
Adversarial patrolling with spatially uncertain alarm
signals

Nicola Basilicoa, Giuseppe De Nittisb, Nicola Gattib

aDepartment of Computer Science, University of Milan, Milano, Italy
bDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Abstract

When securing complex infrastructures or large environments, constant surveil-
lance of every area is not affordable. To cope with this issue, a common counter-
measure is the usage of cheap but wide–ranged sensors, able to detect suspicious
events that occur in large areas, supporting patrollers to improve the effectiveness
of their strategies. However, such sensors are commonly affected by uncertainty.
In the present paper, we focus on spatially uncertain alarm signals. That is, the
alarm system is able to detect an attack but it is uncertain on the exact position
where the attack is taking place. This is common when the area to be secured is
wide such as in border patrolling and fair site surveillance. We propose, to the best
of our knowledge, the first Patrolling Security Game model where a Defender is
supported by a spatially uncertain alarm system which non–deterministically gen-
erates signals once a target is under attack. We show that finding the optimal strat-
egy in arbitrary graphs isAPX–hard even in zero–sum games and we provide two
(exponential time) exact algorithms and two (polynomial time) approximation al-
gorithms. Furthermore, we analyse what happens in environments with special
topologies, showing that in linear and cycle graphs the optimal patrolling strategy
can be found in polynomial time, de facto allowing our algorithms to be used in
real–life scenarios, while in trees the problem is NP–hard. Finally, we show that
without false positives and missed detections, the best patrolling strategy reduces
to stay in a place, wait for a signal, and respond to it at best. This strategy is opti-
mal even with non–negligible missed detection rates, which, unfortunately, affect
every commercial alarm system. We evaluate our methods in simulation, assessing
both quantitative and qualitative aspects.

Keywords: Security Games, Adversarial Patrolling, Algorithmic Game Theory

Preprint submitted to Artificial Intelligence October 10, 2018

ar
X

iv
:1

50
6.

02
85

0v
1

 [
cs

.A
I]

 9
 J

un
 2

01
5

1. Introduction

Security Games model the task of protecting physical environments as a non–
cooperative game between a Defender and an Attacker [1]. These games usually
take place under a Stackelberg (a.k.a. leader–follower) paradigm [2], where the
Defender (leader) commits to a strategy and the Attacker (follower) first observes
such commitment, then best responds to it. As discussed in the seminal work [3],
finding a leader–follower equilibrium is computationally tractable in games with
one follower and complete information, while it becomes hard in Bayesian games
with different types of Attacker. The availability of such computationally tractable
aspects of Security Games led to the development of algorithms capable of scaling
up to large problems, making them deployable in the security enforcing systems of
several real–world applications. The first notable examples are the deployment of
police checkpoints at the Los Angels International Airport [4] and the scheduling
of federal air marshals over the U.S. domestic airline flights [5]. More recent case
studies include the positioning of U.S. Coast Guard patrols to secure crowded
places, bridges, and ferries [6] and the arrangement of city guards to stop fare
evasion in Los Angeles Metro [7]. Finally, a similar approach is being tested and
evaluated in Uganda, Africa, for the protection of wildlife [8]. Thus, Security
Games emerged as an interesting game theoretical tool and then showed their on–
the-field effectiveness in a number of real security scenarios.

We focus on a specific class of security games, called Patrolling Security
Games. These games are modelled as infinite–horizon extensive–form games in
which the Defender controls one or more patrollers moving within an environ-
ment represented as a discrete graph. The Attacker, besides having knowledge of
the strategy to which the Defender committed to, can observe the movements of
the patrollers at any time and use such information in deciding the most conve-
nient time and target location to attack [9]. When multiple patrollers are available,
coordinating them at best is in general a hard task which, besides computational
aspects, must also keep into account communication issues [10]. However, the pa-
trolling problem is tractable, even with multiple patrollers, in border security (e.g.,
linear and cycle graphs), when patrollers have homogeneous moving and sensing
capabilities and all the vertices composing the border share the same features [11].
Scaling this model involved the study of how to compute patrolling strategies in
scenarios where the Attacker is allowed to perform multiple attacks [12]. Simi-
larly, coordination strategies among multiple Defenders are investigated in [13].
In [14], the authors study the case in which there is a temporal discount on the
targets. Extensions are discussed in [15], where coordination strategies between

2

defenders are explored, in [16], where a resource can cover multiple targets, and
in [17] where attacks can detected at different stages with different associated
utilities. Finally, some theoretical results about properties of specific patrolling
settings are provided in [18]. In the present paper, we provide a new model of
patrolling security games in which the Defender is supported by an alarm system
deployed in the environment.

1.1. Motivation scenarios
Often, in large environments, a constant surveillance of every area is not af-

fordable while focused inspections triggered by alarms are more convenient. Real–
world applications include UAVs surveillance of large infrastructures [19], wild-
fires detection with CCD cameras [20], agricultural fields monitoring [21], and
surveillance based on wireless sensor networks [22], and border patrolling [23].
Alarm systems are in practice affected by detection uncertainty, e.g., missed de-
tections and false positives, and localization (a.k.a. spatial) uncertainty, e.g., the
alarm system is uncertain about the exact target under attack. We summarily de-
scribe two practical security problems that can be ascribed to this category. We
report them as examples, presenting features and requirements that our model can
properly deal with. In the rest of the paper we will necessarily take a general
stance, but we encourage the reader to keep in mind these two cases as reference
applications for a real deployment of our model.

1.1.1. Fight to illegal poaching
Poaching is a widespread environmental crime that causes the endangerment

of wildlife in several regions of the world. Its devastating impact makes the de-
velopment of surveillance techniques to contrast this kind of activities one of the
most important matters in national and international debates. Poaching typically
takes place over vast and savage areas, making it costly and ineffective to solely
rely on persistent patrol by ranger squads. To overcome this issue, recent develop-
ments have focused on providing rangers with environmental monitoring systems
to better plan their inspections, concentrating them in areas with large likelihood
of spotting a crime. Such systems include the use of UAVs flying over the area,
alarmed fences, and on–the–field sensors trying to recognize anomalous activi-
ties.1 In all these cases, technologies are meant to work as an alarm system: once
the illegal activity is recognized, a signal is sent to the rangers base station from

1See, for example, http://wildlandsecurity.org/.

3

http://wildlandsecurity.org/

where a response is undertaken. In the great majority of cases, a signal corre-
sponds to a spatially uncertain localization of the illegal activity. For example, a
camera–equipped UAV can spot the presence of a pickup in a forbidden area but
cannot derive the actual location to which poachers are moving. In the same way,
alarmed fences and sensors can only transmit the location of violated entrances or
forbidden passages. In all these cases a signal implies a restricted, yet not precise,
localization of the poaching activity. The use of security games in this particular
domain is not new (see, for example, [8]). However, our model allows the com-
putation of alarm response strategies for a given alarm system deployed on the
field. This can be done by adopting a discretization of the environment, where
each target corresponds to a sector, values are related to the expected population
of animals in that sector, and deadlines represent the expected completion time of
illegal hunts (these parameters can be derived from data, as discussed in [8]).

1.1.2. Safety of fair sites
Fairs are large public events attended by thousands of visitors, where the prob-

lem of guaranteeing safety for the hosting facilities can be very hard. For exam-
ple, Expo 2015, the recent Universal Exposition hosted in Milan, Italy, estimates
an average of about 100,000 visits per day. This poses the need for carefully ad-
dressing safety risks, which can also derive from planned act of vandalism or
terrorist attacks. Besides security guards patrols, fair sites are often endowed with
locally installed monitoring systems. Expo 2015 employs around 200 baffle gates
and 400 metal detectors at the entrance of the site. The internal area is constantly
monitored by 4,000 surveillance cameras and by 700 guards. Likely, when one or
more of these devices/personnel identify a security breach, a signal is sent to the
control room together with a circumscribed request of intervention. This approach
is required because, especially in this kind of environments, detecting a security
breach and neutralizing it are very different tasks. The latter one, in particular,
usually requires a greater effort involving special equipment and personnel whose
employment on a demand basis is much more convenient. Moreover, the detecting
location of a threat is in many cases different from the location where it could be
neutralized, making the request of intervention spatially uncertain. For instance,
consider a security guard or a surveillance camera detecting the visitors’ reac-
tions to a shooting rampage performed by some attacker. In examples like these,
we can restrict the area where the security breach happened but no precise infor-
mation about the location can be gathered since the attacker will probably have
moved. Our model could be applied to provide a policy with which schedule inter-
ventions upon a security breach is detected in some particular section of the site.

4

In such case, targets could correspond to buildings or other installations where
visitors can go. Values and deadlines can be chosen according to the importance
of targets, their expected crowding, and the required response priority.

1.2. Alarms and security games
While the problem of managing a sensor network to optimally guard security–

critical infrastructure has been investigated in restricted domains, e.g. [24], the
problem of integrating alarm signals together with adversarial patrolling is almost
completely unexplored. The only work that can be classified under this scope
is [25]. The paper proposes a skeleton model of an alarm system where sensors
have no spatial uncertainty in detecting attacks on single targets. The authors anal-
yse how sensory information can improve the effectiveness of patrolling strategies
in adversarial settings. They show that, when sensors are not affected by false
negatives and false positives, the best strategy prescribes that the patroller just
responds to an alarm signal rushing to the target under attack without patrolling
the environment. As a consequence, in such cases the model treatment becomes
trivial. On the other hand, when sensors are affected only by false negatives, the
treatment can be carried out by means of an easy variation of the algorithm for
the case without sensors [9]. In the last case, where false positives are admitted,
the problem becomes computationally intractable. To the best of our knowledge,
no previous result dealing with spatial uncertain alarm signals in adversarial pa-
trolling is present in the literature.

Effectively exploiting an alarm system and determining a good deployment
for it (e.g., selecting the location where install sensor) are complementary but
radically different problems. The results we provide in this work lie in the scope
of the first one while the treatment of the second one is left for future works.
In other words, we assume that a deployed alarm system is given and we deal
with the problem of strategically exploiting it at best. Any approach to search
for the optimal deployment should, in principle, know how to evaluate possible
deployments. In such sense, our problem needs to be addressed before one might
deal with the deployment one.

1.3. Contributions
In this paper, we propose the first Security Game model that integrates a

spatially uncertain alarm system in game–theoretic settings for patrolling.2 Each

2A very preliminary short version of the present paper is [26].

5

alarm signal carries the information about the set of targets that can be under at-
tack and it is described by the probability of being generated when each target is
attacked. Moreover, the Defender can control only one patroller. The game can
be decomposed in a finite number of finite–horizon subgames, each called Signal
Response Game from v (SRG–v) and capturing the situation in which the De-
fender is in a vertex v and the Attacker attacked a target, and an infinite–horizon
game, called Patrolling Game (PG), in which the Defender moves in absence of
any alarm signal. We show that, when the graph has arbitrary topology, finding the
equilibrium in each SRG–v isAPX–hard even in the zero–sum case. We provide
two exact algorithms. The first one, based on dynamic programming, performs a
breadth–first search, while the second one, based on branch–and–bound approach,
performs a depth–first search. We use the same two approaches to design two ap-
proximation algorithms. Furthermore, we provide a number of additional results
for the SRG–v. We study special topologies, showing that there is a polynomial
time algorithm solving a SRG–v on linear and cycle graphs, while it is NP–hard
with trees. Then, we study the PG, showing that when no false positives and no
missed detections are present, the optimal Defender strategy is to stay in a fixed
location, wait for a signal, and respond to it at best. This strategy keeps being
optimal even when non–negligible missed detection rates are allowed. We exper-
imentally evaluate the scalability of our exact algorithms and we compare them
w.r.t. the approximation ones in terms of solution quality and compute times, in-
vestigating in hard instances the gap between our hardness results and the theoret-
ical guarantees of our approximation algorithms. We show that our approximation
algorithms provide very high quality solutions even in hard instances. Finally, we
provide an example of resolution for a realistic instance, based on Expo 2015,
and we show that our exact algorithms can be applied for such kind of settings.
Moreover, in our realistic instance we assess how the optimal patrolling strategy
coincides with a static placement even when allowing a false positive rate of less
or equal to 30%.

1.4. Paper structure
In Section 2, we introduce our game model. In Section 3, we study the prob-

lem of finding the strategy of the Defender for responding to an alarm signal in
an arbitrary graph while in Section 4, we provide results for specific topologies.
In Section 5, we study the patrolling problem. In Section 6, we experimentally
evaluate our algorithms. In Section 7, we briefly discuss the main Security Games
research directions that have been explored in the last decades. Finally, Section 8

6

concludes the paper. Appendix A includes a notation table, while Appendix B
reports some additional experimental results.

2. Problem statement

In this section we formalize the problem we study. More precisely, in Sec-
tion 2.1 we describe the patrolling setting and the game model, while in Sec-
tion 2.2 we state the computational questions we shall address in this work.

2.1. Game model
Initially, in Section 2.1.1, we introduce a basic patrolling security game model

integrating the main features from models currently studied in literature. Next, in
Section 2.1.2, we extend our game model by introducing alarm signals. In Sec-
tion 2.1.3, we depict the game tree of our patrolling security game with alarm
signals and we decompose it in notable subgames to facilitate its study.

2.1.1. Basic patrolling security game
As is customary in the artificial intelligence literature [9, 14], we deal with

discrete, both in terms of space and time, patrolling settings, representing an ap-
proximation of a continuous environment. Specifically, we model the environment
to be patrolled as an undirected connected graph G = (V,E), where vertices rep-
resent different areas connected by various corridors/roads, formalized through
the edges. Time is discretized in turns. We define T ⊆ V the subset of sensible
vertices, called targets, that must be protected from possible attacks. Each target
t ∈ T is characterized by a value π(t) ∈ (0, 1] and a penetration time d(t) ∈ N+

which measures the number of turns needed to complete an attack to t.

Example 1 We report in Figure 1 an example of patrolling setting. Here, V =
{v0, v1, v2, v3, v4}, T = {t1, t2, t3, t4} where ti = vi for i ∈ {1, 2, 3, 4}. All the
targets t present the same value π(t) and the same penetration time d(t).

At each turn, an Attacker A and a Defender D play simultaneously having the
following available actions:

• ifA has not attacked in the previous turns, it can observe the position ofD in
the graph G3 and decide whether to attack a target or to wait for a turn. The

3Partial observability of A over the position of D can be introduced as discussed in [27].

7

v0

t1 t2

t3t4

t π(t) d(t)
t1 0.5 4
t2 0.5 4
t3 0.5 4
t4 0.5 4

Figure 1: Example of patrolling setting.

attack is instantaneous, meaning that there is no delay between the decision
to attack and the actual presence of a threat in the selected target4;

• D has no information about the actions undertaken by A in previous turns
and selects the next vertex to patrol among those adjacent to the current one;
each movement is a non–preemptive traversal of a single edge (v, v′) ∈ E
and takes one turn to be completed (along the paper, we shall use ω∗v,v′ to
denote the temporal cost expressed in turns of the shortest path between any
v and v′ ∈ V).

The game may conclude in correspondence of any of the two following events.
The first one is when D patrols a target t that is under attack by A from less than
d(t) turns. In such case the attack is prevented and A is captured. The second
one is when target t is attacked and D does not patrol t during the d(t) turns that
follow the beginning of the attack. In such case the attack is successful and A
escapes without being captured. WhenA is captured, D receives a utility of 1 and
A receives a utility of 0. When an attack to t has success, D receives 1− π(t) and
A receives π(t). The game may not conclude ifA decides to never attack (namely
to wait for every turn). In such case,D receives 1 andA receives 0. Notice that the
game is constant sum and therefore it is equivalent to a zero–sum game through
an affine transformation.

The above game model is in extensive form (being played sequentially), with
imperfect information (D not observing the actions undertaken by A), and with
infinite horizon (A being in the position to wait forever). The fact that A can

4This is a worst–case assumption according to which A is as strong as possible. It can be
relaxed by associating execution costs to the Attacker’s actions as shown in [28].

8

observe the actions undertaken by D before acting makes the leader–follower
equilibrium the natural solution concept for our problem, where D is the leader
and A is the follower. Since we focus on zero–sum games, the leader’s strategy
at the leader–follower equilibrium is its maxmim strategy and it can be found by
employing linear mathematical programming, which requires polynomial time in
the number of actions available to the players [29].

2.1.2. Introducing alarm signals
We extend the game model described in the previous section by introducing a

spatial uncertain alarm system that can be exploited by D. The basic idea is that
an alarm system uses a number of sensors spread over the environment to gather
information about possible attacks and raises an alarm signal at any time an attack
occurs. The alarm signal provides some information about the location (target)
where the attack is ongoing, but it is affected by uncertainty. In other words, the
alarm system detects an attack but it is uncertain about the target under attack.
Formally, the alarm system is defined as a pair (S, p), where S = {s1, · · · , sm}
is a set of m ≥ 1 signals and p : S × T → [0, 1] is a function that specifies the
probability of having the system generating a signal s given that target t has been
attacked. With a slight abuse of notation, for a signal s we define T (s) = {t ∈ T |
p(s | t) > 0} and, similarly, for a target t we have S(t) = {s ∈ S | p(s | t) > 0}.
In this work, we assume that:

• the alarm system is not affected by false positives (signals generated when
no attack has occurred). Formally, p(s | 4) = 0, where4 indicates that no
targets are under attack;

• the alarm system is not affected by false negatives (signals not generated
even though an attack has occurred). Formally, p(⊥ | t) = 0, where ⊥
indicates that no signals have been generated; in Section 5 we will show
that the optimal strategies we compute under this assumption can preserve
optimality even in presence of non–negligible false negatives rates.

Example 2 We report two examples of alarm systems for the patrolling setting
depicted in Figure 1. The first example is reported in Figure 2(a). It is a low–
accuracy alarm system that generates the same signal anytime each target is un-
der attack and therefore the alarm system does not provide any information about
the target under attack. The second example is reported in Figure 2(b). It provides
more accurate information about the localization of the attack than the previous
example. Here, each target ti, once attacked, generates an alarm signal si with

9

high probability and a different signal with low probability. That is, if alarm sig-
nal si has been observed, it is more likely that the attack is in target ti (given a
uniform strategy of A over the targets).

v0

t1 t2

t3t4

t π(t) d(t) p(s1 | t)
t1 0.5 4 1
t2 0.5 4 1
t3 0.5 4 1
t4 0.5 4 1

(a) Alarm system with a single signal for all the targets.

t π(t) d(t) p(s1 | t) p(s2 | t) p(s3 | t) p(s4 | t) p(s5 | t)
t1 0.5 4 0.1 0.6 0.1 0.1 0.1
t2 0.5 4 0.1 0.1 0.6 0.1 0.1
t3 0.5 4 0.1 0.1 0.1 0.6 0.1
t4 0.5 4 0.1 0.1 0.1 0.1 0.6

(b) Alarm system with multiple signals.

Figure 2: Examples of alarm systems.

Given the presence of an alarm system defined as above, the game mechanism
changes in the following way. At each turn, before deciding its next move, D
observes whether or not a signal has been generated by the alarm system and then
makes its decision considering such information. This introduces in our game a
node of chance implementing the non–deterministic selection of signals, which
characterizes the alarm system.

2.1.3. The game tree and its decomposition
Here we depict the game tree of our game model, decomposing it in some

recurrent subgames. A portion of the game is depicted in Figure 3. Such tree can
be read along the following steps.

• Root of the tree. A decides whether to wait for a turn (this action is denoted
by the symbol4 since no target is under attack) or to attack a target ti ∈ T
(this action is denoted by the label ti of the target to attack).

10

A

N D

A

v
1

··
·

A

v
n

⊥

4

N

D

U
A

(r
i
,
t 1

),

1
−

U
A

(r
i
,
t 1

)

r
i
∈

R
v
,s

i

U
A

(r
j
,
t 1

),

1
−

U
A

(r
j
,
t 1

)

r
j
∈

R
v
,s

i

s
i
∈

S
(t

1
)

··
·

D

U
A

(r
i
,
t 1

),

1
−

U
A

(r
i
,
t 1

)

r
i
∈

R
v
,s

j

U
A

(r
j
,
t 1

),

1
−

U
A

(r
j
,
t 1

)

r
j
∈

R
v
,s

j

s
j
∈

S
(t

1
)

t 1

··
·

N

D

U
A

(r
i
,
t |

T
|)

,

1
−
U

A
(r

i
,
t |

T
|)

r
i
∈

R
v
,s

i

U
A

(r
j
,
t |

T
|)

,

1
−

U
A

(r
j
,
t |

T
|)

r
j
∈

R
v
,s

i

s
i
∈

S
(t

|T
|)

··
·

D

U
A

(r
i
,
t |

T
|)

,

1
−
U

A
(r

i
,
t |

T
|)

r
i
∈

R
v
,s

j

U
A

(r
j
,
t |

T
|)

,

1
−

U
A

(r
j
,
t |

T
|)

r
j
∈

R
v
,s

j

s
j
∈

S
(t

|T
|)

t |
T

|

Figure 3: Game tree, v is assumed to the be current vertex for D. r is a collapsed sequence of
vertices, called route, we shall introduce in the next section.

11

• Second level of the tree. N denotes the alarm system, represented by a
nature–type player. Its behavior is a priori specified by the conditional prob-
ability mass function p which determines the generated signal given the at-
tack performed by A. In particular, it is useful to distinguish between two
cases:

(a) if no attack is present, then no signal will be generated under the as-
sumption that p(⊥ | 4) = 1;

(b) if an attack on target ti is taking place, a signal s will be drawn from
S(ti) with probability p(s | ti) (recall that we assumed p(⊥ | ti) = 0).

• Third level of the tree.D observes the signal raised by the alarm system and
decides the next vertex to patrol among those adjacent to the current one
(the current vertex is initially chosen by D).

• Fourth level of the tree and on. It is useful to distinguish between two cases:

(a) if no attack is present, then the tree of the subgame starting from here
is the same of the tree of the whole game, except for the position of D
that may be different from the initial one;

(b) if an attack is taking place on target ti, then only D can act.

Such game tree can be decomposed in a number of finite recurrent subgames
such that the best strategies of the agents in each subgame are independent from
those in other subgames. This decomposition allows us to apply a divide et impera
approach, simplifying the resolution of the problem of finding an equilibrium.
More precisely, we denote with Γ one of these subgames. We define Γ as a game
subtree that can be extracted from the tree of Figure 3 as follows. Given D’s
current vertex v ∈ V , select a decision node for A and call it i. Then, extract the
subtree rooted in i discarding the branch corresponding to action ∆ (no attack)5.

5Rigorously speaking, our definition of subgame is not compliant with the definition provided
in game theory [30], which requires that all the actions of a node belong to the same subgame (and
therefore we could not separate action ∆ from actions ti). However, we can slightly change the
structure of our game making our definition of subgame compliant with the one from game theory.
More precisely, it is sufficient to split each node of A into two nodes: in the first A decides to
attack a target or to wait for one turn, and in the second, conditioned to the fact that A decided to
attack,A decides which target to attack. This way, the subtree whose root is the second node ofA
is a subgame compliant with game theory. It can be easily observed that this change to the game
tree structure does not affect the behaviour of the agents.

12

Intuitively, such subgame models the players interaction when the Defender is in
some given vertex v and the Attacker will perform an attack. As a consequence,
each Γ obtained in such way is finite (once an attack on t started, the maximum
length of the game is d(t)). Moreover, the set of different Γs we can extract is
finite since we have one subgame for each possible current vertex for D, as a
consequence we can extract at most |V | different subgames. Notice that, due to
the infinite horizon, each subgame can recur an infinite number of times along the
game tree. However, being such repetitions independent and the game zero–sum,
we only need to solve one subgame to obtain the optimal strategy to be applied
in each of its repetitions. In other words, when assuming that an attack will be
performed, the agents’ strategies can be split in a number of independent strategies
solely depending on the current position of the Defender. The reason why we
discarded the branch corresponding to action ∆ in each subgame is that we seek
to deal with such complementary case exploiting a simple backward induction
approach as explained in the following.

First, we call Signal Response Game from v the subgame Γ defined as above
and characterized by a vertex v representing the current vertex of D (for brevity,
we shall use SRG–v). In an SRG–v, the goal of D is to find the best strategy start-
ing from vertex v to respond to any alarm signal. All the SRG–vs are independent
one each other and thus the best strategy in each subgame does not depend on
the strategies of the other subgames. The intuition is that the best strategies in an
SRG–v does not depend on the vertices visited by D before the attack. Given an
SRG–v, we denote by σDv,s the strategy of D once observed signal s, by σDv the
strategy profile σDv = (σDv,s1 . . . , σ

D
v,sm) of D, and by σAv the strategy of A. Let us

notice that in an SRG–v, given a signal s,D is the only agent that plays and there-
fore each sequence of moves between vertices of D in the tree can be collapsed in
a single action. Thus, SRG–v is essentially a two–level game in which A decides
the target to attack and D decides the sequence of moves to visit the targets.

Then, according to classical backward induction arguments [30], once we have
found the best strategies of each SRG–v, we can substitute the subgames with the
agents’ equilibrium utilities and then we can find the best strategy of D for pa-
trolling the vertices whenever no alarm signal has been raised and the best strategy
of attack for A. We call this last problem Patrolling Game (for conciseness, we
shall use PG). We denote by σD and σA the strategies of D and A respectively in
the PG.

13

2.2. The computational questions we pose
In the present paper, we focus on some questions whose answers play a funda-

mental role in the design of the best algorithms to find an equilibrium of our game.
More precisely, we investigate the computational complexity of the following four
problems. The first problem concerns the PG.

Question 1 Which is the best patrolling strategy for D maximizing its expected
utility?

The other three questions concern SRG–v. For the sake of simplicity, we focus
on the case in which there is only one signal s, we shall show that it is possible to
scale linearly in the number of signals.

Question 2 Given a starting vertex v and a signal s, is there any strategy of D
that allows D to visit all the targets in T (s), each within its deadline?

Question 3 Given a starting vertex v and a signal s, is there any pure strategy of
D giving D an expected utility of at least k?

Question 4 Given a starting vertex v and a signal s, is there any mixed strategy
of D giving D an expected utility of at least k?

In the following, we shall take a bottom–up approach answering the above
questions starting from the last three and then dealing with the first one at the
whole–game level.

3. Signal response game on arbitrary graphs

In this section we show how to deal with an SRG–v on arbitrary graphs.
Specifically, in Section 3.1 we prove the hardness of the problem, analyzing its
computational complexity. Then, in Section 3.2 and in Section 3.3 we propose
two algorithms, the first based on dynamic programming (breadth–first search)
while the second adopts a branch and bound (depth–first search) paradigm. Fur-
thermore, we provide a variation for each algorithm, approximating the optimal
solution.

14

3.1. Complexity results
In this section we analyse SRG–v from a computational point of view. We

initially observe that each SRG–v is characterized by |T | actions available to A,
each corresponding to a target t, and by O(|V |maxt{d(t)}) decision nodes of D.
The portion of game tree played by D can be safely reduced by observing that
D will move between any two targets along the minimum path. This allows us
to discard from the tree all the decision nodes where D occupies a non–target
vertex. However, this reduction keeps the size of the game tree exponential in
the parameters of the game, specifically O(|T ||T |).6 The exponential size of the
game tree does not constitute a proof that finding the equilibrium strategies of an
SRG–v requires exponential time in the parameters of the game because it does
not exclude the existence of some compact representation of D’s strategies, e.g.,
Markovian strategies. Indeed such representation should be polynomially upper
bounded in the parameters of the game and therefore they would allow the design
of a polynomial–time algorithm to find an equilibrium. We show below that it is
unlikely that such a representation exists in arbitrary graphs, while it exists for
special topologies as we shall discuss later.

We denote by gv the expected utility of A from SRG–v and therefore the ex-
pected utility of D is 1− gv. Then, we define the following problem.

Definition 1 (k–SRG–v) The decision problem k–SRG–v is defined as:
INSTANCE: an instance of SRG–v;
QUESTION: is there any σD such that gv ≤ k (when A plays its best response)?

Theorem 1 k–SRG–v is strongly NP–hard even when |S| = 1.

Proof. Let us consider the following reduction from HAMILTONIAN–PATH [31].
Given an instance of HAMILTONIAN–PATH GH = (VH , EH), we build an in-
stance for k–SRG–v as:

• V = VH ∪ {v};

• E = EH ∪ {(v, h),∀h ∈ VH};

• T = VH ;

• d(t) = |VH |;

6A more accurate bound is O(|T |min{|T |,maxt{d(t)}}).

15

• π(t) ∈ (0, 1], for all t ∈ T (any value);

• S = {s1};

• T (s1) = T ;

• p(s1 | t) = 1, for all t ∈ T ;

• k = 0.

If gs ≤ 0, then there must exist a path starting from v and visiting all the targets
in T by d = |VH |. Given the penetration times assigned in the above construction
and recalling that edge costs are unitary, the path must visit each target exactly
once. Therefore, since T = VH , the game’s value is less than or equal to zero if
and only if GH admits a Hamiltonian path. This concludes the proof. �

Notice that the problem of assessing the membership of k–SRG–v to NP
is left open and it strictly depends on the size of the support of the strategy of
σDv . That is, if any strategy σDv has a polynomially upper bounded support, then
k–SRG–v is in NP . We conjecture it is not and therefore there can be optimal
strategies in which an exponential number of actions are played with strictly pos-
itive probability. Furthermore, the above result shows that with arbitrary graphs:

• answering to Question 1 is FNP–hard,

• answering to Questions 2, 3, 4 is NP–hard.

As a consequence a polynomial–time algorithm solving those problems is unlikely
to exist. In particular, the above proof shows that we cannot produce a compact
representation (a.k.a. information lossless abstractions) of the space of strategies
of D that is smaller than O(2|T (s)|), unless there is an algorithm better than the
best–known algorithm for HAMILTONIAN–PATH. This is due to the fact that
the best pure maxmin strategy can be found in linear time in the number of the
pure strategies and the above proof shows that it cannot be done in a time less than
O(2|T (s)|). More generally, no polynomially bounded representation of the space
of the strategies can exist, unless P = NP .

Although we can deal only with exponentially large representations of D’s
strategies, we focus on the problem of finding the most efficient representation.
Initially, we provide the following definitions.

Definition 2 (Route) Given a starting vertex v and a signal s, a route (over the
targets) r is a generic sequence of targets of T (s) such that:

16

• r starts from v,

• each target t ∈ T (s) occurs at most once in r (but some targets may not
occur),

• r(i) is the i–th visited target in r (in addition, r(0) = v).

Among all the possible routes we restrict our attention on a special class of routes
that we call covering and are defined as follows.

Definition 3 (Covering Route) Given a starting vertex v and a signal s, a route
r is covering when, denoted by Ar(r(i)) =

∑i−1
h=0 ω

∗
r(h),r(h+1) the time needed by

D to visit target t = r(i) ∈ T (s) starting from r(0) = v and moving along
the shortest path between each pair of consecutive targets in r, for every target t
occurring in r it holds Ar(r(i)) ≤ d(r(i)) (i.e., all the targets are visited within
their penetration times).

With a slight abuse of notation, we denote by T (r) the set of targets covered
by r and we denote by c(r) the total temporal cost of r, i.e., c(r) = Ar(r(|T (r)|)).
Notice that in the worst case the number of covering routes is O(|T (s)||T (s)|), but
computing all of them may be unnecessary since some covering routes will never
be played by D due to strategy domination and therefore they can be safely dis-
carded [32]. More precisely, we introduce the following two forms of dominance.

Definition 4 (Intra–Set Dominance) Given a starting vertex v, a signal s and
two different covering routes r, r′ such that T (r) = T (r′), if c(r) ≤ c(r′) then r
dominates r′.

Definition 5 (Inter–Set Dominance) Given a starting vertex v, a signal s and
two different covering routes r, r′, if T (r) ⊃ T (r′) then r dominates r′.

Furthermore, it is convenient to introduce the concept of covering set, which
is strictly related to the concept of covering route. It is defined as follows.

Definition 6 (Covering Set) Given a starting vertex v and a signal s, a covering
set Q is a subset of targets T (s) such that there exists a covering route r with
T (r) = Q.

Let us focus on Definition 4. It suggests that we can safely use only one route
per covering set. Covering sets suffice for describing all the outcomes of the game,
since the agents’ payoffs depend only on the fact that A attacks a target t that is

17

covered byD or not, and in the worst case areO(2|T (s)|), with a remarkable reduc-
tion of the search space w.r.t. O(|T (s)||T (s)|). However, any algorithm restricting
on covering sets should be able to determine whether or not a set of targets is a
covering one. Unfortunately, this problem is hard too.

Definition 7 (COV–SET) The decision problem COV–SET is defined as:
INSTANCE: an instance of SRG–v with a target set T ;
QUESTION: is T a covering set for some covering route r?

By trivially adapting the same reduction for Theorem 1 we can state the fol-
lowing theorem.

Theorem 2 COV–SET is NP–complete.

Therefore, computing a covering route for a given set of targets (or deciding
that no covering route exists) is not doable in polynomial time unless P = NP .
This shows that, while covering sets suffice for defining the payoffs of the game
and therefore the size of payoffs matrix can be bounded by the number of cover-
ing sets, in practice we also need covering routes to certificate that a given subset
of targets is covering. Thus, we need to work with covering routes, but we just
need the routes corresponding to the covering sets, limiting the number of cover-
ing routes that are useful for the game to the number of covering sets. In addition,
Theorem 2 suggests that no algorithm for COV–SET can have complexity better
than O(2|T (s)|) unless there exists a better algorithm for HAMILTONIAN–PATH
than the best algorithm known in the literature. This seems to suggest that enu-
merating all the possible subsets of targets (corresponding to all the potential cov-
ering sets) and, for each of them, checking whether or not it is covering requires
a complexity worse than O(2|T (s)|). Surprisingly, we show in the next section that
there is an algorithm with complexity O(2|T (s)|) (neglecting polynomial terms)
to enumerate all and only the covering sets and, for each of them, one covering
route. Therefore, the complexity of our algorithm matches (neglecting polynomial
terms) the complexity of the best–known algorithm for HAMILTONIAN–PATH.

Let us focus on Definition 5. Inter–Set dominance can be leveraged to intro-
duce the concept of maximal covering sets which could enable a further reduction
in the set of actions available to D.

Definition 8 (MAXIMAL COV–SET) Given a covering setQ (whereQ = T (r)
for some r), we say that Q is maximal if there is no route r′ such that Q ⊂ T (r′).

18

Furthermore, we say that r such that T (r) = Q is a maximal covering route. In
the best case, when there is a route covering all the targets, the number of maximal
covering sets is 1, while the number of covering sets (including the non–maximal
ones) is 2|T (s)|. Thus, considering only maximal covering sets allows an exponen-
tial reduction of the payoffs matrix. In the worst case, when all the possible subsets
composed of |T (s)|/2 targets are maximal covering sets, the number of maximal
covering sets is O(2|T (s)|−2), while the number of covering sets is O(2|T (s)|−1), al-
lowing a reduction of the payoffs matrix by a factor of 2. Furthermore, if we knew
a priori that Q is a maximal covering set, we could avoid searching for covering
routes for any set of targets that strictly contains Q. When designing an algorithm
to solve this problem, Definition 5 could then be exploited to introduce some kind
of pruning technique to save average compute time. However, the following result
shows that deciding if a covering set is maximal is hard.

Definition 9 (MAX–COV–SET) The decision problem MAX–COV–SET is de-
fined as:
INSTANCE: an instance of SRG–v with a target set T and a covering set T ′ ⊂ T ;
QUESTION: is T ′ maximal?

Theorem 3 There is no polynomial–time algorithm for MAX–COV–SET unless
P = NP .

Proof. Assume for simplicity that S = {s1} and that T (s1) = T . Initially, we
observe that MAX–COV–SET is in co–NP . Indeed, any covering route r such
that T (r) ⊃ T ′ is a NO certificate for MAX–COV–SET, placing it in co–NP .
(Notice that, trivially, any covering route has length bounded by O(|T |2); also,
notice that due to Theorem 2, having a covering set would not suffice given that we
cannot verify in polynomial time whether it is actually covering unless P = NP .)

Let us suppose we have a polynomial–time algorithm for MAX–COV–SET,
called A. Then (since P ⊆ NP ∩ co–NP) we have a polynomial algorithm for
the complement problem, i.e., deciding whether all the covering routes for T ′ are
dominated. Let us consider the following algorithm: given an instance for COV–
SET specified by graph G = (V,E), a set of target T with penetration times d,
and a starting vertex v:

1. assign to targets in T a lexicographic order t1, t2, . . . , t|T |;

2. for every t ∈ T , verify if {t} is a covering set in O(|T |) time by compar-
ing ω∗v,t and d(t); if at least one is not a covering set, then output NO and
terminate; otherwise set T̂ = {t1} and k = 2;

19

3. apply algorithm A on the following instance: graph G = (V,E), target set
{T̂∪{tk}, d̂} (where d̂ is d restricted to T̂∪{tk}), start vertex v, and covering
set T̂ ;

4. if A’s output is YES (that is, T̂ is not maximal) then set T̂ = T̂ ∪ {tk},
k = k + 1 and restart from step 3; if A’s output is NO and k = |T | then
output YES; if A’s output is NO and k < |T | then output NO;

Thus, the existence of A would imply the existence of a polynomial algorithm for
COV–SET which (under P 6= NP) would contradict Theorem 2. This concludes
the proof. �

Nevertheless, we show hereafter that there exists an algorithm enumerating
all and only the maximal covering sets and one route for each of them (which
potentially leads to an exponential reduction of the time needed for solving the
linear program) with only an additional polynomial cost w.r.t. the enumeration of
all the covering sets. Therefore, neglecting polynomial terms, our algorithm has a
complexity of O(2|T (s)|).

Finally, we focus on the complexity of approximating the best solution in an
SRG–v. When D restricts its strategies to be pure, the problem is clearly not ap-
proximable in polynomial time even when the approximation ratio depends on
|T (s)|. The basic intuition is that, if a game instance admits the maximal covering
route that covers all the targets and the value of all the targets is 1, then either
the maximal covering route is played returning a utility of 1 to D or any other
route is played returning a utility of 0, but no polynomial–time algorithm can find
the maximal covering route covering all the targets, unless P = NP . On the
other hand, it is interesting to investigate the case in which no restriction to pure
strategies is present. We show that the problem keeps being hard.

Theorem 4 The optimization version of k–SRG–v, say OPT–SRG–v, is APX–
hard even in the restricted case in which the graph is metric, there is only one
signal s, all targets t ∈ T (s) have the same penetration time d(t), and there is the
maximal covering route covering all the targets.

Proof. We produce an approximation–preserving reduction from TSP(1,2) that is
known to beAPX–hard [33]. For the sake of clarity, we divide the proof in steps.

TSP(1,2) instance. An instance of undirected TSP(1,2) is defined as follows:

• a set of vertices VTSP ,

• a set of edges composed of an edge per pair of vertices,

20

• a symmetric matrix CTSP of weights, whose values can be 1 or 2, each as-
sociated with an edge and representing the cost of the shortest path between
the corresponding pair of vertices.

The goal is to find the minimum cost tour. Let us denote by OPTSOLTSP and
OPTTSP the optimal solution of TSP(1,2) and its cost, respectively. Further-
more, let us denote by APXSOLTSP and APXTSP an approximate solution of
TSP(1,2) and its cost, respectively. It is known that there is no polynomial–time
approximation algorithm with APXTSP/OPTAPX < α for some α > 1, unless
P = NP [33].

Reduction. We map an instance of TSP(1,2) to a specific instance of SRG–v
as follows:

• there is only one signal s,

• T (s) = VTSP ,

• w∗t,t′ = CTSP (t, t′), for every t, t′ ∈ T (s),

• π(t) = 1, for every t ∈ T (s),

• w∗v,t = 1, for every t ∈ T (s),

• d(t) =

{
OPTTSP if OPTTSP = |VTSP |
OPTTSP − 1 if OPTTSP > |VTSP |

, for every t ∈ T (s).

In this reduction, we use the value ofOPTTSP even if there is no polynomial–time
algorithm solving exactly TSP(1,2), unless P = NP . We show below that with
an additional polynomial–time effort we can deal with the lack of knowledge of
OPTTSP .

OPT–SRG–v optimal solution. By construction of the SRG–v instance, there is
a covering route starting from v and visiting all the targets t ∈ T (s), each within its
penetration time. This route has a cost of exactly d(t) and it is 〈v, t1, . . . , t|T (s)|〉,
where 〈t1, . . . , t|T (s)|, t1〉 corresponds to OPTSOLTSP with the constraint that
w∗t|T (s)|,t1

= 2 if OPTTSP > |VTSP | (essentially, we transform the tour in a path
by discarding one of the edges with the largest cost). Therefore, the optimal so-
lution of SRG–v, say OPTSOLSRG, prescribes to play the maximal route with
probability one and the optimal value, say OPTSRG, is 1.

OPT–SRG–v approximation. Let us denote by APXSOLSRG and APXSRG

an approximate solution of OPT–SRG–v and its value, respectively. We assume

21

there is a polynomial–time approximation algorithm with APXSRG/OPTSRG ≥
β where β ∈ (0, 1). Let us notice that APXSOLSRG prescribes to play a polyno-
mially upper bounded number of covering routes with strictly positive probability.
We introduce a lemma that characterizes such covering routes.

Lemma 5 The longest covering route played with strictly positive probability in
APXSOLSRG visits at least β|T (s)| targets.

Proof. Assume by contradiction that the longest route visits β|T (s)|−1 targets.
The best case in terms of maximization of the value of OPT–SRG–v is, due to
reasons of symmetry (all the targets have the same value), when there is a set
of |T (s)| covering routes of length β|T (s)| − 1 such that each target is visited
exactly by β|T (s)| − 1 routes. When these routes are available, the best strategy
is to randomize uniformly over the routes. The probability that a target is covered
is β − 1

|T (s)| and therefore the value of APXSRG is β − 1
|T (s)| . This leads to a

contradiction, since the algorithm would provide an approximation strictly smaller
than β. �

TSP(1,2) approximation from OPT–SRG–v approximation. We use the above
lemma to show that we can build a (3−2β)–approximation for TSP(1,2) from a β–
approximation of OPT–SRG–v. Given an APXSOLSRG, we extract the longest
covering route played with strictly positive probability, say 〈v, t1, . . . , tβ|T (s)|〉.
The route has a cost of at most d(t), it would not cover β|T (s)| targets other-
wise. Any tour 〈t1, . . . , tβ|T (s)|, tβ|T (s)|+1, . . . , t|T (s)|, t1〉 has a cost not larger than
d(t) − 1 + 2(1 − β)|T (s)| = OPTTSP − 1 + 2(1 − β)|VTSP | (under the worst
case in which all the edges in 〈tβ|T (s)|, tβ|T (s)|+1, . . . , t|T (s)|, t1〉 have a cost of 2).
Given that OPTTSP ≥ |VTSP |, we have that such a tour has a cost not larger
than OPTTSP − 1 + 2(1 − β)|VTSP | ≤ OPTTSP (3 − 2β). Therefore, the tour
is a (3 − 2β)–approximation for TSP(1,2). Since TSP(1,2) is not approximable
in polynomial time for any approximation ratio smaller than α, we have the con-
straint that 3 − 2β ≥ α, and therefore that β ≤ 3−α

2
. Since α > 1, we have that

3−α
2
< 1 and therefore that there is no polynomial–time approximation algorithm

for OPT–SRG–v when β ∈ (3−α
2
, 1), unless P = NP .

OPTTSP oracle. In order to deal with the fact that we do not know OPTTSP ,
we can execute the approximation algorithm for OPT–SRG–v using a guess over
OPTTSP . More precisely, we execute the approximation algorithm for every value
in {|VTSP |, . . . , 2|VTSP |} and we return the best approximation found for TSP(1,2).
Given thatOPTTSP ∈ {|VTSP |, . . . , 2|VTSP |}, there is an execution of the approx-
imation algorithm that uses the correct guess. �

22

We report some remarks to the above theorem.

Remark 1 The above result does not exclude the existence of constant–ratio ap-
proximation algorithms for OPT–SRG–v. We conjecture that it is unlikely. OPT–
SRG–v presents similarities with the (metric) DEADLINE–TSP, where the goal
is to find the longest path of vertices each traversed before its deadline. The
DEADLINE–TSP does not admit any constant–ratio approximation algorithm [34]
and the best–known approximation algorithm has logarithmic approximation ra-
tio [35]. The following observations can be produced about the relationships be-
tween OPT–SRG–v and DEADLINE–TSP:

• when the maximal route covering all the targets in the OPT–SRG–v exists,
the optimal solution of the OPT–SRG–v is also optimal for the DEADLINE–
TSP applied to the same graph;

• when the maximal route covering all the targets in the OPT–SRG–v does
not exist, the optimal solutions of the two problems are different, even when
we restrict us to pure–strategy solutions for the OPT–SRG–v;

• approximating the optimal solution of the DEADLINE–TSP does not give
a direct technique to approximate OPT–SRG–v, since we should enumerate
all the subsets of targets and for each subset of targets we would need to
execute the approximation of the DEADLINE–TSP, but this would require
exponential time. We notice in addition that even the total number of sets
of targets with logarithmic size is not polynomial, being Ω(2log2(|T |)), and
therefore any algorithm enumerating them would require exponential time;

• when the optimal solution of the OPT–SRG–v is randomized, examples of
optimal solutions in which maximal covering routes are not played can be
produced, showing that at the optimum it is not strictly necessary to play
maximal covering routes, but even approximations suffice.

Remark 2 If it is possible to map DEADLINE–TSP instances to OPT–SRG–v
instances where the maximal covering route covering all the targets exists, then
it trivially follows that OPT–SRG–v does not admit any constant–approximation
ratio. We were not able to find such a mapping and we conjecture that, if there is
an approximation–preserving reduction from DEADLINE–TSP to OPT–SRG–v,
then we cannot restrict to such instances. The study of instances of OPT–SRG–v
where mixed strategies may be optimal make the treatment very challenging.

23

3.2. Dynamic–programming algorithm
We start by presenting two algorithms. The first one is exact, while the sec-

ond one is an approximation algorithm. Both algorithms are based on a dynamic
programming approach.

3.2.1. Exact algorithm
Here we provide an algorithm based on the dynamic programming paradigm

returning the set of strategies available to D when it is in v and receives a signal
s. The algorithm we present in this section enumerates all the covering sets and,
for each of them, it returns also the corresponding covering route. Initially, we
observe that we can safely restrict our attention to a specific class of covering sets,
that we call proper, defined as follows.

Definition 10 (Proper Covering Set) Given a starting vertex v and a signal s, a
covering set Q is proper if there is a route r such that, once walked (along the
shortest paths) over graph G, it does not traverse any target t ∈ T (s) \ T (r).

While in the worst case the number of proper covering sets is equal to the num-
ber of covering sets (consider, for example, fully connected graphs with unitary
edge costs) in realistic scenarios we expect that the number of proper covering
sets is much smaller than the number of covering sets. As we show in Section 5,
restricting to proper covering sets makes the complexity of our algorithm poly-
nomial with respect to some special topologies: differently from the number of
covering sets, the number of proper covering sets is polynomially upper bounded.
Hereafter we provide the description of the algorithm.

Let us denote Ck
v,t a collection of proper covering sets, where each set in this

collection is denoted as Qk
v,t. The proper covering set Qk

v,t has cardinality k and
admits a covering route r whose starting vertex is v and whose last covered target
is t. Each Qk

v,t is associated with a cost c(Qk
v,t) representing the temporal cost

of the shortest covering route for Qk
v,t that specifies t as the k–th target to visit.

Upon this basic structure, our algorithm iteratively computes proper covering sets
collections and costs for increasing cardinalities, that is from k = 1 possibly up to
k = |T (s)| including one target at each iteration. Using a dynamic programming
approach, we assume to have solved up to cardinality k − 1 and we specify how
to complete the task for cardinality k. Detailed steps are reported in Algorithm 1,
while in the following we provide an intuitive description. Given Qk−1

v,t , we can
compute a set of targets Q+ (Line 6) that is a subset of T (s) such that for each
target t′ ∈ Q+ the following properties hold:

24

• t′ 6∈ Qk−1
v,t ,

• if t′ is appended to the shortest covering route for Qk−1
v,t , it will be visited

before d(t′),

• the shortest path between t and t′ does not traverse any target t′′ ∈ T (s) \
Qk−1
v,t .

Function ShortestPath(G, t, t′) returns the shortest path on G between t and
t′. For efficiency, we calculate (in polynomial time) all the shortest paths offline by
means of the Floyd–Warshall algorithm [36]. IfQ+ is not empty, for each t′ ∈ Q+,
we extend Qk−1

v,t (Step 8) by including it and naming the resulting covering set as
Qk
v,t′ since it has cardinality k and we know it admits a covering route with last

vertex t′. Such route can be obtained by appending t′ to the covering route for
Qk−1
v,t and has cost c(Qk−1

v,t) + ω∗t,t′ . This value is assumed to be the cost of the
extended proper covering set.—In Step 9, we make use of a procedure called
Search(Q,C) where Q is a covering set and C is a collection of covering sets.
The procedure outputs Q if Q ∈ C and ∅ otherwise. We adopted an efficient
implementation of such procedure which can run in O(|T (s)|). More precisely,
we represent a covering set Q as a binary vector of length |T (s)| where the i–th
component is set to 1 if target ti ∈ Q and 0 otherwise. A collection of covering
sets C can then be represented as a binary tree with depth |T (s)|. The membership
of a covering set Q to collection C is represented with a branch of the tree in such
a way that if ti ∈ Q then we have a left edge at depth i − 1 on such branch. We
can easily determine if Q ∈ C by checking if traversing a left (right) edge in the
tree each time we read a 1 (0) in Q’s binary vector we reach a leaf node at depth
|T (s)|. The insertion of a new covering set in the collection can be done in the
same way by traversing existing edges and expanding the tree where necessary.—
If such extended proper covering set is not present in collection Ck

v,t′ or is already
present with a higher cost (Step 10), then collection and cost are updated (Steps 11
and 12). After the iteration for cardinality k is completed, for each proper covering
set Q in collection Ck

v,t, c(Q) represents the temporal cost of the shortest covering
route with t as last target.

After Algorithm 1 completed its execution, for any arbitrary T ′ ⊆ T we can
easily obtain the temporal cost of its shortest covering route as

c∗(T ′) = min
Q∈Y|T ′|

c(Q)

25

Algorithm 1 DP–ComputeCovSets(v, s)

1: ∀t ∈ T (s), k ∈ {2, . . . , |T (s)|}: C1
v,t =

{
{t} if (v, t) ∈ ER

∅ otherwise
, Ck

v,t = ∅

2: ∀t ∈ T (s): c({t}) =
{
ω∗v,t if C1

v,t 6= ∅
∞ otherwise

, c(∅) =∞

3: for all k ∈ {2 . . . |T (s)|} do
4: for all t ∈ T (s) do
5: for all Qk−1

v,t ∈ C
k−1
v,t do

6: Q+ =
{
t′ ∈ T (s) \Qk−1

v,t :
(
c(Qk−1

v,t) + ω∗
t,t′ ≤ d(t

′)
)
∧
(
6 ∃t′′ ∈ T (s) \Q : t′′ ∈ ShortestPath(G, t, t′)

)}
7: for all t′ ∈ Q+ do
8: Qk

v,t′ = Qk−1
v,t ∪ {t′}

9: U = Search(Qk
v,t′ , C

k
v,t′)

10: if c(U) > c(Qk−1
v,t) + ω∗

t,t′ then
11: Ck

v,t′ = Ck
v,t′ ∪ {Q

k
v,t′}

12: c(Qk
v,t′) = c(Qk−1

v,t) + ω∗
t,t′

13: end if
14: end for
15: end for
16: end for
17: end for
18: return {Ck

v,t : t ∈ T (s), k ≤ |T (s)|}

where Y|T ′| = ∪t∈T{Search(T ′, C
|T ′|
v,t)} (notice that if T ′ is not a covering set

then c∗(T ′) = ∞). For the sake of simplicity, Algorithm 1 does not specify how
to carry out two sub–tasks we describe in the following.

The first one is the annotation of dominated (proper) covering sets. Each time
Steps 11 and 12 are executed, a covering set is added to some collection. Let us
call it Q and assume it has cardinality k. Each time a new Q has to be included at
cardinality k, we mark all the covering sets at cardinality k−1 that are dominated
by Q (as per Definition 5). The number of sets that can be dominated is in the
worst case |Q| since each of them has to be searched in collection Ck−1

v,t for each
feasible terminal t and, if found, marked as dominated. The number of terminal
targets and the cardinality of Q are at most n and, as described above, the Search
procedure takes O(|T (s)|). Therefore, dominated (proper) covering sets can be
annotated with a O(|T (s)|3) extra cost at each iteration of Algorithm 1. We can
only mark and not delete dominated (proper) covering sets since they can generate
non–dominated ones in the next iteration.

The second task is the generation of routes. Algorithm 1 focuses on proper
covering sets and does not maintain a list of corresponding routes. In fact, to build
the payoffs matrix for SRG–v we do not strictly need covering routes since cov-
ering sets would suffice to determine payoffs. However, we do need them opera-

26

tively sinceD should know in which order targets have to be covered to physically
play an action. This task can be accomplished by maintaining an additional list of
routes where each route is obtained by appending terminal vertex t′ to the route
stored for Qk−1

v,t when set Qk−1
v,t ∪ {t′} is included in its corresponding collection.

At the end of the algorithm only routes that correspond to non–dominated (proper)
covering sets are returned. Maintaining such a list introduces a O(1) cost.

Theorem 6 The worst–case complexity of Algorithm 1 is O(|T (s)|22|T (s)|) since
it has to compute proper covering sets up to cardinality |T (s)|. With annotations
of dominances and routes generation the whole algorithm yields a worst–case
complexity of O(|T (s)|52|T (s)|).

3.2.2. Approximation algorithm
The dynamic programming algorithm presented in the previous section can-

not be directly adopted to approximate the maximal covering routes. We notice
that even in the case we introduce a logarithmic upper bound over the size of
the covering sets generated by Algorithm 1, we could obtain a number of routes
that is O(2log2(|T (s)|)), and therefore exponential. Thus, our goal is to design a
polynomial–time algorithm that generates a polynomial number of good covering
routes. We observe that if we have a total order over the vertices and we work
over the complete graph of the targets where each edge corresponds to the short-
est path, we can find in polynomial time the maximal covering routes subject to
the constraint that, given any pair of targets t, t′ in a route, t can precede t′ in the
route only if t precedes t′ in the order. We call monotonic a route satisfying a given
total order. Algorithm 2 returns the maximal monotonic covering routes when the
total order is lexicographic (trivially, in order to change the order, it is sufficient
to re–label the targets).

Algorithm 2 is based on dynamic programming and works as follows. R(k, l)
is a matrix storing in each cell one route, while L(k, l) is a matrix storing in
each cell the maximum lateness of the corresponding route, where the lateness
associated with a target t is the difference between the (first) arrival time at t
along r and d(t) and the maximum lateness of the route is the maximum lateness
of the targets covered by the route. The route stored in R(k, l) is the one with the
minimum lateness among all the monotonic ones covering l targets where tk is the
first visited target. Thus, basically, when l = 1, R(k, l) contains the route 〈v, tk〉,
while, when l > 1, R(k, l) is defined appending to R(k, 1) the best (in terms of
minimizing the maximum lateness) route R(k′, l− 1) for every k′ > k, in order to

27

satisfy the total order. The whole set of routes in R are returned.7 The complexity
of Algorithm 2 is O(|T (s)|3), except the time needed to find all the shortest paths.

Algorithm 2 MonotonicLongestRoute(v, s)
1: ∀k, k′ ∈ {1, 2, . . . , |T (s)|}, R(k, k′) = ∅, L(k, k′) = +∞, CR(k) = ∅, CL(k) = +∞
2: for all ∀k ∈ {|T (s)|, |T (s)| − 1, . . . , 1} do
3: for all ∀l ∈ {1, 2, . . . , |T (s)|} do
4: if l = 1 then
5: R(k, l) = 〈v, tk〉
6: L(k, l) = w∗v,tk − d(tk)
7: else
8: for all k′ s.t. |T (s)| ≥ k′ > |T (s)| − k do
9: CR(k′) = 〈R(k, 1), R(k′, l − 1)〉
10: CL(k

′) = max{L(k, 1), w∗v,tk + w∗
tk,k

′ − w∗v,k′ + L(k′, l − 1)}
11: end for
12: j = argminj{CL(j)}
13: if CL(j) ≤ 0 then
14: R(k, l)← CR(j)
15: L(k, l)← CL(j)
16: end if
17: end if
18: end for
19: end for
20: return R

We use different total orders over the set of targets, collecting all the routes
generated using each total order. The total orders we use are (where ties are broken
randomly):

• increasing order w∗v,t: the rationale is that targets close to v will be visited
before targets far from v;

• increasing order dv,t: the rationale is that targets with short deadlines will
be visited before targets with long deadlines;

• increasing order dv,t − w∗v,t: the rationale is that targets with short excess
time will be visited before targets with long excess time.

In addition, we use a sort of random restart, generating random permutations over
the targets.

Theorem 7 Algorithm 2 provides an approximation with ratio Ω(1
|T (s)|).

7We notice that dominance can be applied to discard dominated routes. However, in this
case, the improvement would be negligible since the total number of routes, including the non–
dominated ones, is polynomial.

28

Proof sketch. The worst case for the approximation ratio of our algorithm occurs
when the covering route including all the targets exists and each covering route
returned by our heuristic algorithm visits only one target. In that case, the optimal
expected utility of D is 1. Our algorithm, in the worst case in which π(t) = 1 for
every target t, returns an approximation ratio Ω(1

|T (s)|). It is straightforward to see
that, in other cases, the approximation ratio is larger. �

3.3. Branch–and–bound algorithms
The dynamic programming algorithm presented in the previous section essen-

tially implements a breadth–first search. In some specific situations, depth–first
search could outperform breadth–first search, e.g., when penetration times are
relaxed and good heuristics lead a depth–first search to find in a brief time the
maximal covering route, avoiding to scan an exponential number of routes as the
breadth–first search would do. In this section, we adopt the branch–and–bound
approach to design both an exact algorithm and an approximation algorithm. In
particular, in Section 3.3.1 we describe our exact algorithm, while in Section 3.3.2
we present the approximation one.

3.3.1. Exact algorithm
Our branch–and–bound algorithm (see Algorithm 3) is a tree–search based

algorithm working on the space of the covering routes and returning a set of cov-
ering routes R. It works as follows.

Initial step. We exploit two global set variables, CLmin and CLmax initially
set to empty (Steps 1–2 of Algorithm 3). These variables contain closed covering
routes, namely covering routes which cannot be further expanded without violat-
ing the penetration time of at least one target during the visit. CLmax contains the
covering routes returned by the algorithm (Step 8 of Algorithm 3), while CLmin
is used for pruning as discussed below. The update of CLmin and CLmax is driven
by Algorithm 5, as discussed below. Given a starting vertex v and a signal s, for
each target t ∈ T (s) such that w∗v,t ≤ d(t) we generate a covering route r with
r(0) = v and r(1) = t (Steps 1–3 of Algorithm 3). Thus, D has at least one
covering route per target that can be covered in time from v. Notice that if, for
some t, such minimal route does not exist, then target t cannot be covered because
we assume triangle inequality. This does not guarantee that A will attack t with
full probability since, depending on the values π, A could find more profitable to
randomize over a different set of targets. The meaning of parameter ρ is described
below.

29

Algorithm 3 Branch–and–Bound(v, s, ρ)
1: CLmax ← ∅
2: CLmin ← ∅
3: for all t ∈ T (s) do
4: if w∗v,t ≤ d(t) then
5: Tree–Search(dρ · |T (s)|e, 〈v, t〉)
6: end if
7: end for
8: return CLmax

Route expansions. The subsequent steps essentially evolve on each branch
according to a depth–first search with backtracking limited by ρ (Step 4 of Al-
gorithm 3). The choice of ρ directly influences the behavior of the algorithm and
consequently its complexity. Each node in the search tree represents a route r built
so far starting from an initial route 〈v, t〉. At each iteration, route r is expanded by
inserting a new target at a particular position. We denote with r+(q, p) the route
obtained by inserting target q after the p–th target in r. Notice that every expansion
of r will preserve the relative order with which targets already present in r will
be visited. The collection of all the feasible expansions r+s (i.e., the ones that are
covering routes) is denoted by R+ and it is ordered according to a heuristic that
we describe below. Algorithm 6, described below, is used to generate R+ (Step 1
of Algorithm 4). In each open branch (i.e.,R+ 6= ∅), if the depth of the node in the
tree is smaller or equal to dρ · |T (s)|e then backtracking is disabled (Steps 7–11 of
Algorithm 4), while, if the depth is larger than such value, is enabled (Steps 5–6
of Algorithm 4). This is equivalent to fix the relative order of the first (at most)
dρ · |T (s)|e inserted targets in the current route. In this case, with ρ = 0 we do not
rely on the heuristics at all, full backtracking is enabled, the tree is fully expanded
and the returned R is complete, i.e., it contains all the non–dominated covering
routes. Route r is repeatedly expanded in a greedy fashion until no insertion is
possible. As a result, Algorithm 4 generates at most |T (s)| covering routes.

Pruning. Algorithm 5 is in charge of updating CLmin and CLmax each time
a route r cannot be expanded and, consequently, the associated branch must be
closed. We call CLmin the minimal set of closed routes. This means that a closed
route r belongs to CLmin only if CLmin does not already contain another r′ ⊆ r.
Steps 1–6 of Algorithm 5 implement such condition: first, in Steps 2–3 any route
r′ such that r′ ⊇ r is removed from CLmin, then route r is inserted in CLmin.
Routes in CLmin are used by Algorithm 6 in Steps 2 and 6 for pruning during
the search. More precisely, a route r is not expanded with a target q at position
p if there exists a route r′ ∈ CLmin such that r′ ⊆ r+(q, p). This pruning rule

30

Algorithm 4 Tree–Search(k, r)
1: R+ = {r(1), r(2), . . .} ← Expand(r)
2: if R+ = ∅ then
3: Close(r)
4: else
5: if k > 0 then
6: Tree–Search(k − 1, r(1))
7: else
8: for all r+ ∈ R+ do
9: Tree–Search(0, r+)

10: Close(r+)
11: end for
12: end if
13: end if

is safe since by definition if r′ ∈ CLmin, then all the possible expansions of r′

are unfeasible and if r′ ⊆ r then r can be obtained by expanding from r′. This
pruning mechanism explains why once a route r is closed is always inserted in
CLmin without checking the insertion against the presence in CLmin of a route r′′

such that r′′ ⊆ r. Indeed, if such route r′′ would be included in CLmin we would
not be in the position of closing r, having r being pruned before by Algorithm 6
in Step 2 or Step 8.

We use CLmax to maintain a set of the generated maximal closed routes. This
means that a closed route r is inserted here only ifCLmax does not already contain
another r′ such that r′ ⊇ r. This set keeps track of closed routes with maximum
number of targets. Algorithm 5 maintains this set by inserting a closed route r
in Step 12 only if no route r′ ⊇ r is already present in CLmax. Once the whole
algorithm terminates, CLmax contains the final solution.

Algorithm 5 Close(r)
1: for all r′ ∈ CLmin do
2: if r ⊆ r′ then
3: CLmin = CLmin \ {r′}
4: end if
5: end for
6: CLmin = CLmin ∪ {r}
7: for all r′ ∈ CLmax do
8: if r ⊆ r′ then
9: return

10: end if
11: end for
12: CLmax = CLmax ∪ {r}

Heuristic function. A key component of this algorithm is the heuristic func-
tion that drives the search. The heuristic function is defined as hr : {T (s)\T (r)}×

31

{1 . . . |T (r)|} → Z, where hr(t′, p) evaluates the cost of expanding r by inserting
target t′ after the p–th target of r. The basic idea, inspired by [37], is to adopt a
conservative approach, trying to preserve feasibility. Given a route r, let us define
the possible forward shift of r as the minimum temporal margin in r between the
arrival at a target t and d(t):

PFS(r) = mint∈T (r)(d(t)− Ar(t))
The extra mileage er(t′, p) for inserting target t′ after position p is the addi-

tional traveling cost to be paid:

er(t
′, p) = (Ar(r(t

′)) + ω∗r(p),t′ + ω∗t′,r(p+1))− Ar(r(p+ 1))

The advance time that such insertion gets with respect to d(t′) is defined as:

ar(t
′, p) = d(t′)− (Ar(r(p)) + ω∗r(p),t′)

Finally, hr(t′, p) is defined as:

hr(t
′, p) = min{ar(t′, p); (PFS(r)− er(t′, p))}

We partition the set T (s) in two sets Ttight and Tlarge where t ∈ Ttight if d(t) <
δ · ω∗v,t and t ∈ Tlarge otherwise (δ ∈ R is a parameter). The previous inequality
is a non–binding choice we made to discriminate targets with a tight penetration
time from those with a large one. Initially, we insert all the tight targets and only
subsequently we insert the non–tight targets. We use the two sets according to the
following rules (see Algorithm 6):

• the insertion of a target belonging to Ttight is always preferred to the inser-
tion of a target belonging to Tlarge, independently of the insertion position;

• insertions of t ∈ Ttight are ranked according to h considering first the inser-
tion position and then the target;

• insertions of t ∈ Tlarge are ranked according to h considering first the target
and then the insertion position.

The rationale behind this rule is that targets with a tight penetration time should
be inserted first and at their best positions. On the other hand, targets with a large
penetration time can be covered later. Therefore, in this last case, it is less impor-
tant which target to cover than when to cover it.

Theorem 8 Algorithm 3 with ρ = 0 is an exact algorithm and has an exponential
computational complexity since it builds a full tree of covering routes with worst–
case size O(|T (s)||T (s)|).

32

Algorithm 6 Expand(r)
1: if Ttight * T (r) then
2: for all q ∈ Ttight \ T (r) do

Pq = { p(1)q , p
(2)
q , . . . p

(b)
q } s.t. ∀i ∈ {1, . . . , b},

hr(q, p

(i)
q) ≥ hr(q, p(i+1)

q)

r+(q, p
(i)
q) is a covering route

6 ∃v′ ∈ CLmin : r′ ⊆ r+(q, p
(i)
q)

3: end for
4: Q = {q(1), q(2), . . . , q(c)} s.t. ∀i ∈ {1, . . . , c}, hr(q(i), p(1)

q(i)
) ≥ hr(q(i+1), p

(1)

q(i+1))

5: R+ = {r(1), r(2), . . . r(k)} where

r(1) = r+(q(1), p

(1)

q(1)
)

· · · = · · ·
r(k) = r+(q(c), p

(b)

q(c)
)

6: end if
7: if Tlarge * T (r) then
8: for all u ∈ Tlarge \ T (r) do

Qp = { q(1)p , q
(2)
p , . . . q

(b)
p } s.t. ∀i ∈ {1, . . . , b},

hr(q

(i)
p , p) ≥ hr(q(i+1)

p , p)

r+(q
(i)
p , p) is a covering route

6 ∃ r′ ∈ CLmin : r′ ⊆ r+(q
(i)
p , p)

9: end for
10: P = {p(1), p(2), . . . , p(c)} s.t. ∀i ∈ {1, . . . , c}, hr(q(1), p(i)

q(1)
) ≥ hr(q(1), p(i+1)

q(1)
)

11: R+ = R+ ∪ {r(k+1), r(k+2), . . . r(K)} where

r(k+1) = r+(q

(1)
p , p(1))

· · · = · · ·
r(K) = r+(q

(b)
p , p(c))

12: end if
13: return R+

3.3.2. Approximation algorithm
Since ρ determines the completness degree of the generated tree, we can ex-

ploit Algorithm 3 tuning ρ to obtain an approximation algorithm that is faster w.r.t.
the exact one.

In fact, when ρ < 1 completeness is not guaranteed in favour of a less com-
putational effort. In this case, the only guarantees that can be provided for each
covering route r ∈ CLmax, once the algorithm terminates are:

• no other r′ ∈ CLmax dominates r;

• no other r′ /∈ CLmax such that r ⊆ r′ dominates r. Notice this does not
prevent the existence of a route r′′ not returned by the algorithm that visits
targets T (r) in a different order and that dominates r.

When ρ is chosen as k
|T (s)| (where k ∈ N is a parameter), the complexity of gen-

erating covering routes becomes polynomial in the size of the input. We can state
the following theorem, whose proof is analogous to that one of Theorem 7.

33

Theorem 9 Algorithm 4 with ρ = k
|T (s)| provides an approximation with ra-

tio Ω(1
|T (s)|) and runs in O(|T (s)|3) given that heuristic hr can be computed in

O(|T (s)|2).

3.4. Solving SRG–v
Now we can formulate the problem of computing the optimal signal–response

strategy forD. Let us denote with σDv,s(r) the probability with whichD plays route
r under signal s and with Rv,s the set of all the routes available to D generated by
some algorithm. We introduce function UA(r, t), representing the utility function
of A and defined as follows:

UA(r, t) =

{
π(t) if t 6∈ r
0 otherwise

.

The best D strategy (i.e., the maxmin strategy) can be found by solving the
following linear mathematical programming problem:

min gv s.t.∑
s∈S(t)

p(s | t)
∑

r∈Rv,s

σDv,s(r)UA(r, t) ≤ gv ∀t ∈ T∑
r∈Rv,s

σDv,s(r) = 1 ∀s ∈ S

σDv,s(r) ≥ 0 ∀r ∈ Rv,s, s ∈ S
The size of the mathematical program is composed of |T | + |S| constraints

(excluded ≥ 0 constraints) and O(|V ||S|maxv,s{|Rv,s|}) variables. This shows
that the hardness is due only to maxv,s{|Rv,s|}, which, in its turn, depends only
on |T (s)|. We provide the following remark.

Remark 3 We observe that the discretization of the environment as a graph is as
accurate as the number of vertices is large, corresponding to reduce the size of
the areas associated with each vertex, as well as to reduce the temporal interval
associated with each turn of the game. Our algorithms show that increasing the
accuracy of the model in terms of number of vertices requires polynomial time.

4. SRG–v on special topologies

In this section, we focus on special topologies, showing in Section 4.1 the
topologies with which solving a SRG–v is computationally easy, those that are
hard in Section 4.2, and the topologies for which the problem remains open in
Section 4.3.

34

4.1. Easy topologies
In this section, we show that, with some special topologies, there exists an

efficient algorithm to solve exactly the SRG–v.
Let us consider a linear graph. An example is depicted in Figure 4. We state

the following theorem.

t1 t2 v t3 t4

Figure 4: Linear graph.

Theorem 10 There is a polynomial–time algorithm solving OPT–SRG–v with lin-
ear graphs.

Proof. We show that Algorithm 1 requires polynomial time in generating all the
pure strategies of D. The complexity of Algorithm 1, once applied to a given
instance, depends on the number of proper covering sets (recall Definition 10).
It can be shown that linear graphs have a polynomial number of proper covering
sets. Given a starting vertex v, any proper covering set Q can be characterized by
two extreme targets of Q, the first being the farthest from v on the left of v (if
any, and v otherwise) and the second being the farthest from v on the right of v
(if any, and v otherwise). For example, see Figure 4, given proper covering set
Q = {t1, t2, t3}, the left extreme is t1 and the right extreme is t3. Therefore, the
number of proper covering sets for each pair v, s is O(|T (s)|2). Since the actions
available to D are polynomially upper bounded, the time needed to compute the
maxmin strategy is polynomial. �

Let us consider a cycle graph. An example is depicted in Figure 5. We can
state the following theorem.

Theorem 11 There is a polynomial–time algorithm solving OPT–SRG–v with cy-
cle graphs (perimeters).

Proof. The proof is analogous to that one of linear graphs. That is, each proper
covering set can be characterized by two extremes: the left one and the right one.
For example, see Figure 5, given proper covering set Q = {t1, t2, t4, t5, t6, t7}, the
left extreme is t4 and the right extreme is t2. As in linear graphs, the number of
proper covering sets in a cycle graph is O(|T (s)|2). �

The above results can be generalized to the case of tree graphs where the
number of leaves is fixed. We can state the following theorem.

35

t1 t2 t3

t4

t5t6t7

v

Figure 5: Cycle graph.

Theorem 12 There is a polynomial–time algorithm solving OPT–SRG–v with
tree graphs where the number of leaves is fixed.

Proof. The proof is analogous to those of linear and cycle graphs. Here, each
proper covering set can be characterized by a tuple of extremes, one for each path
connecting v to a leaf. The number of proper covering sets is O(|T (s)|n) where n
is the number of leaves of the tree. �

The above results show that Questions 2–4 are solvable in polynomial time
with the above special topologies. We show in the next section that when the
number of leaves in a tree is not fixed, the problem becomes hard. Finally, we
provide a remark to the above theorem.

Remark 4 We already showed that, given an arbitrary topology, scaling the graph
by introducing new vertices is possible with a polynomial–time cost. Theorem 12
shows that with tree–based graphs this holds even when we introduce new targets.

4.2. Hard topologies
Let us consider a special topology, as shown in Figure 6 and defined in the

following.

Definition 11 (S2L–STAR) Special 2–level star graph instances (S2L–STAR) are:

• V = {v0, v1, v2, . . . , v2n}, where v0 is the starting position;

36

• T = V \{v0}, where vertices vi with i ∈ {1, . . . , n} are called inner targets,
while vertices vi with i ∈ {n+ 1, . . . , 2n} are called outer targets;

• E = {(v0, vi), (vi, vn+i) : ∀i ∈ {1, . . . , n}} and we call i–th branch the
pair of edges ((v0, vi), (vi, vn+i));

• travel costs are c(v0, vi) = c(vi, vn+i) = γi for every i ∈ {1, . . . , n}, where
γi ∈ N+;

• penetration times are, for i ∈ {1, . . . , n}, d(t) =

{
6H − 3γi t = vi

10H − 2γi, t = vn+i
,

where H =
∑n

i=1 γi
2

;

• π(t) = 1 for every t ∈ T .

Initially, we show a property of S2L–STAR instances that we shall use below.

Lemma 13 If an instance of S2L–STAR admits a maximal covering route r that
covers all the targets, then the branches can be partitioned in two sets C1 and C2

such that:

• all the branches in C1 are visited only once while all the branches in C2 are
visited twice, and

•
∑
i∈C1

γi =
∑
i∈C2

γi = H .

Proof. Initially, we observe that, in a feasible solution, the visit of a branch can
be of two forms. If branch i is visited once, thenD will visit the inner target before
time 6H − 3γi and immediately after the outer target. C1 denotes the set of all the
branches visited according to this form. If branch i is visited twice, then D will
visit at first the inner target before time 6H − 3γi, coming back immediately after
to v0, and subsequently in some time after 6H−3γi, but before 10H−2γi,D will
visit again the inner target and immediately after the outer target. C2 denotes the
set of all the branches that are visited according to this form. All the other forms of
visits (e.g., three or more visits, different order visits, and visits at different times)
are useless and any route in which some branch is not neither in C1 nor in C2 can
be modified such that all the branches are either in C1 or in C2 strictly decreasing
the cost of the solution as follows:

• if branch i is visited only once and the visit of the inner target is after time
6H − 3γi, then the solution is not feasible;

37

v0

t1

tn+1

tj

tn+j

tn

t2n

γ1

γj

γn

γ1

γj

γn

Figure 6: Special 2–level star graph.

• if branch i is visited twice and the first visit of the inner target is after time
6H − 3γi, then the solution is not feasible;

• if branch i is visited twice and the second visit of the inner target is before
time 6H − 3γi, then the first visit of the branch can be omitted saving 2γi;

• if branch i is visited twice and the outer target is visited during the first visit,
then the second visit of the branch can be omitted saving ≥ 2γi;

• if branch i is visited three or more times, all the visits except the first one in

38

which the inner target is visited and the first one in which the outer target is
visited can be omitted saving ≥ 2γi.

We assume that, if there is a maximal covering route r that covers all the
targets, then the visits are such that C1 ∪ C2 = {1, . . . , n} and therefore that each
branch is visited either once or twice as discussed above. We show below that in
S2L–STAR instances such an assumption is always true. Since r covers all the
targets, we have that the following conditions are satisfied:

2
∑
i∈C2

γi + 4
∑
i∈C1

γi ≤ 6H (1)

6
∑
i∈C2

γi + 4
∑
i∈C1

γi ≤ 10H (2)

Constraint (1) requires that the cost of visiting entirely all the branches in C1

and partially (only the inner target) all the branches in C2 is not larger than the
penetration times of the inner targets. Notice that this holds only when the last
inner target is first–visited on a branch inC1. We show below that such assumption
is always verified. Constraint (2) requires that the cost of visiting entirely all the
branches in C1 and at first partially and subsequently entirely all the branches in
C2 is not larger than the penetration times of the outer targets. We can simplify
the above pair of constraints as follows:

2
∑
i∈C2

γi + 2
∑
i∈C1

γi︸ ︷︷ ︸
4H

+2
∑
i∈C1

γi ≤ 6H

2
∑
i∈C2

γi + 4
∑
i∈C2

γi + 4
∑
i∈C1

γi︸ ︷︷ ︸
8H

≤ 10H

obtaining: ∑
i∈C1

γi ≤ H∑
i∈C2

γi ≤ H

since, by definition,
∑

i∈C1
γi +

∑
i∈C2

γi = 2H , it follows that:∑
i∈C1

γi =
∑
i∈C2

γi = H.

39

Therefore, if r covers all the targets and it is such that all the branches belong
either to C1 or to C2, we have that r visits the last outer target exactly at its pen-
etration time. This is because Constraints (1) and (2) hold as equalities. Thus, as
shown above, in any route in which a branch is not neither in C1 nor in C2 we can
change the visits such that all the branches are in either C1 or C2, strictly reducing
the total cost. It follows that no route with at least one branch that is not neither
in C1 nor in C2 can have a total cost equal to or smaller than the penetration time
of the outer targets. Similarly, from the above equality it follows that any solution
where the last inner target is first–visited on a C2 branch can be strictly improved
by moving such branch to C1 and therefore no route in which the last inner target
is first–visited on a C2 branch can have a total cost equal to or smaller than the
penetration time of the outer targets. �

Definition 12 (PARTITION) The decision problem PARTITION is defined as:
INSTANCE: A finite set I = {1, 2, . . . , l}, a size ai ∈ N+ for each i ∈ I , and a
bound B ∈ N+ such that

∑
i∈I ai = 2B.

QUESTION: Is there any subset I ′ ⊆ I such that
∑

i∈I′ ai =
∑

i∈I\I′ ai = B?

We can now state the following theorem:

Theorem 14 k–SRG–v isNP–hard even when restricted to S2L–STAR instances.

Proof. We provide a reduction from PARTITION that is known to be weaklyNP–
hard. For the sake of clarity, we divide the proof in steps.

Reduction. We map an instance of PARTITION to an instance of k–SRG–v on
S2L–STAR graphs as follows

• S = {s},

• n = l (i.e., the number of branches in S2L–STAR equals the number of
elements in PARTITION);

• γi = ai for every i ∈ I;

• H = B,

• k = 0.

The rationale is that there is a feasible solution for PARTITION if and only if
there is the maximal covering route that covers all the targets in a k–SRG–v on a
S2L–STAR graph.

40

If. From Lemma 13 we know that, if there is the maximal covering route that
covers all the targets in a k–SRG–v on a S2L–STAR graph, then the branches
can be partitioned in two sets C1, C2 such that

∑
i∈C1

γi =
∑

i∈C2
γi = H . By

construction γi = ai and H = B. So, if there is the maximal covering route that
covers all the targets in a k–SRG–v on a S2L–STAR graph, then there is partition
of set I in two subsets I ′ = C1 and I ′′ = C2 such that

∑
i∈C1

γi =
∑

i∈I′ ai =
H = B =

∑
i∈C2

γi =
∑

i∈I′′ ai.
Only if. If PARTITION admits a feasible solution, then, once assigned I ′ = C1

and I ′′ = C2, it is straightforward to see that the route visits all the targets by their
penetration times and therefore that the route is a maximal covering route. �

Let us notice that the above reduction, differently from that of Theorem 1, does
not exclude the existence of an FPTAS, i.e., Fully Polynomial Time Approxima-
tion Scheme. This may hold since PARTITION admits an FPTAS. Furthermore,
we observe that S2L–STAR graphs are special kinds of trees and therefore k–
SRG–v on trees isNP–hard. Finally, we observe that the above result shows that
it is unlikely that there is a polynomial–time algorithm solving Questions 1–4.

4.3. Borderline topologies
Let us consider a star graph, as shown in Figure 7, defined as follows.

Definition 13 (SIMPLE–STAR) Simple star graph instances (SIMPLE–STAR)
are:

• V = {v0, v1, v2, . . . , vn}, where v0 is the starting vertex of D;

• T = V \ {v0};

• E = {(v0, vi),∀i ∈ {1, . . . , n}};

• travel costs are c(v0, vi) = γi, where γi ∈ N+;

• penetration times di and values π(vi) can be any.

41

v0

t1 t2

t3

t4

t5

γ1

γ2

γ3

γ4

γ5

Figure 7: Star graph.

We can state the following theorem.

Theorem 15 If the maximal covering route r covering all the targets exists, the
Earliest Due Date algorithm returns r in polynomial time once applied to SIMPLE–
STAR graph instances.

Proof. The Earliest Due Date [38] (EDD) algorithm is an optimal algorithm for
synchronous (i.e., without release times) aperiodic scheduling with deadlines.
It executes (without preemption) the tasks in ascending order according to the
deadlines, thus requiring polynomial complexity in the number of tasks. Any
SIMPLE–STAR graph instance can be easily mapped to a synchronous aperiodic
scheduling problem: each target ti is an aperiodic task Ji, the computation time
of Ji is equal to 2γi, the deadline of task Ji is d(ti) + γi. It is straightforward to
see that, if EDD returns a feasible schedule, then there is the maximal covering
route, and, if EDD returns a non–feasible schedule, then there is not any maximal
covering route. �

The above result shows that Question 2 can be answered in polynomial time.
We show that also Question 3 can be answered in polynomial time be means of a
simple variation of EDD algorithm.

Theorem 16 Given a signal s, the best pure strategy of D in an SRG–v game on
SIMPLE–STAR graph instances can be found in polynomial time.

Proof. Given a signal s, the algorithm that finds the best pure strategy is a variation
of the EDD algorithm. For the sake of clarity, we describe the algorithm in the

42

simplified case in which there is only one signal s. The extension to the general
case is straightforward. The algorithm works as follows:

1. apply EDD,

2. if the maximal covering route exists, then return it,

3. else remove the target t with the smallest π(t) from T (s),

4. go to Point 1.

Essentially, the algorithm returns the subset of targets admitting a covering route
minimizing the maximum value among all the non–covered targets. �

Although the treatment of SIMPLE–STAR graph instances in pure strategies
is computationally easy, it is not clear if the treatment keeps being easy when D
is not restricted to play pure strategies. We just observe that Algorithm 1 requires
exponential complexity, the number of proper covering sets being exponential.
Thus, the complexity of solving Questions 1 and 4 remains unaddressed.

5. Patrolling game

In this section, we focus on the PG. Specifically, in Section 5.1 we state our
main result showing that patrolling is not necessary when an alarm system is
present, in Section 5.2 we propose the algorithm to deal with the PG, in Sec-
tion 5.3 we summarize the complexity results about Questions 1–4.

5.1. Stand still
We focus on the problem of finding the best patrolling strategy given that we

know the best signal–response strategy for each vertex v in which D can place.
Given the current vertex of D and the sequence of the last, say n, vertices visited
by D (where n is a tradeoff between effectiveness of the solution and computa-
tional effort), a patrolling strategy is usually defined as a randomization over the
next adjacent vertices [9]. We define v∗ = arg minv∈V {gv}, where gv is the value
returned by the optimization problem described in Section 3.3, as the vertex that
guarantees the maximum expected utility toD over all the SRG–vs. We show that
the maxmin equilibrium strategy in PG prescribes that D places at v∗, waits for a
signal, and responds to it.

Theorem 17 Without false positives and missed detections, if ∀t ∈ T we have
that |S(t)| ≥ 1, then any patrolling strategy is dominated by the placement in v∗.

43

Proof. Any patrolling strategy different from the placement in v∗ should neces-
sarily visit a vertex v′ 6= v∗. Since the alarm system is not affected by missed
detections, every attack will raise a signal which, in turn, will raise a response
yielding an utility of gx where x is the current position of D at the moment
of the attack. Since A can observe the current position of D before attacking,
x = arg maxv∈P{gv} where P is the set of the vertices patrolled byD. Obviously,
for any P ⊇ {v∗} we would have that gx ≥ gv∗ and therefore placing at v∗ and
waiting for a signal is the best strategy for D. �

The rationale is that, if the patrolling strategy of D prescribes to patrol a set
of vertices, say V ′, then, since A can observe the position of D, the best strategy
of A is to wait for D being in v′ = arg maxv∈V ′{gv} and then to attack. Thus, by
definition of gv∗ , if D leaves v∗ to patrol additional vertices the expected utility it
receives is no larger than that it receives from staying in v∗.

A deeper analysis of Theorem 17 can show that its scope does include cases
where missed detections are present up to a non–negligible extent. For such cases,
placement–based strategies keep being optimal even in the case when the alarm
systems fails in detecting an attack. We encode the occurrence of this robustness
property in the following proposition, which we shall prove by a series of exam-
ples.

Proposition 1 There exist Patrolling Games where staying in a vertex, waiting for
a signal, and responding to it is the optimal patrolling strategy for D even with a
missed detection rate α = 0.5.

Proof. The expected utility forD given by the placement in v∗ is (1−α)(1− gv∗),
where (1− α) is the probability with which the alarm system correctly generates
a signal upon an attack and (1 − gv∗) denotes D’s payoff when placed in v∗. A
non–placement–based patrolling strategy will prescribe, by definition, to move
between at least two vertices. From this simple consideration, we observe that
an upper bound to the expected utility of any non–placement strategy is entailed
by the case where D alternately patrols vertices v∗ and v∗2 , where v∗2 is the second
best vertex in whichD can statically place. Such scenario gives us an upper bound
over the expected utility of non–placement strategies, namely 1 − gv∗2 . It follows
that a sufficient condition for the placement in v∗ being optimal is given by the
following inequality:

(1− α)(1− gv∗) > (1− gv∗2). (3)

44

To prove Proposition 1, it then suffices to provide a Patrolling Game instance
where Equation 3 holds under some non–null missed detection rate α. In Fig. 8(a)
and Fig. 8(b), we report two of such examples. The depicted settings have unitary
edges except where explicitly indicated. For both, without missed detections, the
best patrolling strategy is a placement v∗ = 4. When allowing missed detections,
in Fig. 8(a) it holds that gv∗ = 0 and gv∗2 = 0.75, where v∗ = 4 and v∗2 = 1. Thus,
by Equation 3, placement v∗ = 4 is the optimal strategy for α ≤ 0.25. Under the
same reasoning scheme, in Fig. 8(b) we have that gv∗ = 0 and gv∗2 = 0.5, making
the placement v∗ = 4 optimal for any α ≤ 0.5. �

t2

t1t3

t4
2

t π(t) d(t) p(s1 | t)
t1 0.5 1 1.0
t2 0.5 3 1.0
t3 0.5 2 1.0
t4 0.5 2 1.0

(a) Equation 3 holds for α ≤ 0.25.

t2

t1t3

t4
2

t π(t) d(t) p(s1 | t)
t1 1.0 1 1.0
t2 1.0 3 1.0
t3 1.0 2 1.0
t4 1.0 2 1.0

(b) Equation 3 holds for α ≤ 0.5.

Figure 8: Two examples proving Proposition 1.

It is reasonable to expect that a similar result holds also for the case with
false positives. However, dealing with false positives is much more intricate than
handling false negative and requires new models, e.g., D could respond to an
alarm signal only with a given probability and with the remaining probability
could stay in the current vertex. For this reason, we leave the treatment of false
positives and a more accurate treatment of false negatives to future works.

45

5.2. Computing the best placement
Under the absence of false positives and missed detections, Theorem 17 sim-

plifies the computation of the patrolling strategy by reducing it to the problem of
finding v∗. To such aim, we must solve a SRG–v for each possible starting vertex
v and select the one with the maximum expected utility forD. Algorithm 7 depicts
the solving algorithm. Function SolveSRG(v) returns the optimal value 1− gv∗ .
The complexity is linear in |V |, once gv has been calculated for every v.

Algorithm 7 BestPlacement(G, s)
1: U(v)← 0 for every v ∈ V
2: for all v ∈ V do
3: U(v)← SolveSRG(v)
4: end for
5: return max(U)

Since all the vertices are possible starting points, we should face this hard
problem (see Theorem 1) |V | times, computing, for each signal, the covering
routes from all the vertices. To avoid this issue, we ask whether there exists an
algorithm that in the worst case allows us to consider a number of iterations such
that solving the problem for a given starting vertex v could help us finding the
solution for another starting vertex v′. In other words, considering a specific set
of targets, we wonder whether a solution for COV–SET with starting vertex v
can be used to derive, in polynomial time, a solution to COV–SET for another
starting vertex v′. This would allow us to solve an exponential–time problem only
once instead of solving it for each vertex of the graph. To answer this question,
we resort to hardness results for reoptimization, also called locally modified prob-
lems [39]. We show that, even if we know all the covering routes from a starting
vertex, once we changed the starting vertex selecting an adjacent one, finding the
covering routes from the new starting vertex is hard.

Definition 14 (LM–COV–ROUTE) A locally modified covering route (LM–COV–
ROUTE) problem is defined as follows:
INSTANCE: graph G = (V,E), a set of targets T with penetration times d, two
starting vertices v1 and v2 that are adjacent, and a covering route r1 with r1(0) =
v1 such that T (r1) = T .
QUESTION: is there r2 with r2(0) = v2 and T (r2) = T?

Theorem 18 LM–COV–ROUTE is NP–complete.

46

Proof. We divide the proof in two steps, membership and hardness.
Membership. Given a YES certificate constitutes by a route, the verification is

easy, requiring one to apply the route and check whether each target is visited by
its deadline. It requires linear time in the number of targets.

Hardness. Let us consider the Restricted Hamiltonian Circuit problem (RHC)
which is known to be NP–complete. RHC is defined as follows: given a graph
GH = (VH , EH) and an Hamiltonian path P = 〈h1, . . . , hn〉 forGH such that hi ∈
VH and (h1, hn) /∈ EH , find an Hamiltonian cycle for GH . From such instance of
RHC, following the approach of [39], we build the following instance for LM–
COV–ROUTE:

• V = VH ∪ {v1, v2, vt};

• T = VH ∪ {vt};

• E = EH ∪ {(hn, vt), (hi, vs) : i ∈ {1, . . . , n}};

• d(vt) = n+ 1 and d(t) = n for any t ∈ T with t 6= vt;

• wv,v′ =

1 if v = hn, v
′ = vt

1 if v = hi, v
′ = hj, ∀i, j ∈ {1, . . . n}

1 if v = v1, v
′ = h1

2 if v = v1, v
′ = hn−1

≥ 2 if v = v1, v
′ = hi,∀i ∈ {1, . . . n− 2, n}

≥ 2 if v = v1, v
′ = vt

2 if v = v2, v
′ = h1

1 if v = v2, v
′ = hn−1

≥ 2 if v = v2, v
′ = hi,∀i ∈ {1, . . . n− 2, n}

≥ 2 if v = v2, v
′ = vt

;

• r1 = 〈v1, h1, · · · , hn, vt〉.

Basically, givenGH we introduce three vertices v1, v2, vt, where v1, v2 are adjacent
starting vertices and vt is a target. We know the covering routes from v1, and we
aim at finding the covering routes from v2. The new starting vertex (v2) is closer
to hn−1 than the previous one (v1) by 1 and farther from h1 than previous one
(v1) by 1. There is no constraint over the distances between the starting vertices
and the other targets except that they are larger than or equal to 2. We report in

47

h1

h2

h3

h4

v1 v2

h5

h6

h9

h8

h7

h10 vt

Figure 9: Example of construction used in the proof of Theorem 18: the Hamiltonian path
〈h1, h2, h3, h4, h5, h6, h7, h8, h9, h10〉 on GH is given, as well as covering route r1 with r1(0) =
v1 and T (r1) = T . It can be observed that there is another Hamiltonian path for GH , i.e.,
〈h9, h8, h5, h4, h1, h2, h3, h6, h7, h10〉, allowing covering route r2 with r2(0) = v2 and T (r2) =
T . Notice that, if we remove the edge (h5, h8), then covering route r2 such that r2(0) = v2 and
T (r2) = T does not exist.

Figure 9 an example of the above construction. Notice that by construction, if the
maximal covering route r2 with r2(0) = v2 and T (r2) = T exists, then vt must
be the last visited target. Route r1 is covering since 〈h1, . . . , hn〉 is a Hamiltonian
path for GH . We need to show that route r2 with r2(0) = v2 and T (r2) = T exists
if and only if GH admits a Hamiltonian cycle. It can observed that, if r2 exists,
then it must be such that r2 = 〈v2, hn−1, . . . , hn, vt〉 and therefore 〈hn−1, . . . , hn〉
must be a Hamiltonian path for GH . Since we know, by r1, that (hn−1, hn) ∈ EH ,
it follows that 〈hn−1, . . . , hn, hn−1〉 is a Hamiltonian cycle. This concludes the
proof. �

This shows that iteratively applying Algorithm 1 to SRG–v for each starting
vertex v and then choosing the vertex with the highest utility is the best we can do
in the worst case.

5.3. Summary of results
We summarize our computational results about Questions 1–4 in Table 1, in-

cluding also results about the resolution of the PG. We use ‘?’ for the problems
remained open in this paper.

6. Experimental evaluation

In this section, we experimentally evaluate our algorithms. We implemented
our algorithms in MATLAB and we used a 2.33GHz LINUX machine to run our

48

XXXXXXXXXXXXQuestion
Topology

Linear Cycle Star Tree Arbitrary

Question 1 FP FP ? FNP–hard APX–hard
Question 2 P P P NP–hard NP–hard
Question 3 P P P NP–hard NP–hard
Question 4 P P ? NP–hard NP–hard
Question 2 FP FP ? ? NP–hard

Reoptimization

Table 1: Computational complexity of discussed questions.

experiments. For a better analysis, we provide two different experimental evalua-
tions. In Section 6.1, we apply our algorithms to worst–case instances suggested
by our NP–hardness reduction, in order to evaluate the worst–case performance
of the algorithms and to investigate experimentally the gap between our APX–
hardness result and the theoretical guarantees of our approximation algorithms. In
Section 6.2, we apply our algorithms to a specific realistic instance we mentioned
in Section 1, Expo 2015.

6.1. Worst–case instances analysis
We evaluate the scalability of Algorithm 1 and the quality of the solution re-

turned by our approximation algorithms for a set of instances of SRG–v. We do
not include results on the evaluation of the algorithm to solve completely a PG,
given that it trivially requires asymptotically |V | times the effort required by the
resolution of a single instance of SRG–v. In the next section we describe our ex-
perimental setting, in Section 6.1.2 we provide a quantitative analysis of the exact
algorithms while in Section 6.1.3 we evaluate the quality of our approximations.

6.1.1. Setting
As suggested by the proof of Theorem 2, we can build hard instances for our

problem from instances of HAMILTONIAN–PATH. More precisely, our worst–
case instances are characterized by:

• all the vertices are targets,

• edge costs are set to 1,

• there is only one signal,

49

• penetration times are set to |T | − 1,

• values are drawn from (0, 1] with uniform probability for all the targets,

• the number of edges is drawn from a normal distribution with mean ε, said
edge density and defined as ε = |E|/ |T |(|T |−1)

2
, and

• starting vertex v is drawn among the targets of T with uniform probability.

We explore two parameter dimensions: the number of targets |T | and the value of
edge density ε. In particular, we use the following values:

|T | ∈ {6, 8, 10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50},
ε ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 1.00}.

For each combination of values of |T | and ε, we randomly generate 100 instances
with the constraint that, if ε |T |

2

2
< |T |, we introduce additional edges in order to

assure the graph connectivity. The suitability of our worst–case analysis is cor-
roborated by the results obtained with a realistic setting (see Section 6.2) which
present hard subproblems characterized by the features listed above.

6.1.2. Exact algorithms scalability
We report in Figure 10 the compute time (averaged over 100 SRG–v instances)

required by our exact dynamic programming algorithm (Algorithm 1), with the an-
notation of dominated (proper) covering sets and the generation of the routes, as
|T | and ε vary. We report in Appendix B, the boxplots showing the statistical sig-
nificance of the results. It can be observed that the compute times are exponential
in |T |, the curves being lines in a semilogarithmic plot, and the value of ε deter-
mines the slope of the line. Notice that with ε ∈ {0.05, 0.10, 0.25} the number
of edges is almost the same when |T | ≤ 16 due to the constraint of connectiv-
ity of the graph, leading thus to the same compute times. Beyond 16 targets, the
compute times of our exact dynamic programming algorithm are excessively long
(with only ε = 0.25, the compute time when |T | = 20 is lower than104 seconds).
Interestingly, the compute time monotonically decreases as ε decreases. This is
thanks to the fact that the number of proper covering sets dramatically reduces as
ε reduces and that Algorithm 1 enumerates only the proper covering sets.

We do not report any plot of the compute times of our exact branch–and–bound
algorithm, since it requires more than 104 seconds when |T | > 8 even with ε =

50

6 8 10 12 14 16
10

−2

10
0

10
2

10
4

Number of targets

T
im

es
 (

s)

ε = 0.05
ε = 0.10
ε = 0.25
ε = 0.50
ε = 0.75
ε = 1.00

Figure 10: Compute times in seconds of our exact dynamic programming algorithm (Algorithm 1),
with the annotation of dominated (proper) covering sets and the generation of the routes, as |T |
and ε vary.

0.25, resulting thus non–applicable in practice. This is because the branch–and–
bound algorithm has a complexity O(|T ||T |), while the dynamic programming
algorithm has a complexity O(2|T |).

Figure 11 shows the impact of discarding dominated actions from the game
when ε = 0.25. It depicts the trend of some performance ratios for different met-
rics. We shall call G the complete game including all D’s dominated actions and
GR the reduced game; CCS will denote the full version of Algorithm 1 and LP
will denote the linear program to solve SRG–v. Each instance is solved for a ran-
dom starting vertex v; we report average ratios for 100 instances. “n. covsets” is
the ratio between the number of covering sets in GR and in G. Dominated actions
constitute a large percentage, increasing with the number of targets. This result
indicates that the structure of the problem exhibits a non-negligible degree of re-
dundancy. LP times (iterations) report the ratio between GR and G for the time
(iterations) required to solve the maxmin linear program. A relative gain directly
proportional to the percentage of dominated covering sets is observable (LP has
less variables and constraints). A similar trend is not visible when considering the
same ratio for the total time, which includes CCS. Indeed, the time needed by CCS
largely exceed LP’s and removal of dominated actions determines a polynomial
additional cost, which can be seen in the slightly increasing trend of the curve.
The relative gap between LP and CCS compute times can be assessed by look-

51

ing at the LP/CCS curve: when more targets are considered the time taken by LP
is negligible w.r.t. CCS’s. This shows that removing dominated actions is useful,
allowing a small improvement in the average case, and assuring an exponential
improvement in the worst case.

6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

LP (time)
LP (n. iterations)
LP + CCS (time)
n. covsets
LP/CCS (time G

R
)

LP/CCS (time G)

Figure 11: Ratios evaluating dominances with ε = 0.25 as |T | varies.

Figure 12 shows the game value for D, 1 − gv, as |T | and ε vary (averaged
over 100 instances). It can be observed that the game value is almost constant as
|T | varies for ε ∈ {0.05, 0.10, 0.25} and it is about 0.87. This is because all these
instances have a similar number of edges, very close to the minimum number
necessary for having connected graphs. With a larger number of edges, the game
value increases. Interestingly, fixed a value of ε, there is a threshold of |T | such
that beyond the threshold the game value increases as |T | increases. This suggests
that the minimum game value is obtained for connected graphs with the minimum
number of edges.

In Tab. 2, we report compute times with multiple signals, where the targets
covered by a signal and the probability that a target triggers a signal are randomly
chosen according to a uniform distribution. Values are averages over 100 random
instances and give insights on the computation effort along the considered dimen-
sions. The results show that the problem is computationally challenging even for

52

6 8 10 12 14 16
0.8

0.85

0.9

0.95

1

Number of targets

V
al

ue
s

ε = 0.05
ε = 0.10
ε = 0.25
ε = 0.50
ε = 0.75
ε = 1.00

Figure 12: Optimal game values as |T | and ε vary.

a small number of targets and signals.

PPPPPPPPPm
|T (s)|

5 10 15

2 - 17.83 510.61
3 - 33.00 769.30
4 0.55 35.35 1066.76
5 0.72 52.43 1373.32

Table 2: Compute times (in seconds) for multi–signal instances.

6.1.3. Approximation algorithms
We evaluate the actual approximation ratios obtained with our approximation

algorithms as (1− ĝv)/(1− gv), where gv is the expected utility of A at the equi-
librium considering all the covering sets and ĝv is the expected utility of A at the
equilibrium when covering sets are generated by our heuristic algorithm. We exe-
cute our approximation dynamic programming algorithm with a different number,
say RandRes, of randomly generated orders from {10, 20, 30, 40, 50}, in addi-
tion to the 3 heuristics discussed in Section 3.2.2. We executed our approximation
branch and bound algorithm with constant values of ρ from {0.25, 0.50, 0.75, 1.00}
(we recall that with ρ = 1.00 backtracking is completely disabled).

53

Figure 13 and Figure 14 report the actual approximation ratios (averaged over
100 instances) obtained with our approximation algorithms for different values
of |T | ∈ {6, 8, 10, 12, 14, 16}, i.e., the instances for which we know the optimal
game value, and ε ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 1.00}. We remark that the ra-
tios obtained with the approximation branch–and–bound algorithm for some val-
ues of ρ are omitted. This is because the compute time needed by the algorithm
is over 104 seconds. The algorithm always terminates by the deadline for only
ρ ∈ {0.75, 1.00}. We focus on the ratios obtained with the dynamic programming
algorithm. Given a value of ε, as |T | increases, the ratio decreases up to a given
threshold of |T | and then it is a constant. The threshold increases as ε decreases,
while the constant decreases as ε decreases. The value of the constant is high for
every ε, being larger than 0.8. Although the ratios increase as RandRes increases,
it is worth noting that the increase is not very significant, being of the order of
0.05 between 10 RandRes and 50 RandRes. We focus on the ratios obtained with
the branch–and–bound algorithm. Given a value of ε, as |T | increases, the ratio
decreases up to a given threshold of |T | and then it increases approaching a ratio
of 1. The threshold increases as ε decreases, while the minimum ratio decreases
as ε decreases. Interestingly, ratios with ρ = 1.00 are very close to ratios with
ρ ∈ 0.75, showing that performing even significant backtracking around the so-
lution found with ρ = 1.00 does not lead to a significant improvement of the
solution. The solution can be effectively improved only with ρ = 0.25, but it is
not affordable due to the excessive required compute time. This shows that the
heuristic performs very well. Comparing the ratios of the two algorithms, it can
be observed that the approximation dynamic programming algorithm performs
better than the approximation branch–and–bound algorithm. While the dynamic
programming one always provides a ratio larger than 0.8, the branch–and–bound
one provides for combinations of |T | and ε ratios lower than 0.4.

Figure 15 reports the game values obtained with the approximation dynamic
programming algorithm for every value of RandRes and with the approximation
branch–and–bound algorithm when |T | ∈ {20, 25, 30, 35, 40, 45, 50} only for ρ =
1.00. Indeed, with ρ = 0.75 the compute time is excessive and, as shown above,
the purely heuristic solution cannot be significantly improved for ε ≥ 0.75. We
report experimental results only for ε ∈ {0.05, 0.25}. We notice that for these
instances we do not have the optimal game value. However, since the optimal
game value cannot be larger than 1 by construction of the instances, the game
value obtained with our approximation algorithms represents a lower bound to the
actual approximation ratio. It can be observed that, given a value of ε, the ratios
obtained with the dynamic programming algorithm are essentially constant as |T |

54

ε
=

0
.0
5

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

ε
=

0
.1
0

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

ε
=

0
.2
5

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

Dynamic programming based approximation Branch and bound based approximation

Figure 13: Approximation ratios as |T | varies.

55

ε
=

0
.5
0

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

ε
=

0
.7
5

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

ε
=

1
.0
0

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes

6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of targets

R
at

io
s

(v
al

ue
s)

ρ=0.25
ρ=0.5
ρ=0.75
ρ=1

Dynamic programming based approximation Branch and bound based approximation

Figure 14: Approximation ratios as |T | varies.

56

ε = 0.05 ε = 0.25

20 25 30 35 40 45 50
0

0.5

1

1.5

Number of targets

V
al

ue
s

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes
ρ = 1

20 25 30 35 40 45 50
0

0.5

1

1.5

Number of targets

V
al

ue
s

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes
ρ = 1

Figure 15: Game values as |T | varies.

increases and this constant reduced as ε reduces. Surprisingly, after a certain value
of |T |, the game values obtained with the branch and bound algorithm are higher
than those obtained with the dynamic programming algorithm. This is because,
fixed a value of ε, as |T | increases, the problem becomes easier and the heuristic
used by the branch and bound algorithm performs well finding the best covering
routes. This shows that there is not an algorithm outperforming the other for every
combination of parameters |T | and ε. Furthermore, the above result shows that
the worst cases for the approximation algorithms are those in which ε = O(1

|T |),
corresponding to instances in which the number of edges per vertex is a constant
in |T |. It is not clear from our experimental analysis whether increasing |T | with
ε = ν

|T | for some ν > 1 the game value approaches to 0 or to a strictly positive
value. However, our approximation algorithms provide a very good approximation
even with a large number of targets and a small value of ε.

Figure 16 reports the compute times required by the approximation dynamic
programming algorithms. As it can be seen, the required time slightly increases
when adopting a larger number of randomly generated orders with respect to the
baseline with ρ = 1.00.

6.2. Real case study
In this section we present the results obtained by applying our approach to a

real case study, in order to show an example of real application of our model. We
imagine to face the task of protecting a fair site as we already discussed in Sec-
tion 1.1.2 and we focus on the particular setting of Expo 2015. Figure 17 shows
the map of the Expo 2015 site together with its graph representation. We manually

57

ε = 0.05 ε = 0.25

20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

Number of targets

T
im

es
 (

s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes
ρ = 1.00

20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

Number of targets

T
im

es
 (

s)

10 RandRes
20 RandRes
30 RandRes
40 RandRes
50 RandRes
ρ = 1.00

Figure 16: Time ratios as |T | varies.

build a discretized version of the site map by exploiting publicly available knowl-
edge of the event8. We identify ≈ 170 sensible locations which correspond to an
equal number of targets in our graph. More specifically, we identify ≈ 130 targets
located at the entrances of each pavilion and in the surroundings of those areas
which could be of interest for a high number of visitors. Some targets (≈ 35) are
located over the main roads, being these critical mainly due to their high crowd.
Such roads also define our set of edges which resulted in a density of ≈ 0.02.
Figure 17 reports a graphical representation of chosen deadlines d(·) and values
π(·), respectively. To determine such values in a reasonable way we apply a num-
ber of simple rules of thumb. First, to ease our task, we discretize the spaces of
possible deadlines and values in four different levels. To assign a value to a target,
we estimate the interest (in terms of popularity and expected crowd) of the corre-
sponding area in the fair site. The higher the interest, the higher the value (actual
values are reported in the figure). To assign deadlines we estimate the time an
attacker should spend to escape from the attacked target after some malicious ac-
tivity is started (for example, blending into the crowd without leaving any trace).
In particular, we estimate a smaller escape time for those locations lying near the
external border of the fair site while for locations that are more central we esti-
mated a larger time. The smaller the escape time, the tighter the deadline for that
target. Actual values are extracted from a normal distribution where σ2 = 1 and
µ is set according to the chosen level. The maximum distance between any two
target locations is about 1.5Km which we assume can be be covered in about 7.5

8Detailed information can be found at http://www.expo2015.org/.

58

http://www.expo2015.org/

R
ea

lm
ap

G
ra

ph
on

re
al

m
ap

V
al

ue
s

D
ea

dl
in

es

Figure 17: Expo 2015 instance.

59

minutes (we imagined a crowded scenario). Given such reference scenario, our
means span from 5 minutes (very tight) to 7.5 minutes (very large). To derive our
alarm system model we assume to have a number of panoramic cameras deployed
in the environment at locations we manually choose in order to cover the whole
environment and to guarantee a wide area of view for each camera (i.e., trying to
keep, in general, more than one target under each camera’s view). To map our set
of cameras over the alarm system model, we adopt this convention: each group of
cameras sharing an independent partial view of a target t is associated to a signal
s ∈ S(t); if target t is covered by k signals then each signal is generated with
probability 1/k once t is attacked. Obviously, a deeper knowledge of the security
systems deployed on the site can enable specific methods to set the parameters
of our model. This is why we encourage involving agencies in charge of security
when dealing with such task.

Figure 18: Best placement and attack locations.

We first show a qualitative evaluation of our method. Figure 18 depicts the
best placement for the Defender (the circle in the figure) and the attacked tar-
gets (the squares in the figure, these are the actions played by the Attacker with
non–null probability at the equilibrium). As intuition would suggest, the best lo-
cation from where any signal response should start is a central one w.r.t. the whole
fair site. Our simulations show that the optimal patrolling strategy coincides with
such fixed placement even under false negatives rates of at least ≈ 0.3. Notice
that such false negatives value can be considered unrealistically pessimistic for
alarm systems deployed in structured environment like the one we are dealing

60

Covering set Probability
{19, 20, 23, 25, 125, 126, 127, 128} 0.0194
{10, 12, 23, 24, 25, 126, 127, 128} 0.0231
{10, 12, 24, 25, 126, 127, 128, 129} 0.0333
{12, 23, 24, 25, 126, 127, 128, 129} 0.0494
{10, 12, 23, 24, 25, 125, 126, 128} 0.0344
{10, 12, 24, 25, 125, 126, 128, 129} 0.0488
{10, 12, 25, 125, 126, 127, 128, 129} 0.0493
{12, 23, 24, 25, 125, 126, 127, 128} 0.0502
{12, 24, 25, 125, 126, 127, 128, 129} 0.0692
{19, 20, 23, 25, 125, 126, 129} 0.0492
{19, 20, 23, 125, 126, 128, 129} 0.0492
{20, 23, 25, 126, 127, 128, 129} 0.0657
{10, 23, 25, 125, 126, 127, 128} 0.0662
{19, 20, 23, 25, 125, 128, 129} 0.0412
{23, 25, 125, 126, 127, 128, 129} 0.1146
{20, 23, 24, 25, 127, 128} 0.0645
{10, 12, 24, 125, 126, 127} 0.0877
{20, 23, 24, 25, 128, 129} 0.0846

Figure 19: Example of response strategies to signal.

61

with. Attacked targets correspond to areas, which exhibit rather high interest and
small escape time. Figure 19 reports an example of signal response strategy for
a given starting vertex (the small circle in the figure) and a given signal (whose
covered targets are depicted with the large circle in the figure). The table lists the
computed covering sets and the probabilities with which the Defender plays the
corresponding covering routes.

10E−3

10E−2

10E−1

10E0

10E1

10E2

Signal ID

T
im

es
 (

s)

(a) Time boxplots by signal

100

200

300

400

500

600

700

Total

T
im

e
(s

)

(b) Time boxplots by node

Figure 20: Time boxplots for our real case study.

Boxplots of Figure 20(a) provide some quantitative insights on the computa-
tional effort we measured in solving such realistic instance. Given a signal, we
report the statistical distribution of the time required by Algorithm 1 to compute
covering routes from each possible start vertex. In general, we observe a high vari-
ance in each boxplot. Indeed, once fixed a signal s in our realistic instance, it is
easy to identify starting vertices from which computing covering routes is likely
to be very easy or, instead, much harder. For the easy case, consider a starting ver-
tex lying very much far away from the group of targets covered by s. In such case,
Algorithm 1 will soon stop iterating through covering set cardinalities being not
able to further generate feasible sets. Such feature is induced by the large distance
of the starting vertex from the targets covered by s together with the low edge
density and the spatial locality shared among targets covered by the same signal
(these last two are, indeed, features that frequently recur in realistic scenarios).
For the harder case, just consider a situation in which the distance of the starting
vertex from the targets covered by s is such that a large number of covering routes
is available. An example of this kind can be inspected in Figure 19. Interestingly,
a similar high variance trend cannot be observed when depicting the statistical
distribution of the compute time per starting vertex. The boxplot of Figure 20(b)
suggests that, by fixing the starting vertex and solving for different signals, hard

62

instances counterbalance, on average, the easy ones.

7. Related works

In the last few years, Security Games received an increasing interest from the
Artificial Intelligence scientific community, leading to the exploration of a large
number of research directions around this topic. In this section, we briefly discuss
what we deem to be the most significant ones, starting from the game theoretical
foundations on which these models are built.

Computing solution concepts is the central problem upon which the real appli-
cability of these game theoretical models is based. A lot of works concentrated on
algorithmic studies of this topic, analysing the relationships holding among dif-
ferent kinds of solution concepts and their computational complexity. In [40] the
relationship between Stackelberg, Nash and min–max equilibria is studied, while
in [41] some refinements of the Stackelberg equilibrium are proposed. Many ef-
forts have been made to develop tractable algorithms for finding Stackelberg equi-
libria in Bayesian games [42]. Furthermore, in [43] the authors analysed scenarios
in which the Defender has multiple objectives, searching for the Pareto curve of
the Stackelberg equilibria.

Besides fundamental works like the ones cited above, a more recent research
line devoted efforts towards the definition of game model refinements in the at-
tempt to overcome some of their ideal assumptions. One remarkable issue belong-
ing to this scope is how to model the behaviour of the Attacker. In the attempt to
have a more realistic behaviour, some works considered bounded rationality and
defined algorithms to deal with it. In [44] different models of the Attacker are anal-
ysed while in [45, 46] the Attacker is allowed to have different observation and
planning capabilities. Moreover, in [47] Quantal–Best Response is used to model
the behaviour of the Attacker and in [48] algorithms that scale up with bounded
rational adversaries are proposed. In our paper, we assume that the attacker is
rational.

Other model refinements focused on those cases in which games exhibit spe-
cific structures that can be leveraged in the design of algorithms to compute the
Stackelberg equilibrium. For instance, the study of the spread of contagion over
a network is investigated in [49]. When no scheduling constraints are present and
payoffs exhibit a special form, the computation of a Stackelberg equilibrium can
be done very efficiently enabling the resolution of remarkably big scenarios [50].
In [51] realistic aspects of infrastructures to be protected are taken into account.

63

8. Conclusions and future research

In this paper we provide the first Security Game for large environments surveil-
lance, e.g. for fair sites protection, that can exploit an alarm system with spatially
uncertain signals. To monitor and protect large infrastructure such as stations, air-
ports, and cities, a two–level paradigm is commonly adopted: a broad area surveil-
lance phase, where an attack is detected but only approximately localized due to
the spatially uncertainty of the alarm system, triggers a local investigation phase,
where guards have to find and clear the attack. Abstracting away from techno-
logical details, we propose a simple model of alarm systems that can be widely
adopted with every specific technology and we include it in the state–of–art pa-
trolling models, obtaining a new security game model. We show that the problem
of finding the best patrolling strategy to respond to a given alarm signal isAPX–
hard with arbitrary graphs even when the game is zero–sum. Then, we provide two
exponential–time exact algorithms to find the best patrolling strategy to respond
to a given alarm signal. The first algorithm performs a breath–first search by ex-
ploiting a dynamic programming approach, while the second algorithm performs
a depth–first approach by exploiting a branch–and–bound approach. We provide
also a variation of these two algorithms to find an approximate solution. We ex-
perimentally evaluate our exact and approximation algorithms both in worst–case
instances, to evaluate empirically the gap between our hardness results and the the-
oretical guarantees of our approximation algorithms, and in one realistic instance,
Expo 2015. The limit of our exact algorithms is about 16 targets with worst–
case instances while we were able to compute an optimal solution for a realistic
instance with≈ 170 targets. On the other side, our approximation algorithms pro-
vide a very effective approximation even with worst–case instances. We provide
also results for special topologies, showing that our dynamic programming algo-
rithm requires polynomial time with linear and cycle graphs, while the problem
is NP–hard with tree graphs. Finally, we focus on the problem of patrolling the
environment, showing that if every target is alarmed and no false positives and
missed detections are present, then the best patrolling strategy prescribes that the
patroller stays in a given place waiting for an alarm signal. Furthermore, we show
that such a strategy may be optimal even for missed detection rates up to 50%.

Of course, our research does not end here since some problems related to our
model remain open. The main theoretical issue is the closure of the approximation
gap of SRG–v. We believe that investigating the relationship between our model
and the DEADLINE–TSP could help in closing the gap. Another interesting prob-
lem is the study of approximation algorithms for tree graphs. Our NP–hardness

64

result does not exclude the existence of a PTAS (i.e., polynomial time approxi-
mation scheme), even if we conjecture that the existence is unlikely. In addition,
a number of extensions of our model are worth being explored. The most im-
portant extension is to include false positives and missed detections, allowing the
patroller to patrol even in absence of alarm signals. Other interesting extensions
regard cases in which the number of patrollers is larger than one or there are
multiple attackers, which coordinate to perform their malicious attack. Finally, a
different research direction stemming from the problem concerns the alarm sys-
tem dimension. Indeed, trying to deploy sensors and devices in the environment
in such a way to maximize the utility in responding to alarms is a non–trivial and
interesting problem, mainly due to the inherent budget constraint and trade–offs
that would exhibit.

References

[1] M. Jain, B. An, M. Tambe, An overview of recent application trends at the
AAMAS conference: Security, sustainability, and safety, AI Magazine 33 (3)
(2012) 14–28.

[2] B. Von Stengel, S. Zamir, Leadership with commitment to mixed strategies,
Tech. rep. (2004).

[3] V. Conitzer, T. Sandholm, Computing the optimal strategy to commit to, in:
Proceedings of the 7th ACM Conference on Electronic Commerce, 2006,
pp. 82–90.

[4] J. Pita, M. Jain, C. Western, C. Portway, M. Tambe, F. Ordóñez, S. Kraus,
P. Paruchuri, Deployed armor protection: The application of a game-
theoretic model for security at the los angeles international airport, in: Pro-
ceedings of the International Joint Conference on Autonomous Agents and
Multi–Agent Systems (AAMAS), 2008, pp. 125–132.

[5] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, M. Tambe, Iris – a tool for
strategic security allocation in transportation networks, in: Proceedings of
the International Joint Conference on Autonomous Agents and Multi–Agent
Systems (AAMAS), 2009, pp. 1327–1334.

[6] B. An, E. Shieh, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule,
G. Meyer, Protect – a deployed game theoretic system for strategic security

65

allocation for the united states coast guard, AI Magazine 33 (4) (2014) 96–
110.

[7] F. M. Delle Fave, A. X. Jiang, Z. Yin, C. Zhang, M. Tambe, S. Kraus, J. Sulli-
van, Game–theoretic security patrolling with dynamic execution uncertainty
and a case study on a real transit system, Journal of Artificial Intelligence
Research 50 (2014) 321–367.

[8] B. Ford, D. Kar, F. M. Delle Fave, R. Yang, M. Tambe, Paws: Adaptive
game-theoretic patrolling for wildlife protection, in: International Confer-
ence on Autonomous Agents and Multi–Agent Systems (AAMAS), 2014,
pp. 1641–1642.

[9] N. Basilico, N. Gatti, F. Amigoni, Patrolling security games: Definition and
algorithms for solving large instances with single patroller and single in-
truder, ARTIF INTELL 184–185 (2012) 78–123.

[10] N. Basilico, N. Gatti, F. Villa, Asynchronous multi-robot patrolling against
intrusion in arbitrary topologies, in: Proceedings of the Twenty-Fourth Con-
ference on Artificial Intelligence (AAAI), 2010, pp. 1224–1229.

[11] N. Agmon, G. A. Kaminka, S. Kraus, Multi–robot adversarial patrolling:
Facing a full–knowledge opponent, Journal of Artificial Intelligence Re-
search (JAIR) 42 (2011) 887–916.

[12] E. Sless, N. Agmon, S. Kraus, Multi–robot adversarial patrolling: facing co-
ordinated attacks, in: International conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2014, pp. 1093–1100.

[13] N. Agmon, C. Fok, Y. Emaliah, P. Stone, C. Julien, S. Vishwanath, On co-
ordination in practical multi-robot patrol, in: IEEE International Conference
on Robotics and Automation (ICRA), 2012, pp. 650–656.

[14] Y. Vorobeychik, B. An, M. Tambe, S. P. Singh, Computing solutions in
infinite–horizon discounted adversarial patrolling games, in: Proceedings
of the Twenty-Fourth International Conference on Automated Planning and
Scheduling (ICAPS), 2014, pp. 314–322.

[15] E. A. Shieh, M. Jain, A. X. Jiang, M. Tambe, Efficiently solving joint ac-
tivity based security games, in: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), 2013, pp. 346–352.

66

[16] J. Gan, B. An, Y. Vorobeychik, Security games with protection externalities,
in: Proceedings of the Twenty-Ninth Conference on Artificial Intelligence
(AAAI), 2015, pp. 914–920.

[17] N. Agmon, On events in multi-robot patrol in adversarial environments, in:
International conference on Autonomous Agents and Multi–Agent Systems
(AAMAS), 2010, pp. 591–598.

[18] S. Alpern, A. Morton, K. Papadaki, Patrolling games, Operations Research
59 (5) (2011) 1246–1257.

[19] N. Basilico, S. Carpin, T. Chung, Distributed online patrolling with multi-
agent teams of sentinels and searchers, in: DARS, 2014.

[20] B. C. Ko, J. O. Park, J.-Y. Nam, Spatiotemporal bag-of-features for early
wildfire smoke detection, Image and Vision Computing 31 (10) (2013) 786
– 795.

[21] A.-J. Garcia-Sanchez, F. Garcia-Sanchez, J. Garcia-Haro, Wireless sensor
network deployment for integrating video-surveillance and data-monitoring
in precision agriculture over distributed crops, Computers and Electronics in
Agriculture 75 (2) (2011) 288 – 303.

[22] J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey, Comput.
Netw. 52 (12) (2008) 2292–2330.

[23] Z. Sun, P. Wang, M. C. Vuran, M. A. Al-rodhaan, A. M. Al-dhelaan, I. F.
Akyildiz, Bordersense: Border patrol through advanced wireless sensor net-
works, Ad Hoc Networks 9 (3) (2011) 468 – 477.

[24] A. Krause, A. Roper, D. Golovin, Randomized sensing in adversarial envi-
ronments, in: Proceedings of the International Joint Conference on Artificial
Intelligence, Barcelona, 2011, pp. 2133–2139.

[25] E. Munoz de Cote, R. Stranders, N. Basilico, N. Gatti, N. Jennings, Introduc-
ing alarms in adversarial patrolling games, in: International conference on
Autonomous Agents and Multi–Agent Systems (AAMAS), 2013, pp. 1275–
1276.

[26] N. Basilico, N. Gatti, Strategic guard placement for optimal response to
alarms in security games, in: International conference on Autonomous
Agents and Multi–Agent Systems (AAMAS), 2014, pp. 1481–1482.

67

[27] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, F. Amigoni, Extending algorithms
for mobile robot patrolling in the presence of adversaries to more realistic
settings, in: Proceedings of the 2009 IEEE/WIC/ACM International Confer-
ence on Intelligent Agent Technology (IAT), 2009, pp. 557–564.

[28] N. Basilico, N. Gatti, T. Rossi, Capturing augmented sensing capabilities
and intrusion delay in patrolling-intrusion games, in: IEEE Symposium on
Computational Intelligence and Games (CIG), 2009, pp. 186–193.

[29] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, New York,
NY, USA, 2008.

[30] M. Maschler, S. Zamir, E. Solan, Game Theory, Cambridge University Press,
2013.

[31] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
1990.

[32] M. J. Osborne, An introduction to game theory, Vol. 3, Oxford University
Press New York, 2004.

[33] C. H. Papadimitriou, M. Yannakakis, The traveling salesman problem with
distances one and two, Mathematics of Operations Research 18 (1) (1993)
1–11.

[34] H.-J. Bckenhauer, J. Hromkovic, J. Kneis, J. Kupke, The parameterized
approximability of tsp with deadlines, Theory Computing Systems 41 (3)
(2007) 431–444.

[35] N. Bansal, A. Blum, S. Chawla, A. Meyerson, Approximation algorithms for
deadline-tsp and vehicle routing with time-windows, in: Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing (STOC),
2004, pp. 166–174.

[36] E. Lawler, Combinatorial Optimization: Networks and Matroids, Dover
Books on Mathematics, 2011.

[37] M. W. Savelsbergh, Local search in routing problems with time windows,
ANN OPER RES 4 (1) (1985) 285–305.

68

[38] R. W. Conway, W. L. Maxwell, L. W. Millerr, Theory of scheduling, Dover
Books on Mathematics, 2003.

[39] H.-J. Böckenhauer, L. Forlizzi, J. Hromkovič, J. Kneis, J. Kupke, G. Proi-
etti, P. Widmayer, Reusing optimal tsp solutions for locally modified input
instances, in: IFIP TCS, 2006, pp. 251–270.

[40] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, M. Tambe, Stackelberg
vs. nash in security games: An extended investigation of interchangeabil-
ity, equivalence, and uniqueness, Juornal of Artificial Intelligence Research
(JAIR) 41 (2011) 297–327.

[41] B. An, M. Tambe, F. Ordóñez, E. A. Shieh, C. Kiekintveld, Refinement
of strong stackelberg equilibria in security games, in: Proceedings of the
Twenty-Fifth Conference on Artificial Intelligence (AAAI), 2011, pp. 587–
593.

[42] M. Jain, C. Kiekintveld, M. Tambe, Quality–bounded solutions for finite
bayesian stackelberg games: scaling up, in: International Conference on
Autonomous Agents and Multi–Agent Systems (AAMAS), 2011, pp. 997–
1004.

[43] M. Brown, B. An, C. Kiekintveld, F. Ordóñez, M. Tambe, An extended study
on multi–objective security games, Autonomous Agents and Multi–Agent
Systems (AAMAS) 28 (1) (2014) 31–71.

[44] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, M. Tambe, Analyzing the
effectiveness of adversary modeling in security games, in: Proceedings of
the Twenty-Seventh Conference on Artificial Intelligence (AAAI), 2013, pp.
718–724.

[45] B. An, M. Brown, Y. Vorobeychik, M. Tambe, Security games with surveil-
lance cost and optimal timing of attack execution, in: International confer-
ence on Autonomous Agents and Multi–Agent Systems (AAMAS), 2013,
pp. 223–230.

[46] R. Yang, B. Ford, M. Tambe, A. Lemieux, Adaptive resource allocation for
wildlife protection against illegal poachers, in: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2014, pp. 453–
460.

69

[47] B. An, F. Ordóñez, M. Tambe, E. Shieh, R. Yang, C. Baldwin, J. DiRenzo,
K. Moretti, B. Maule, G. Meyer, A deployed quantal response–based patrol
planning system for the U.S. coast guard, Interfaces 43 (5) (2013) 400–420.

[48] R. Yang, A. X. Jiang, M. Tambe, F. Ordóñez, Scaling–up security games
with boundedly rational adversaries: A cutting–plane approach, in: Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI),
2013, pp. 404–410.

[49] J. Tsai, T. H. Nguyen, N. Weller, M. Tambe, Game–theoretic target selection
in contagion–based domains, The Computer Journal 57 (6) (2014) 893–905.

[50] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, M. Tambe, Computing
optimal randomized resource allocations for massive security games, in: In-
ternational Joint Conference on Autonomous Agents and Multi–Agent Sys-
tems (AAMAS), 2009, pp. 689–696.

[51] A. Blum, N. Haghtalab, A. D. Procaccia, Lazy defenders are almost optimal
against diligent attackers, in: Proceedings of the Twenty-Eighth Conference
on Artificial Intelligence (AAAI), 2014, pp. 573–579.

Appendix A. Notation

We report in Tab. A.3 the symbols used along the paper.

Appendix B. Additional experimental results

We report in Fig. B.21 the boxplots of the results depicted in Fig. 10. They
show that the variance of the compute times drastically reduces as ε increases.
This is because the number of edges increases as ε increases and so the number
of proper covering sets increases approaching 2|T |. On the other hand, with small
values of ε, the number of proper covering sets of different instances can be ex-
tremely different.

70

Symbol Meaning

B
as

ic
m

od
el

A Attacker
D Defender
G Graph
V Set of vertices
v Vertex
vi i–th vertex
E Set of edges
(v, v′) Edge
ω∗v,v′ Temporal cost (in turns) of the shortest path between v and v′

T Set of targets
t Target
ti i–th target
π(t) Value of target t
d(t) Penetration time of target t

Si
gn

al
s

S Set of signals
s Signal
p Function specifying the probability of having the system generating

signal s given that target t has been attacked
T (s) Targets having a positive probability of raising s if attacked
S(t) Signals having a positive probability of being raised if t is attacked
⊥ No signals have been generated
4 No targets are under attack

R
ou

te
s

Rv,s Set of routes starting from vertex v when signal s is generated
r Route
ri i–th route
r(i) i–th element visited along route r
UA(ri, ti) Attacker’s utility given a route r and a target t
σD Defender’s strategy
σDv Defender’s strategy starting from vertex v
σDv,s Defender’s strategy starting from vertex v when signal s is generated
σA Attacker’s strategy
σAv Attacker’s strategy when D is in v
gv Value of the game (utility of A)
A(r(i)) Time needed by D to visit r(i) starting from r(0)
T (r) Set of targets covered by route r
c(r) Temporal cost (in turns) associated to r

Table A.3: Symbols table.

71

ε
=

0
.0
5

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10
Number of targets

T
im

es
 (

s)

ε
=

0
.1
0

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10
Number of targets

T
im

es
 (

s)

ε
=

0
.2
5

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10 12 14 16
Number of targets

T
im

es
 (

s)

ε
=

0
.5
0

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10 12 14 16
Number of targets

T
im

es
 (

s)

ε
=

0
.7
5

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10 12 14 16
Number of targets

T
im

es
 (

s)

ε
=

1
.0
0

10
−1

10
0

10
1

10
2

10
3

10
4

6 8 10 12 14 16
Number of targets

T
im

es
 (

s)

Figure B.21: Boxplots of compute times required by our exact dynamic programming algorithm.

72

	1 Introduction
	1.1 Motivation scenarios
	1.1.1 Fight to illegal poaching
	1.1.2 Safety of fair sites

	1.2 Alarms and security games
	1.3 Contributions
	1.4 Paper structure

	2 Problem statement
	2.1 Game model
	2.1.1 Basic patrolling security game
	2.1.2 Introducing alarm signals
	2.1.3 The game tree and its decomposition

	2.2 The computational questions we pose

	3 Signal response game on arbitrary graphs
	3.1 Complexity results
	3.2 Dynamic–programming algorithm
	3.2.1 Exact algorithm
	3.2.2 Approximation algorithm

	3.3 Branch–and–bound algorithms
	3.3.1 Exact algorithm
	3.3.2 Approximation algorithm

	3.4 Solving SRG–v

	4 SRG–v on special topologies
	4.1 Easy topologies
	4.2 Hard topologies
	4.3 Borderline topologies

	5 Patrolling game
	5.1 Stand still
	5.2 Computing the best placement
	5.3 Summary of results

	6 Experimental evaluation
	6.1 Worst–case instances analysis
	6.1.1 Setting
	6.1.2 Exact algorithms scalability
	6.1.3 Approximation algorithms

	6.2 Real case study

	7 Related works
	8 Conclusions and future research
	Appendix A Notation
	Appendix B Additional experimental results

