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Quasi-resonant scattering of light in two dimensions can be described either as a scalar or as a
vectorial electromagnetic wave. Performing a scaling analysis we observe in both cases long lived
modes, yet only the scalar case exhibits Anderson localized modes together with extremely long
mode lifetimes. We show that the localization length of these modes is influenced only by their
position, and not their lifetime. Investigating the reasons for the absence of localization, it appears
that both the coupling of several polarizations and the presence of near-field terms are able to

prevent long lifetimes and Anderson localization.

I. INTRODUCTION

Multiple scattering of waves has been the subject of
intense debates in the context of disorder-induced An-
derson localization [I]. Indeed, since the proposal to use
electromagnetic waves in random media instead of elec-
trons in solids exploiting the non-interacting properties of
photons at low intensities [2], many experiments and the-
oretical studies have been performed. However, despite
a decade-long research, the mere existence of Anderson
localization of light [3H5] and its relation to another long
predicted phenomenon, namely Dicke super- and subra-
diance [@], are still not clearly understood [7]. The advent
of laser-cooled atoms and their use to study both localiza-
tion and super- and subradiance motivated the develop-
ment of ab initio models of interference effects in multiple
scattering of light [§]. As most experiments are typically
performed in a three-dimensional setting, models have
also been focused on such 3D configurations. However,
both numerical and fundamental aspects of localization
strongly depend on the dimension of the explored sys-
tem [9]. For this reason we have focused our efforts on a
2D system, where a precise study of the eigenvalues and
eigenmodes of the system is more efficient than in 3D,
because larger 'volumes’ can be simulated for a given
number of scatterers. One further advantage is that the
reduced dimensionality allows for a direct comparison of
eigenvalues and eigenvectors between two regimes of scat-
tering, one of a scalar model of light, the other of a vec-
torial model of light where the wave polarization needs
to be accounted for. This comparison recently revealed
important differences observed for the eigenvalues of the
relevant effective Hamiltonians [4], [5, [10].

In this work, we investigate resonant scattering in
a two-dimensional set-up, i.e., the light scattering and
propagation are confined to two dimensions. This config-
uration may be realized, e.g., with a disordered arrange-
ment of scatterers in microwave cavities [I1], in photonic
crystals [12], near surface plasmons or with laser-cooled
atoms located in an off-resonance optical cavity. In this
geometry, the polarization orthogonal to the plane, called
s-polarization, cannot couple through the scatterers to

the planar (or p-) polarizations, hence it is described
by a scalar light model. The two p-polarizations of the
electromagnetic waves do couple, and this vectorial-like
scattering includes near-field terms (see scheme in Fig[T).
Rotating the polarization of an incident wave allows to
switch between the scalar or vectorial regime, between
the presence or the absence of polarization degrees of
freedom and near field terms, making it an ideal tool
to investigate the role of polarization in localization and
subradiance.

In section IT we present a detailed derivation of the lin-
ear differential equations that rules the population evo-
lution of atomic transitions. The spectral properties of
these equations are investigated in section III, where
scalar and vector scattering are compared via scaling
analysis. Finally, we present our conclusions in section IV
highlighting uncorrelation between spatial and temporal
localization of light.

FIG. 1. (Color online) Two-dimensional scattering scheme:
The radiation, of wavenumber k close to the atomic transi-
tion ke = wa/c = k, is confined in the (z,y) plane, i.e., it has
wavevectors of the form k = k(cos,sind,0). Two eigenvec-
tors are shown: a localized s—polarized mode in the upper
right part and a extended p—polarized mode in the left part.



II. MODEL

Two-dimensional light scattering was investigated in
microwave cavities, where light with a polarization or-
thogonal to the plates approximately obeys Helmholtz
2D scalar equation, and Anderson localization was ob-
served [11]. Another possibility to emulate 2D light scat-
tering is a cloud of cold atoms with no Doppler broaden-
ing located inside an off-resonant optical cavity made by
two metallic disks whose diameter is much larger than
their mutual distance. This system, which is closer to
situations previously studied in 3D, constitutes the toy
model system we will explore in this paper. Let us
consider an homogeneous disk-shaped cloud of N mo-
tionless atoms sitting at randomly distributed positions
r; = (xj,y;,%;) with j = 1,--- N, for which non-
radiative interactions are neglected. Instead, only virtual
and real photons couple the atoms within the optical cav-
ity (axis z) whose resonance frequency is significantly de-
tuned from the atomic transition w,. The electric dipole
transitions occur between one non-degenerate ground
state |g;), related to angular momentum ¢ = 0 and a
triply degenerate excited state |e7"), where m = 0,=+1
indicate the projections of the angular momentum £ = 1
over the quantization axis z. We consider 2D scattering
restricted to a radial direction in the (z,y) plane with a
surface density of the atomic cloud p = N/7R?, where R
is the cloud radius.

The interaction of the atoms with the radiation field is
given by the following Hamiltonian:
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with w, the atomic transition frequency, &, ; the atomic
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We can apply the rotating wave approximation and ne-
glect the fast oscillating terms proportional to e?™“at, As-
suming that the photon transit time inside the atomic
cloud is much shorter than the emission decay time, we

can perform the Markov approximation Erl(n) (t—71) =

c}l(") (t) so the atomic transitions evolves according to the
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diagonal term, whereas ¢ fm)

= |gj) (ejm| and 6, =
lej.m) (g;| are the lowering and lifting atomic operators.
[zk and ay s refer to the creation and annihilation of a
photon for mode k with frequency wy. The coupling co-
efficient reads g =8y s - djmy/wi/2ReV, with V the
quantization Vohime and d; ,,, = (g;| er; |e; m) the dipole
matrix element (with e is the electron charge). Thus,
the two first terms in are the free energy contribution
and the last term corresponds to the interaction with the
vacuum modes.

We then use the commutation relations
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where the approximation in the first of these equations
correspond to the linear optics regime |ejm) (€jm| —
l9j) (9] = —17* (we eliminate the possibility of multi-
excitation in the system), to obtain the Heisenberg equa-
tions for the operators:
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Equations and show a correlated dynamics be-
tween atomic levels and vacuum modes.

The radiation field plays the role of a reservoir for
atoms and is composed of an infinite number of degrees
of freedom k,s, so it is convenient to trace over these.
Using the unitary transformations &;m) — 6§m)eiwat and
ak,s — dk7se“"kt, we obtain the reduced equation evolu-
tion for the atomic open system
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where the scattering kernel is defined as
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with rj; = r; —r;, and where the upper limit in the above
integral has been extrapolated to t — oo according to the
Markov approximation. The spontaneous emission pro-
cesses is naturally three-dimensional and the above scat-
tering kernel a priori contains all light modes in 3D space,
so all transitions may be coupled. Under the assumption
of an effective two-dimensional scattering of light, we can
perform in the continuous 3D density of modes the fol-
lowing approximation:
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where 6 corresponds to the azimuthal angle in spheri-
cal coordinates, and V now refers to the quantization
volume delimited by the cavity. Observe we are treating
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where the index 2D applied on Kf,LDn means the general
kernel particularized to the two-dimensional scattering.
The time integral present in equation @[) solves by using

the relation
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where P refers to the Cauchy principal value. This term
gives rise to the Lamb shift, a single atom energy shift
which is due to its interaction with the radiation field.
We will here neglect it, as it simply corresponds to a
renormalization of the energy; remark that we do not
neglect the so-called collective Lamb shift, that rises from
the interaction between the atoms via virtual photons, as
it is still present in the final scattering kernel.
Using the relations
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Since the density of modes is non-zero only in the (z,y)
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the radiation field inside a volume, however the density of
modes is practically parametrized in polar coordinates as
k = k (cos ¢, sin ¢, 0). The usual relation for polarization
vectors Y0 € &) . = Ouu — l;NlA{,j
components) here turns into

(4, v the Cartesian

mx ln kc * * y
Zgj NKos = FealV didi, + Y df, (

wav#z
Therefore, the 2D condition decouples the component
d;,, of the dipole matrix elements from dj,, and dy
This phenomena is absent in 3D scattering, Where all
components of d;,, are coupled, whereas at the other
end, 1D case exhibits all components trivially uncoupled.

The single atom decay into two-dimensional vacuum

modes is given by
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where the expression for d; ., in (L1b]) includes choosing
the quantization axis over z, and plugging into @,
we obtain the two different decay rates
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By looking at ., one can see only the term k = k,

contributes. Therefore, the uncoupling of d} ,,, from the
other components of d; ,,, causes an anisotropy on spon-
taneous emission process, since the lifetime of transition
€j,m=0 — ¢; is twice shorter than e; ,,—+1 — g;. These
decay rates will predict the coexistence of two scattering
subsystems with different time scales, which vector na-
ture of light will be crucial to select each subsystem is
active.

Finally, we address the collective term by calculating
the integrals describing the coupling between the atoms
via the radiation field
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plane, the z component of the atoms positions does not



come into play, so in the relation
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where x?l actually spans only (z,i,y;;). The angular in-
tegral then reads
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where Jy denotes the Bessel function of the first kind and

of order 0, and 7;; = /x% + y3 the Euclidean distance
between each pair of atoms in the plane. Despite the in-
tegrands in diverge in the limit k¥ — oo, the modu-
lus of the wavevectors k vary only slightly around k = k,
(quasi-elastic scattering). We then apply the Wigner and

Weisskopf approximation which approximates powers of

k in the integral as k,. Using the relation
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where H,, is the Hankel function of the first kind and of
order o, we can calculate K25, (rj; # 0) from the action
of the second order derivative of Hy (kqrj1) with respect
to ! il Practically, we get
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K27 41 (rji #0) =T1Ho (karji) (17b)
K35 21 (xji # 0) = T1Hy (karjp) e (17¢)

These coefficients allow to obtain the following set of

equations for the atomic operators a( ).
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where tan ¢ (y; —w)/(xz; — ;). In both equations
and , the atoms are coupled together through
the same sublevel with a kernel term Hy(kr) that scales
as a 2D spherical wave e¢*"/\/r at large distances. This
1/4/7 scaling in 2D corresponds to long range coupling
so we expect global coupling (or cooperative effects) to
dominate over nearest neighbor coupling. In the vecto-
rial case, the m = =1 sublevels are additionally cou-
pled via a Hy term which also scales as e’*" /\/r at long
range. However, with respect to global versus local in-
teractions, Hy diverges at the origin only as log(kr), so
that the contribution of a small volume around the par-
ticle is finite ([,°log(kr)2mrdr < oo); Instead, the Hy
term diverges at the origin as 1/r2, which means that
the interaction between the +1 sublevels is dominated
by the close neighbors/near-field terms at high densities
([ 2mrdr/r? Y —2mlog(r_)).

Differently from the 3D case where scalar light is only
an approximation for dilute systems, and where all sub-
levels are normally coupled, in 2D geometries scalar
model holds for high densities. Yet, controlling the polar-
ization of the injected light allows to select either purely
scalar or vectorial properties which make our approach
quite versatile. In the end, two decoupled scattering sub-
systems appear: one involving a single sublevel of the
excited state (the scalar case), the other one involving
the remaining two sublevels (the vectorial case). As one
can note the scalar and vector kernels are not decoupled

(

through energy shifts like 3D work in Ref.[5], but rather
by geometrical constraints. The microwave or optical
cavity reshapes the density of electromagnetic modes into
two dimensions.

The scattered field at a point r = (x,y) is calculated
by a superposition of annihilation operators, namely

E(r)= Z Xl sy g Witk (19)
k,s

where e, = \/hiwy/2¢0V. With similar procedures used
up to here, using , it can be shown to lead to the
following classical equation
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with tang; = (y — y)/(z — ;) and ex = (X +14y) /V2.
The m = 0 sublevel is coupled only to light with polariza-
tion along z, whereas the m = +1 sublevels are coupled
together through p-polarizations.



III. SPECTRAL ANALYSIS OF THE LINEAR
EQUATIONS

We now turn our attention to the spectral properties
of the system. The scattering modes are the eigenmodes
U(") of the linear equations and , where n la-
bels the eigenmodes. Their lifetime 1/, and energy w,
are given by the real and imaginary part of the associ-
ated eigenvalues, respectively. Defining wj(-n) = (\II(”))j,
the modes can also be characterized by their inverse par-
ticipation ratio (IPR) (3, \w§-n)|4)/(zj \w§n)|2)2, that
quantifies the (inverse) number of atoms substantially
involved to the scattering mode. In the vectorial model
we renormalize the IPR to remain 1/2 for pairs.

Vector kernel

Scalar kernel

w/o near-field

w/ near-field

FIG. 2. (Color online) Inverse participation ratio of the scat-
tering modes in the complex plane of the eigenvalues (yn, wn)
for scalar light (a) without and (c) with near-field terms, in
units of I'g, and vectorial light (b) without and (d) with near-
field terms, in units of I'1, (a) and (d) being the physical
cases. Simulations realized for an homogeneous disk cloud of
N = 5000 particles with an homogeneous p/k2 = 1 density.

In the scalar case, the eigenvalue distribution shown
in Fig(a) exhibits strongly subradiant modes, which we
define as modes with very long lifetimes (v, < I'g). The
distribution can be used to look for a single parameter
scaling, by computing a spectral overlap function con-
veniently defined as g = (1/v,)"'/(wn — wy_1), Where
the modes n are ordered by increasing energy. In line
with the 3D results, we observe a monotonic decrease
of g with the system size for scalar light (see Figa)).
Consequently, the scaling function § = dlng/dIn(kR)
is clearly negative for all values of g (see Fig[3|(b)), as
expected for Anderson localization in 2D. We note that
this function ¢ is only one among several possibilities of
defining a spectral overlap and has not been shown to be

unequivocally related to transport properties of electro-
magnetic radiation.

The dimensionless scaling parameter g is defined in the
scaling theory [I3] as the ratio between the Heisenberg
time and the Thouless time. The former corresponds to
the time associated to the mean spacing between the en-
ergy levels, i.e. h/(E, — E,_1), which in our case reads
1/{wn — wp—1). The latter corresponds to the time nec-
essary to a photon to escape from the sample, and in our
open system with eigenmodes of lifetime 1/7,, we de-
fine it as (1/7,). Following this interpretation, the local-
ization regime is characterized by a Thouless (diffusion)
time that becomes larger than the Heisenberg one.
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FIG. 3. (Color online) (a) Thouless number g as a function

of the dimensionless system size kR, for density p/k2 = 0.3
(b) scaling function 8. Longest mode lifetimes for different
number of particles (c) as a function of the optical thickness
bo and for all four scattering models and (d) as a function of
the dimensionless parameter N2/3/kR for scalar light. The
circles are for scalar light, the squares for vectorial light, the
stars for scalar light with near field and the plus for vectorial
light without near field. The black line in (c) stands for the
~ 1/b} curve of the radiation trapping lifetime. In (c) and
(d), blue, brown and magenta curves correspond respectively
to simulations with N = 1000, 2000 and 4000 particles. The
insert in (d) shows I'yr as a function of atomic density, indi-
cating that density is not the best scaling function for I'p,in,
even in the high density limit.

In the vectorial case exhibited in Figd) we observe
a dramatically different eigenvalue distribution. Indeed,
even though long-lived modes (v, < Ty) exist, they are
limited to values larger by several orders of magnitude
compared to the scalar case. The corresponding spectral
overlap also shows a distinct behavior, with g almost in-
dependent of the system size kR [see FigP|(a)], yielding
a scaling function g close to zero, albeit slightly negative
[see Figf3|(b)]. This behavior of the scaling function /3
might make this vectorial case very interesting to study



fine corrections of the atom-atom interactions as it seems
to be close to the critical regime.

The above discussion is consistent with the conclusions
drawn from the study of eigenvalues in 3D [4] [10]. With
the aim to pin down the essential ingredient of the dif-
ference between the scalar and vectorial model, we arti-
ficially introduced or removed short range terms in the
two configurations. More specifically, we removed the
near-field coupling from vectorial scattering by substitut-
ing Ho(kr) by Hy(kr) + 4i/m(kr)?, thus suppressing the
near fields. The corresponding eigenvalue distribution is
shown in Figb). Despite the fact that the 1 sublevels
remain coupled, the eigenvalue distribution of the vecto-
rial case without near field terms closely resembles that
of the scalar case, even though the smallest values of ~,
do not reach the lowest limits obtained in the scalar case.
Conversely, if we add a near field term, which we choose
as the one present in vectorial scattering —4i /7 (kr)?, to
the scalar kernel Hy(kr), the long lived modes of the
purely scalar case disappear [see Figc)]. The scaling
analysis, as well as a thorough analysis of the spatial ex-
tension of the modes, confirm that Anderson localization
is absent from these altered interactions.

Focusing on lifetimes, the study of the longest of
them I, first reveals that for low densities (p < 0.3),
long lifetimes are caused by the radiation trapping:
~ 1/b% [14], with by the cloud optical depth [15] (see
Figc)). However, for scalar light, the appearance of the
localized modes for p/k? > 0.3 comes along with lifetimes
much larger than those predicted by radiation trapping,
see Figl3|c). These lifetimes are not simply a function
of the density p/k? but appear to scale as N2/3/kR and
to decay exponentially fast (see Figd)). This result is
clearly beyond the standard Anderson localization, where
quantities scale as N/R?, or cooperative effects where it
scales as N/R, and calls for new approaches. Finally,
while scalar light with near-fields exhibits lifetimes that
always decay as 1/b3 (it is almost with the radiation trap-
ping black curve in Fig(c)), both vectorial light with
and without near-field exhibit lifetimes longer than that
of radiation trapping: These come from atom pairs in-
stead of localized modes, as reveals the analysis of the
IPR and of the spatial profiles.

These results suggest that both the presence of near
field interaction terms [4] and coupling of different sub-
levels can break down long lifetimes and localization. We
also found that removing the anisotropy present in vec-
torial scattering (e*2¥%it in Eqs.[18b]) does not restore
localized modes.

Our 2D study, apart from the investigation of subra-
diance and localization in lower dimensions, allows for
a more efficient numerical study of the eigenvectors of
the dipole-dipole coupling. One aspect of the eigenvec-
tor analysis is already seen in Fig[2] where the IPR of
the eigenmodes allows, for instance, a clear identification
of atomic pairs (red circles in Fig corresponding to an
IPR close to 0.5, indicating atom pairs). In addition the
2D configuration allows for an easy systematic study of

the shapes of the eigenvectors: two typical eigenmodes
are shown in Fig[l] The localized mode is spatially well
confined [insert in Fig[#a)] and has a clear exponential
shape over several orders of magnitude [Fig[d[a)]. Vec-
torial eigenvectors, on the other hand, are extended over
almost the whole system size [insert in Fig[|b)], with no
indication for an exponential decrease [Fig/4(b)]. This
observation is again in line with previous conclusions in
3D [, [10]. The scalar light with near fields and vectorial
light without near fields do not exhibit any exponentially
localized modes, but rather extended modes, as can be
observed in Fig. [5| These scatterings, as well as the vec-
torial light with near fields, may however present features
of hybrid states where localized and extended subradiant
features combine [16].

FIG. 4. (Color online) Spatial profile of the most subradi-
ant non-pair mode for (a) scalar light (exponentially localized
mode) and (b) vectorial light (delocalized mode), as a func-
tion of the distance to its center of mass r¢,,. The 2D profile is
exhibited in the inset. (c) Inverse lifetime versus localization
length of the modes for scalar light; the localization length & is
obtained by exponential fit of the spatial profile of the mode
((a) for an example), so it is meaningful only for localized
modes, within the dashed-bordered box. More specifically,
the strongly subradiant modes lying outside of the box are
extended, and so are the superradiant (¢ typically exceeds
the system size for these, sign of a full delocalization). (d)
Localization length for scalar light as a function of the normal-
ized density, for different scatterer number. The 'theory’ line
refers to the theoretical prediction k& = (k?/4p) exp(mk?/8p).
Panels (a-b) were realized for N = 5000 and p/k* = 1, so
kR =~ 40; Panel (c) is for N = 5000 and p/k® = 10, so
kR ~ 12.6, as marked by the dash-dotted line.

The localized nature of the strongly subradiant modes
is thus confirmed by the analysis of their spatial profile.
Furthermore, as long as the mode does not considerably
extend over the edge of the atomic cloud, its localization
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FIG. 5. (Color online) Spatial profile of the most subradiant

non-pair mode for (a) scalar light with near fields and (b)
vectorial light without near fields. Simulations realized for
an homogeneous disk cloud of N = 5000 particles with an
homogeneous p/k* = 1 density

length and lifetime are uncorrelated (uniform filling of
the box in Fig with modes). There is however a corre-
lation between the position of the mode (indicated by the
color code, where blue points mark modes at the center
of the system) and its localization length. Some modes
even mix to surface (whispering gallery) modes that have
a much larger spatial extend. Yet there is no correlation
between the position of the mode (at the center or near
the edge of the cloud) and its lifetime. The absence of
correlation between the lifetime of the modes and their
localization length calls for a differentiation between spa-
tial and temporal localization. Although all spatially lo-
calized modes are subradiant, the shortest localization
length may not be associated to the longest lifetimes.
This corroborates studies on photon escape rates that
failed to observe the localization phase transition [7], and
is also highlighted by the fact that spatial localization is
affected by boundary effects while temporal localization,
surprisingly, does not seem to be. Finally, as can be
seen in Fight]d), for densities above p/k? ~ 0.05 the lo-
calization length no longer depends on the system size,
but only on the spatial density. These curves are not in
agreement with the prediction of localization length from

the perturbative approach in the weak disordered regime
[1.

We have also verified (see Fig[3[a)) that the corre-
sponding spectral overlap g and the scaling function g
for the altered interactions are qualitatively similar to
the one of the purely vectorial case, i.e., they deviate only
slightly from zero. Similarly, inspection of the eigenval-
ues did not reveal any spatially localized mode. Together
with the above results on lifetimes, this observation sug-
gests that extremely long lifetimes of modes, well beyond
radiation trapping ones, come along with spatial local-
ization, i.e., subradiance may be a condition necessary to
localization.

IV. CONCLUSIONS

In conclusion, we explored 2D scattering by point scat-
terers in a scalar and a vectorial limit. Even though
our eigenvalue analysis is consistent with previous results
and interpretations of localization, our procedure of ar-
tificially introducing or removing near field terms com-
bined to a spatial analysis of the eigenfunctions support
that very long lifetimes come along with Anderson lo-
calization, but both near-field terms and the coupling of
polarizations may prevent their emergence. Furthermore,
we reported an absence of correlations between lifetime
and localization length of localized modes, pointing at
the difference between spatial and temporal localization.
An important task for the future will be to relate both
the 2D and 3D studies to transport properties of electro-
magnetic waves and to compute observables that can be
tested in experiments.
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