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Chain-mapping techniques in combination with the time-dependent density matrix renormalization
group are a powerful tool for the simulation of open-system quantum dynamics. For finite-temperature
environments, however, this approach suffers from an unfavorable algorithmic scaling with increasing
temperature. We prove that the system dynamics under thermal environments can be nonperturbatively
described by temperature-dependent system-environmental couplings with the initial environment state
being in its pure vacuum state, instead of a mixed thermal state. As a consequence, as long as the initial
system state is pure, the global system-environment state remains pure at all times. The resulting speed-up
and relaxed memory requirements of this approach enable the efficient simulation of open quantum
systems interacting with highly structured environments in any temperature range, with applications
extending from quantum thermodynamics to quantum effects in mesoscopic systems.
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Quantum systems are never completely isolated and the
interaction with surrounding uncontrollable degrees of
freedom can modify significantly their dynamical proper-
ties. In some cases the environment can be assumed to be
memoryless, in which case master equations of Lindblad
form provide an accurate effective description of the
resulting open-system dynamics [1–4]. Generally, however,
the description of the evolution of open quantum systems
(OQSs) requires one to take into full account the environ-
mental degrees of freedom and their interaction with the
system. This becomes particularly important when the
system-environment coupling is not weak and the envi-
ronment reorganization process occurs on a timescale that
is comparable to the system dynamics—a situation that is
ubiquitous in soft or condensed matter, nanothermody-
namics, and quantum biology [5–8]. In this case, the OQS
dynamics is neither accessible to analytical methods (apart
from very few specific instances [9–15]) nor effective
master equation approaches, and more refined numerical
techniques are thus needed.
Over the last two decades, a variety of numerically exact

approaches for the simulation of open quantum systems have
been proposed. Thesemethods allowed for the description of
features that were not accurately described by approximate
methods, such as the Markov, Bloch-Redfield, or perturba-
tive expansion techniques [2]. In particular, the time-
evolving density operator with orthogonal polynomials
(TEDOPA) [16,17] algorithm is a certifiable method [18]
for the nonperturbative simulation of OQS that has found
application for the description of a variety of open quantum
systems [16,19,20]. TEDOPA belongs to the class of chain-
mapping techniques [16,17,21–24] and is closely related to
Lanczos tridiagonalization (see [25] and references therein);

these techniques are based on a unitary mapping of the
environmental modes onto a chain of harmonic oscillators
with nearest-neighbor interactions. The main advantage of
this mapping is themore local entanglement structure, which
results in an improved efficiency of density matrix renorm-
alization group (DMRG) methods [26]. While TEDOPA is
very efficient at zero temperature, a regime that is hard to
access by other methods such as hierarchical equations of
motion (HEOM) [27–29] and path integralmethods [30–32],
its original formulation suffers from a unfavorable scaling
when increasing the temperature of the bosonic bath.
Because of this, other approaches, such as HEOM, are
currently the method of choice in the high-temperature
regime.
In this Letter, we derive a formulation of TEDOPA for

finite-temperature bosonic environments that allows for its
extension to arbitrary temperatures without loss of effi-
ciency. Our approach relies on the equivalence between the
reduced dynamics of an OQS interacting with a finite-
temperature bosonic environment, characterized by some
spectral density, and the dynamics of the same system
interacting with a zero-temperature environment and a
suitably modified spectral density [33–36], and further
exploits fundamental properties of the theory of orthogonal
polynomials [17,23,37].
Spectral density thermalization.—Consider a quantum

system S interacting with a bosonic environment; for each
environmental mode at frequency ω ≥ 0 the annihilation
and creation operators aω, a†ω satisfy the commutation
relations ½aω;a†ω0 �¼δωω0 ;½aω;a0ω�¼½a†ω;a†ω0 �¼0;∀ω;ω0≥0.
The system-environment (SE) total Hamiltonian is defined
by (ℏ ¼ 1)
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HSE ¼ HS þHE þHI ð1Þ

HE ¼
Z þ∞

0

dωωa†ωaω; HI ¼ AS ⊗
Z þ∞

0

dωOω; ð2Þ

whereHS is the free system (arbitrary) Hamiltonian andHE
and HI describe, respectively, the free evolution of the
environmental degrees of freedom and the bilinear system-
environment interaction [38]. In what follows we assume
that Oω is a self-adjoint operator and, in particular, is
given by

Oω ¼
ffiffiffiffiffiffiffiffiffiffi
JðωÞ

p
Xω ¼

ffiffiffiffiffiffiffiffiffiffi
JðωÞ

p
ðaω þ a†ωÞ; ð3Þ

while AS is a generic self-adjoint operator of the open
system S. The function JðωÞ∶Rþ ↦ Rþ is defined by the
product of the interaction strength between the system and
the environmental mode at frequency ω and the mode
density and is usually referred to as the “spectral density”
(SD) [2].
At time t ¼ 0, system and environment are assumed to be

in a factorized stateρSEð0Þ ¼ ρSð0Þ ⊗ ρEð0Þ, where ρSð0Þ is
an arbitrary (pure or mixed) initial state of the system,
ρEð0Þ ¼⊗ω expð−βωa†ωaωÞ=Zω is the thermal state of the
environment at inverse temperature β ¼ 1=kBT, and Zω ¼
TrE½expð−βωa†ωaωÞ�. Under these assumptions, the open-
system state ρSðtÞ ¼ TrE½ρSEðtÞ� at a generic time t is
entirely determined by the spectral density JðωÞ and the
inverse temperature β [2,39–41]. In fact, ρSðtÞ is fully
determined by the two-time correlation function

SðtÞ ¼
Z þ∞

0

dωhOωðtÞOωð0ÞiρωðβÞ

¼
Z þ∞

0

dωJðωÞfe−iωt½1þ nωðβÞ� þ eiωtnωðβÞg; ð4Þ

where OωðtÞ ¼ expðiHEtÞOω expð−iHEtÞ is the environ-
mental interaction operator evolved at time t via the free
HamiltonianHE andnωðβÞ¼ha†ωaωiρωðβÞ¼½expðβωÞ−1�−1.
It is then clear that, given two environments with the same
two-time correlation functions, the corresponding reduced
dynamics coincide [1,2,42].
If we formally extend the integral in (4) to the whole real

axis and define the antisymmetrized spectral density
JextðωÞ ¼ signðωÞJðjωjÞ with support on the whole real
axis [43], the two-time correlation function can be reex-
pressed in the form

SðtÞ ¼
Z þ∞

−∞
dω

JextðωÞ
2

�
1þ coth

�
βω

2

��
e−iωt: ð5Þ

It is crucial to note that this function can be associated
with an extended bosonic environment, with positive

and negative frequencies, governed by HEext ¼Rþ∞
−∞ dωωa†ωaω, which is initially in the vacuum state
(i.e., aωj0i∀ω∈R) and which interacts with the system
via the interaction Hamiltonian HIðβÞ ¼ AS ⊗Rþ∞
−∞ dω

ffiffiffiffiffiffiffiffiffiffiffiffi
JβðωÞ

p
Xω, and that now involves a temperature-

dependent spectral density (T-SD)

JβðωÞ ¼
JextðωÞ

2

�
1þ coth

�
βω

2

��
: ð6Þ

Weconclude that the reduced dynamics in the presence of an
initial thermal state of the environment and a global
Hamiltonian as in Eqs. (1) and (2) is the same as the one
resulting from an initial vacuum state of the extended
environment and a coupling governed by the new spectral
density defined in Eq. (6). Note that, in contrast to previous
approaches [33–36], we achieved this equivalence by
suitably redefining the spectral density, which is the central
object in TEDOPA. Importantly, the relationship between
the original thermal chain and the pure state chain with the
temperature-dependent spectral density can be formulated in
terms of a unitary equivalence, which, in principle, allows
one to recover the state of the full system-environment state
in the original picture at any time t (see Supplemental
Material [44]).
Thermalized TEDOPA.—TEDOPA [16,17,48,49] relies

on the theory of orthogonal polynomials [50] to provide an
analytical unitary transformation mapping the original star-
shaped system-environment model into a one-dimensional
configuration [17]. New modes with creation and anni-

hilation operators c†n and cn are defined as cð†Þn ¼Rþ∞
0 dωUnðωÞað†Þω using the unitary transformation
UnðωÞ ¼

ffiffiffiffiffiffiffiffiffiffi
JðωÞp

pnðωÞ, where JðωÞ is an input (arbitrary)
SD, and pnðωÞ; n ¼ 0; 1;… are orthogonal polynomials
with respect to the measure, i.e., the positive-valued
function, dμðωÞ ¼ JðωÞdω on Rþ. Thanks to the three-
term recurrence relation satisfied by the orthogonal poly-
nomials pnðωÞ, the HSE Hamiltonian in Eq. (1) is mapped
[17] into a chain Hamiltonian HC ¼ HS þHC

I þHC
E with

HC
I ¼ κ0ASðc0 þ c†0Þ;

HC
E ¼

Xþ∞

n¼0

ωnc
†
ncn þ

Xþ∞

n¼1

κnðc†ncn−1 þ H:c:Þ: ð7Þ

After the unitary transformation, thus, the system interacts

only with the new mode cð†Þ0 , and all the interactions are
nearest neighbor. The mode frequencies ωn and couplings
κn are related to the recurrence coefficients for the poly-
nomials pnðωÞ and can be computed either analytically or
via stable numerical routines [17,37]. The crucial obser-
vation at this point is that, assuming

Rþ∞
0 dωJðωÞ=ω < ∞,

i.e., finite reorganization energy, the temperature-
dependent spectral density in Eq. (6) defines a measure
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μβðωÞ ¼ JβðωÞdω, with support extending, by construc-
tion, over the whole real axis. Hence, there exists a family
of polynomials pβ;n that are orthogonal with respect to dμβ
and we can define the unitary transformation

Uβ;nðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
JβðωÞ

q
pβ;nðωÞ; ð8Þ

c†β;n ¼
Z þ∞

−∞
dωUβ;nðωÞa†ω; ð9Þ

and follow the same procedure as before. The resulting
Hamiltonian has the same form as Eq. (7), with the modes

cð†Þn replaced by cð†Þβ;n and new coefficients ωβ;n, κβ;n related
to the polynomials pβ;n. The unitary transformationsUnðωÞ
and Uβ;nðωÞ, respectively, determine the initial state of the
chain: for standard TEDOPA, the thermal state of the
environment is mapped to the thermal state of the chain
ρCEðβÞ ¼ expð−βHC

EÞ=ZC
E, while the vacuum state of the

extended environment is mapped to a (factorized) vacuum
pure state of the chain.
Impact on simulations.—As long as ρSð0Þ is a pure state,

the global state of system and chain in the T-SD approach
remains pure for ∀ t ≥ 0. This has a major impact on the
simulation of the system dynamics via time-dependent
DMRG techniques [51,52], such as the time-evolving
block-decimation algorithm (TEBD) [53–55]. From now
on, we will refer to TEDOPA with T-SD approach as
T-TEDOPA. In order to fully appreciate the advantage
provided by T-TEDOPA, here we discuss the main features
of its scaling properties; a more detailed comparison of the
complexity of the standard and thermalized methods is
reported in the Supplemental Material [44].
In order to enable computer simulations, both the length

of the harmonic chain and the local dimension of the
environmental oscillators must be truncated. These trunca-
tions must be chosen such that finite-size effects remain
negligible during the simulation interval ½0; tmax�. For a
chain of length N and local dimension d, the complexity of
the standard TEDOPA approach scales asO(Ntmaxðd2χÞ3),
where χ is the “bond dimension,” a TEBD parameter
that is related to the amount of correlations in the simulated
system. On the other hand, the complexity for T-TEDOPA
will be given byO(N0tmaxðd0χ0Þ3), where the primed letters
emphasize that, in general, the local dimension, the chain
length, and the bond dimension will be different from the
standard case. Clearly, the reduced complexity of T-
TEDOPA stems mainly from the fact that only pure states
are involved in the simulation, whereas for standard
TEDOPA mixed states are needed.
In addition, the local dimensions required to faithfully

represent the thermal state of the chain scales unfavorably
with the temperature, and as a consequence, d0 can be taken
significantly smaller than d (see Supplemental Material
[44]). For all the dynamics taken into account here, the

decrease of the local dimension in the T-TEDOPA over-
compensates by itself the increase of the chain length (we
usually set N0 ≈ 2N due to an increased propagation speed
in the chain) and of the bond dimension (we used at most
χ0 ≈

ffiffiffi
2

p
χ) [44].

It is important to note that the matrix product operator
(MPO) representation of the chain cannot be determined
analytically, in general, and its preparation requires a
considerable additional computational overhead. This step
is clearly not required by T-TEDOPA, since the factorized
vacuum state can be straightforwardly represented via
matrix product states (MPSs). It is worth noting that the
approach developed in [36] shares some features of the
T-TEDOPA. It allows one to use pure instead of mixed
states as well, but maps the positive and negative frequency
environmental degrees of freedom into two separate chains.
This results in a locally two-dimensional tensor network
with a consequent considerable increase of the simulation
complexity, as discussed extensively in the Supplemental
Material [44]. As a last, but practically relevant observa-
tion, we note that T-TEDOPA does not require any change
in the already existing and optimized TEDOPA codes,
since it only needs a modification of the chain coefficients.
Case study.—In order to illustrate the main features of

T-TEDOPA, we present two examples in which we con-
sider environments with a structured SD JWðωÞ, consisting
of a broad background plus three Lorentzian peaks. This
type of spectral density is characteristic of pigment-protein
complexes, where electrically coupled pigments are subject
to the structured environment provided by intrapigment and
protein vibrations [56,57].
The accuracy of the results provided by T-TEDOPA is

clearly apparent when comparing the simulation results
with a solvable model. Consider a two-level system (TLS)
subject to a pure dephasing dynamics. The environment
and interaction Hamiltonians are defined as in Eqs. (2) and
(3) with AS ¼ ð1þ σzÞ=2 and JðωÞ ¼ JWðωÞ. The T-SD in
Eq. (6) at T ¼ 0, 77, and 300 K are shown in the inset of
Fig. 1(a), while its full definition is provided in the
Supplemental Material [44]. We imposed a hard cutoff
ωc ¼ 350 cm−1 such that

R
∞
ωc

dωJWðωÞ=ω becomes neg-

ligible (< 10−4 cm−1). Assume that the initial state of the
TLS is a coherent superposition of the form jþi ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

. In an interaction picture, the system’s
coherence is given by θðtÞ ¼ exp½−γðtÞ�=2, with γðtÞ ¼Rωc
0 dωJWðωÞ cothðω=2kBTÞ½ð1 − cosωtÞ=ω2� [2], where
γðtÞ is often referred to as the decoherence function.
As clearly shown in Fig. 1(a), T-TEDOPA accurately

reproduces the behavior of the coherence for t < 1.4 ps,
with maximum error < 10−4. As shown in Fig. 1(b), the T-
TEDOPA chain coefficients depend, as expected, on the
temperature T. In particular, we observe that the coupling
κβ;0 between the system and the first oscillator in the chain
increases with T. For any assigned SD JðωÞ, we obtain
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κβ;0 ¼ jjJβjj1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ωc
−ωc

dωJβðωÞ
q

, which is a nondecreasing

function of T. Moreover, the behavior of the chain para-
meters κβ;n and ωβ;n as functions of n becomes more and
more jagged as T increases, inducing an effective detuning
between nearest-neighboring sites in the initial part of the
chain. This configuration leads to non-negligible back-
scattering of an excitation located initially at the first site of
the chain [44]. A systematic analysis of these processes,
which underpin the non-Markovian part of the dynamics,
and their nontrivial temperature dependence will be the
subject of a future work. Here we simply point out that this
configuration results in the first sites of the T-TEDOPA
chain having a higher occupation number. This allows a
gradual decrease in the local dimensions d0n of the
n ¼ 1;…; N, which significantly reduces the simula-
tion complexity. For example, for the simulation at
T ¼ 300 K, the dimension d0n ¼ d0max − nðd0max − 2Þ=N
with d0max ¼ 12 (χ ¼ 50) led to converged results. We
notice, moreover, that the chain coefficients ωβ;n and κβ;n
tend to converge for large n to the expected asymptotic
values [23,50]: if ½aðβÞ; bðβÞ� is the support of JβðωÞ,
then ωβ;n !n→∞½aðβÞ þ bðβÞ�=2, whereas κ2β;n !n→∞½bðβÞ−
aðβÞ�2=16. Since the support is ½0;ωc� at T ¼ 0 and
½−ωc;ωc� at T > 0, this means that at finite temperature

T-TEDOPA will, in general, require longer chains than
standard TEDOPA. This increase in length, however, leads
to a constant factor increase in the T-TEDOPA complexity
and is significantly overcompensated by the possibility of
starting from the vacuum state. Indeed, as mentioned
before, the local dimension of the standard TEDOPA scales
unfavorably with the temperature, as we exemplify in
Fig. 2(a) where we show the average occupation number
of the chain consisting of N ¼ 50 oscillators. It is clear that
the minimal local dimension of the oscillator chain must be
chosen much larger than the average occupation number to
allow for an accurate representation of the chain thermal
state. It is not surprising that the sole preparation of the
chain thermal state at T ¼ 77 K required one week of
computation for the choice d ¼ 8 (16 Intel Xeon
E5-2630v3 cores), while the T ¼ 300 K T-TEDOPA sim-
ulation [Fig. 1(a)] required only 8 h using the same cores
(Supplemental Material [44]).

(a)

(b)

FIG. 2. (a) TEDOPA chain initialization. Average occupation
number of the oscillators of a chain obtained by the standard
mapping of JWðωÞ; the values have been obtained via the
procedure described in the Supplemental Material [44]. (b) Sim-
ulation results for a model dimeric system. The expectation value
of Pþ ¼ jþDihþDj as a function of time at different temperatures
shows the dynamical effect of the environmental noise on the
lifetime of coherent superpositions of (electronic) quantum states.
Dotted lines correspond to a structured spectral form JWðωÞ,
while solid lines correspond to J0WðωÞ. HEOM [27–29] results are
shown (dashed black lines) for comparison at 300 K (see
Supplemental Material [44] for more details).

(a)

(b)

FIG. 1. (a) Coherence dynamics θðtÞ for a TLS subject to pure
dephasing induced by a reservoir modeled by JWðωÞ at
T ¼ 0; 77; 300 K. Markers represent T-TEDOPA results; analytic
results, defined as in the text, are shown as solid lines. (Inset) The
corresponding T-SD JW;βðωÞ. (b) Chain coefficients ωβ;n and κβ;n
(inset) corresponding to JW;β for T ¼ 0; 77; 300 K.
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As a second example, we discuss the simulation of a form
of the water-soluble chlorophyll-protein (WSCP) homo-
dimer, a model system for the study of pigment-protein
interactions and for which there exists a rather complete
experimental characterization, both structurally and in terms
of its linear and nonlinear optical responses [58,59]. We
model the WSCP dimer as two identical TLSs with
interaction Hamiltonian HS ¼ HD ¼ λσLþσR− þ H:c:, where
λ ¼ 69 cm−1 is the cross coupling term and σL;R� are the spin
raising and lowering operators ðσL;Rx � iσR;Ly Þ=2 on the left
(L) and right (R) TLS. When restricted to the single
excitation subspace, HD admits the eigenvalues �69cm−1

with corresponding eigenstates j�Di. Each TLS interacts
with a local harmonic bath. The two baths are independent
but described by the same spectral density JWðωÞ used so far.
The interaction Hamiltonian is HI ¼ HL

I þHR
I with HLðRÞ

I

defined as in Eq. (2) with ALðRÞ
S ¼ ð1þ σLðRÞz Þ=2. Since the

overall Hamiltonian conserves the excitation number,
the evolved state belongs to the space spanned by j�Di.
Figure 2(b) shows the evolution of the projection Pþ ¼
jþDihþDj as a function of time, when the system starts from
ρSð0Þ ¼ jþDihþDj, for two different spectral densities,
namely, the full spectral density JWðωÞ and J0WðωÞ where
only the background is considered. The simulation at 300K
required d0max ¼ 20, χ ¼ 180. A detailed discussion of the
influence of the Lorentzian contribution to the reduced
system dynamics and the comparison with actual experi-
ments is beyond the scope of this Letter, but our results
already show the capability of the method to make pre-
dictions across the whole temperature range and for highly
structured spectral densities.
Conclusion and outlook.—In this Letter, we have pre-

sented a newmethod, T-TEDOPA, for the efficient, accurate,
and certifiable simulation of open quantum system dynam-
ics at arbitrary temperatures. The central insight was a
suitable redefinition of the environmental spectral density,
which allowed for the use of a zero-temperature environ-
ment in place of a finite-temperature environment without
affecting the system dynamics. This allows for using MPSs
in place ofMPO for the description of the harmonic chain of
environmental oscillators. As a consequence, we obtain a
significant reduction in the scaling of the algorithmic
complexity as compared to state-of-the-art chain-mapping
techniques and orders of magnitude reductions in compu-
tation time. By construction, T-TEDOPA can be imple-
mented as a plug-in procedure by the already existing and
highly optimized TEDOPAcodes, which can now be used to
efficiently simulate open quantum system dynamics across
the entire temperature range.
Our approach is particularly relevant whenever onewants

to provide a quantitative description of open-system dynam-
ics in the presence of structured and nonperturbative
environments, such as those commonly encountered in
quantum biology [5], nanoscale thermodynamics [60], or

condensed-matter systems [38], as well as in situations
where the effect of environmental noise has to be identified
accurately to discriminate it from possible fundamental
decoherence in high-precision tests of the quantum super-
position principle [61,62] or be exploited as a building block
in other methods, such as the transfer tensor scheme [63,64].
Future research will be devoted to the extension of the
T-TEDOPA method to more general types of system-bath
interactions.
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