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Abstract

This paper presents an intra-field scanning format conversion method us-
ing two filters: bilinear filter (BF) and fuzzy-based weighted average filter
(FWAF). The proposed method is intended for black and white images, lu-
minance component of YIQ color space, or each color component of RGB
color space. We start from the notion that pixels to be interpolated can be
classified into two areas based on local variance: homogeneous and hetero-
geneous areas. According to the local variance criteria, we apply the FWAF
to the heterogeneous area and the BF to the homogeneous one, producing
good visual results. Our FWAF consists of an intensity similarity filter and
a geometric closeness filter. The latter is used to populate the heterogeneous
area with the missing lines, due to its high deinterlacing precision. Our
experimental results show that the proposed approach provides satisfactory
performances in terms of both objective metrics and visual image quality.
We used parameter tuning on our training set to explore the relationship
between objective quality and computational complexity. We report on how
to achieve good performance or the best quality-speed tradeoff using the
methods researched.
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estimation, window characteristic, intensity similarity, geometric closeness.

1. Introduction

The fuzzy concept-based methods can model uncertainty and subjective
concepts in image processing [1]. Edge details are key factors for improving
the subjective perception of an image. However, concluding whether a pixel
belongs to a homogeneous or heterogeneous areas is not a trivial work. This
study focuses on the development of fuzzy metric-based methods for the
particular task of video deinterlacing. Present digital television transmission
formats use an interlaced scan mode. The high-definition television (HDTV)
broadcasting system, such as ATSC and DVB, accepts an interlaced scanning
format (10807, 1080 x 1920 resolution with only 540 lines scanned in each
frame) [2], where ‘i’ stands for interlaced scanning. Interlaced scanning is
directly compatible with some CRT-based HDTV sets where video can be
displayed natively in interlaced form, but for display on modern progressive-
scan LCD and PDP sets, video must be deinterlaced and in many cases,
scaled to the display resolution.

Interlaced scan fields contain half the samples of the original signal, and
only the even or odd lines of a frame are scanned and displayed serially. The
idea of interlaced scan was considered in the first place because of a well-
known fact of human physiology: the human visual system is more sensitive
to flicker, serration and line crawl when screens get bigger and brighter, and
the frame rate become higher [3; 4]. As displays become larger and brighter,
there is a necessity for conversion between interlaced and progressive scanning
formats. The purpose of interlaced scanning is to accomplish a tradeoff
between the frame rate and transmission bandwidth requirements [5]. The
conversion process from interlaced fields into progressive frames is called
deinterlacing.

Conventional deinterlacing populates the missing lines in two ways: intra-
field methods and inter-field methods. Inter-field methods can be further
categorized into non-motion compensated (NMC) and motion compensated
(MC) methods [6-11]. Inter-field methods use not only current field but
also neighbor frames, and as a result they provide better image quality with
less motion scenes. However, the NMC methods are not able to correctly
deinterlace sequences with high spatial motion frequencies. As the human
visual system is very sensitive to details, even a single badly interpolated



edge may considerably lower the visual quality of the results. In turn, MC
methods provide good results in general. However, due to processing motion
information, higher complexity than the intra-field methods and NMC. Intra-
field methods need less computational resources than motion-based inter-field
methods because they only use the current field and are therefore, more
reliable for real-time applications.

Intra-field methods can be classified into two categories: edge direction-
based and filter-based methods. The former compute dominating edge di-
rection along which to deinterlace with a skewed line average filter. Some
examples of edge direction-based methods are edge map-based deinterlacing
(EMD) [12], low-complexity interpolation method for deinterlacing (LCID) [13],
modified ELA (MELA) [14], deinterlacing using locally adaptive-threshold bi-
nary image (LABI) [15], and fine edge-preserving deinterlacing (FEPD) [16].
However, all edge direction-based approaches suffer from occasional low per-
formance as a result of incorrect directional estimation or the limitations of
direction models in high spatial frequency areas or horizontal edges. EMD,
LCID, MELA, and FEPD sometimes yield incorrect edge direction because
they consider only horizontal and vertical gradients to compute the local
edge direction. The LABI method provides noticeable improvements on the
specific regions where horizontal edges exist, but is computationally heavy
due to its large search range.

The other category is filter-based methods. Some examples of this cate-
gory are modified covariance-based adaptive deinterlacing (MCAD) [17], local
surface model-based deinterlacing (LSMD), and least squares method based
frequency domain filter-based deinterlacing (FFD). As long as the similarity
between the high-resolution covariance and the low-resolution covariance is
firmly settled, the optimal linear interpolation coefficients for minimum mean
squared error (MSE) can be extracted by the classical Wiener filter (MCAD
and LSMD) and least squares filter (FFD). However, the major drawback
of MCAD and LSMD is their pricey computational complexity. To allevi-
ate this issue, FFD computes filter coefficients before the implementation of
deinterlacing by pre-processed training. However, the obtained filters do not
always guarantee the minimum MSE results.

In this paper, we present our novel intra-field deinterlacing method. We
first classify pixels into two regions, homogeneous and heterogeneous, using
local variance criteria. The area with higher local variance is called heteroge-
neous and a novel fuzzy-based weighted average filter (FWAF) is applied to
it. In turn, the area with lower local variance is designated as homogeneous
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Figure 1: Perspective view of frequency responses of filters for deinterlacing: (a) horp and
(b) herp.

and a bilinear filter (BF) is applied to it. FWAF consists of intensity similar-
ity filter and geometric closeness filter, which is employed to interpolate the
missing pixels. Finally, all weights assigned to neighbor pixels are considered
for populating the missing pixels.

This paper is organized as follows. Our proposed method is described in
Section 2, where the fuzzy filter approach, the variance estimation method
for local windows, and the implementation of deinterlacing are explained. In
Section 3, experimental results and performance analyses are discussed to

show the reliability of the proposed method. Finally, Section 4 draws our
conclusions.

2. Proposed Algorithm

2.1. Filter-based Approach

In this paper, we focus on an intra-field method which belongs to the NMC
category and provides good performance with low complexity. The bilinear
interpolation (Bob) method uses a single field to restore a progressive frame
along orthogonal (90°) edge directions. The edge-based method uses the
uniform weighted sum of 2-Tap Filter (2TF), horp = [1 1]/2, to reconstruct
the missing pixel along a determined edge direction. The frequency response
of 2TF looks like a bell shape as shown in Fig. 1(a). For this reason, high
frequency information is not well restored, and 2TF may cause apparent
jaggedness at the edges of the area.



The sinc function defines an ideal filter whose frequency response is a
rectangular shape, with vertical frequency cuts. Based on this function, we
can design a real filter having a steeper frequency cuts than the 2TF, so
interlaced signals can be reconstructed more accurately. In [18], the authors
adopted sinc filter, which is a 1D 6-Tap Filter (herp = [3 — 17 78 78 —
17 3]/128) as shown in Fig. 1(b). Coefficients of ‘herp’ are determined by
approximating the sinc function.

We remark that this is the same method used in HEVC to decrease resid-
ual errors. However, this method only deals with similarity of sinc function,
and topological parameters like closeness or spatial locality are not taken
into account.

Let (i, 7) be the spatial Cartesian coordinates of each pixel in an original
interlace image Xj, of size Sy x Sy, x(; be the gray level intensity of
the pixel in the position (7,7), where 0 < z(;;) < mar — 1 and maz is
the maximum number of gray level intensity in the image (maz = 2%). As
X,, is an interlace image, the vertical resolution of Xj;, is halved and we
assume vertically even numbered pixels in X, are missing. The intensity of
x(;,;) ranges [0, max — 1], or alternatively, it is standardized to the interval
[0, 1] in order to fuzzify the image utilizing the fuzzy inference system. The
pixels which are located in a window W of size M x N centered in (i, )
are described by, a:fi+m7j+n) for k =0,...,M x N — 1, where vertical and
horizontal sizes M and N are odd numbers (M, N > 3), parameters m and
n are vertical and horizontal pixel displacements, respectively, which meet
—|[M/2] <m < |[M/2] and —|N/2| <n < [N/2]. The center pixel z(; ;) is
simply remarked p°. Then the pixel set of adjacent pixels of 7(;,j) within a
window W is noted pt,p?, ..., p"*N=1 For example, when (M, N) = (3,3),
all pixels in a window W are labeled as shown in Fig. 2 and Eq. (1).
P
p* (1)

7 5

pt P

W = pS pO
P’ p

In recent years, fuzzy logic-based filters have shown to be able to support
effective image filtering [11; 19; 20]. Fuzziness is introduced as a fuzzification
of classical filters, and achieves a fuzzy weighted combination of the outputs of
several subfilters. We introduce fuzzification via rules of inference which are
designed to be directly applied to the pixels, z(; ;. In this paper, the FWAF
filter is employed in order to restore the missing pixels in the interlaced
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Figure 2: Existing and missing pixels in a 3 x 3 window W of input interlace image X;,.
Circle with dotted line are the missing pixels.

images. Our FWAF is based on weighted average function between a center
pixel and its adjacent pixel. As described below, our fuzzy rules provide the
inputs to the fuzzy inferential filters composing the FWAF'.

These filters minimize the error between original and the reconstructed
images in terms of a distance. Their output undergoes a defuzzification
process, which merges the effects of the used rules. Finally, a hybrid filter
approach is used which combines FWAF and a conventional BF. The FWAF
is used in heterogeneity window (W), and BF filter is used in homogeneity
window (Wpgo). Before starting the process, we initialize the missing pixels
in the window W, i row (p® = -1y, P° = 2(i ), P* = T j41)) as follows:

8_p1+p7 0_p2+p6 4_p3+p
p - 2 9 p - 2 9 p — 2 . (2)

2.2. Variance Estimation for Local Window

The given image is firstly separated into N x N size window W, centered
n (i,7). Let us consider N = 3, we will discuss how N is obtained empir-
ically in Section 3.2. We apply mean and variance calculation equations to
obtain p and o? for window W. Following local image analyzer is used to
determine the degree of variance for a window W. All pixels in a window
W = {p"}reqo...sy are considered to follow independent and identically dis-
tributed characteristics. With the independent and identically-distributed
characteristic, the mean value of W, uy, is empirically obtained as,

-5 3
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Figure 3: Block diagram of the proposed method.

As py stands for the mean of window W, we assume the variance of
W, 0%, is considered to symbolize the local variance of the window W. We
assume the 0@, measure is approximately constant, which is computed as
follows,

2

Zi: (r" =) (4)

2
Ow =

O

With the information of window variance 0%, and threshold value 7, a given
W is determined as Wyg or Wyo. When J%,V is smaller than threshold T,
we assume local window W is homogeneity (W = Wygp). On the other
hand, when o3, is bigger than threshold 7, local window W is considered as
heterogeneity (W = Wyg).

W = WHO if O'IQ/V S T (5>
W =Wkgg else

The threshold parameter 7 is obtained empirically, as discussed in Section 3.3.

2.83. Deinterlacing Implementation

As described in preceding subsection, our FWAF is only used in Wyg.
To generate the FWAF, we need two sub-filters: intensity similarity (P)



filter and geometric closeness (V) filter. Both filters are dependent on fuzzy
operators, which evaluate and return weights to pixels to reconstruct the
original image structure. Each filter is applied to the interlace image, X;,,
separately. The fuzzy operator is designed to restore full resolution image,
Xout, in accordance with the given window W.

One of the key factors of our method is to combine gray levels using in-
tensity similarity filter and geometric closeness filter. Both weight-functions
regarding the pixel intensity distance and geometric distance are intended
to replace the center pixel value, p©, with the average of the similar and
adjacent intensity values in the given window. Using the pixel information
located in the window Wy centered at (i,7), the weighted average filter is
applied to calculate output value p© by a linear combination of all pixels p*,

c %, wywyp”
pe = g::l Ek (6)

where ® and ¥ are filter categories, wk and w¥ are weights of each category,
and p* is k' pixel in window Wy . Both fuzzy weights wk and w¥ are found
by employing a fuzzy membership function specified by a distance criterion,
de(-) and dy(-). A sigmoid function (SF) is used as distance criterion which
is adopted to determine the weights,

1
wy = SF(do(0")) = o5y
1
wh = SF(dy(p¥)) = 1+ ecduh)’ g

where k = 1,2,...,8, weighting functions dg(p*) and dy(p*) are defined as
follows,
0_ ok
dolp) = 21 (®)
20,

(07 + 0¢)"/”

\/ 203,

Parameters 05 and dy denote the values of horizontal and vertical displace-
ments, and they are calculated as follows,

dy (p*) = (9)

1, k={1,7,8), 1, k={1,2,3),
5H = O, k= {276}7 6V = 07 k= {478}7 (10)
1, k={345), 1, k={56T)



Original image X

‘ Interlacing image Xin ‘

v

‘ Deinterlacing process ‘

‘ Deinterlaced output imageXoy ‘

v v

PSNR SSIM Time consumption
metric metric metric
| | |
| | |
\ \ ¥
Tables3,5,7 Tables4,6,8 Table 9

Figure 4: Block diagram of the objective performance evaluation process.
Fig. 3 shows the block diagram of the proposed algorithm.

3. Experimental Results

3.1. FExperiments Setting

In this section, the performance of our method is evaluated and com-
pared with some standard benchmarks. We used two objective metrics, peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) measure [21].
We also compared the consumed computational time. To assess performance,
interlace process by splitting the odd and even numbered fields of an image
was conducted, and then different deinterlacing methods were applied to
restore the deinterlaced image. To validate the presented method, we con-
ducted experiments using MATLAB with a 2.53GHz Intel(R) Core(TM) i5
CPU M460. The block diagram for the objective metrics is illustrated in
Fig. 4.

Our method is compared with existing benchmarks including EMD, LCID,
LABI, FEPD, MCAD, LSMD, and FFD. As a training set, we used 150 LC
images [22]. Fig. 5 shows 25 selected training images. To test performance



Figure 6: Test sets: (a) Ten test images: Al, AK, BA, BL, BO, GI, FO, FI, CI, and BU
(clockwise), (b) 18 McM database, (c) 25 Zahra database.
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Table 1: Description of 10 standard images

Resolution | Motion Images

512 x 512 No Al BA, BO, FI, GI

352 x 288 Yes AK, BU, FO
Test set

1920 x 1080 Yes BL

1280 x 720 Yes CI

—©— Consumed time for differnt N

—©— MSE result for differnt N

MSE

Figure 7: (a) MSE result for varying N. (b) Consumed CPU time for varying N.

of the proposed method with benchmarks, we used three dataset: 10 stan-
dard images [23; 24], 18 McM dataset [25], and 25 Zahra dataset [26]. 10
standard images include Airplane (AI), Akiyo (AK), Barbara (BA), Bluesky
(BL), Boat (BO), Bus (BU), City (CI), Finger (FI), Football (FO), and Girl
(GI). All images are arranged in alphabetical order. Table 1 summarizes
the information in terms of resolution and motion for 10 standard images.
Fig. 6(a) shows test images listed in Table 1. The McM dataset and Zahra
dataset are shown in Figs. 6(b) and 6(c).

3.2. Block Size Selection

To determine the best N, we tested MSE and CPU time performance by
varying N (i.e., = 3,5,7,9, 11, and 13) for N x N window. Table 2 and Fig. 7
show the MSE and average CPU time (sec) varying N for training images,
under the condition of 7 = 0. We note that condition ‘7 = 0’ indicates
BF is not used for the test, and all pixels are interpolated by FWAF. From
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Table 2: Comparison of average MSE and CPU time (sec) of different N for 150 LC
images, under the condition of 7 = 0.

NxN 3 x3 H5x5H 7T X7 9x9 11 x 11 | 13 x 13
MSE 60.2458 | 60.4392 | 60.5786 | 60.9666 | 61.1331 | 61.7297
CPU time | 7.102 10.642 | 17.891 | 27.102 | 42.783 | 61.766

(a) (b) (c) (d) (e) (f)

) = (0.5,0.00), (b
1 (

p.0%) = (05,0.02), (c)
0), (e) (j1.0%) = 1 =

(1,0%) = (0.5,0.0), (d) (1,0%) = (0.5,0. 15), and (f) (1,0%)

(0.5,0.20).

the results, N = 3 was selected for the simulations of the paper as the best
window size which provides the least MSE and requires the least CPU time
(i.e., 60.25 of MSE and 7.5 sec of consumed time, respectively).

We note that this result seems to be caused by locality property. In
fact, it is obvious that as the window size increases, the chance of similarity
between corner and center pixels decreases while complexity increases.

3.3. Parameter Tuning

An appropriate settings for threshold parameter 7 is important for the
effectiveness of our method. Parameter 7 plays an important role to balance
performance and complexity. In our hybrid scheme, FWAF filter is applied
in Wyg while a conventional BF is used in Wgyo. It is obvious that the more
we use the BF, the more image quality degrades, with the benefit o f low
complexity. On the other hand, the more we use the FWAF, the more image
quality improves, but computational time increases as well. Therefore, our
method is a hybrid one, which solves the rate-distortion optimization issues to
improve deinterlacing quality under some constraints. To evaluate the
threshold parameter 7, we used MSE metric for images and CPU time with
different variances.

12



Figure 9: Deinterlaced result of #1 LC image using (a) BF, (b) FWAF.

We generated artificial images using random distribution with a specific
mean and variance values. More in details, ;4 = 0.5 was used as mean value
and six o2 values (= 0.00, 0.02, 0.05, 0.10, 0.15, and 0.20) were used as
variance values, with the scope of tuning the parameter 7 under different
noise condition (see Fig. 8).

Fig. 9 shows deinterlaced #1 LC image with BF and FWAF. Fig. 10
shows uy and 0%, maps and their histograms. As py map is obtained by
average values of window W, it looks similar to blurred image (Fig. 10a).
From Fig. 10(b), it is obvious that ¢, has high value in the heterogeneous
area while 03, has low value in the homogeneous area. Figs. 10(c) and 10(d)
show histograms of py and o3, maps. It is noted that the average value of
o2, for #1 LC image was 0.0036 which means most pixels have low o%..

We need to find a suitable parameter 7 to adaptively balance the use of
FWAF in Wgg and BF in Wy Fig. 11 shows MSE performance with dif-
ferent 7 values using Eq. (5) and their corresponding CPU time. According
to Eq. (5), FWAF is used when o3, is bigger than 7, otherwise BF is used.
Fig. 11 shows the MSE and CPU time results for 150 LC images using above
rule. From Fig. 11, we empirically choose 7 = 0.062 providing reliable per-
formance and a good quality-speed tradeoff among all 7 parameters. It also
can be find that only 0.3407% (1,325 out of 388,800 pixels) of #1 L.C image
pixels show 0%, > 0.062. Therefore, the complexity of FWAF becomes low.

13



Figure 10: Two maps of pw and o3, and their histograms for #1 LC image. As o3, is
very small values, 20 was multiplied to clearly represent o%: (a) pw map, (b) o3, map,
(¢) pw histogram, and (d) o, histogram.
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Figure 11: MSE results for 150 LC dataset: (a) MSE result for varying 7, (b) CPU time
for varying 7. We then select 7 = 0.062 as a good tradeoff for our system.

3.4. Objective Performance Comparison

To assess objective performance of our method with conventional bench-
marks, we used two metrics. One is peak signal-to-noise ratio (PSNR) and
the other is the structural similarity (SSIM). The PSNR metric is defined as

width hezght

Z Z (iMGorg (P, @) — iMGrec(p, q))? (11)

width x height ’

MSE(imgorga Zﬁngrec

! 1L4 SE (ngorga ngrec)

PSNR(imgGorg, iMGrec) = (12)
where img,,, and img,.. are the original and reconstructed images, respec-
tively. All the test images were converted from the original size into the
vertically interlaced size, and then the reconstructed images, img;.., were
compared to the original image, imgoyg.

In order to consistently evaluate image quality, we also apply a mea-
surement called SSIM. The SSIM uses a perceptual model in an attempt
to measure the subjective performance [21]. A smaller SSIM value denotes
more error in the estimated image and hence poorer perceived visual qual-
ity. The SSIM index compares local patterns of pixel intensities normalized
for luminance and contrast, and we can measure the similarity between the
original image and the reconstructed image via SSIM. The focus of the SSIM
index is to capture the loss of structure in images. Since the human visual

15



system is highly adaptable, it is able to extract structural information from
a visual scene. Therefore, a measurement of structural similarity provides a
good approximation of perceived image quality. The SSIM index is denoted
by

(2popr +Th)(200r + 1T3)

SSIM (iMmGorg, 1MGree) = ,
(imGorg, 1mrec) (12 + u% +T1) (03 + 0% +Th)

(13)

where opp indicates the covariance of the two local regions of img,,, and
iMGree, and po (or op) and pg (or og) represent the mean (or standard
deviation) of the specific and local regions, respectively. The two constants
Ty and Ty are used to avoid instability when pu2+pu% or 0% +0% is approaching
zero. The mean SSIM index is adopted to evaluate the overall image quality
and is given by

1 M
MSSIM (imgorg, iMGrec) = i Z SSIM (1mGorg ks iMGreck), (14)
k=1

where M is the number of local image regions. We discover from Eq. (13)
that, when po is equal to ugr and oo is equal to or, SSIM is the largest at
a value of 1. Thus, the SSIM ranges from 0 to 1. If the SSIM is closer to 1,
then the reconstructed image is more similar to the original image, and vice
versa. The MSSIM is the mean of the SSIM; thus, the MSSIM has the same
properties as the SSIM. Namely, the larger is the MSSIM, the better is the
subjective image quality.

Table 3 and Table 4 show PSNR and SSIM performance comparisons,
respectively. A term ‘avg. stands for the average results of each column.
Two terms ‘R,’ and ‘R’ stand for the ranking of FWAF, and FWAF, re-
spectively. Here, FWAF, and FWAF are results obtained when 7 = 0.062
and 7 = 0, respectively. A term ‘R,;” stands for the ranking of each method
in terms of PSNR or SSIM. Table 3 shows that the FWAF, (or FWAF,)
achieved 0.276 (or 0.048) dB better than the best benchmark, MELA. Ta-
ble 3 also shows that ranking of FWAF, ranges from 2 to 6. For BO image,
ranking of FWAF . was 6. However, the ranking of average PSNR is 2.

Although a higher PSNR usually implies that the restoration is of higher
quality, experience has shown that sometimes this turns out not to be true. In
order to better assess the objective performance of the presented method, we
used another metric of structural similarity, SSIM. The SSIM metric consid-
ers the local patterns of pixel values which were standardized for luminance

16



Table 3: Performance comparison with PSNR metric (dB) for 10 standard images: R,
and Ry denote ranks of FWAF.. and FWAF( of each image, and R,; denotes rank of each
method

EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF,

AT | 34.659 | 35.022 | 35.088 | 35.345 | 34.385 | 35.085 | 35.66 | 35.118 | 35.177 | 35.423
AK | 38.457 | 39.882 | 40.205 | 38.841 | 37.255 | 39.726 | 38.149 | 39.692 | 40.166 | 40.557
BA | 30.175 | 31.632 | 32.018 | 31.93 | 28.879 | 25.929 | 29.414 | 31.935 | 31.947 | 31.949
BL | 37.628 | 37.913 | 37.9 | 37.798 | 37.51 | 38.107 | 39.373 | 37.792 | 38.029 | 38.456
BO | 34.002 | 34.908 | 35.186 | 35.277 | 33.074 | 35.342 | 33.762 | 35.178 | 35.169 | 35.314
BU | 28.453 | 28.615 | 28.654 | 28.217 | 28.104 | 28.262 | 28.095 | 28.507 | 28.757 | 28.772
CI | 31.343 | 31.444 | 31.46 | 31.497 | 31.258 | 31.527 | 31.656 | 31.444 | 31.574 31.58
FI | 31.064 | 31.223 | 31.323 | 31.362 | 30.679 | 31.81 | 32.085 | 31.33 | 31.395 | 31.863
FO | 34.211 | 34.972 | 35.057 | 34.475 | 33.308 | 35.034 | 34.763 | 34.813 | 35.137 | 35.333
GI | 40.758 | 41.607 | 41.793 | 41.535 | 39.676 | 42.038 | 41.545 | 41.651 | 41.822 | 42.198
avg. | 34.075 | 34.722 | 34.868 | 34.628 | 33.413 | 34.286 | 34.45 | 34.746 | 34.917 | 35.144
Ry 9 5 3 6 10 8 7 4 2 1

=
5
=
o

N (W N[ &= WO W W &
== = NN =N N =N

Table 4: Performance comparison with SSIM metric for 10 standard images: R, and Ry
denote ranks of FWAF, and FWAF of each image, and Rj; denotes rank of each method
EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF, | R, | Ry
AT ] 0.9658 | 0.9673 | 0.9677 | 0.9686 | 0.9649 | 0.9665 | 0.9685 | 0.9691 | 0.9685 0.9686
AK | 0.9857 | 0.9883 | 0.989 | 0.9866 | 0.9823 | 0.986 | 0.9839 | 0.9875 | 0.9897 | 0.9898
BA | 0.9347 | 0.9463 | 0.9487 | 0.9479 | 0.9227 | 0.8952 | 0.9311 | 0.9409 | 0.9485 0.9486
BL | 0.9805 | 0.9814 | 0.9812 | 0.9809 | 0.981 | 0.9821 | 0.9844 | 0.9838 | 0.9823 0.9825
BO | 0.933 | 0.9372 | 0.9375 | 0.9375 | 0.9315 | 0.9375 | 0.9361 | 0.9378 | 0.9384 0.9385
BU | 0.9151 | 0.9186 | 0.9197 | 0.9162 | 0.9073 | 0.9008 | 0.9094 | 0.9156 | 0.9202 0.9204
CI | 0.9152 | 0.9179 | 0.9179 | 0.9184 | 0.9129 | 0.9186 | 0.9184 | 0.9192 | 0.9189 0.919
FI | 0.9519 | 0.9535 | 0.9546 | 0.9558 | 0.9471 | 0.9588 | 0.9608 | 0.9587 | 0.9551 0.9601
FO | 0.9487 | 0.9516 | 0.951 | 0.9464 | 0.9449 | 0.9476 | 0.9499 | 0.9515 | 0.9523 0.9526
GI | 0.9786 | 0.9813 | 0.982 | 0.9825 | 0.9748 | 0.9823 | 0.9809 | 0.9825 | 0.9827 | 0.9829
avg. | 0.9509 | 0.9543 | 0.9549 | 0.9541 | 0.9469 | 0.9475 | 0.9523 | 0.9547 | 0.9557 | 0.9563
Ry 8 5 3 6 10 9 7 4 2 1

N[N WIN [N &= W N &
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Table 5: Performance comparison with PSNR metric (dB) for 18 McM dataset: R, and
Ry denote ranks of FWAF, and FWAF, of each image, and Rj; denotes rank of each
method

EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD FFD FWAF, | FWAF, | R | Ro

1 129.638 | 30.25 | 30.326 | 30.211 | 29.219 | 29.797 | 29.708 | 30.30601 | 30.282 | 30.417 | 4 | 1
2 1 33.341 | 33.959 | 34.04 | 33.873 | 32.844 | 33.42 | 33.433 | 34.020212 | 33.964 | 34269 | 4 | 1
3| 28.746 | 29.217 | 29.237 | 29.236 | 28.326 | 28.824 | 28.987 | 29.216653 | 29.344 | 29.482 | 2 | 1
4 1 31.471 | 32.534 | 32.676 | 31.95 | 30.524 | 31.205 | 32.062 | 32.655604 | 32.39 33.166 | 5 | 1
5 35.07 | 35.64 | 35.67 | 35.513 | 34.672 | 35.163 | 35.637 | 35.650172 | 35.821 | 35.888 | 2 | 1
6 | 38.565 | 39.103 | 39.203 | 39.287 | 38.045 | 38.683 | 39.922 | 39.182785 | 39.547 | 39.948 | 3 | 1
7 | 31.455 | 31.711 | 31.712 | 31.794 | 31.472 | 31.778 | 31.732 | 31.692013 | 31.871 | 31917 | 2 | 1
8 32,532 | 32.904 | 33.001 | 33.189 | 32.168 | 32.786 | 32.983 | 32.981497 | 33.085 | 33.365 | 3 | 1
9 | 34.735 | 35.474 | 35.521 | 35.184 | 34.281 | 34.797 | 35.581 | 35.501021 | 35.65 35757 | 2 | 1
10 | 37.647 | 38.301 | 38.375 | 37.852 | 37.146 | 37.404 | 38.219 | 38.355021 | 38.328 | 38.725 | 4 | 1
11 | 37.904 | 38.394 | 38.452 | 38.233 | 37.611 | 37.947 | 38.483 | 38.431934 | 38.64 38.657 | 2 | 1
12 | 36.231 | 37.369 | 37.5562 | 37.459 | 35.038 | 36.134 | 36.332 | 37.532452 | 37.527 | 37.887 | 4 | 1
13 | 39.924 | 40.786 | 40.846 | 40.561 | 39.208 | 39.952 | 40.629 | 40.826201 | 40.99 41.21 211
14 | 38.296 | 38.835 | 38.889 | 38.524 | 37.897 | 38.271 | 38.584 | 38.868657 | 38.721 39.15 5 |1
15 | 39.766 | 40.528 | 40.622 | 39.89 | 39.141 | 39.473 | 40.029 | 40.601845 | 40.162 | 40.785 | 5 | 1
16 | 30.731 | 31.161 | 31.207 | 31.07 | 30.493 | 30.786 | 31.321 | 31.18736 | 31.347 | 31.422 | 2 | 1
17 | 34.96 | 35.459 | 35.511 | 35.37 | 34.672 | 35.027 | 35.704 | 35.491029 | 35.639 | 35.789 | 3 | 1
18 | 30.268 | 30.613 | 30.665 | 30.542 | 29.988 | 30.309 | 30.562 | 30.645183 | 30.823 | 31.129 | 2 | 1
avg. | 34.516 | 35.124 | 35.195 | 34.985 | 34.041 | 34.542 | 34.995 | 35.175 35.23 35498 | 2 | 1

Ry 9 5 3 7 10 8 6 4 2 1

and contrast. We measured the similarity between two images (original pro-
gressive image and deinterlaced image) by utilizing SSIM. We note that when
SSIM value appeal to 1, the deinterlaced image becomes more similar to the
original one. Table 4 shows SSIM performance. It can be found that the
proposed FWAF,; and FWAF | methods outperformed the best benchmark,
MELA, by 0.0014 and 0.0008, in terms of SSIM. It is clear that FWAF; and
FWAF, are not efficient for FI or BL images. However, in general, FWAF
and FWAF, methods ranked in #1 and #2, respectively.

Tables 5 and 6 show PSNR and SSIM results for 18 McM dataset, and
Tables 7 and 8 show PSNR and SSIM results for 25 Zahra dataset. Table 5
shows that FWAF, and FWAF, provide the best and the second best solu-
tions in terms of PSNR metric, and MELA and FFD are ranked in #3 and
#4. Quite similar results can be seen in Table 6 where FWAF, and FWAF,
still provided the best and the second best SSIM results. We not that PSNR

18




Table 6: Performance comparison with SSIM metric for 18 McM dataset: R, and Ry
denote ranks of FWAF ., and FWAF of each image, and Rj; denotes rank of each method

EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF, | R, | Ry
1 10.9226 | 0.9308 | 0.9315 | 0.9319 | 0.917 | 0.9268 | 0.922 | 0.9315 | 0.932 09323 | 2 | 1
2 10.9488 | 0.9538 | 0.9543 | 0.9541 | 0.9454 | 0.9505 | 0.9487 | 0.9543 | 0.9544 | 0.9549 | 2 | 1
3 10.9333 | 0.9392 | 0.9393 | 0.9392 | 0.9277 | 0.9344 | 0.9352 | 0.9393 | 0.9402 | 0.9412 | 2 | 1
4 0.973 | 0.978 | 0.9785 | 0.9762 | 0.9672 | 0.9722 | 0.9752 | 0.9784 | 0.9777 | 09799 | 5 | 1
5 10.9588 | 0.9621 | 0.9623 | 0.9623 | 0.9569 | 0.9605 | 0.9627 | 0.9622 | 0.9632 | 0.9642 | 2 | 1
6 |0.9747 | 0.9767 | 0.9771 | 0.978 | 0.9726 | 0.9756 | 0.9796 | 0.9771 | 0.9779 0.978 412
7 0.913 | 0.9165 | 0.9168 | 0.9182 | 0.9128 | 0.9173 | 0.915 | 0.9168 | 0.9168 | 09179 | 4 | 2
8 10.9617 | 0.9641 | 0.9645 | 0.9645 | 0.9596 | 0.9626 | 0.9626 | 0.9644 | 0.9639 | 0.9642 | 6 | 4
9 0.966 | 0.9698 | 0.97 0.969 | 0.9634 | 0.9669 | 0.9694 | 0.97 | 0.9705 | 09709 | 2 | 1
10 | 0.9701 | 0.9733 | 0.9736 | 0.972 | 0.9676 | 0.9697 | 0.9725 | 0.9736 | 0.9739 | 09741 | 2 | 1
11 |1 0.9678 | 0.9704 | 0.9708 | 0.9705 | 0.9661 | 0.9687 | 0.9708 | 0.9708 | 0.9716 | 09722 | 2 | 1
12 1 0.9744 | 0.9781 | 0.9785 | 0.9784 | 0.9698 | 0.9748 | 0.9744 | 0.9785 | 0.9786 | 0.9787 | 2 | 1
13 | 0978 [ 09799 | 0.98 |0.9797 | 0.9772| 0.979 | 0.9787 | 0.9799 | 0.9792 | 0.9799 | 6 | 4
14 | 0.9674 | 0.969 | 0.9693 | 0.9687 | 0.9667 | 0.9682 | 0.9682 | 0.9693 | 0.9694 | 0.9697 | 2 | 1
15 | 0.9693 | 0.9714 | 0.9716 | 0.9703 | 0.9682 | 0.9693 | 0.9695 | 0.9716 | 0.971 09716 | 5 | 1
16 | 0.9299 | 0.9352 | 0.9357 | 0.935 | 0.9261 | 0.9307 | 0.937 | 0.9357 | 0.9369 0.939 3|1
17 1 0.9536 | 0.958 | 0.9584 | 0.9571 | 0.9508 | 0.954 | 0.9593 | 0.9584 | 0.959 0.9604 | 3 | 1
18 | 0.9294 | 0.9339 | 0.9348 | 0.9365 | 0.9235 | 0.9314 | 0.9283 | 0.9348 | 0.935 0.9369 | 3 | 1
avg. | 0.9551 | 0.9589 | 0.9593 | 0.959 | 0.9521 | 0.9563 | 0.9572 | 0.9593 | 0.9595 | 0.9603 | 2 | 1
Ry 9 6 3 5 10 8 7 4 2 1
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Table 7: Performance comparison with PSNR metric (dB) for 25 Zahra dataset: R, and
Ro denote ranks of FWAF,. and FWAF, of each image, and Rj; denotes rank of each
method

EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF,

=
5
=
o

1 127513 | 27.764 | 27.776 | 27.691 | 27.437 | 27.63 | 27.496 | 27.771 | 27.769 | 27.798 | 4
2 | 33.941 | 34.248 | 34.282 | 34.495 | 33.623 | 34.147 | 34.392 | 34.277 | 34.493 | 34.673 | 3
3 130.474 | 30.946 | 31.005 | 30.902 | 30.024 | 30.551 | 30.359 31 30.95 31.098 | 4
4 | 35.053 | 35.375 | 35.479 | 35.748 | 34.648 | 35.282 | 35.354 | 35.474 | 35.687 35.95 3
5 129.261 | 29.457 | 29.458 | 29.504 | 29.325 | 29.512 | 29.486 | 29.453 | 29.52 29.636 | 2
6 | 35.638 | 35.832 | 35.838 | 35.974 | 35.572 | 35.875 | 35.938 | 35.833 | 35.846 | 36.125
7 32104 | 32.85 | 32.947 | 33.147 | 31.141 | 32.259 | 31.815 | 32.942 | 33.01 33.192
8 1 33.932 | 34.294 | 34.346 | 34.407 | 33.499 | 34.062 | 33.764 | 34.341 | 34.355 | 34.485
9 | 32941 | 33.093 | 33.146 | 33.386 | 32.756 | 33.136 | 33.367 | 33.141 | 33.337 | 33.601

10 | 29.006 | 29.277 | 29.334 | 29.364 | 28.788 | 29.111 | 28.915 | 29.329 | 29.36 29.385
11 | 31.061 | 31.27 | 31.282 | 31.226 | 31.07 | 31.183 | 31.247 | 31.277 | 31.322 | 31.402
12 | 35.688 | 35.866 | 35.861 | 35.68 | 35.731 | 35.711 | 35.816 | 35.856 | 35.853 | 35.897
13 | 27.574 | 28.363 | 28.564 | 28.703 | 26.405 | 27.517 | 27.002 | 28.559 | 28.427 | 28.844
14 | 28.617 | 28.855 | 28.883 | 28.795 | 28.501 | 28.704 | 28.478 | 28.878 | 28.886 | 28.894
15 | 31.898 | 32.282 | 32.321 | 32.347 | 31.162 | 31.902 | 31.379 | 32.316 | 32.409 | 32.484
16 | 31.028 | 31.507 | 31.563 | 31.327 | 30.849 | 31.145 | 30.619 | 31.558 | 31.325 | 31.599
17 | 33.454 | 33.848 | 33.861 | 33.753 | 33.397 | 33.609 | 33.811 | 33.856 | 33.953 | 34.019
18 | 34.46 | 34.677 | 34.663 | 34.651 | 34.54 | 34.72 | 34.458 | 34.658 | 34.675 | 34.698
19 | 31.802 | 32.06 | 32.113 | 32.034 | 31.556 | 31.844 | 31.566 | 32.108 | 32.035 | 32.187
20 | 38.654 | 38.793 | 38.755 | 38.951 | 38.31 | 38.749 | 38.468 | 38.75 | 38.817 | 38.963
21 | 39.662 | 40.577 | 40.787 | 40.97 | 38.968 | 40.064 | 39.624 | 40.782 | 40.592 | 41.063
22 | 34.26 | 34.653 | 34.517 | 34.463 | 34.286 | 34.516 | 33.891 | 34.512 | 34.599 | 34.634
23 | 34.209 | 34.789 | 34.821 | 34.57 | 33.963 | 34.441 | 34.235 | 34.816 | 34.712 | 34.901
24 | 26.879 | 27.086 | 27.006 | 27.108 | 26.245 | 26.708 | 27.031 | 27.001 | 27.103 | 27.394
25 | 35.077 | 35.949 | 36.059 | 35.63 | 34.639 | 35.265 | 36.022 | 36.054 | 36.112 | 36.661
avg. | 32.567 | 32.948 | 32.987 | 32.993 | 32.257 | 32.706 | 32.581 | 32.982 | 33.006 | 33.183
Ry 9 6 4 3 10 7 8 5 2 1
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Table 8: Performance comparison with SSIM metric for 25 Zahra dataset: R, and Ry
denote ranks of FWAF, and FWAF of each image, and Rj; denotes rank of each method
EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF, | R, | Ry

1 ] 0.8904 | 0.8953 | 0.8956 | 0.8959 | 0.8888 | 0.8942 | 0.8907 | 0.8956 | 0.8955 | 0.8969
2 10.9445 | 0.9472 | 0.9474 | 0.949 | 0.9416 | 0.9466 | 0.9465 | 0.9474 | 0.9485 | 0.9498
3 10.9284 | 0.9338 | 0.9343 | 0.9344 | 0.9231 | 0.9307 | 0.928 | 0.9343 | 0.9349 0.935
4 109716 | 0.9729 | 0.9733 | 0.9747 | 0.9699 | 0.9729 | 0.9734 | 0.9733 | 0.974 0.9758
5 ] 0.8817 | 0.8862 | 0.8868 | 0.8905 | 0.8814 | 0.8881 | 0.8858 | 0.8868 | 0.888 0.8921
6 | 0.9528 | 0.9542 | 0.9542 | 0.9546 | 0.9527 | 0.9542 | 0.9546 | 0.9542 | 0.9538 0.956
7 10.9566 | 0.9617 | 0.9623 | 0.9634 | 0.949 | 0.958 | 0.9553 | 0.9623 | 0.9632 | 0.9638
8 10.9422 | 0.9467 | 0.9471 | 0.9479 | 0.9376 | 0.9448 | 0.941 | 0.947 | 0.9475 | 0.9476
9 10.9394 | 0.9411 | 0.9417 | 0.9443 | 0.9376 | 0.9413 | 0.9425 | 0.9417 | 0.9428 | 0.9457

10 | 0.8907 | 0.8947 | 0.8954 | 0.8964 | 0.8885 | 0.8932 | 0.8883 | 0.8954 | 0.8955 | 0.8957
11 | 0.9053 | 0.9086 | 0.9091 | 0.9106 | 0.9048 | 0.9087 | 0.9086 | 0.909 | 0.9098 | 0.9128
121 0.9373 | 0.9385 | 0.9385 | 0.9379 | 0.9381 | 0.9383 | 0.939 | 0.9385 | 0.9385 | 0.9397
13 1 0.9135 | 0.9212 | 0.9227 | 0.9246 | 0.8988 | 0.9133 | 0.9056 | 0.9226 | 0.9223 | 0.9225
14 1 0.9055 | 0.91 | 0.9103 | 0.9102 | 0.9027 | 0.9077 | 0.9022 | 0.9103 | 0.9094 | 0.9101
15 | 0.9601 | 0.9629 | 0.963 | 0.9618 | 0.9549 | 0.9593 | 0.9551 | 0.963 | 0.9617 | 0.9619
16 | 0.9448 | 0.9504 | 0.9508 | 0.9494 | 0.942 | 0.9464 | 0.9385 | 0.9508 | 0.9481 | 0.9504
17 1 0.9628 | 0.9651 | 0.9652 | 0.965 | 0.9624 | 0.9639 | 0.9649 | 0.9651 | 0.9651 | 0.9666
18 | 0.9314 | 0.9343 | 0.934 | 0.9343 | 0.9327 | 0.9354 | 0.9308 | 0.934 0.934 0.9345
19 | 0.923 | 0.9274 | 0.928 | 0.9267 | 0.9197 | 0.9241 | 0.9181 | 0.928 | 0.9282 | 0.9285
20 | 0.9798 | 0.9804 | 0.9802 | 0.9802 | 0.9797 | 0.9805 | 0.9793 | 0.9801 | 0.9802 | 0.9806
21 | 0.9852 | 0.9877 | 0.9882 | 0.9887 | 0.9831 | 0.9864 | 0.9853 | 0.9882 | 0.9888 | 0.9888
22 1 0.9666 | 0.969 | 0.9679 | 0.9672 | 0.967 | 0.9683 | 0.964 | 0.9679 | 0.968 0.968
23 10.9247 1 0.9284 | 0.9279 | 0.9275 | 0.9264 | 0.93 | 0.9243 | 0.9278 | 0.9268 | 0.9283
24 1 0.9418 | 0.9434 | 0.9427 | 0.9426 | 0.9376 | 0.9414 | 0.9407 | 0.9427 | 0.9438 | 0.9451
25 10.9752 | 0.9784 | 0.9788 | 0.9781 | 0.973 | 0.9761 | 0.9795 | 0.9787 | 0.9804 | 0.9804
avg. | 0.9382 | 0.9416 | 0.9418 | 0.9422 | 0.9357 | 0.9402 | 0.9377 | 0.9418 | 0.9419 | 0.9431
R 8 6 4 2 10 7 9 5 3 1
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Table 9: Consumed average processing time (sec): R, and Ry denote ranks of FWAF,
and FWAF, of each image, and Rj; denotes rank of each method

EMD | LCID | MELA | LABI | FEPD | MCAD | LSMD | FFD | FWAF, | FWAF, | R, | Ry

Standard | 5.047 | 1.399 | 0.735 | 25.541 | 51.498 | 36.113 | 7.808 | 0.441 | 0.422 7.852 1|7

MceM 4.001 | 1.277 | 0.781 | 19.303 | 38.684 | 27.197 | 6.062 | 0.561 | 0.547 6.095 1|7

Zahra | 6.159 | 1.875 | 1.095 | 30.223 | 60.703 | 42.637 | 9.401 | 0.75 0.728 9.452 1|7

avg. 5.069 | 1.517 | 0.87 | 25.022 | 50.295 | 35.316 | 7.757 | 0.584 | 0.566 7.8 1|7
Ry 5 4 3 8 10 9 6 2 1 7

performance of FWAF, was always the best for every 18 image. However,
PSNR performance of FWAF, ranged from 2 to 5, and MELA and FFD were
good competitors.

In terms of SSIM results, although the FWAF, and FWAF, provided
the best and the second best performance in average, however they failed to
give good results for some images such as #8 and #13. The reason is that,
most pixels of #8 and #13 images of McM dataset are in a flat region, and
both images have many lines with distinct edge direction. Therefore, edge
direction based method may restore better image.

Table 7 shows PSNR results of FWAF; and FWAF ., where both methods
provided the best and the second best results. For two images (#18 and #22),
FWAF, was not the best. However, the difference from the best method
was negligible (0.022 from MCAD, 0.019 from LCID). In the same manner,
FWAF, shows the best performance in terms of SSIM as shown in Table 8,
but the results of each image is not always the best.

The FWAF, method still shows comparable PSNR results. Although it
does not show the second best PSNR for all images, but its average results
eventually were ranked as #2. However, it is obvious that FWAF, is not
the second best method, and LABI outperformed FWAF.. It is interesting
observation that normally LABI was not well used due to its high complexity.
The LABI method decides the direction and slope of edge based on locally
adaptive-thresholded binary image. We assume this property might improve
efficiency and accuracy of restoration. Another observation is that LABI
may increase the horizontal size of search window to 15, which may give
good direction determination at gentle slope.

Table 9 provides the comparison of CPU processing time which reflects
time complexity. Three terms ‘Standard,” ‘McM,” and ‘Zahra’ stand for used
test images, and ‘avg.’ and ‘Rj,’ are average results and ranking of each
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method. In the same manner, R, and Ry denote ranks of FWAF, and FWAF,
of each dataset. It is assumed that the method with smallest CPU time
consumption is better than the other. It can be observed that FFD, MELA,
and LCID methods requires small CPU time. However, FWAF, required
only 95%, 57%, and 30% of the CPU time compared to FFD, MELA, and
LCID, respectively. The FFD method uses pre-trained filter, which expedite
deinterlacing implementation.

On the other hand, CPU time result of FWAF, was ranked #7, which can
assumed as slow method. Although it has strength in terms of PSNR and
SSIM, however it cannot be recommended for real-time system. Therefore,
FWAF, method with appropriate threshold 7 would be recommended.

3.5. Subjective Performance Comparison

Figs. 12 and 13 exhibit the edge protecting performance using a ‘City’
image. As MELA and FFD outperformed the other conventional methods
in terms of PSNR and SSIM, these two methods were compared with the
proposed method. By comparing the proposed method with MELA and
FFD, we could observe that the presented approach has favorable visual
result. From images shown in Figs. 12(e,f) and 13(e,f), it is clearly seen that
the edge of buildings obtained with our method is sharper than the edges
of other methods and there were no apparent artifacts in the homogeneous
area. When comparing the marked parts, the proposed method performed
better than the other methods. MELA had advantages in reconstruction of
the sharp edge. However, it was ineffective when dealing with complex edges
in heterogeneous area. It can be observed that abruptly interpolated values
were shown in Figs. 12(b) and 13(b). FFD shows favorable reconstructed
images, however some edges were blurred after deinterlacing because the
same trained filter was applied to the whole image. On the other hand,
reconstructed images using our method provided the best visual performance.

The simulation was also tested in three McM dataset (#1, #4, and #8)
and three Zahra dataset (#1, #4, and #24). To allow visual quality evalua-
tion, Figs. 14-19 show details of original part of test image and the deinter-
laced outputs from the different conventional deinterlacing methods. MELA
gives satisfactory results especially for the diagonal edges. However, there
are severe drawbacks of MELA in the detailed diagonal edge areas (the edge
direction is inconsistent). FFD shows quite good visual quality in most of
patterns. However as FFD is based on pre-determined filter on training set,
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Figure 12: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original “City” image, (b) interlaced image, (c)
MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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(e) (f)

Figure 13: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original “City” image, (b) interlaced image, (c)
MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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Figure 14: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #1 McM image, (b) interlaced image,
(¢) MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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Figure 15: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #4 McM image, (b) interlaced image,
(¢) MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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Figure 16: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #8 McM image, (b) interlaced image,
(¢c) MELA, (d) FFD, (e) FWAF. and (d) FWAF,.
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Figure 17: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #1 Zahra image, (b) interlaced image,
(¢) MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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(d) (e) (f)

Figure 18: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #4 Zahra image, (b) interlaced image,
(¢) MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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Figure 19: Comparison of the subjective performance of different deinterlacing methods
with the proposed method: (a) Cropped original #24 Zahra image, (b) interlaced image,
(c) MELA, (d) FFD, (e) FWAF, and (d) FWAF,.
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if the given image has different characteristics from the training set, the per-
formance could become bad. On the other hand, the result images from the
proposed FWAF, and FWAF, have the best quality since they are able to
reduce artifacts compared with conventional methods.

From the objective and visual assessments of the proposed method, it
can be concluded that our method preserves edge details and generates fewer
artifacts than conventional methods.

4. Conclusion

This paper described an effective intra-field deinterlacing method which
uses local variance estimator. With the obtained local variance values, ho-
mogeneity or heterogeneity feature is assigned to a region. In homogeneous
areas, a conventional bilinear filter was utilized to interpolate the missing
line. In heterogeneous areas, the fuzzy-based weighted average filter was
applied to interpolate the missing line. It can be concluded that the pro-
posed method can reflect the real local detail and intensity information by
local variance estimator. Simulation results show that the proposed method
can meaningfully enhance both the subjective and objective performances of
reconstructed images.
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