 30 min at 750 g at room temperature. PBMC were collected from the PBS-
- 151 Histopaque interface. Contaminating red blood cells (RBC) were removed by lysis in RBC buffer
- 152 (10 mM KHCO3, 150 mM NH4Cl, 0.1 mM EDTA pH 8.0) and PBMC were washed three times
- 153 with PBS (Sigma-Aldrich). PBMC were diluted to 5×10^6 cells/ml in RPMI 1640 culture medium
- 154 (Gibco) supplemented with 12% foetal bovine serum, 2mM L-GLN, 0.1% 2-b-mercaptoethanol,
- transferred into six well plates $(5-7 \times 10^6 \text{ cells per well})$ and incubated for 12 h at 37°C and 5% CO₂,
- to allow the cells to adhere. Following incubation, the medium was changed and non-adhered cells
- 157 removed. Adherent monocytes were left to differentiate into macrophages undisturbed for 7 days as
- 158 reported in Weiss et al 2001. Differentiation into MDM and purity was assessed by examining cell
- 159 morphology under a light microscope. Mononuclear cells viability was assessed by Trypan Blue
- 160 exclusion. The L1 strain of MAP used for the *in vitro* infection is a field strain isolate and is a
- 161 classical *M. avium* subsp. *paratuberculosis* type II group, also known as C type. It was classified
- 162 using the genotyping method reported in Amosin et al. 2004.
- 163 L1 MAP was grown for 2 months in Middlebrook 7H9 (Difco) broth with Tween 80 (4% wt/vol,
- 164 Difco), mycobactin J (Allied Monitor) and OADC growth supplement (Difco) at 37°C with

- 165 constant agitation (60 rpm). Bacterial cells were harvested by centrifugation (2,500 x g for 20
- 166 minutes), washed once and resuspended in sterile PBS (Sigma-Aldrich). The bacterial suspension
- 167 was declumped using the procedure described by Odumeru et al. (2001). Briefly, the suspension
- 168 was forced through a 21-gauge needle several times and allowed to stand at room temperature for
- 169 20 min in upright screw capped tubes. The supernatant was carefully removed and the cell density
- 170 was standardised spectrophotometrically (OD 600nm).
- 171 On day 7 of culture, MDM cells were washed three times with warm PBS (37°C) to remove non-
- adherent and dead cells. All cell infections were grown in RPMI 1640 culture medium (Gibco)
- supplemented with 12% foetal bovine serum, 2mM L-GLN, 0.1% 2-b-mercaptoethanol.
- 174 Three six well plates of MDM cells (5- $7x10^5$ cells per well) per sample were incubated with the L1
- 175 MAP strain at a multiplicity of infection (MOI) 10:1 (10 bacilli/macrophage). Cells were washed
- 176 with warm PBS (37°C) two hours after infection to remove non-phagocytized MAP. Three six well
- 177 plates for parallel uninfected MDM cultures were also set up at the same cell density as controls.
- 178 Total RNA was extracted from samples at 2, 6, 24 hours post-infection (PI) with TriReagent
- 179 (Sigma) as recommended by the manufacturer. Concentration and quality of total RNA was
- 180 measured using a Nanodrop Spectrophotometer and an Agilent Bioanalyzer 2100. All samples had
- 181 an RNA integrity value of 7.6 or greater.
- 182

183 **2.3. RNA-Seq: library preparation and NGS sequencing**

- 184 RNA samples were processed using TruSeq RNA-seq sample prep kit from Illumina (Illumina, Inc., 185 CA, USA). Briefly, poly-A containing mRNA was purified using poly-T oligo- magnetic beads, and 186 cDNA was synthesized by reverse transcription according to manufacturer's protocol. Illumina 187 TruSeq adapters with indexes were ligated to the cDNA fragments. Samples were amplified by 188 DCD to a la tic day is later. DNA fragments is a later to a the three later.
- 188 PCR to selectively enrich those cDNA fragments in the library having adapters at both ends.
- 189 Samples were sequenced at 12 samples per lane on an Illumina HiSeq2000 (Illumina Inc.). On
- 190 average 20 million 100bp paired-end reads were obtained per sample.
- 191

192 **2.4. Bioinformatic analysis**

- 193 The raw reads were processed using Trimmomatic software (Bolger et al. 2014) to filter low quality 194 bases and sequencing adapters. The filtered reads were aligned with the bovine genome (assembly
- version UMD3.1) using STAR software version 2.3.0e (Dobin et al. 2013). The resulting SAM file
- 196 was converted into BAM format, sorted by coordinates and indexed using Samtools v1.1. (Li et al.
- 197 2009).
- Read counts per gene, annotated on the bovine genome, were calculated using HTSeq-Count utility
 (Anders et al. 2015) and the GTF file provided by Ensembl database v68. The raw read counts were
 - 6

200	imported into R and processed using the Bioconductor package edgeR (Robinson et al. 2010) and
201	normalized using the TMM method. Genes having less than 1 count per million in a minimum of
202	two samples were discarded. The remaining set of genes was used to assess differential expression
203	between MAP infected cells and controls, using a generalized linear model (GLM) and a design
204	matrix built according to the experimental conditions.
205	Results of the differential expression analysis were corrected for multiple testing using the
206	Benjamini-Hochberg method (Benjamini and Hochberg 1995) and the functions provided by the
207	edgeR package. Genes showing a False Discovery Rate below 5% were considered as differentially
208	expressed and used in the biological interpretation. Pathway analysis, and Gene Ontology (GO)
209	analysis (Benjamini & Hochberg adjusted P values) of the differentially expressed genes were
210	performed using the online tool of Reactome Database in InnateDB (Breuer et al. 2013).
211	
212	5. Results and discussion

213

214 5.1. Identification of differentially expressed genes in response to in vitro MAP infection and 215 gene functional analysis

216

217 Statistical analysis of the RNA-seq data at 2 hours, 6 hours and 24 hours PI revealed that

218 transcription levels for 3212 unique genes differed between MAP infected and control MDM (FDR

219 ≤ 0.05). The number of differentially expressed (DE) genes increased along the time course of the

220 infection. There were 258 DE genes at 2 hours PI (185 up-regulated; 73 down-regulated), 1328 at 6

- 221 hours PI (698 up-regulated; 630 down-regulated) and 2566 at 24 hours PI (1247 up-regulated; 1319 222 down-regulated). Interestingly, the proportion of down-regulated genes progressively increased
- 223 over the 24 hours PI.
- 224 A core set of 130 genes were differentially expressed across all three time points. In addition, 40

225 genes were in common between 2 hours and 6 hours PI, 617 genes between 6 hours and 24 hours

226 PI, and 23 genes between 2 hours and 24 hours PI. All other DE genes were time point specific: 65,

227 541, 1796 at 2 hours, 6 hours and 24 hours PI, respectively (Fig 1). Only a few DE genes shared

228 between time points changed direction along the time course (Fig S1 in Supplementary Material).

229 Many of the top ten up-regulated genes at the three time points were related to immune response

230 (See Table 1) and included colony stimulating factor 2 (granulocyte-macrophage) (CSF2),

231 oncostatin M (OSM), interleukin 11 (IL11), interleukin 17A and F (IL17A, IL17F), interleukin 9

232 (IL9), interferon gamma (IFNG), interleukin 12B (IL12B). Conversely, two chemokines (CXCL11,

233 CXCL13) were down-regulated. A complete list of DE genes is given in Tables S1, S2 and S3.

234 Functional classification of DE genes showed that the top ranked *molecular functions* at 2 hours PI

- were "cytokine activity" (GO:0005125) and "growth factor activity" (GO:0008083), while at 6
- hours and 24 hours PI they were "protein binding" (GO:0005515) and "cytokine activity"
- 237 (GO:0005125) (Table 2). Top *biological processes* were "immune response" (GO:0006955) at all
- time points PI, while "cellular response to extracellular stimulus" (GO:0031668) was top at 2 hours
- 239 PI, "cellular response to lipopolysaccharide" (GO:0071222) and "inflammatory response"
- 240 (GO:0006954) at 6 hours and 24hours PI, and "antigen processing and presentation" (GO:0019882)
- at 24 hours PI (Table 3). "Cytoplasm" (GO:0005737) was the top *cellular component* at 2 hours and
- 6 hours PI, while "extracellular vesicular exosome" (GO:0070062) was top at 24 hours PI (Table 4).
- 243 "Early phagosome" (GO:0032009) was significant only at 6 hours PI. "Lysosomal membrane"
- 244 (GO:0005765), "lysosome" (GO:0005764), "external side of plasma membrane" (GO:0009897),
- ²⁴⁵ "cell surface" (GO:0009986), "endoplasmic reticulum" (GO:0005783) were overrepresented only at
- 246 24 hours PI, the last time point assessed post infection (Table 4). For full details see Tables S4, S5,
- 247 S6.
- 248 Pathway Analysis was used to determine which biological pathways were significantly over-
- represented in the list of genes affected by MAP infection (Breuer et al. 2013). All 3212 unique
- 250 genes significantly DE were first analysed using the Reactome Database of *Bos taurus*. Eighty
- biological pathways were significantly enriched in MAP infected vs control MDM (p-value<0.05).
- 252 The top pathway was *Innate immune system*, with 32% of the genes in this pathway DE. Other
- 253 enriched immune related pathways were *Chemokine receptors bind chemokines*, *Signalling by*
- 254 Interleukins, Immune System, Cytokine Signalling in Immune system, Interleukin-1 signalling,
- 255 Classical antibody mediated complement activation (Table 5). Phagocytosis, apoptosis,
- detoxification related pathways were also identified. The up- and down-regulated genes were then analyzed separately at each time point. The most involved pathways for up-regulated genes were
- related to immune response, while for down-regulated genes pathways were more related tometabolism (Fig S2-S7).
- 260

261 **5.2.** Activation of *Cytokine-cytokine receptor interaction* pathway in response to MAP infection

The list of DE genes annotated by orthology to human genes were analysed using the KEGG database in InnateDB Pathway Analysis (Breuer et al. 2013) in order to better understand their significance. *Cytokine-cytokine receptor interaction* was the top KEGG pathway significantly associated with mainly up-regulated genes (Fig. S8). This pathway has previously been reported to be perturbed in the intestinal mucosa of MAP infected cattle (Khare et al. 2012). Genes involved included chemokines, hemapoietins, platelet-derived growth factors, transforming growth factor beta family members, tumor necrosis factors and interferon (see Table 6 for the complete list). At 269 the transcriptional level, the results presented here are consistent with classical pro-inflammatory 270 macrophage activation (M1) in response to MAP infection, which is characterized by high 271 expression levels of interleukin 12 (*IL12*), interleukin 23 (*IL23*) and tumor necrosis factor ($TNF\alpha$) 272 (Mantovani et al. 2002). IL12 and TNF α stimulate IFN γ secretion, which results in a further 273 increase in IL12 and TNFα production in a pro-inflammatory positive feed-back. It is noteworthy 274 that the increase of *IL12* expression was evident at 6 hours and 24 hours PI, but not at 2 hours PI 275 (Table 6). This may reflect a delayed Th1-type immune response that is essential for the control of 276 infections of infected macrophages. Additional typical markers of macrophage activation were 277 detected as DE including: nitric oxide synthase 2 (*iNOS*), arginase 2 (*ARG2*) (Yang and Ming 2014) 278 and interleukin 1 alpha and beta (*IL1A*, *IL1B*) (Table S1, S2 and S3 in Supplementary Material). 279 Other in vitro studies have shown enhanced production of the anti-inflammatory cytokine IL10 280 following MAP infection, that antagonizes the pro-inflammatory immune response by down-281 regulating the production of *IL12*, $TNF\alpha$ and *IFNG*, which leads to the inhibition of the host innate 282 response resulting in enhanced pathogen survival (reviewed in Abendaño et al. 2013). A slight up-283 regulation of the anti-inflammatory cytokine IL10 was seen at 6 hours PI compared with the non-284 infected control as reported in Table 6. Differences in the pattern of expressed cytokines may be 285 result from the use of different pathogen strains and MOI (Borrmann et al. 2011; Janagama et al. 286 2006; Kabara et al. 2010). In the present study MDM were prepared from whole blood monocytes, 287 and not differentiated from CD14+ enriched monocytes. The presence of residual non-differentiated 288 lymphocytes during MAP infection may have modified the response to the pathogen. A recent study 289 investigated the role of gamma delta T cells ($\gamma\delta$ T) during *in vitro* MAP infection of macrophages 290 and showed that the presence of lymphocytes affected MDM responses to MAP (Baquero and 291 Plattner 2016). In particular, the secretion of IFNy and the pro-inflammatory cytokine IL17A was 292 enhanced by the presence of T lymphocytes, while IL10 was not detected in the supernatants from 293 cultured cells in response to MAP when undifferentiated lymphocytes were present. In the present 294 study, the expression of IL17A, IL17F and IFNG was increased in MAP infected MDM, indeed 295 IL17A and IL17F were among the genes that showed the greatest increase in expression at 24 hours 296 PI (Tables 1 and 6). Much of the IL-17 released during an inflammatory response is produced by 297 innate immune cells, although IL-17 is usually considered to be a T cell-secreted cytokine. The 298 production of IL17A by macrophages has been shown to play a central role in the 299 immunopathology of chronic diseases (Reynolds et al., 2010). IL17A has been shown to be 300 involved in the protective response against *M. tuberculosis* in vaccinated animals (Khader and 301 Cooper 2008). Furthermore the expression of IL17 has been associated with the formation of 302 granuloma in a bovine model of tuberculosis: animals with macroscopic lesions have higher levels

304 lungs of *IL17*-deficient mice infected with Mycobacterium bovis bacille Calmette-Guérin (BCG). 305 This highlights the role of IL17 in the formation of tubercular granulomas (Umemura et al. 2007; 306 Okamoto Yoshida et al. 2010). IL17 members may also be involved in the response of macrophage 307 to MAP infection, promoting the recruitment of other immune factors and controlling the 308 granuloma formation in JD. It is well established that IL17A promotes the generation, recruitment, 309 and activation of neutrophils by inducing the expression of the colony-stimulating factors: particularly granulocyte colony-stimulating factor (CSF3) and granulocyte-macrophage colony-310 311 stimulating factor (CSF2). These two cytokines, which induce the expression of pro-inflammatory 312 cytokines, were expressed at high levels following MAP infection in the present study (Table 6). 313 Previous reports have shown that CSF2 is up-regulated in bovine MDM incubated with MAP (MOI 314 10) at 6h and 24h PI (Weiss et al. 2002). CSF3 expression has been found to increase in MAP 315 infected MDM isolated from cattle (Casey et al. 2015) and red deer (Marfell et al. 2013). 316 Expression of CSF2 and CSF3 has also been shown to increase in cells following in vitro challenge 317 with M. bovis (Lin et al. 2015). CSFs stimulate immune functions, including the antibacterial 318 capability of phagocytes against Leishmania tropica, Candida albicans, M. avium complex 319 (Blanchard et al. 1991). While involved in the protective immune response, increased CSFs 320 expression promotes the survival of macrophages, which may be a mechanism that mycobacteria 321 use for long term survival in the host. 322 Mycobacterial infection has been shown to modulate the expression of genes encoding chemokines 323 (Méndez-Samperio et al. 2003; Rhoades et al. 1995), which was also found here. Several 324 chemokines were significantly up-regulated in MDM after MAP infection, although others (CXCL9, 325 CXCL11, CXCL13, CCL8) were down-regulated (Table 6 and Fig. S8). Representative members of 326 the four subfamilies of chemokines (CXC, CC, CX3C and XC) were identified, although the CXC 327 and CC motifs were most represented. This is in accordance with earlier studies, which showed that 328 mycobacteria infection induces increased expression of CC and CXC members (Méndez-Samperio 329 2008). The CC chemokines, particularly CCL5 (RANTES), which was up-regulated at 24 hours PI 330 (Table 6), are potent leucocyte activators which have a role in granuloma formation. The expression 331 of CCL3 (also known as macrophage inflammatory protein MIP-1 α), CCL4 (MIP-1 β) and CCL5 is 332 affected by *M. tuberculosis* infection (Méndez-Samperio 2008). CCL4 expression has been reported 333 to increase in MAP infected MDM compared with non-activated control macrophages at 16 hours 334 PI (Weiss et al. 2004). Analysis of bovine MDM gene expression in response to in vitro infection 335 with MAP showed increased expression of the chemokines CXCL2 and CCL20 at 2 hours PI and CXCL2, CCL4, CCL5, CCL20 at 6 hours PI (MacHugh et al. 2012). CCL20, CXCL2, and in addition 336

of expression of IL17A (Blanco et al. 2011). Impaired granuloma formation is also observed in the

10

337 *CXCL3* was also shown to be highly up-regulated at 2 hours PI in an *in vitro* study of the bovine
 338 MDM transcriptome response during MAP infection (Casey et al. 2015). All these chemokines

- 339 showed increased expression following MAP infection of MDM in the present study (Table 6 and
- 340 Fig. S8). *CXCL8* (also known as IL8) was up-regulated at 6h and 24h PI. This chemokine is
- 341 involved in inflammatory response to mycobacteria infections (Méndez-Samperio 2008). The
- results presented here suggested that an early *in vitro* response of MDM to MAP infection is the
- 343 expression and release of molecules acting to attract other immune cells to the site of the infection.
- 344

5.3. MAP infection modulates the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signalling cascade

347 The role of cytokines to modulate and coordinate the immune response is mediated by cytokine 348 receptors that generally form a stable association with a cytoplasmic tyrosine kinase known as a 349 JAnus Kinase. The JAK/STAT signaling pathway is the main signaling cascade involved in 350 activation and regulation of host immune response by cytokines and growth factors. Signal 351 transduction by IFNy is classically associated with this pathway. A large number of genes found to 352 be differentially expressed in the present study are associated with the JAK-STAT pathway, 353 including IFNG, LIF, OSM, IL11, IL12B, IL23A, CSF2, CSF3 which were up-regulated in MAP 354 infected MDM (Table 6). However, it has previously been shown that MAP infection inhibits JAK-STAT signaling via increased expression of suppressor of cytokine signaling (SOCS) as well as 355 356 decreased expression of the IFNy receptor genes (Arsenault et al. 2014). In the present study, the 357 cytokine inducible SH2-containing protein (CISH) and the suppressor of cytokine signaling 3 358 (SOCS3) were highly expressed in infected MDM at 6h and 24h PI, while the IFNy receptor 1 359 (IFNGR1) expression was reduced in MDM at 24hours PI (Table 6 and Fig. S9). Thus MAP may 360 alter, or even shut down, this signaling cascade to increase its survival inside the macrophage. Many 361 virus and bacteria have evolved mechanisms to reduce IFNy response following infection by 362 inhibiting JAK/STAT signaling at various levels. It has been shown that *M. avium* increases expression of the suppressor of cytokine signaling (SOCS) to diminish IFNy responsiveness in 363 364 infected human macrophages (Vazquez et al. 2006). Increased expression of SOCS1 and SOCS3, as well as decreased expression of IFNGR1 and IFNGR2 in MAP infected monocytes has also been 365 366 reported (Arsenault et al. 2012). Reduced expression of IFNy-inducible genes was observed in 367 mouse macrophages infected with M. avium (Hussain et al. 1999), while SOCS3 was up-regulated 368 in MAP infected MDM (Casey et al. 2015). 369 Given the importance of IFNy for the control and clearance of intracellular pathogens, this seems to

- be a significant host defense mechanism that MAP seeks to avoid (Arsenault et al. 2014).
- 371

372 5.4. MAP infection regulates genes involved in antigen presentation

Antigen processing and presentation pathway was one of the most down-regulated KEGG 374 pathways seen in this study (Table 7 and Fig. S10). Previous reports have shown that mycobacteria reduce the expression of the major histocompatibility complex (MHC) class II genes in vitro and in 375 376 vivo, thus diminishing the capacity of antigen presentation and activation of T helper cells (Baquero 377 and Plattner 2016; Berger and Griffin 2006; Grace and Ernst 2016; Hussain et al. 1999; Khare et al. 378 2012; Noss et al. 2000; Pecora et al. 2009; Weiss et al. 2001). 379 MHC class II gene expression is finely regulated in macrophages and dendritic cells, and the 380 expression of MHC class II molecules is induced by IFNy. This activates JAK-STAT signaling via 381 its *IFNGRs*, and induces expression of genes related to the antigen processing, including the MHC 382 class II trans-activator (CIITA). CIITA has been referred to as "the master control factor" of the 383 transcription of MHC class II genes and regulates the expression of the genes encoding the classical 384 MHC class II proteins (DR, DP and DQ), and several genes encoding accessory proteins required 385 for MHC class II-restricted antigen-presentation (*Ii*, *DM* and *DO*) (LeibundGut-Landmann et al. 386 2004). In the present study, CIITA was down-regulated at 6 hours and 24 hours PI (Table 7). This is 387 consistent with lower expression level of classical components of the MHC class II complex 388 (BOLA-DRA, BOLA-DRB3, BOLA-DQB, BOLA-DQA2, BOLA-DQA5) in infected MDM at 24 389 hours PI. Subunits of MHC-II DM, alpha and beta (BOLA-DMA, BOLA-DMB), and the subunit 390 alpha of MHC-II DO (BOLA-DOA) which are key regulator of MHC class II antigen presentation to 391 T cells (Mellins and Stern 2014; Pos et al. 2013) were also down regulated. Given the key role of 392 the MHC class II in focusing the immune response, the down-regulation of the MHC class II during 393 the establishment of MAP infection may delay, or even block, activation of an immune response 394 against infecting pathogens. The reduced expression of MHC class II genes has been reported in the 395 blood of calves exposed to MAP while expression of the MHC class I genes was increased (Purdie 396 et al. 2012). MHC class II molecules are involved in the development of the humoral immune 397 response while the MHC class I molecules are responsible for T cytotoxic cell recognition of 398 infected cells. Therefore, in modulating expression of MHC class I and class II antigens, MAP may 399 affect the type and specificity of the host immune response. A correlation between a variation at 400 residue 53 (Val53Leu) in Bola DRB3 exon 2 and increased susceptibility to MAP infection has 401 been described (Rastislav and Mangesh 2012) further suggesting a functional role of MHC class II 402 antigens in regulating the progression of infection.

403

404 **5.5. Regulation of genes involved in MAP phagocytosis**

405 Genes within the KEGG phagosome and lysosome pathways were down regulated following MAP infection of MDM (Tables 8-9; Fig. S11 and S12). The interaction of mycobacteria with MDM and 406 407 their subsequent uptake is mediated by receptors including complement receptors CR1, CR3, and 408 CR4, immunoglobulin receptor FcR, the mannose receptor, and scavenger receptors (Woo and 409 Czuprynski 2008). Many receptors involved in the process of phagocytosis were down-regulated in 410 MAP infected MDM, with the exception of ITGB3 (integrin subunit beta 3), ITGA2 (integrin 411 subunit alpha 2) and OLR1 (oxidized low density lipoprotein) which were up-regulated (Table 8 and 412 Fig. S11). Several genes encoding lysosomal enzymes, including glycosydases, lypases, 413 sulphatases, phosphatases were down regulated in MAP infected MDM at 24h PI (Table 9 and Fig. 414 S12). Down-regulation of the majority of key effector lysosomal enzymes has been reported for M. 415 bovis infection of alveolar macrophages (Nalpas et al. 2015). The suppression of lysosomal function 416 may be a general defense mechanism used by mycobacteria to promote its survival following 417 phagocytosis by the macrophage (Podinovskaia et al. 2014). A feature of phagosome maturation is 418 the acidification of the lumen, which is an important antimicrobial process. Interestingly, slight, but 419 significant, up-regulation of genes mediating acidification (ATP6V0B, ATP6V0A2) was seen in 420 MDM at 6h and 24h PI (Table 9). This was also seen in previous studies of MAP and M. bovis 421 infected macrophages (Weiss et al. 2002; Murphy et al. 2006; Nalpas et al. 2015). MAP secretes a 422 tyrosine phosphatase (PtpA) that binds a specific subunit of the macrophage v-ATPase. Therefore 423 MAP may inhibit phagosome acidification by decreasing energy supplies to enzymes involved in 424 the process, rather than regulating their expression directly (Arsenault et al. 2014).

425

426 **5.6. MAP infection alters complement cascade**

- 427 Although macrophages play a minor role, compared with liver, in the production of complement
- 428 proteins, it is interesting to note that key proteins of the complement system were down-regulated in
- 429 MDM following MAP infection (Table 10; Fig. S13). The reduced expression of various
- 430 complement associated genes suggest that the complement system is partially suppressed by
- 431 infection of macrophages which may favour MAP survival.
- 432

433 **6.** Conclusions

434 Transcription changes in MDM used here as a cellular model for MAP infection suggests that MAP

435 subverts the macrophage response in order to survive and multiply inside the cell and to avoid

436 detection by the immune system. MAP infection affects the cytokine signaling pathway and down

- 437 regulates the major histocompatibility complex class II, potentially altering antigen presentation
- 438 which may allow the bacterium to partly avoid detection by regulation of the immune response.

439	MAP also interferes with the formation of the mature phagosomes and therefore once inside the
440	macrophage is able to survive. Finally, MAP down-regulates the complement immune pathway,
441	hence increasing the chance of survival of bacteria when outside the host cells. It is not known if the
442	changes in gene expression described here in MAP infected MDM are driven by the pathogen or the
443	host or both. It would be interesting to hypothesize that the differences in expression may facilitate
444	the persistence of the bacterium within the infected macrophage during the preclinical stage of JD,
445	however, further research will be required to explore the role of the potential target genes identified
446	and the mechanisms involved.
447	
448	Acknowledgements
449	This work was supported by the European Union funded MacroSys project ref number FP7-KBBE-
450	2007-1-1-2-211602, The funders had no role in study design, data collection and analysis, decision
451	to publish, or preparation of the manuscript.
452	The L1 strain of <i>M. avium</i> subsp. <i>paratuberculosis</i> used in this study was provided by the
453	Department of Veterinary Pathology, Hygiene and Public Health at the University of Milano (Italy).
454	
455	
456	
457	Figures
458	Fig 1 Venn diagram showing transcription changes following infection of monocyte derived
459	macrophages (MDM) with <i>M. avium</i> subsp. <i>paratuberculosis</i> at 2 hours post infection (PI), 6 hours
460	PI and 24 hours PI based on RNA-seq data analysis.
461	
462	Tables
463	Table 1 Top ten genes up and down regulated at 2, 6 and 24 hours post infection in monocyte-
464	derived macrophages infected with <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> (FDR \leq 0.05).
465	
466	Table 2 The 10 top ranked overrepresented molecular functions in monocyte-derived macrophages
467	infected with Mycobacterium avium subsp. paratuberculosis at 2 hours, 6 hours and 24 hours post
468	infection identified using the Gene Ontology (GO) over-representation analysis (ORA) in
469	InnateDB.
470	
471	Table 3 The 10 top ranked overrepresented biological processes in monocyte-derived macrophages
472	infected with Mycobacterium avium subsp. paratuberculosis at 2 hours, 6 hours and 24 hours post
	14

473	infection identified using the Gene Ontology (GO) over-representation analysis (ORA) in
474	InnateDB.
475	
476	Table 4 The 10 top ranked overrepresented cellular components in monocyte-derived macrophages
477	infected with Mycobacterium avium subsp. paratuberculosis at 2 hours, 6 hours and 24 hours post
478	infection identified using the Gene Ontology (GO) over-representation analysis (ORA) in
479	InnateDB.
480	
481	Table 5 Pathways (Path) overrepresented in monocyte-derived macrophages infected with
482	Mycobacterium avium subsp. paratuberculosis.
483	
484	Table 6 Differentially transcribed genes in monocyte-derived macrophages infected with
485	Mycobacterium avium subsp. paratuberculosis belonging to the Cytokine-cytokine receptor
486	interaction pathway and JAK-STAT signalling cascade.
487	
488	Table 7 Differentially transcribed genes in monocyte-derived macrophages infected with
489	Mycobacterium avium subsp. paratuberculosis participate to the MHC class II antigen processing
490	and presentation pathway.
491	
492	Table 8 Differentially transcribed genes in monocyte-derived macrophages infected with
493	Mycobacterium avium subsp. paratuberculosis involved in the Phagocytosis process.
494	
495	Table 9 Differentially transcribed genes in monocyte-derived macrophages infected with
496	Mycobacterium avium subsp. paratuberculosis located in the Lysosome compartment.
497	
498	Table 10 Differentially transcribed genes in monocyte-derived macrophages infected with
499	Mycobacterium avium subsp. paratuberculosis belonging to the Coagulation and Complement
500	Cascade.
501	
502	
503	Supplementary Material
504	

505	Fig. S1 Venn diagram drawn by VennPlex program (Cai et al. 2013). The number of factors in each
506	set or intersection that are up-regulated are represented in italic, down-regulated are underlined or
507	contra-regulated are in red colour.
508	
509	Fig. S2 Bar chart of significantly enriched pathways resulting analyzing the list of up-regulated
510	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
511	paratuberculosis at 2 hours post infection (PI) using the REACTOME database of Bos taurus
512	(InnateDB).
513	
514	Fig. S3 Bar chart of significantly enriched pathways resulting analyzing the list of down-regulated
515	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
516	paratuberculosis at 2 hours post infection (PI) using the REACTOME database of Bos taurus
517	(InnateDB).
518	
519	Fig. S4 Bar chart of significantly enriched pathways resulting analyzing the list of up-regulated
520	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
521	paratuberculosis at 6 hours post infection (PI) using the REACTOME database of Bos taurus
522	(InnateDB).
523	
524	Fig. S5 Bar chart of significantly enriched pathways resulting analyzing the list of down-regulated
525	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
526	paratuberculosis at 6 hours post infection (PI) using the REACTOME database of Bos taurus
527	(InnateDB).
528	
529	Fig. S6 Bar chart of significantly enriched pathways resulting analyzing the list of up-regulated
530	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
531	paratuberculosis at 24 hours post infection (PI) using the REACTOME database of Bos taurus
532	(InnateDB).
533	
534	Fig. S7 Bar chart of significantly enriched pathways resulting analyzing the list of down-regulated
535	genes in monocyte-derived macrophages infected with Mycobacterium avium subsp.
536	paratuberculosis at 24 hours post infection (PI) using the REACTOME database of Bos taurus
537	(InnateDB).
538	

539 Fig. S8 Cytokine-cytokine receptor interaction KEGG pathway. In red up-regulated genes in

540 monocyte-derived macrophages (MDM) infected with *Mycobacterium avium* subsp.

541 *paratuberculosis*. In green down-regulated genes in infected MDM. No indication is reported about542 the time point.

543

Fig. S9 Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. In
red up-regulated genes in monocyte-derived macrophages (MDM) infected with *Mycobacterium avium* subsp. *paratuberculosis*. In green down-regulated genes in infected MDM. No indication is
reported about the time point.

548

549 Fig. S10 Antigen processing and presentation pathway. In red up-regulated genes in monocyte-

550 derived macrophages (MDM) infected with Mycobacterium avium subsp. paratuberculosis. In

551 green down-regulated genes in infected MDM. No indication is reported about the time point.

552

Fig. S11 Phagosome. In red up-regulated genes in monocyte-derived macrophages (MDM) infected
with *Mycobacterium avium* subsp. *paratuberculosis*. In green down-regulated genes in infected
MDM. No indication is reported about the time point.

556

Fig. S12 Lysosome. In red up-regulated genes in monocyte-derived macrophages (MDM) infected
with *Mycobacterium avium* subsp. *paratuberculosis*. In green down-regulated genes in infected
MDM. No indication is reported about the time point.

560

Fig. S13 Complement and coagulation cascades. In red up-regulated genes in monocyte-derived
macrophages (MDM) infected with *Mycobacterium avium* subsp. *paratuberculosis*. In green downregulated genes in infected MDM. No indication is reported about the time point.

564

Table S1. List of significantly (P value ≤ 0.05) regulated genes in monocyte-derived macrophages infected with *Mycobacterium avium* subsp. *paratuberculosis* at 2 hours post infection.

567

Table S2. List of significantly (P value ≤ 0.05) regulated genes in monocyte-derived macrophages infected with *Mycobacterium avium* subsp. *paratuberculosis* at 6 hours post infection.

570

Table S3. List of significantly (P value ≤ 0.05) regulated genes in monocyte-derived macrophages infected with *Mycobacterium avium* subsp. *paratuberculosis* at 24 hours post infection.

573	
574	Table S4. List of enriched GO resulted analyzing the list of regulated genes in monocyte-derived
575	macrophages infected with Mycobacterium avium subsp. paratuberculosis at 2 hours post infection
576	using the Gene Ontology (GO) over-representation analysis (ORA) in InnateDB.
577	
578	Table S5. List of enriched GO resulted analyzing the list of regulated genes in monocyte-derived
579	macrophages infected with Mycobacterium avium subsp. paratuberculosis at 6 hours post infection
580	using the Gene Ontology (GO) over-representation analysis (ORA) in InnateDB.
581	
582	Table S6. List of enriched GO resulted analyzing the list of regulated genes in monocyte-derived
583	macrophages infected with Mycobacterium avium subsp. paratuberculosis at 24 hours post
584	infection using the Gene Ontology (GO) over-representation analysis (ORA) in InnateDB.
585	

586

587 **References**

- Abendaño N, Juste RA, Alonso-Hearn M (2013) Anti-Inflammatory and Antiapoptotic Responses
 to Infection: A Common Denominator of Human and Bovine Macrophages Infected with
 Mycobacterium avium Subsp. paratuberculosis. BioMed Research International 2013:7.
 doi:10.1155/2013/908348
- Abubakar I, Myhill D, Aliyu SH, Hunter PR (2008) Detection of Mycobacterium avium subspecies
 paratuberculosis from patients with Crohn's disease using nucleic acid-based techniques: a
 systematic review and meta-analysis. Inflamm Bowel Dis 14 (3):401-410. doi:
 10.1002/ibd.20276
- Amonsin A, Li LL, Zhang Q, Bannantine JP, Motiwala AS, Sreevatsan S, Kapur V (2004)
 Multilocus short sequence repeat sequencing approach for differentiating among
 Mycobacterium avium subsp. paratuberculosis strains. Journal of Clinical Microbiology 42
 (4):1694-1702. doi:10.1128/jcm.42.4.1694-1702.2004
- Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31 (2):166-169. doi:10.1093/bioinformatics/btu638
- Arsenault RJ, Li Y, Bell K, Doig K, Potter A, Griebel PJ, Kusalik A, Napper S (2012)
 Mycobacterium avium subsp. paratuberculosis Inhibits Interferon Gamma-Induced
 Signaling in Bovine Monocytes. Insights into the Cellular Mechanisms of Johne's Disease.
 Infection and Immunity. doi:10.1128/iai.00406-12
- Arsenault RJ, Maattanen P, Daigle J, Potter A, Griebel P, Napper S (2014) From mouth to
 macrophage: mechanisms of innate immune subversion by Mycobacterium avium subsp.
 paratuberculosis. Veterinary Research 45 (1):54-54. doi:10.1186/1297-9716-45-54
- Atreya R, Bülte M, Gerlach G-F, Goethe R, Hornef MW, Köhler H, Meens J, Möbius P, Roeb E,
 Weiss S (2014) Facts, myths and hypotheses on the zoonotic nature of Mycobacterium
 avium subspecies paratuberculosis. International Journal of Medical Microbiology 304
 (7):858-867. doi:http://dx.doi.org/10.1016/j.jimm.2014.07.006
- Bach H (2015) What Role Does Mycobacterium avium subsp. paratuberculosis Play in Crohn's
 Disease? Current Infectious Disease Reports 17 (2):3. doi:10.1007/s11908-015-0463-z
- Bannantine JP, Talaat AM (2010) Genomic and transcriptomic studies in Mycobacterium avium
 subspecies paratuberculosis. Veterinary Immunology and Immunopathology 138 (4):303 311. doi: 10.1016/j.vetimm.2010.10.008
- Baquero MM, Plattner BL (2016) Bovine WC1⁺ γδ T lymphocytes modify monocyte-derived
 macrophage responses during early Mycobacterium avium subspecies paratuberculosis
 infection. Veterinary Immunology and Immunopathology 170:65-72.
 doi:http://dx.doi.org/10.1016/j.vetimm.2015.12.002
- Beaudeau F, Belliard M, Joly A, Seegers H (2007) Reduction in milk yield associated with
 Mycobacterium avium subspecies paratuberculosis (Map) infection in dairy cows. Vet Res
- 624 38 (4):625-634. doi: 10.1051/vetres:2007021
 625 Begg DJ, Whittington RJ (2008) Experimental animal infection models for Johne's disease, an
 626 infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis. Vet J 176
 627 (2):129-145. doi: 10.1016/j.tvjl.2007.02.022
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful
 approach to multiple testing. J R Stat Soc Series B (Methodological) 57(1):289–300
- Berger ST, Griffin FT (2006) A comparison of ovine monocyte-derived macrophage function
 following infection with Mycobacterium avium ssp. avium and Mycobacterium avium ssp.
 paratuberculosis. Immunol Cell Biol 84 (4):349-356. doi: 10.1111/j.1440 1711.2006.01431.x
- Bermudez LE, Petrofsky M, Sommer S, Barletta RG (2010) Peyer's patch-deficient mice
 demonstrate that Mycobacterium avium subsp. paratuberculosis translocates across the

- mucosal barrier via both M cells and enterocytes but has inefficient dissemination. Infection
 and Immunity 78 (8):3570-3577. doi:10.1128/iai.01411-09
- Blanchard DK, Michelini-Norris MB, Pearson CA, McMillen S, Djeu JY (1991) Production of
 granulocyte-macrophage colony-stimulating factor (GM-CSF) by monocytes and large
 granular lymphocytes stimulated with Mycobacterium avium-M. intracellulare: activation of
 bactericidal activity by GM-CSF. Infection and Immunity 59 (7):2396-2402
- Blanco FC, Bianco MV, Meikle V, Garbaccio S, Vagnoni L, Forrellad M, Klepp LI, Cataldi AA,
 Bigi F (2011) Increased IL-17 expression is associated with pathology in a bovine model of
 tuberculosis. Tuberculosis 91 (1):57-63. doi:http://dx.doi.org/10.1016/j.tube.2010.11.007
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence
 data. Bioinformatics 30 (15):2114-2120. doi:10.1093/bioinformatics/btu170
- Borrmann E, Mobius P, Diller R, Kohler H (2011) Divergent cytokine responses of macrophages to
 Mycobacterium avium subsp. paratuberculosis strains of Types II and III in a standardized
 in vitro model. Vet Microbiol 152 (1-2):101-111. doi: 10.1016/j.vetmic.2011.04.002
- Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW,
 Brinkman FSL, Lynn DJ (2013) InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Research 41 (D1):D1228-D1233.
 doi: 10.1093/nar/gks1147
- Cai H, Chen H, Yi T, Daimon CM, Boyle JP, Peers C, Maudsley S, Martin B (2013) VennPlex-a
 novel Venn diagram program for comparing and visualizing datasets with differentially
 regulated datapoints. PLoS One 8 (1):e53388. doi:10.1371/journal.pone.0053388
- Casey ME, Meade KG, Nalpas NC, Taraktsoglou M, Browne JA, Killick KE, Park SDE, Gormley
 E, Hokamp K, Magee DA, MacHugh DE (2015) Analysis of the bovine monocyte-derived
 macrophage response to Mycobacterium avium subspecies paratuberculosis infection using
 RNA-seq. Frontiers in Immunology 6:23. doi:10.3389/fimmu.2015.00023
- 661 Chiodini RJ (1993) The history of paratuberculosis (Johne's Disease). A review of the literature
 662 1895-1992. Intl Assoc Paratuberculosis Inc, (Publ. 658 pp)
- Das KM, Seril DN (2012) Mycobacterium avium Subspecies paratuberculosis in Crohn's Disease:
 The Puzzle Continues. Journal of Clinical Gastroenterology 46 (8):627-628.
 doi:10.1097/MCG.0b013e3182621ed4
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
 TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1):15-21.
 doi:10.1093/bioinformatics/bts635
- Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, Pfyffer GE, Jemmi T, Baumgartner
 A, Egger M (2007) Mycobacterium avium subspecies paratuberculosis and Crohn's disease:
 a systematic review and meta-analysis. Lancet Infect Dis 7 (9):607-613
- Garcia AB, Shalloo L (2015) Invited review: The economic impact and control of paratuberculosis
 in cattle. Journal of Dairy Science 98 (8):5019-5039. doi:http://dx.doi.org/10.3168/jds.2014 9241
- Gollnick NS, Mitchell RM, Baumgart M, Janagama HK, Sreevatsand S, Schukken YH (2007)
 Survival of Mycobacterium avium subsp. paratuberculosis in bovine monocyte-derived
 macrophages is not affected by host infection status but depends on the infecting bacterial
 genotype. Vet Immunol Immunopathol 120:93 105. doi: 10.1016/j.vetimm.2007.07.017
- Gonda MG, Chang YM, Shook GE, Collins MT, Kirkpatrick BW (2007) Effect of Mycobacterium
 paratuberculosis infection on production, reproduction, and health traits in US Holsteins.
 Prev Vet Med 80 (2-3):103-119
- 682 Grace PS, Ernst JD (2016) Suboptimal antigen presentation contributes to virulence of
 683 Mycobacterium tuberculosis in vivo. The Journal of Immunology 196 (1):357-364.
 684 doi:10.4049/jimmunol.1501494

- Hendrick SH, Kelton DF, Leslie KE, Lissemore KD, Archambault M, Duffield TF (2005) Effect of
 paratuberculosis on culling, milk production, and milk quality in dairy herds. J Am Vet Med
 Assoc 227 (8):1302-1308
- Hermon-Taylor J (2009) Mycobacterium avium subspecies paratuberculosis, Crohn's disease and
 the Doomsday scenario. Gut Pathog 1 (1):15. doi: 10.1186/1757-4749-1-15
- Hestvik ALK, Hmama Z, Av-Gay Y (2005) Mycobacterial manipulation of the host cell. FEMS
 Microbiology Reviews 29 (5):1041-1050. doi:10.1016/j.femsre.2005.04.013
- Hussain S, Zwilling BS, Lafuse WP (1999) Mycobacterium avium infection of mouse macrophages
 inhibits IFN-γ Janus kinase-STAT signaling and gene induction by down-regulation of the
 IFN-γ receptor. The Journal of Immunology 163 (4):2041-2048
- Janagama HK, il Jeong K, Kapur V, Coussens P, Sreevatsan S (2006) Cytokine responses of bovine
 macrophages to diverse clinical Mycobacterium avium subspecies paratuberculosis strains.
 BMC Microbiology 6:10-10. doi:10.1186/1471-2180-6-10
- Kabara E, Kloss CC, Wilson M, Tempelman RJ, Sreevatsan S, Janagama H, Coussens PM (2010) A
 large-scale study of differential gene expression in monocyte-derived macrophages infected
 with several strains of Mycobacterium avium subspecies paratuberculosis. Brief Funct
 Genomics 9 (3):220-237. doi: 10.1093/bfgp/elq009
- Khader SA, Cooper AM (2008) IL-23 and IL-17 in tuberculosis. Cytokine 41 (2):79-83.
 doi:http://dx.doi.org/10.1016/j.cyto.2007.11.022
- Khalifeh MS, Stabel JR (2004) Effects of gamma interferon, interleukin-10, and transforming
 growth factor beta on the survival of Mycobacterium avium subsp. paratuberculosis in
 monocyte-derived macrophages from naturally infected cattle. Infect Immun 72 (4):1974 1982
- Khare S, Lawhon SD, Drake KL, Nunes JES, Figueiredo JF, Rossetti CA, Gull T, Everts RE, Lewin
 HA, Galindo CL, Garner HR, Adams LG (2012) Systems biology analysis of gene
 expression during *in vivo Mycobacterium avium paratuberculosis* enteric colonization
 reveals role for immune tolerance. PLoS One 7 (8):e42127.
- 712 doi:10.1371/journal.pone.0042127
- LeibundGut-Landmann S, Waldburger J-M, Krawczyk M, Otten LA, Suter T, Fontana A, AchaOrbea H, Reith W (2004) Mini-review: Specificity and expression of CIITA, the master
 regulator of MHC class II genes. European Journal of Immunology 34 (6):1513-1525.
 doi:10.1002/eji.200424964
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
 Genome Project Data Processing S (2009) The Sequence Alignment/Map format and
 SAMtools. Bioinformatics 25 (16):2078-2079. doi:10.1093/bioinformatics/btp352
- Lin J, Zhao D, Wang J, Wang Y, Li H, Yin X, Yang L, Zhou X (2015) Transcriptome changes upon
 in vitro challenge with Mycobacterium bovis in monocyte-derived macrophages from
 bovine tuberculosis-infected and healthy cows. Veterinary Immunology and
 Immunopathology 163 (3-4):146-156. doi:http://dx.doi.org/10.1016/j.vetimm.2014.12.001
- Liverani E, Scaioli E, Cardamone C, Dal Monte P, Belluzzi A (2014) Mycobacterium avium
 subspecies paratuberculosis in the etiology of Crohn's disease, cause or epiphenomenon?
 World Journal of Gastroenterology : WJG 20 (36):13060-13070.
 doi:10.3748/wjg.v20.i36.13060
- MacHugh DE, Taraktsoglou M, Killick KE, Nalpas NC, Browne JA, Park SD, Hokamp K, Gormley
 E, Magee DA (2012) Pan-genomic analysis of bovine monocyte-derived macrophage gene
 expression in response to in vitro infection with Mycobacterium avium subspecies
 paratuberculosis. Vet Res 43 (1):25. doi: 10.1186/1297-9716-43-25.
- Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends
 Immunol 23 (11):549-555.

- 735 Marfell BJ, O'Brien R, Griffin JFT (2013) Global gene expression profiling of monocyte-derived macrophages from red deer (Cervus elaphus) genotypically resistant or susceptible to 736 Mycobacterium avium subspecies paratuberculosis infection. Developmental & 737 738 Comparative Immunology 40 (2):210-217. doi:http://dx.doi.org/10.1016/j.dci.2013.02.004 739 McAloon CG, Whyte P, More SJ, Green MJ, O'Grady L, Garcia A, Doherty ML (2016) The effect 740 of paratuberculosis on milk yield—A systematic review and meta-analysis. Journal of Dairy Science 99 (2):1449-1460. doi:http://dx.doi.org/10.3168/jds.2015-10156 741 Mellins ED, Stern LJ (2014) HLA-DM and HLA-DO, key regulators of MHC-II processing and 742 743 presentation. Current Opinion in Immunology 26:115-122. 744 doi:http://dx.doi.org/10.1016/j.coi.2013.11.005 745 Méndez-Samperio P (2008) Expression and regulation of chemokines in mycobacterial infection. 746 Journal of Infection 57 (5):374-384. doi:http://dx.doi.org/10.1016/j.jinf.2008.08.010 747 Méndez-Samperio P, Vázquez A, Avala H (2003) Infection of human monocytes with 748 Mycobacterium bovis BCG induces production of CC-chemokines. Journal of Infection 47
- 749 (2):139-147. doi:http://dx.doi.org/10.1016/S0163-4453(03)00010-0
- Murphy JT, Sommer S, Kabara EA, Verman N, Kuelbs MA, Saama P, Halgren R, Coussens PM
 (2006) Gene expression profiling of monocyte-derived macrophages following infection
 with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies
 paratuberculosis. Physiological Genomics 28 (1):67-75.
- 754 doi:10.1152/physiolgenomics.00098.2006
- Nalpas NC, Magee DA, Conlon KM, Browne JA, Healy C, McLoughlin KE, Rue-Albrecht K,
 McGettigan PA, Killick KE, Gormley E, Gordon SV, MacHugh DE (2015) RNA
 sequencing provides exquisite insight into the manipulation of the alveolar macrophage by
 tubercle bacilli. Scientific Reports 5:13629. doi:10.1038/srep13629
- Nielsen SS, Toft N (2009) A review of prevalences of paratuberculosis in farmed animals in
 Europe. Preventive Veterinary Medicine 88 (1):1-14. doi: 10.1016/j.prevetmed.2008.07.003
- Noss EH, Harding CV, Boom WH (2000) Mycobacterium tuberculosis inhibits MHC class II
 antigen processing in murine bone marrow macrophages. Cellular Immunology 201 (1):63 74. doi:http://dx.doi.org/10.1006/cimm.2000.1633
- Odumeru J, Gao A, Chen S, Raymond M, Mutharia L (2001) Use of the bead beater for preparation
 of Mycobacterium paratuberculosis template DNA in milk. Canadian Journal of Veterinary
 Research 65 (4):201-205
- Okamoto Yoshida Y, Umemura M, Yahagi A, O'Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S,
 Iwakura Y, Matsuzaki G (2010) Essential role of IL-17A in the formation of a
 mycobacterial infection-induced granuloma in the lung. The Journal of Immunology 184
 (8):4414-4422. doi:10.4049/jimmunol.0903332
- Pecora ND, Fulton SA, Reba SM, Drage MG, Simmons DP, Urankar-Nagy NJ, Boom WH,
 Harding CV (2009) Mycobacterium bovis BCG decreases MHC-II expression in vivo on
 murine lung macrophages and dendritic cells during aerosol infection. Cellular Immunology
 254 (2):94-104. doi:http://dx.doi.org/10.1016/j.cellimm.2008.07.002
- Plattner BL, Chiang YW, Roth JA, Platt R, Huffman E, Zylstra J, Hostetter JM (2011) Direct
 inoculation of Mycobacterium avium subspecies paratuberculosis into ileocecal Peyer's
 patches results in colonization of the intestine in a calf model. Veterinary Pathology Online
 48 (3):584-592. doi:10.1177/0300985810383874
- Podinovskaia M, Lee W, Caldwell S, Russell DG (2014) Infection of macrophages with
 Mycobacterium tuberculosis induces global modifications to phagosomal function. Cellular
 microbiology 15 (6):843-859. doi:10.1111/cmi.12092
- Pos W, Sethi DK, Wucherpfennig KW (2013) Mechanisms of peptide repertoire selection by HLA DM. Trends in Immunology 34 (10):495-501. doi:http://dx.doi.org/10.1016/j.it.2013.06.002
- Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ (2012) Expression of genes associated
 with the antigen presentation and processing pathway are consistently regulated in early

- 786 Mycobacterium avium subsp. paratuberculosis infection. Comp Immunol Microbiol Infect
 787 Dis 35 (2):151-162. doi: 10.1016/j.cimid.2011.12.007
- Rankin JD (1961) The experimental infection of cattle with Mycobacterium johnei. II. Adult cattle
 inoculated intravenously. J Comp Pathol 71:6-9
- Rastislav M, Mangesh B (2012) BoLA-DRB3 exon 2 mutations associated with paratuberculosis in cattle. The Veterinary Journal 192 (3):517-519. doi: 10.1016/j.tvjl.2011.07.005
- Rhoades ER, Cooper AM, Orme IM (1995) Chemokine response in mice infected with
 Mycobacterium tuberculosis. Infection and Immunity 63 (10):3871-3877
- Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
 expression analysis of digital gene expression data. Bioinformatics 26 (1):139-140.
 doi:10.1093/bioinformatics/btp616
- Rosenfeld G, Bressler B (2010) Mycobacterium avium paratuberculosis and the etiology of Crohn's
 disease: a review of the controversy from the clinician's perspective. Can J Gastroenterol 24
 (10):619-624
- Sechi LA, Scanu AM, Molicotti P, Cannas S, Mura M, Dettori G, Fadda G, Zanetti S (2005)
 Detection and isolation of Mycobacterium avium subspecies paratuberculosis from intestinal
 mucosal biopsies of patients with and without Crohn's disease in Sardinia. Am J
 Gastroenterol 100 (7):1529-1536. doi: 10.1111/j.1572-0241.2005.41415.x
- Sigurðardóttir ÓG, Bakke-McKellep AM, Djønne B, Evensen Ø (2005) Mycobacterium avium
 subsp. paratuberculosis enters the small intestinal mucosa of goat kids in areas with and
 without Peyer's patches as demonstrated with the everted sleeve method. Comparative
 Immunology, Microbiology and Infectious Diseases 28 (3):223-230.
 doi:10.1016/j.cimid.2005.01.004
- Singh AV, Singh SV, Makharia GK, Singh PK, Sohal JS (2008) Presence and characterization of
 Mycobacterium avium subspecies paratuberculosis from clinical and suspected cases of
 Crohn's disease and in the healthy human population in India. Int J Infect Dis 12 (2):190197. doi:10.1016/j.ijid.2007.06.008
- Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K,
 Nakae S, Iwakura Y, Matsuzaki G (2007) IL-17-mediated regulation of innate and acquired
 immune response against pulmonary Mycobacterium bovis bacille Calmette-Guérin
 infection. The Journal of Immunology 178 (6):3786-3796.
- 817 doi:10.4049/jimmunol.178.6.3786
- Vazquez N, Greenwell-Wild T, Rekka S, Orenstein JM, Wahl SM (2006) Mycobacterium avium induced SOCS contributes to resistance to IFN-γ-mediated mycobactericidal activity in
 human macrophages. Journal of Leukocyte Biology 80 (5):1136-1144.
 doi:10.1189/jlb.0306206
- Villarino MA, Scott HM, Jordan ER (2011) Influence of parity at time of detection of serologic
 antibodies to Mycobacterium avium subspecies paratuberculosis on reduction in daily and
 lifetime milk production in Holstein cows. J Anim Sci 89 (1):267-276.
 doi:10.2527/jas.2009-2776
- Weigoldt M, Meens J, Doll K, Fritsch I, Möbius P, Goethe R, Gerlach GF (2011) Differential
 proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and
 isolated from cases of clinical Johne's disease. Microbiology 157 (2):557-565.
 doi:10.1099/mic.0.044859-0
- Weiss DJ, Evanson OA, Deng M, Abrahamsen MS (2004) Gene expression and antimicrobial
 activity of bovine macrophages in response to Mycobacterium avium subsp.
 paratuberculosis. Veterinary Pathology Online 41 (4):326-337. doi:10.1354/vp.41-4-326
- Weiss DJ, Evanson OA, McClenahan DJ, Abrahamsen MS, Walcheck BK (2001) Regulation of expression of major histocompatibility antigens by bovine macrophages infected with Mycobacterium avium subsp. paratuberculosis or Mycobacterium avium subsp. avium.
- 836 Infect Immun 69 (2):1002-1008. doi: 10.1128/IAI.69.2.1002-1008.2001

- Weiss DJ, Evanson OA, Moritz A, Deng MQ, Abrahamsen MS (2002) Differential responses of
 bovine macrophages to Mycobacterium avium subsp. paratuberculosis and Mycobacterium
 avium subsp. avium. Infect Immun 70 (10):5556-5561. doi:10.1128/iai.70.10.55565561.2002
- Whittington RJ, Windsor PA (2009) In utero infection of cattle with Mycobacterium avium subsp.
 paratuberculosis: A critical review and meta-analysis. The Veterinary Journal 179 (1):60-69.
 doi: 10.1016/j.tvjl.2007.08.023
- Windsor PA, Whittington RJ (2010) Evidence for age susceptibility of cattle to Johne's disease. The
 Veterinary Journal 184 (1):37-44. doi: 10.1016/j.tvjl.2009.01.007
- Woo SR, Czuprynski CJ (2008) Tactics of Mycobacterium avium subsp. paratuberculosis for
 intracellular survival in mononuclear phagocytes. J Vet Sci 9 (1):1-8
- Yang Z, Ming X-F (2014) Functions of arginase isoforms in macrophage inflammatory responses:
 impact on cardiovascular diseases and metabolic disorders. Frontiers in Immunology 5:533.
 doi:10.3389/fimmu.2014.00533
- Zurbrick BG, Follett DM, Czuprynski CJ (1988) Cytokine regulation of the intracellular growth of
 Mycobacterium paratuberculosis in bovine monocytes. Infect Immun 56 (7):1692-1697
- 853

Figure

24H

Table

Table 1					
Time point	GenelD	Gene Symbol and Name	logFC	PValue	FDR
2h	ENSBTAG0000001570	CSF2, colony stimulating factor 2 (granulocyte-macrophage)	5,88	4,02E-05	0,004683
2h	ENSBTAG0000009393	GAL, galanin/GMAP prepropeptide	5,46	3,15E-11	3,55E-08
2h	ENSBTAG0000002362	APOLD1, apolipoprotein L domain containing 1	5,21	3,09E-06	0,000629
2h	ENSBTAG00000016163	OSM, oncostatin M	4,73	2,82E-08	1,06E-05
2h	ENSBTAG0000006367	CTGF, connective tissue growth factor	4,67	0,000121	0,010779
2h	ENSBTAG0000043738	Non-coding RNAs	4,67	0,000242	0,018387
2h	ENSBTAG0000047400	<i>IL11</i> , interleukin 11	4,61	0,000453	0,028641
2h	ENSBTAG0000019892	HAS2, hyaluronan synthase 2	4,34	1,29E-06	0,000314
2h	ENSBTAG0000002150	IL17A, Interleukin-17A	4,32	0,000705	0,038868
2h	ENSBTAG0000010273	EREG, epiregulin	4,28	3,59E-09	2,02E-06
2h	ENSBTAG0000017648	TIFAB, TRAF-interacting protein	-3,78	3,41E-08	1,24E-05
2h	ENSBTAG0000011638	Uncharacterized protein	-3,66	4,81E-13	1,49E-09
2h	ENSBTAG00000011195	Uncharacterized protein	-3,53	1,85E-05	0,002631
2h	ENSBTAG0000038415	SLC6A12, solute carrier family 6 member 12	-3,51	7,41E-08	2,3E-05
2h	ENSBTAG0000012715	KIF26B, kinesin family member 26B	-2,86	0,000737	0,040096
2h	ENSBTAG0000031397	P2RY13, purinergic receptor P2Y, G-protein coupled, 13	-2,85	0,00039	0,025857
2h	ENSBTAG0000005603	CXCL11, chemokine (C-X-C motif) ligand 11	-2,83	0,000152	0,012694
2h	ENSBTAG0000016344	PIK3R6, phosphoinositide-3-kinase, regulatory subunit 6	-2,68	5,28E-06	0,000926
2h	ENSBTAG0000009055	RNF144B, ring finger protein 144B	-2,59	4,04E-05	0,004683
2h	ENSBTAG0000039012	MFSD6L, major facilitator superfamily domain containing 6-like	-2,22	0,000518	0,031962
6h	ENSBTAG0000024058	EGR4 ,early growth response 4	7,53	4,26E-08	3,89E-06
6h	ENSBTAG0000047400	IL11, interleukin 11	7,41	3,63E-06	0,000154
6h	ENSBTAG0000018290	<i>IL9,</i> interleukin 9	7,22	1,51E-15	1,39E-12
6h	ENSBTAG0000021717	BDKRB2, bradykinin receptor B2	7,06	8,81E-11	2,1E-08
6h	ENSBTAG0000001570	CSF2, colony stimulating factor 2 (granulocyte-macrophage)	7,00	3,46E-06	0,00015
6h	ENSBTAG0000021699	RORB, RAR-related orphan receptor B	6,90	6,95E-08	5,87E-06
6h	ENSBTAG0000000783	TGFA, transforming growth factor, alpha	6,53	2,74E-06	0,000124
6h	ENSBTAG0000007424	LIF, leukemia inhibitory factor	6,17	4,71E-12	1,77E-09
Table 1 (contin	ued)				

Time point	GenelD	Gene Symbol and Name	logFC	PValue	FDR
6h	ENSBTAG0000008182	FOSB, FBJ murine osteosarcoma viral oncogene homolog B	6,11	1,87E-18	4,71E-15
6h	ENSBTAG0000009393	GAL, galanin/GMAP prepropeptide	5,88	1,25E-12	6,45E-10
6h	ENSBTAG00000020433	NLRP1, NLR family, pyrin domain containing 1	-5,40	7,14E-16	8,85E-13
6h	ENSBTAG0000008479	CXCL13, chemokine (C-X-C motif) ligand 13	-4,59	8,95E-08	7,16E-06
6h	ENSBTAG00000012715	KIF26B, kinesin family member 26B	-4,33	5,07E-07	3,14E-05
6h	ENSBTAG00000011638	Uncharacterized protein	-4,27	1,04E-15	1,07E-12
6h	ENSBTAG0000005424	KCNC1, potassium channel, voltage gated Shaw related subfamily C, member 1	-4,08	6,66E-05	0,001708
6h	ENSBTAG00000015296	PTPRB, protein tyrosine phosphatase, receptor type, B	-3,93	6,96E-09	8,38E-07
6h	ENSBTAG0000009975	PBX4, pre-B-cell leukemia homeobox 4	-3,89	3,48E-06	0,000151
6h	ENSBTAG0000004680	SLC13A5, solute carrier family 13 (sodium-dependent citrate transporter), member 5	-3,79	9,28E-12	3,11E-09
6h	ENSBTAG0000002773	Uncharacterized protein	-3,56	9,22E-09	1,05E-06
6h	ENSBTAG0000005828	MERTK, MER proto-oncogene, tyrosine kinase	-3,51	2,47E-20	3,06E-16
24h	ENSBTAG00000016835	IL17F, interleukin 17F	10,13	5,39E-19	3,93E-16
24h	ENSBTAG0000002150	IL17A, Interleukin-17A	8,66	2,06E-11	2,3E-09
24h	ENSBTAG00000012529	IFNG, interferon, gamma	8,50	9,18E-09	4,48E-07
24h	ENSBTAG0000000437	FFAR4, free fatty acid receptor 4	8,34	8,53E-14	1,73E-11
24h	ENSBTAG0000001570	CSF2, colony stimulating factor 2 (granulocyte-macrophage)	8,14	2,78E-07	9,2E-06
24h	ENSBTAG0000039080	SLC22A3, solute carrier family 22 (organic cation transporter), member 3	8,12	3,07E-13	5,37E-11
24h	ENSBTAG00000046375	LOC100850808	8,05	5,89E-13	1,01E-10
24h	ENSBTAG0000004741	IL12B, interleukin 12B	7,53	1,8E-07	6,39E-06
24h	ENSBTAG0000039028	PI3, Peptidase inhibitor 3	7,26	1,22E-13	2,4E-11
24h	ENSBTAG00000010085	SLC7A2, solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	7,17	7,76E-07	2,18E-05
24h	ENSBTAG00000014365	Uncharacterized protein	-10,17	2,3E-07	7,82E-06
24h	ENSBTAG00000013185	TIMD4, T-cell immunoglobulin and mucin domain containing 4	-9,81	2,21E-19	1,83E-16
24h	ENSBTAG00000046977	PLA2G2D4, Phospholipase A(2)	-9,62	3,37E-11	3,45E-09
24h	ENSBTAG00000019960	TM4SF18, transmembrane 4 L six family member 18	-8,65	1,07E-08	5,11E-07
24h	ENSBTAG00000014313	PYROXD2, pyridine nucleotide-disulphide oxidoreductase domain 2	-8,43	3,51E-18	1,98E-15
24h	ENSBTAG00000020499	PLA2G2D1, Putative calcium-dependent phospholipase A2	-8,35	2E-05	0,000322
24h	ENSBTAG0000034323	SLC2A5, solute carrier family 2, facilitated glucose transporter member 5	-8,33	1,22E-15	3,98E-13
Table 1 (continue	ed)				

Time point	GenelD	Gene Symbol and Name	logFC	PValue	FDR
24h	ENSBTAG00000047776	Uncharacterized protein	-8,28	3,93E-06	8,45E-05
24h	ENSBTAG00000016997	LOC511180	-8,24	9,1E-15	2,3E-12
24h	ENSBTAG0000004560	CLEC4F, C-type lectin domain family 4, member F	-8,01	6E-09	3,11E-07

Bold indicates significance up-regulation

GO Term ID	GO Term Name	Uploaded Genes	Genes Associated with	GO Term	GO Term ORA P-	Time
		Associated with GO Term	GO Term in InnateDB	ORA P-Value	Value (Corrected)	point
GO:0005125	cytokine activity	14	149	<1.0E-5	0.00001	2h
GO:0008083	growth factor activity	11	120	<1.0E-5	0.00014	2h
GO:0003700	sequence-specific DNA binding transcription factor activity	28	861	<1.0E-5	0.00106	2h
GO:0000977	RNA polymerase II regulatory region sequence-specific DNA binding	8	77	<1.0E-5	0.00113	2h
GO:0005515	protein binding	144	8713	<1.0E-5	0.00106	2h
GO:0017017	MAP kinase tyrosine/serine/threonine phosphatase activity	4	12	0.00001	0.00176	2h
GO:0043565	sequence-specific DNA binding	20	631	0.00017	0.01214	2h
GO:0055106	ubiquitin-protein ligase regulator activity	2	3	0.00048	0.02342	2h
GO:0043426	MRF binding	2	5	0.00157	0.04406	2h
GO:0001228	RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription	4	41	0.00177	0.04731	2h
GO:0005515	protein binding	699	8713	<1.0E-5	<1.0E-5	6h
GO:0005125	cytokine activity	33	149	<1.0E-5	<1.0E-5	6h
GO:0016772	transferase activity, transferring phosphorus- containing groups	65	534	<1.0E-5	0.00054	6h
GO:0004713	protein tyrosine kinase activity	57	456	<1.0E-5	0.00084	6h
GO:0000166	nucleotide binding	145	1538	<1.0E-5	0.00192	6h
GO:0005524	ATP binding	124	1273	<1.0E-5	0.00192	6h
GO:0016773	phosphotransferase activity, alcohol group as acceptor	18	85	<1.0E-5	0.00206	6h
GO:0004672	protein kinase activity	58	510	0.00004	0.00577	6h

Table 2 (continued)

		Associated with GO Term	GO Term in InnateDB	ORA P-Value	Value (Corrected)	point
GO:0001206	RNA polymerase II distal enhancer sequence-	4	5	0.00009	0.01061	6h
	specific DNA binding transcription factor					
	activity involved in negative regulation of					
	transcription					
GO:0004725	protein tyrosine phosphatase activity	17	95	0.00015	0.01513	6h
GO:0005515	protein binding	1317	8713	<1.0E-5	<1.0E-5	24h
GO:0005125	cytokine activity	46	149	<1.0E-5	<1.0E-5	24h
GO:0005524	ATP binding	227	1273	<1.0E-5	0.00015	24h
GO:0005164	tumor necrosis factor receptor binding	15	28	<1.0E-5	0.00015	24h
GO:0016491	oxidoreductase activity	105	505	<1.0E-5	0.00021	24h
GO:0008009	chemokine activity	17	39	<1.0E-5	0.00077	24h
GO:0005178	integrin binding	20	55	0.00001	0.00231	24h
GO:0015179	L-amino acid transmembrane transporter	5	5	0.00004	0.0065	24h
	activity					
GO:0016787	hydrolase activity	174	1024	0.00013	0.01642	24h
GO:0035091	phosphatidylinositol binding	21	69	0.00013	0.01637	24h

GO Term ID	GO Term Name	Uploaded Genes	Genes Associated with	GO Term	GO Term ORA P-	Time
		Associated with GO Term	GO Term in InnateDB	ORA P-Value	Value (Corrected)	point
GO:0006955	immune response	16	217	<1.0E-5	0.00001	2h
GO:0035914	skeletal muscle cell differentiation	8	43	<1.0E-5	0.00003	2h
GO:0045944	positive regulation of transcription from RNA	27	739	<1.0E-5	0.00025	2h
	polymerase II promoter					
GO:0000188	inactivation of MAPK activity	5	20	<1.0E-5	0.00106	2h
GO:0045893	positive regulation of transcription, DNA-	18	451	0.00002	0.00268	2h
	templated					
GO:0031668	cellular response to extracellular stimulus	4	15	0.00003	0.00392	2h
GO:0006469	negative regulation of protein kinase activity	6	50	0.00004	0.00457	2h
GO:0046888	negative regulation of hormone secretion	3	6	0.00004	0.00427	2h
GO:0045672	positive regulation of osteoclast	4	17	0.00005	0.00536	2h
	differentiation					
GO:0045651	positive regulation of macrophage	3	8	0.00011	0.01026	2h
	differentiation					
GO:0006955	immune response	40	217	<1.0E-5	<1.0E-5	6h
GO:0071222	cellular response to lipopolysaccharide	19	59	<1.0E-5	<1.0E-5	6h
GO:0006954	inflammatory response	29	134	<1.0E-5	0.00001	6h
GO:0045944	positive regulation of transcription from RNA	88	739	<1.0E-5	0.00004	6h
	polymerase II promoter					
GO:0035556	intracellular signal transduction	47	312	<1.0E-5	0.00006	6h
GO:0050728	negative regulation of inflammatory	16	55	<1.0E-5	0.00016	6h
	response					
GO:0045672	positive regulation of osteoclast	9	17	<1.0E-5	0.00016	6h
	differentiation					
GO:0045893	positive regulation of transcription, DNA-	58	451	<1.0E-5	0.00038	6h
	templated					
GO:0032755	positive regulation of interleukin-6	12	36	<1.0E-5	0.00066	6h
	production					

Table 3 (continued)
-----------	------------

GO Term ID	GO Term Name	Uploaded Genes	Genes Associated with	GO Term	GO Term ORA P-	Time
		Associated with GO Term	GO Term in InnateDB	ORA P-Value	Value (Corrected)	point
GO:0032729	positive regulation of interferon-gamma	12	37	<1.0E-5	0.00085	6h
	production					
GO:0006955	immune response	83	217	<1.0E-5	<1.0E-5	24h
GO:0006954	inflammatory response	51	134	<1.0E-5	<1.0E-5	24h
GO:0008152	metabolic process	226	1208	<1.0E-5	<1.0E-5	24h
GO:0071222	cellular response to lipopolysaccharide	25	59	<1.0E-5	0.00001	24h
GO:0019882	antigen processing and presentation	27	76	<1.0E-5	0.00019	24h
GO:0030335	positive regulation of cell migration	34	109	<1.0E-5	0.00022	24h
GO:0050728	negative regulation of inflammatory	21	55	<1.0E-5	0.00076	24h
	response					
GO:0055114	oxidation-reduction process	127	673	<1.0E-5	0.00243	24h
GO:0048661	positive regulation of smooth muscle cell	11	20	0.00001	0.00238	24h
	proliferation					
GO:0002504	antigen processing and presentation of	9	14	0.00001	0.00251	24h
	peptide or polysaccharide antigen via MHC					
	class II					

GO Term ID	GO Term Name	Uploaded Genes	Genes Associated with	GO Term	GO Term ORA P-	Time
		Associated with GO Term	GO Term in InnateDB	ORA P-Value	Value (Corrected)	point
GO:0005737	cytoplasm	69	3807	0.00079	0.03452	2h
GO:0005634	nucleus	77	4394	0.00096	0.03159	2h
GO:0005615	extracellular space	21	797	0.0013	0.04028	2h
GO:0005737	cytoplasm	327	3807	<1.0E-5	0.00005	6h
GO:0005925	focal adhesion	17	94	0.00013	0.01385	6h
GO:0043234	protein complex	33	254	0.00016	0.01583	6h
GO:0031234	extrinsic component of cytoplasmic side of	7	20	0.0002	0.01733	6h
	plasma membrane					
GO:0005634	nucleus	342	4394	0.00031	0.01933	6h
GO:0030175	filopodium	9	37	0.00055	0.02905	6h
GO:0032009	early phagosome	3	4	0.00111	0.04447	6h
GO:0070062	extracellular vesicular exosome	392	2047	<1.0E-5	<1.0E-5	24h
GO:0005737	cytoplasm	624	3807	<1.0E-5	<1.0E-5	24h
GO:0005765	lysosomal membrane	53	163	<1.0E-5	<1.0E-5	24h
GO:0005764	lysosome	47	146	<1.0E-5	<1.0E-5	24h
GO:0009897	external side of plasma membrane	48	171	<1.0E-5	0.00008	24h
GO:0009986	cell surface	72	300	<1.0E-5	0.00008	24h
GO:0005783	endoplasmic reticulum	128	639	<1.0E-5	0.00016	24h
GO:0005925	focal adhesion	31	94	<1.0E-5	0.0002	24h
GO:0005615	extracellular space	148	797	<1.0E-5	0.00123	24h
GO:0005739	mitochondrion	222	1290	<1.0E-5	0.00161	24h

(*) At 2 and 6 hours we reported the GO term (<10) significantly overrepresented after correction for multiple testing.

		Regulated genes	Path	
Path Name	Path Id	% in the Path	p-value	Gene Symbols
				ACTG1; ACTR3; ADCY7; APP; BAIAP2; C1QA; C1QB; CALM; CFD;
				DNM1; DUSP6; FGF1; FOS; GAB1; HSP90AA1; HSP90B1; IRAK2; IRF1;
				LGMN; MAP2K6; MYD88; MYO1C; NFATC1; NLRP3; NOD2; NR4A1;
				PAK1; PDE1B; PIK3R2; POLR3GL; PRKACA; PRKAR1A; PROS1; RIPK2;
				S100B; SHC1; TICAM2; TMEM173; TRIB3; TRIM21; TXN; UBE2D1;
Innate Immune System	19515	32	0,000	UBE2N; WASF2;
Chemokine receptors bind chemokines	19574	53	0,001	CCL20; CCL4; CCL5; CCRL2; CXCL11; CXCL2; CXCL2; CXCL9; CXCR4; IL8;
				CSF2; IL18; IL1A; IL1B; IL1RN; IL2RG; IRAK2; MAP2K6; MYD88; NOD2;
Signaling by Interleukins	19663	40	0,003	PIK3R2; PRKACA; RIPK2; SHC1; SOCS3; UBE2N;
				ACTG1; ACTR3; ADCY7; AP1S1; AP2A2; APP; BAIAP2; C1QA; C1QB;
				CALM; CD200R1; CD81; CFD; CISH; CSF2; DNM1; DUSP6; DYNLL1;
				EIF4A1; EIF4E; FGF1; FOS; GAB1; HSP90AA1; HSP90B1; IFNG; IL18;
				IL1A; IL1B; IL1RN; IL2RG; IRAK2; IRF1; KIF3C; LGMN; MAP2K6;
				MYD88; MYO1C; NFATC1; NLRP3; NOD2; NR4A1; PAK1; PDE1B;
				PIK3R2; POLR3GL; PRKACA; PRKAR1A; PROS1; PSMA1; PSMD5;
				RIPK2; S100B; SHC1; SOCS3; TICAM2; TMEM173; TRIB3; TRIM21;
Immune System	17907	26	0,005	TUBA1B; TUBB4B; TXN; UBE2D1; UBE2N; VASP; WASF2;
				CISH; CSF2; EIF4A1; EIF4E; IFNG; IL18; IL1A; IL1B; IL1RN; IL2RG;
				IRAK2; MAP2K6; MYD88; NOD2; PIK3R2; PRKACA; RIPK2; SHC1;
Cytokine Signaling in Immune system	17637	33	0,009	SOCS3; UBE2N;
Interleukin-1 signaling	19605	43	0,014	IL1A; IL1B; IL1RN; IRAK2; MAP2K6; MYD88; NOD2; RIPK2; UBE2N;
Classical antibody-mediated				
complement activation	18280	100	0,040	C1QA; C1QB;
Clathrin derived vesicle budding	18426	47	0,017	AP1S1; ARRB1; NECAP1; RAB5C; SNX5; STX4; VAMP8;
trans-Golgi Network Vesicle Budding	18678	47	0,017	AP1S1; ARRB1; NECAP1; RAB5C; SNX5; STX4; VAMP8;
Regulation of actin dynamics for				
phagocytic cup formation	18471	44	0,026	ACTG1; ACTR3; BAIAP2; HSP90AA1; MY01C; PAK1; WASF2;

Table 5 (continued)

Path Name		Regulated genes	Path	
	Path Id	% in the Path	p-value	Gene Symbols
Fcgamma receptor (FCGR) dependent				
phagocytosis	17005	40	0,031	ACTG1; ACTR3; BAIAP2; HSP90AA1; MYO1C; PAK1; PIK3R2; WASF2;
Apoptotic execution phase	18699	56	0,019	DBNL; DNM1L; H1F0; KPNA1; VIM;
Death Receptor Signalling	19726	75	0,027	FAS; TNF; TRADD;
Extrinsic Pathway for Apoptosis	16978	75	0,027	FAS; TNF; TRADD;
Activation of caspases through				
apoptosome-mediated cleavage	17461	100	0,040	CYCS; CYCS;
Detoxification of Reactive Oxygen				
Species	17995	44	0,015	CAT; CYCS; CYCS; PRDX3; PRDX6; SOD1; TXN; TXNRD1;
				AHCY; ALDH1A1; ALDH2; BPNT1; COMT; FDX1; GGCT; GSTA4; MAOA;
Biological oxidations	18212	33	0,040	MAT2B; TPMT; UGDH;

Table 6

Ensembl ID	Gene name	e name Gene descriptiopn		6h Pl	24h Pl
CHEMOKINES					
ENSBTAG00000027513	CXCL2	chemokine (C-X-C motif) ligand 2	n.s.	3.69	4.76
ENSBTAG00000019716	CXCL8 (IL8)	chemokine (C-X-C motif) ligand 8	n.s.	3.36	4.36
ENSBTAG00000037778	CXCL3	chemokine (C-X-C motif) ligand 3	n.s.	2.57	2.82
ENSBTAG00000038639	CXCL9	chemokine (C-X-C motif) ligand 9	n.s.	n.s.	-2.60
ENSBTAG0000005603	CXCL11	chemokine (C-X-C motif) ligand 11	-2.83	n.s.	-3.74
ENSBTAG0000008479	CXCL13	chemokine (C-X-C motif) ligand 13	n.s.	n.s.	-4.46
ENSBTAG0000009943	XCL2	chemokine (C motif) ligand 2	n.s.	n.s.	3.66
ENSBTAG00000024869	CX3CL1	chemokine (C-X3-C motif) ligand 1	n.s.	n.s.	3.40
ENSBTAG00000025250	CCL3	chemokine (C-C motif) ligand 3	2.91	3.88	6.04
ENSBTAG00000017718	CCL22	chemokine (C-C motif) ligand 22	n.s.	n.s.	5.81
ENSBTAG00000025257	CCL4	chemokine (C-C motif) ligand 4	n.s.	2.90	5.26
ENSBTAG00000021326	CCL20	chemokine (C-C motif) ligand 20	n.s.	2.61	4.73
ENSBTAG0000007191	CCL5	chemokine (C-C motif) ligand 5	n.s.	n.s.	2.27
ENSBTAG00000026275	CCL24	chemokine (C-C motif) ligand 24	n.s.	n.s.	2.12
ENSBTAG00000014113	CCL8	chemokine (C-C motif) ligand 8	n.s.	n.s.	-1.81
HEMAPOIETINS					
ENSBTAG0000001570	<u>CSF2</u>	colony stimulating factor 2	5.88	7.00	8.14
ENSBTAG0000004741	<u>IL12B</u>	interleukin 12B	n.s.	4.36	7.53
ENSBTAG0000007424	<u>LIF</u>	leukemia inhibitory factor	3.95	6.17	6.91
ENSBTAG00000021462	<u>CSF3</u>	colony stimulating factor 3	n.s.	3.52	4.01
ENSBTAG00000047400	<u>IL11</u>	interleukin 11	4.61	7.41	3.65
ENSBTAG00000018290	<u>IL9</u>	interleukin 9	3.97	7.22	3.53
ENSBTAG00000046110	<u>BSF3</u>	cardiotrophin-like cytokine factor 1	n.s.	3.21	3.15
ENSBTAG00000018015	<u>IL27 *</u>	interleukin-27 subunit alpha precursor	n.s.	2.58	2.33
ENSBTAG0000004378	<u>IL23A</u>	interleukin 23 subunit alpha	3.41	3.30	2.27
ENSBTAG00000016163	<u>OSM</u>	oncostatin M	4.73	5.35	n.s.

Table 6 (continued)

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
ENSBTAG00000020892	<u>IL2RA</u>	interleukin 2 receptor subunit alpha	n.s.	2.79	3.84
ENSBTAG0000009455	<u>IL12RB2</u>	interleukin 12 receptor subunit beta 2	n.s.	2.18	3.02
ENSBTAG0000006078	<u>IL15RA</u>	interleukin 15 receptor subunit alpha	n.s.	n.s.	1.60
ENSBTAG00000014907	<u>IL11RA</u>	interleukin 11 receptor subunit alpha	n.s.	n.s.	-1.19
ENSBTAG0000033107	<u>OSMR</u>	oncostatin M receptor	n.s.	n.s.	-1.60
ENSBTAG0000008197	<u>EPOR</u>	erythropoietin receptor	n.s.	n.s.	-1.75
PDGF FAMILY					
ENSBTAG0000000283	CSF1	colony stimulating factor 1	3.63	3.16	4.80
ENSBTAG0000005339	VEGFA	vascular endothelial growth factor A	2.19	1.88	n.s.
ENSBTAG00000017664	HGF	hepatocyte growth factor (hepapoietin A; scatter factor)	n.s.	n.s.	-4.59
ENSBTAG00000043959	PDGFC	platelet derived growth factor C	n.s.	n.s.	-3.54
ENSBTAG00000016915	FLT1	fms related tyrosine kinase 1	n.s.	n.s.	4.04
ENSBTAG0000006161	MET	MET proto-oncogene, receptor tyrosine kinase	n.s.	3.13	3.38
ENSBTAG00000012771	CSF1R	colony stimulating factor 1 receptor	n.s.	n.s.	-2.64
INTERFERON FAMILY					
ENSBTAG00000012529	<u>IFNG</u>	interferon, gamma	n.s.	4.10	8.50
ENSBTAG00000012544	<u>IFNGR1</u>	interferon gamma receptor 1	n.s.	n.s.	-1.53
IL-10 FAMILY					
ENSBTAG0000006685	<u>IL10</u>	interleukin-10 precursor	n.s.	1.42	n.s.
ENSBTAG0000001101	<u>IFNLR1 (IL28RA)</u>	interferon, lambda receptor 1	n.s.	n.s.	3.94
TNF FAMILY					
ENSBTAG00000025471	TNFA (TNF)	tumor necrosis factor alpha	n.s.	4.98	4.54
ENSBTAG00000018069	TNFSF15	tumor necrosis factor superfamily member 15	n.s.	n.s.	4.49
ENSBTAG00000012223	TNFSF14	tumor necrosis factor superfamily member 14	3.34	3.12	3.93
ENSBTAG0000002894	TNFSF4	tumor necrosis factor superfamily member 4	n.s.	n.s.	3.23
ENSBTAG00000046266	TNFSF9	tumor necrosis factor superfamily member 9	2.06	2.98	3.15
ENSBTAG0000032808	FASLG	Fas ligand	n.s.	n.s.	2.03
ENSBTAG00000025782	TNFSF8	tumor necrosis factor superfamily member 8	n.s.	n.s.	1.84

Table 6 (continued)					
Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
ENSBTAG0000000130	TNFSF13	tumor necrosis factor superfamily member 13	n.s.	n.s.	-2.78
ENSBTAG00000012543	EDA	ectodysplasin A	n.s.	n.s.	-3.98
ENSBTAG00000015632	TNFRSF18 (SF18)	tumor necrosis factor receptor superfamily member 18	n.s.	2.59	5.12
ENSBTAG00000039937	TNFRSF8 (SF8)	tumor necrosis factor receptor superfamily member 8	n.s.	n.s.	4.38
ENSBTAG0000003313	TNFRSF9 (SF9)	tumor necrosis factor receptor superfamily member 9	n.s.	1.41	2.84
ENSBTAG00000012082	TNFRSF12A (SF12A)	tumor necrosis factor receptor superfamily member 12A	n.s.	1.94	2.74
ENSBTAG00000015635	TNFRSF4 (SF4)	tumor necrosis factor receptor superfamily member 4	n.s.	n.s.	2.22
ENSBTAG00000010785	FAS	Fas cell surface death receptor	n.s.	n.s.	1.87
TGF-β FAMILY					
ENSBTAG0000002912	INHBA	inhibin beta A	4.26	4.40	5.66
ENSBTAG00000018105	ACVR2B	activin A receptor type IIB	n.s.	n.s.	-2.51
IL-17 FAMILY					
ENSBTAG00000016835	IL17F *	interleukin 17F	n.s.	3.15	10.13
ENSBTAG0000002150	IL17A	interleukin 17A	4.32	5.03	8.66
IL-1 FAMILY					
ENSBTAG0000002085	IL36G *	interleukin 36, γ	n.s.	3.21	4.79
ENSBTAG0000001321	IL1B	interleukin 1 β	n.s.	3.10	4.67
ENSBTAG00000027676	IL18BP *	interleukin 18 binding protein	n.s.	1.71	3.84
ENSBTAG00000010349	IL1A	interleukin 1 α	n.s.	3.36	3.35
ENSBTAG0000000277	IL18	interleukin 18	n.s.	n.s.	-2.24
ENSBTAG00000019665	IL1RN *	interleukin 1 receptor antagonist	1.66	3.31	5.52
ENSBTAG0000033748	IL18RAP	interleukin 18 receptor accessory protein	n.s.	n.s.	4.04
ENSBTAG0000001034	IL18R1	interleukin 18 receptor 1	n.s.	n.s.	2.39
ENSBTAG00000013205	IL1RAP	interleukin 1 receptor accessory protein	n.s.	n.s.	1.89
JAK/STAT MEMBERS					
ENSBTAG00000022622	CISH (CIS)	cytokine inducible SH2-containing protein	n.s.	2.85	3.01
ENSBTAG0000008441	SOCS3 (SOCS)	suppressor of cytokine signaling 3	n.s.	1.51	1.42
ENSBTAG0000019456	SPRED2 *	sprouty-related, EVH1 domain containing 2	1,81	n.s.	1,96

Table 6 (continued)

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl	
ENSBTAG00000020294	PTPN6 (SHP1)	protein tyrosine phosphatase, non-receptor type 6	n.s.	-1.92	n.s.	
ENSBTAG0000002350	PIK3R2 (PI3K)	Phosphatidylinositol 3-kinase regulatory subunit eta	n.s.	-1.28	-1.75	
ENSBTAG00000020848	РІКЗС <i>G (РІЗК)</i>	phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic sub γ	n.s.	-1.90	n.s.	
Underlined genes are involved in both Cytokine-cytokine receptor interaction and JAK/STAT pathways.						

Receptors are presented in gray.

* Indicates genes which are not represent in figure S8.

() Indicates the gene name or the protein complex name as shown in figure S8 or S9.

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
ENSBTAG00000012529	IFNG	interferon, gamma	n.s.	4.10	8.50
ENSBTAG00000025471	TNFA	tumor necrosis factor alpha	n.s.	4.98	4.54
ENSBTAG0000038128	BOLA-DQA5 (MHCII)	major histocompatibility complex, class II, DQ alpha 5	n.s.	n.s.	-2.27
ENSBTAG00000010645	BOLA-DRA (MHCII)	major histocompatibility complex, class II, DR alpha	n.s.	n.s.	-2.37
ENSBTAG00000013919	BOLA-DRB3 (MHCII)	major histocompatibility complex, class II, DRB3	n.s.	n.s.	-1.93
ENSBTAG00000015730	BOLA-DMA (HLA-DM and MHCII)	major histocompatibility complex, class II, DM alpha	n.s.	n.s.	-3.52
ENSBTAG00000012451	BOLA-DMB (HLA-DM and MHCII)	major histocompatibility complex, class II, DM beta	n.s.	n.s.	-3.66
ENSBTAG0000006490	BOLA-DOA (MHCII)	major histocompatibility complex, class II, DO alpha	n.s.	n.s.	-2.43
ENSBTAG00000046979	LGMN (AEP)	legumain	n.s.	n.s.	-2.48
ENSBTAG00000020649	CIITA	major histocompatibility complex, class II, transactivator	n.s.	-1.38	-2.07

()Indicates the gene name or the protein complex name as shown in figure S4.

Table 8					
Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
Fc RECEPTORS					
ENSBTAG0000002096	FCGR3A (FcγR)	Fc fragment of IgG, low affinity IIIa, receptor (CD16a)	n.s.	n.s.	-2.39
ENSBTAG0000008592	FCGR1A (FcγR)	Fc gamma receptor I	n.s.	n.s.	-1.70
INTEGRINS					
ENSBTAG0000009987	ITGB3 (αVβ3)	integrin subunit beta 3	n.s.	2.20	3.44
ENSBTAG00000019289	ITGA2 (α2β1)	integrin subunit alpha 2	n.s.	n.s.	2.49
ENSBTAG00000013755	ITGB5 (αVβ5)	integrin beta-5 precursor	n.s.	n.s.	-3.76
TOLL-LIKE RECEPTORS					
ENSBTAG00000015032	CD14	CD14 molecule	n.s.	n.s.	-1.40
C-LECTIN RECEPTORS					
ENSBTAG00000014546	CLEC7A (dectin1)	C-type lectin domain family 7 member A	n.s.	n.s.	-7.02
ENSBTAG00000030424	CLEC1A *	C-type lectin domain family 1, member A	n.s.	n.s.	-6.93
ENSBTAG00000015739	MRC2 (MR)	C-type mannose receptor 2 precursor	n.s.	n.s.	-5.46
ENSBTAG00000032515	PLA2R1 (MR)	phospholipase A2 receptor 1	n.s.	n.s.	-1.89
SCAVENGER RECEPTORS					
ENSBTAG0000002885	MRS1 (SRA1)	macrophage scavenger receptor 1	n.s.	n.s.	-3.08
ENSBTAG00000014269	SCARB1 (SRB1)	scavenger receptor class B member 1	n.s.	n.s.	-2.29
ENSBTAG0000004547	OLR1 (Lox1)	oxidized low density lipoprotein (lectin-like) receptor 1	n.s.	2.38	n.s.
IRON UPTAKE					
ENSBTAG00000032719	TFRC (TfR)	transferrin receptor protein 1	n.s.	n.s.	1.56
NADPH OXIDASE					
ENSBTAG0000007531	NCF4 (p40phox)	neutrophil cytosolic factor 4	n.s.	n.s.	-2.20
OPSONINS					
ENSBTAG0000002006	THBS1 (TSP)	thrombospondin 1	n.s.	-1.73	n.s.

* Indicates genes which are not represent in figure S6.
() Indicates the gene name or the protein complex name as shown in figure S6.

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
PROTEASES					
ENSBTAG0000007622	CTSD	cathepsin D precursor	n.s.	n.s.	-1.66
ENSBTAG00000010994	CTSF	cathepsin F	n.s.	n.s.	-2.27
ENSBTAG00000011100	CTSC	cathepsin C	n.s.	n.s.	-1.24
ENSBTAG00000046979	LGMN	legumain	n.s.	n.s.	-2.48
ENSBTAG00000015403	TPP1	tripeptidyl peptidase I	n.s.	n.s.	-1.55
GLYCOSIDASES					
ENSBTAG00000030434	FUCA1	fucosidase, alpha-L- 1, tissue	n.s.	n.s.	-1.62
ENSBTAG00000019256	GLA	galactosidase alpha	n.s.	n.s.	-1.77
ENSBTAG0000001124	GALC	galactosylceramidase	n.s.	-0.99	-1.84
ENSBTAG0000006241	MAN2B1 (LAMAN)	mannosidase alpha class 2B member 1	n.s.	n.s.	-1.79
SULFATASES					
ENSBTAG00000015267	SGSH	N-sulfoglucosamine sulfohydrolase	n.s.	n.s.	-1.65
PHOSFATASE					
ENSBTAG00000021002	ACP2	acid phosphatase 2, lysosomal	n.s.	-2.14	-1.47
ENSBTAG0000004826	ACP5	acid phosphatase 5, tartrate resistant	n.s.	n.s.	-1.55
OTHER ENZYMES AND AC	TIVATORS				
ENSBTAG00000017201	AP4S1 (AP-4)	adaptor related protein complex 4, sigma 1 subunit	n.s.	2.15	n.s.
ENSBTAG0000013367	PPT1 (CLN1)	palmitoyl-protein thioesterase 1	n.s.	n.s.	-2.01
ENSBTAG0000001189	AP1B1 (AP-1)	adaptor related protein complex 1 beta 1 subunit	n.s.	n.s.	-1.80
ENSBTAG00000039855	SUMF1 (FGE)	sulfatase modifying factor 1	n.s.	n.s.	-1.64
ENSBTAG00000021499	PSAP (saposin)	prosaposin	n.s.	n.s.	-1.47
LYSOSOMAL MEMBRANE	PROTEINS				
ENSBTAG00000018889	ATP6V0B (ATPeV)	ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b	n.s.	1.03	1.13
ENSBTAG0000007272	ATP6V0A2 (ATPeV)	ATPase, H+ transporting, lysosomal V0 subunit a2	n.s.	n.s.	0.73
ENSBTAG0000000831	CTNS (cystinosin)	lysosomal cystine transporter	n.s.	n.s.	-1.97
ENSBTAG00000016959	LAPTM4B (LAPTM)	lysosomal protein transmembrane 4 beta	n.s.	n.s.	-1.86

Table 9 (continued)

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
ENSBTAG00000010956	SCARB2 (LIMP)	scavenger receptor class B member 2	n.s.	n.s.	-1.54
ENSBTAG00000044053	SLC17A5 (sialin)	solute carrier family 17 (acidic sugar transporter), member 5	n.s.	n.s.	-1.48
A + 11 + +1					

() Indicates the gene name or the protein complex name as shown in figure S7.

Table	10
Table	τu

Ensembl ID	Gene name	Gene descriptiopn	2h Pl	6h Pl	24h Pl
ENSBTAG00000019741	C3AR1	complement component 3a receptor 1	n.s.	-2.10	-4.95
ENSBTAG0000007153	C1QA (C1qrs)	complement component 1, q subcomponent, A chain	n.s.	n.s.	-4.55
ENSBTAG00000011196	C1QB (C1qrs)	complement component 1, q subcomponent, B chain	n.s.	n.s.	-3.91
ENSBTAG00000015815	CFP (FB)	complement factor properdin	n.s.	n.s.	-3.87
ENSBTAG00000011193	C1QC (C1qrs)	complement component 1, q subcomponent, C chain	n.s.	n.s.	-3.80
ENSBTAG00000034501	CFI (FI)	complement factor I	n.s.	n.s.	-2.80
ENSBTAG0000008612	C1R (C1qrs)	complement component 1, r subcomponent	n.s.	n.s.	-2.44
ENSBTAG0000002302	CD59	CD59 molecule, complement regulatory protein	n.s.	n.s.	-2.44
ENSBTAG00000048122	CFD (FD)	complement factor D	n.s.	n.s.	-2.33
ENSBTAG0000007450	C2	complement component 2	n.s.	n.s.	-2.08
ENSBTAG00000017280	С3	complement component 3	n.s.	n.s.	-1.80
ENSBTAG00000010520	C8G (C6, C7, C8, C9)	complement component 8, gamma polypeptide	n.s.	n.s.	-1.73
ENSBTAG00000020872	C5AR1	complement component 5a receptor 1	n.s.	-1.45	-1.64
ENSBTAG00000037735	C5AR2 *	complement component 5a receptor 2	n.s.	-2.06	-1.64
ENSBTAG00000021717	BDKRB2 (B1/B2)	bradykinin receptor B2	n.s.	7.06	5.01
ENSBTAG0000002758	THBD (TM)	thrombomodulin	4.07	5.33	5.63
ENSBTAG0000007101	F3	coagulation factor III	4.15	5.24	5.19
ENSBTAG00000014465	SERPINE1 (PAI)	serpin peptidase inhibitor, clade E	n.s.	n.s.	2.77
ENSBTAG0000001244	PLAT (tPA)	tissue-type plasminogen activator	n.s.	n.s.	2.74
ENSBTAG0000005947	PLAU (uPA)	plasminogen activator, urokinase	2.41	n.s.	2.39
ENSBTAG0000007268	F13A1 (F13)	coagulation factor XIII, A1 polypeptide	n.s.	n.s.	-4.40
ENSBTAG00000023652	PROS1 (PS)	protein S (alpha)	n.s.	n.s.	-3.76
ENSBTAG00000018137	A2M	alpha-2-macroglobulin	n.s.	n.s.	-3.60
ENSBTAG0000003572	F11	coagulation factor XI	n.s.	-2.82	-2.49

* Indicates genes which are not represent in figure S5. ()Indicates the gene name or the protein complex name as shown in figure S5.