Two-way automata characterizations of L/poly versus NL

Christos A. Kapoutsis • Giovanni Pighizzini

Received: date / Accepted: date

Abstract

Let L/poly and NL be the standard complexity classes, of languages recognizable in logarithmic space by Turing machines which are deterministic with polynomially-long advice and nondeterministic without advice, respectively. We recast the question whether L/poly $\supseteq \mathrm{NL}$ in terms of deterministic and nondeterministic two-way finite automata (2DFAs and 2NFAs). We prove it equivalent to the question whether every s-state unary 2 NFA has an equivalent poly (s)-state 2DFA, or whether a poly (h)-state 2DFA can check accessibility in h-vertex graphs (even under unary encoding) or check two-way liveness in h tall, h-column graphs. This complements two recent improvements of an old theorem of Berman and Lingas. On the way, we introduce new types of reductions between regular languages (even unary ones), use them to prove the completeness of specific languages for two-way nondeterministic polynomial size, and propose a purely combinatorial conjecture that implies L/poly $\nsupseteq \mathrm{NL}$.

Keywords Two-way finite automata • Logarithmic space • Structural complexity • Descriptional complexity

1 Introduction

A prominent open question in complexity theory asks whether nondeterminism is essential in logarithmic-space Turing machines. Formally, this is the question

[^0]whether $L=N L$, for L and $N L$ the standard classes of languages recognizable by logarithmic-space deterministic and nondeterministic Turing machines.

In the late 70's, Berman and Lingas [1] connected this question to the comparison between deterministic and nondeterministic two-way finite automata (2DFAS and 2NFAS), proving that if $\mathrm{L}=\mathrm{NL}$, then for every s-state σ-symbol 2NFA there is a poly $(s \sigma)$-state 2DFA which agrees with it on all inputs of length $\leq s$. (They also proved that this implication becomes an equivalence if we require that the 2DFA be constructible from the 2NFA in logarithmic space.)

Recently, two improvements of this theorem have been announced. On the one hand, Geffert and Pighizzini [5] proved that if $\mathrm{L}=\mathrm{NL}$ then for every s-state unary 2NFA there is an equivalent poly (s)-state 2DFA. That is, in the special case where $\sigma=1$, the Berman-Lingas theorem becomes true without any restriction on input lengths. On the other hand, Kapoutsis [8] proved that $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$ iff for every s-state σ-symbol 2NFA there is a poly (s)-state 2DFA which agrees with it on all inputs of length $\leq s$, where L/poly is the standard class of languages recognizable by deterministic logarithmic-space Turing machines with polynomially-long advice. Hence, the Berman-Lingas theorem is true even under the weaker assumption $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$, even for the stronger conclusion where the 2DFA size is independent of σ, and then even in the converse direction. He also proved variants of this equivalence for other combinations of bounds for the space usage, the advice length, and the length of the inputs.

A natural question arising from these developments is whether the theorem of [5] can be strengthened to resemble that of [8]: Does the implication remain true under the weaker assumption that $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$? If so, does it then become an equivalence? Indeed, we prove that $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$ iff for every s-state unary 2NFA there is an equivalent poly (s)-state 2DFA. Intuitively, this means that $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$ is true not only iff 'small' 2NFAs can be simulated by 'small' 2DFAs on 'short' inputs (as in [8]), but also iff the same is true for unary inputs.

In this light, a second natural question is whether this common behavior of 'short' and unary inputs is accidental or follows from deeper common properties. Indeed, our analysis reveals two such properties. They are related to outer-nondeterministic 2FAS (2OFAs, which perform nondeterministic choices only on the end-markers [2]) and to the graph accessibility problem (GAP, the problem of checking the existence of paths in directed graphs), and use the fact that checking whether a 'small' 2OFA M accepts an input x reduces to solving GAP in a 'small' graph $G_{M}(x)$.

- The first common property is that, both on 'short' and on unary inputs, 'small' 2NFAs can be simulated by 'small' 2OFAs (Lemma 1).
- The second common property is that, both on 'short' and on unary inputs, it is possible to encode instances of GAP so that a 'small' 2DFA can extract $G_{M}(x)$ from x (Lemma 5) and simultaneously simulate on it another 'small' 2DFA (Lemma 6).

For 'short' inputs, both properties follow from standard ideas; for unary inputs, they follow from the analyses of $[3,9]$ and a special unary encoding for graphs.

We work in the complexity-theoretic framework of [10]. We focus on the class 2D of (families of promise) problems solvable by polynomial-size 2DFAs, and on the corresponding classes $2 \mathrm{~N} /$ poly and $2 \mathrm{~N} /$ unary for 2 NFAs and for problems with polynomially-long and with unary instances, respectively. In these terms, 2D $\supseteq 2 \mathrm{~N} /$ poly means 'small' 2DFAs can simulate 'small' 2 NFAs on 'short' inputs; 2D $\supseteq 2 \mathrm{~N} /$ unary means the same for unary inputs; the theorem of [8] is that $\mathrm{L} /$ poly $\supseteq \mathrm{NL} \Leftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ poly; the theorem of [5] is the forward implication that $\mathrm{L} \supseteq \mathrm{NL} \Rightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary; and our main contribution is the stronger statement

$$
\begin{equation*}
\mathrm{L} / \text { poly } \supseteq \mathrm{NL} \Longleftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} / \text { unary } . \tag{1}
\end{equation*}
$$

This we derive from $[8]$ and the equivalence $2 \mathrm{D} \supseteq 2 N /$ poly $\Leftrightarrow 2 \mathrm{D} \supseteq 2 N /$ unary, obtained by our analysis of the common properties of 'short' and unary inputs.

Our approach returns several by-products of independent interest, already anticipated in [7] for enriching the framework of [10]: new types of reductions, based on 'small' two-way deterministic finite transducers; the completeness of binary and unary versions of GAP (BGAP and UGAP) for $2 \mathrm{~N} /$ poly and $2 \mathrm{~N} /$ unary, respectively, under such reductions (Corollary 2); the closure of 2D under such reductions (Corollary 3); and the realization of the central role of 2OFAs in this framework (as also recognized in [2]). In the end, our main theorem (Theorem 1) is the equivalence of $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$ to all these statements (and one more):

$$
2 \mathrm{D} \supseteq 2 \mathrm{~N} / \text { poly } \quad 2 \mathrm{D} \supseteq 2 \mathrm{~N} / \text { unary } \quad 2 \mathrm{D} \supseteq 2 \mathrm{O} \quad 2 \mathrm{D} \ni \text { BGAP } \quad 2 \mathrm{D} \ni \text { UGAP }
$$

where 20 is the analogue of 2D for 2OFAs. Hence, the conjecture L/poly $\nsupseteq N L$ is now the conjecture that all these statements are false. In this context, we also propose a stronger conjecture, both in algorithmic and in combinatorial terms.

Concluding this introduction, we note that, of course, (1) can also be derived by a direct proof of each direction. In such a derivation, the forward implication is a straightforward strengthening of the proof of [5], but the backward implication needs the encoding of UGAP and the ideas behind Lemma 6.2.

2 Preparation

If x is a string, then $|x|, x_{i}$, and x^{i} are its length, its i-th symbol $(1 \leq i \leq|x|)$, and the concatenation of i copies of it $(i \geq 0)$. The empty string is denoted by ϵ.

If $h \geq 1$, we let $[h]:=\{0,1, \ldots, h-1\}$, use K_{h} for the complete directed graph with vertex set $[h]$, and p_{h} for the h-th smallest prime number. Given a subgraph G of K_{h}, we consider the following two encodings. (See Fig. 1 for an example.)

Fig. 1 The complete graph K_{4} with a subgraph G. Each edge (i, j) of K_{4} is marked with the $(i \cdot h+j+1)$-th prime number (for simplicity, self-loops are not shown in the picture). The encodings of G are $\langle G\rangle_{2}=0100101000010100$ and $\langle G\rangle_{1}=0^{3 \cdot 11 \cdot 17 \cdot 37 \cdot 43}=0^{892551}$.

- The binary encoding of G, denoted as $\langle G\rangle_{2}$, is the standard h^{2}-bit encoding of the adjacency matrix of G : arrow (i, j) is present in G iff the $(i \cdot h+j+1)$ th most significant bit of the encoding is 1 .
- The unary encoding of G, denoted as $\langle G\rangle_{1}$, uses the natural correspondence between the bits of $\langle G\rangle_{2}$ and the h^{2} smallest prime numbers, where the k-th most significant bit maps to p_{k}, and thus arrow (i, j) maps to the prime number $p_{(i, j)}:=p_{i \cdot h+j+1}$.
We let $\langle G\rangle_{1}:=0^{n_{G}}$, where the length n_{G} is the product of the primes which correspond to the 1s of $\langle G\rangle_{2}$, and thus to the arrows of K_{h} which are present in G :

$$
\begin{equation*}
n_{G}:=\prod_{\text {bit } k \text { of }\langle G\rangle_{2} \text { is } 1} p_{k}=\prod_{(i, j) \text { is in } G} p_{(i, j)}=\prod_{(i, j) \text { is in } G} p_{i \cdot h+j+1} . \tag{2}
\end{equation*}
$$

Note that, conversely, every length $n \geq 1$ determines the unique subgraph $K_{h}(n)$ of K_{h} where each arrow (i, j) is present iff the corresponding prime $p_{(i, j)}$ divides n. Easily, $G=K_{h}\left(n_{G}\right)$.
A prime encoding of a length $n \geq 1$ is any string $\# z_{1} \# z_{2} \# \cdots \# z_{m} \in\left(\# \Sigma^{*}\right)^{*}$, where $\# \notin \Sigma$ and each z_{i} encodes one of the m prime powers in the prime factorization of n. Here, the alphabet Σ and the encoding scheme for the z_{i} are arbitrary, but fixed; the order of the z_{i} is arbitrary.

A (promise) problem over Σ is a pair $\tilde{L}=(L, \tilde{L})$ of disjoint subsets of Σ^{*}. An instance of \mathfrak{L} is any $x \in L \cup \tilde{L}$. If $\tilde{L}=\Sigma^{*}-L$ then \mathfrak{L} is a language. If $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1}$ is a family of problems, its members are short if every instance of every \mathfrak{L}_{h} has length $\leq p(h)$, for some polynomial p. If $\mathcal{M}=\left(M_{h}\right)_{h \geq 1}$ is a family of machines, its members are small if every M_{h} has $\leq p(h)$ states, for some polynomial p.

2.1 Automata

A two-way nondeterministic finite automaton (2NFA) consists of a finite control and an end-marked, read-only tape, accessed via a two-way head. Formally, it
is a tuple $M=\left(S, \Sigma, \delta, q_{0}, q_{\mathrm{f}}\right)$ of a set of states S, an alphabet Σ, a start state $q_{0} \in S$, a final state $q_{\mathrm{f}} \in S$, and a set of transitions

$$
\delta \subseteq S \times(\Sigma \cup\{\vdash, \dashv\}) \times S \times\{\mathrm{L}, \mathrm{R}\}
$$

for $\vdash, \dashv \notin \Sigma$ two end-markers and $\mathrm{L}:=-1$ and $\mathrm{R}:=+1$ the two directions. An input $x \in \Sigma^{*}$ is presented on the tape as $\vdash x \dashv$. The computation starts at q_{0} on \vdash. At each step, M uses δ on the current state and symbol to decide the possible next state-move pairs. We assume δ never violates an end-marker, except if on \dashv and the next state is q_{f}. A configuration is a state-position pair in $S \times[|x|+2]$ or the pair $\left(q_{\mathrm{f}},|x|+2\right)$. The computation produces a tree of configurations, and x is accepted if some branch 'falls off \dashv into q_{f} ', i.e., ends in $\left(q_{\mathrm{f}},|x|+2\right)$. A problem (L, \tilde{L}) is solved by M if M accepts all $x \in L$ but no $x \in \tilde{L}$.

We consider some restricted classes of 2NFAs.

- M is outer-nondeterministic (2OFA [2]) if all nondeterministic choices are made on the end-markers: formally, for each $(q, a) \in S \times \Sigma$ there is at most one transition of the form $(q, a, .,$.$) .$
- M is deterministic (2DFA) if the previous condition holds also for each $(q, a) \in S \times\{\vdash, \dashv\}$.
- M is sweeping (SNFA, SOFA, SDFA) if the head reverses only on the endmarkers: formally, the set of transitions is now just

$$
\delta \subseteq S \times(\Sigma \cup\{\vdash, \dashv\}) \times S
$$

and the next position is defined to be always the adjacent one in the direction of motion; except if the head is on \vdash or if the head is on \dashv and the next state is not q_{f}, in which two cases the head reverses.

- M is rotating (RNFA, ROFA, RDFA) if it is sweeping, but modified so that its head jumps directly back to \vdash every time it reads \dashv and the next state is not q_{f} : formally, the next position is now always the adjacent one to the right; except when the head is on \dashv and the next state is not q_{f}, in which case the next position is on \vdash. Restricting the general definition of outer-nondeterminism, we require that a ROFA makes all nondeterministic choices exclusively on \vdash.

Lemma 1 For every s-state 2nFA M and length bound l, there is a $O\left(s^{2} l^{2}\right)$ state ROFA M^{\prime} that agrees with M on all inputs of length $\leq l$. If M is unary, then M^{\prime} has $O\left(s^{2}\right)$ states and agrees with M on all inputs (of any length).

Proof Pick any 2NFA $M=\left(S, \Sigma, \delta, q_{0}, q_{\mathrm{f}}\right)$ and length bound l. To simulate M on inputs x of length $n \leq l$, a ROFA $M^{\prime}=\left(S^{\prime}, \Sigma, .,\left(q_{0}, 0\right), q_{\mathrm{f}}^{\prime}\right)$ uses the states

$$
S^{\prime}:=(S \times[l+2]) \cup(S \times[l+2] \times S \times\{\mathrm{L}, \mathrm{R}\} \times[l+1]) \cup\left\{q_{\mathrm{f}}^{\prime}\right\}
$$

The event of M being in state q and on tape cell i (where $0 \leq i \leq n+1$, cell 0 contains $x_{0}:=\vdash$ and cell $n+1$ contains $x_{n+1}:=\dashv$) is simulated by M^{\prime} being in state (q, i) and on \vdash. From there, M^{\prime} nondeterministically 'guesses' among
all $(p, d) \in S \times\{\mathrm{L}, \mathrm{R}\}$ a 'correct' next transition of M out of q and x_{i} (i.e., a transition leading to acceptance) and goes on to verify that this transition is indeed valid, by deterministically sweeping the input up to cell i (using states of the form (q, i, p, d, j) with $j<i)$ and checking that indeed $\left(q, x_{i}, p, d\right) \in \delta$. If the check fails, then M^{\prime} just hangs (in this branch of the computation). Otherwise, it continues the sweep in state $(p, i+d)$ until it reaches \dashv and jumps back to \vdash; except if $x_{i}=\dashv \& p=q_{\mathrm{f}} \& d=\mathrm{R}$, in which case it just falls off \dashv into q_{f}^{\prime}. ${ }^{1}{ }^{2}$

If M is unary, then it can be simulated by a sofa \tilde{M} with $\tilde{s}=O\left(s^{2}\right)$ states [3]. Without changing the set of states, this can then be converted into a ROFA M^{\prime} that simply replaces backward sweeps with forward ones-a straightforward simulation, which is now presented for the sake of completeness.

Suppose $\tilde{M}=\left(\tilde{S}, ., ., \tilde{q}_{0}, \tilde{q}_{\mathrm{f}}\right)$. By inspecting the construction in [3] we can observe that \tilde{S} is partitioned in two sets $\tilde{S}_{F}, \tilde{S}_{B}$, such that:

- states in \tilde{S}_{F} are used only in forward sweeps and never reached when the head is on \vdash,
- states in \tilde{S}_{B} are used only in backward sweeps and never reached when the head is on \dashv,
- $\tilde{q}_{0} \in \tilde{S}_{B}$ and $\tilde{q}_{f} \in \tilde{S}_{F} .{ }^{3}$

More precisely, with the head on \vdash and in a state from \tilde{S}_{B} (either the ending state of the previous backward sweep or \tilde{q}_{0}, in the case of the first sweep), a forward sweep starts by moving the head to the right and visiting only states in \tilde{S}_{F}, up until it reaches \dashv. There, \tilde{M} may spawn a backward sweep, using
${ }^{1}$ It is tempting to consider the following, simpler simulation. From (q, i) on \vdash, M^{\prime} sweeps the tape deterministically up to cell i (using states of the form (q, i, j) with $j<i$), where it records x_{i} in its memory; it then completes the sweep in state (q, i, x_{i}), jumping back to \vdash in that same state. From there, it transitions nondeterministically to states of the form $(p, i \pm 1)$ according to the choices of M from q on x_{i}. This can be implemented with $O\left(s l^{2}+s l \sigma\right)$ states, where $\sigma=|\Sigma|$. If σ is constant in s, then this is $O\left(s l^{2}\right)$ states, better than in Lemma 1. If $\sigma=\operatorname{poly}(s)$, then it increases to $\operatorname{poly}(s) \cdot l^{2}$ states, still good for Corollary 1. But if σ is super-polynomial in s, then the size of M^{\prime} becomes super-polynomial as well, and Corollary 1 cannot follow.
2 As suggested by a reviewer, if we require that M^{\prime} agrees with M only on inputs of length exactly l, then the simulation can be improved reducing to $O\left(s^{2} l\right)$ the number of states of M^{\prime}. This can be done as follows. The event of M being in state q and on tape cell i is directly simulated by M^{\prime} in the same state q on the same tape cell i. From this configuration, using a counter bounded by l, M^{\prime} can 'rotate' along the input to reach again cell i. During this phase, when M^{\prime} reaches \vdash, it makes a nondeterministic 'guess' of a pair $(p, d) \in S \times\{\mathrm{L}, \mathrm{R}\}$, and when it finally reaches cell i, M^{\prime} verifies that the guess corresponds to a valid transition of M. If this is the case, then M^{\prime} moves to cell $i+d$ (in the case $d=-1$ this is done again using a rotation and a counter), otherwise it hangs.
3 Actually the construction in [3] assumes acceptance on \vdash in \tilde{q}_{f}. Furthermore, \tilde{q}_{f} can be entered only from some states in \tilde{S}_{B} on \vdash, without moving the input head. To be consistent with the acceptance condition given in Section 2.1, we make the following minor changes to \tilde{M}, which do not affect the set of states. Each transition entering \tilde{q}_{f} on \vdash moves the head to the right. Furthermore, in the state $\tilde{q}_{f} \tilde{M}$ always moves to the right, without changing state. This is done even on \dashv. In this way, once \tilde{q}_{f} is entered, \tilde{M} completely scans the input by remaining in \tilde{q}_{f}, in order to accept after violating \dashv.
states in \tilde{S}_{B}, up until it returns to \vdash. However, on \dashv from some states it could be also possible to move right to accept in \tilde{q}.

Define $M^{\prime}:=\left(\tilde{S}, ., . \tilde{q}_{0}, \tilde{q}_{\mathrm{f}}\right)$. Whenever in $q \in \tilde{S}_{F}$ and on $0, M^{\prime}$ behaves exactly as \tilde{M}. Thus, forward sweeps are executed as in \tilde{M}. On reading \dashv, the simulation changes: if in $q \in \tilde{S}_{F} \tilde{M}$ can violate the end-marker to accept in \tilde{q}_{f} then M^{\prime} deterministically makes the same move (hence, all other transitions from q on \dashv are removed in M^{\prime}); otherwise, M^{\prime} simulates each backward sweep of \tilde{M} from q and \dashv with a forward sweep from q and \vdash. Since reversing a unary input does not change it, this can be done in a natural way. In particular: ${ }^{4}$

- for any $q \in \tilde{S}_{F}$ such that \tilde{M} does not have the transition $\left(q, \dashv, \tilde{q}_{\mathrm{f}}\right)$, the transition (q, \dashv, q) is added in M^{\prime} (which causes M^{\prime} to jump back to $\left.\vdash\right),{ }^{5}$
- for any $q \in \tilde{S}_{F}, q^{\prime} \in \tilde{S}_{B}$, every transition of the form $\left(q, \dashv, q^{\prime}\right)$ in \tilde{M} (which would be moving to the left) is replaced by the transition $\left(q, \vdash, q^{\prime}\right)$ in M^{\prime} (which moves right), and
- for any $q, q^{\prime} \in \tilde{S}_{B}$, all the other transitions in \tilde{M} of the form $\left(q, 0, q^{\prime}\right)$ (which would move left) are kept in M^{\prime} (but now they move right).
If a backward sweep of \tilde{M} ends on \vdash in some $p \in \tilde{S}_{B}$, then the corresponding simulating forward sweep ends on \dashv in the same state p. So, the head jumps back to \vdash (since $p \neq \tilde{q}_{\mathrm{f}}$) and its configuration becomes identical to that of \tilde{M} at the end of the backward sweep.

Clearly, M^{\prime} behaves deterministically both on \dashv (by construction) and on 0 (because \tilde{M} does). So, all nondeterminism is on \vdash, and M^{\prime} is indeed a rofa. Its number of states is \tilde{s}. Hence, M^{\prime} is also of size $O\left(s^{2}\right)$.

A family of 2nfas $\mathcal{M}=\left(M_{h}\right)_{h \geq 1}$ solves a family of problems $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1}$ if every M_{h} solves \mathfrak{L}_{h}. The class of families of problems that admit small 2NFAS is
$2 \mathrm{~N}:=\{\mathcal{L} \mid \mathcal{L}$ is a family of problems solvable by a family of small 2 NFAs $\}$.
Its restrictions to families of short and of unary problems are respectively $2 \mathrm{~N} /$ poly and $2 \mathrm{~N} /$ unary. Analogous classes for restricted 2 NFAs are named similarly: e.g., the class for problems with small 2DFAs is 2D, the class for short problems with small rofas is RO/poly, etc.

Corollary $12 \mathrm{~N} /$ poly $=\mathrm{RO} /$ poly and $2 \mathrm{~N} /$ unary $=\mathrm{RO} /$ unary.
Proof The inclusions $2 \mathrm{~N} /$ poly $\supseteq \mathrm{RO}$ /poly and $2 \mathrm{~N} /$ unary $\supseteq \mathrm{RO}$ /unary follow from the definitions. The inclusions $2 N /$ poly $\subseteq R O /$ poly and $2 N /$ unary \subseteq $\mathrm{RO} /$ unary are proved similarly, so we prove only the first one.

Pick any $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1} \in 2 \mathrm{~N} /$ poly. We know there exist polynomials p, q and a family of 2 NFAs $\mathcal{M}=\left(M_{h}\right)_{h \geq 1}$ such that every \mathfrak{L}_{h} is solved by M_{h} with $\leq p(h)$ states and has instances only of length $\leq q(h)$. By Lemma 1 , for each M_{h} there is a ROFA M_{h}^{\prime} with $O\left(p(h)^{2} q(h)^{2}\right)=\operatorname{poly}(h)$ states which agrees

[^1]with it on all inputs of length $\leq q(h)$, and thus solves \mathfrak{L}_{h} as well. Therefore, $\mathcal{M}^{\prime}:=\left(M_{h}^{\prime}\right)_{h \geq 1}$ is a family of small rofas which solves \mathcal{L}. Hence $\mathcal{L} \in \mathrm{RO}$, and thus $\mathcal{L} \in \mathrm{RO} /$ poly as well (since the problems are short).

2.2 Graph accessibility

The graph accessibility problem on h vertices is:
"Given a subgraph G of K_{h}, check that G contains a path from 0 to $h-1$."
Depending on whether G is given in binary or unary, we get the following two formal variants of the problem:

$$
\begin{aligned}
\operatorname{BGAP}_{h}:= & \left(\left\{\langle G\rangle_{2} \mid G \text { is subgraph of } K_{h} \text { and has a path } 0 \rightsquigarrow h-1\right\},\right. \\
& \left.\left\{\langle G\rangle_{2} \mid G \text { is subgraph of } K_{h} \text { and has no path } 0 \rightsquigarrow h-1\right\}\right) \\
\operatorname{UGAP}_{h}:= & \left(\left\{0^{n} \mid K_{h}(n) \text { has a path } 0 \rightsquigarrow h-1\right\},\right. \\
& \left.\left\{0^{n} \mid K_{h}(n) \text { has no path } 0 \rightsquigarrow h-1\right\}\right)
\end{aligned}
$$

and the corresponding families

$$
\text { BGAP }:=\left(\mathrm{BGAP}_{h}\right)_{h \geq 1} \text { and UGAP }:=\left(\mathrm{UGAP}_{h}\right)_{h \geq 1}
$$

Lemma $2 \mathrm{BGAP}_{h}$ and UGAP_{h} are solved by ROFAs with $O\left(h^{3}\right)$ and $O\left(h^{4} \log h\right)$ states, respectively. Hence $\mathrm{BGAP} \in \mathrm{RO} /$ poly and UGAP $\in \mathrm{RO} /$ unary.

Proof To solve BGAP_{h}, a ROFA $M_{2}=\left([h] \cup[h] \times\left[h^{2}\right],\{0,1\}, ., 0, h-1\right)$ implements the standard nondeterministic algorithm for graph accessibility. Visiting vertex $i \in[h]$ of the input graph is simulated by visiting \vdash in state i. From there, M nondeterministically 'guesses' a 'correct' next vertex (i.e., one leading to $h-1$) among all $j \in[h]$ with $j \neq i$ and goes on to verify that arrow (i, j) is indeed present, by sweeping the input deterministically up to the bit in position $i \cdot h+j+1$ (using states of the form $(j,)$.$) and checking that it is 1$; if not, then it hangs (in this branch of the computation); otherwise, it continues the sweep in state j up to \dashv, where it either jumps back to \vdash in j, if $j \neq h-1$, or falls off \dashv into $h-1$, if $j=h-1$.

For UGAP_{h}, a ROFA $M_{1}=\left([h] \cup \bigcup_{i, j} C_{i, j},\{0\}, ., 0, h-1\right)$ uses the same algorithm as M_{2}. The implementation differs only in how M_{1} verifies the presence of an arrow (i, j). For this, it uses a cycle of $p_{(i, j)}=p_{i \cdot h+j+1}$ states,

$$
C_{i, j}:=\left\{(i, j, k) \mid 0 \leq k<p_{(i, j)}\right\}
$$

where every state (i, j, k) transitions to state $\left(i, j, k+1 \bmod p_{(i, j)}\right)$ on 0 . Entering the cycle is possible only by a transition from state i to state $(i, j, 0)$ on \vdash, whereas exiting is possible only by a transition from $(i, j, 0)$ to state j on \dashv.

Fig. 2 (a) Three symbols of Γ_{5}. (b) The string of the symbols of (a) as a multi-column graph. (c) A symbol $(A, \mathrm{~L}) \in \Delta_{5}$. (d) A symbol $(B, \mathrm{R}) \in \Delta_{5}^{\prime}$. (e) The overlay of the symbols of (c) and (d).

As a result, computing from \vdash and state i back to \vdash and state j is possible iff $p_{(i, j)}$ divides the input length. The size of the automaton is

$$
\begin{aligned}
h+\sum_{i, j \in[h]} p_{(i, j)} & =h+\sum_{i, j \in[h]} p_{i \cdot h+j+1} \\
& \leq h+h^{2} \cdot p_{h^{2}}=h+h^{2} O\left(h^{2} \log \left(h^{2}\right)\right)=O\left(h^{4} \log h\right)
\end{aligned}
$$

where we use the fact that the k-th smallest prime number is $O(k \log k)$. [6]

2.3 Two-way liveness

The two-way liveness problem on height h, defined over the alphabet $\Gamma_{h}:=$ $\mathcal{P}\left(([h] \times\{\mathrm{L}, \mathrm{R}\})^{2}\right)$ of all h-tall directed two-column graphs (Fig. 2a), is:
"Given a string x of graphs from Γ_{h}, check that x is live."
Here, $x \in \Gamma_{h}^{*}$ is live if the multi-column graph derived from x by identifying adjacent columns (Fig. 2b) contains 'live' paths, i.e., paths from the leftmost to the rightmost column; if not, then x is dead. Formally, this is the language

$$
\mathrm{TWL}_{h}:=\left\{x \in \Gamma_{h}^{*} \mid x \text { is live }\right\} .
$$

We focus on two restrictions of this problem, in which x is promised to consist of $\leq h$ or of exactly 2 graphs. Formally, these are the promise problems

$$
\begin{aligned}
\text { SHORT TWL }_{h} & :=\left(\left\{x \in \Gamma_{h}^{\leq h} \mid x \text { is live }\right\},\left\{x \in \Gamma_{h}^{\leq h} \mid x \text { is dead }\right\}\right) \\
\text { COMPACT TWL }_{h} & :=\left(\left\{x \in \Gamma_{h}^{2} \mid x \text { is live }\right\},\left\{x \in \Gamma_{h}^{2} \mid x \text { is dead }\right\}\right)
\end{aligned}
$$

and the families

$$
\begin{aligned}
\text { SHORT TWL } & :=\left(\text { SHORT TWL }_{h}\right)_{h \geq 1} \\
\text { COMPACT TWL } & :=\left(\text { COMPACT }^{\text {TWL }}{ }_{h}\right)_{h \geq 1} .
\end{aligned}
$$

Lemma $3 \mathrm{TWL}_{h}$ is solved by a 2NFA with $2 h$ states. Hence SHORT TWL and COMPACT TWL are both in RO/poly.

Proof The $2 h$-state 2 NFA for TWL_{h} is straigthforward and well-known, and it clearly solves SHORT TWL_{h} and COMPACT TWL_{h}. So, SHORT TWL and COMPACT TWL are both in $2 \mathrm{~N} /$ poly, and, by Corollary 1, also in RO/poly.
2.4 Relational and functional match

The relational match problem on $[h]$ is defined over $\Delta_{h}:=\mathbb{P}([h] \times[h]) \times\{\mathrm{L}, \mathrm{R}\}$, the alphabet of all pairs of binary relations on $[h]$ and side tags. A symbol ($A, \mathrm{~L}$) denotes an h-tall two-column graph with rightward arrows chosen by A (Fig. 2c); a symbol (B, R) denotes a similar graph with leftward arrows chosen by B (Fig. 2d). If the overlay of these two graphs (Fig. 2e) contains a cycle, we say that the symbols match, or just that A, B match. We consider the problem

$$
\begin{aligned}
\mathrm{RM}_{h}:= & (\{(A, \mathrm{~L})(B, \mathrm{R}) \mid A, B \subseteq[h] \times[h] \& A, B \text { match }\} \\
& \{(A, \mathrm{~L})(B, \mathrm{R}) \mid A, B \subseteq[h] \times[h] \& A, B \text { do not match }\})
\end{aligned}
$$

of checking that two given relations match. We also let FM_{h} be the restriction of RM_{h} to the alphabet $\Delta_{h}^{\prime}:=([h] \rightharpoonup[h]) \times\{\mathrm{L}, \mathrm{R}\}$, where all relations are partial functions. We set

$$
\text { REL MATCH }:=\left(\mathrm{RM}_{h}\right)_{h \geq 1} \text { and FUN MATCH }:=\left(\mathrm{FM}_{h}\right)_{h \geq 1}
$$

Lemma $4 \mathrm{FM}_{h}$ is solved by a 2DFA with h^{3} states. Hence FUN MATCH \in 2D.
Proof To solve FM_{h}, a 2DFA $M=\left([h]^{3}, \Delta_{h}^{\prime}, .,(0,0,0),(0,0,0)\right)$ searches exhaustively for a cycle: for every $i \in[h]$, it follows the unique path out of the i-th vertex of the left column in the overlay of the two input symbols, to check whether it returns to that vertex after $\leq 2 h$ steps (clearly, if no cycle of length $\leq 2 h$ exists, then no cycle of any length does). State (i, j, k) 'means' that the i-th search is currently on vertex j of the outer column of the current symbol and just before the $(k+1)$-th pair of successive steps.

Finally, REL ZERO-MATCH $=\left(\operatorname{RZM}_{h}\right)_{h \geq 1}$ and FUN ZERO-MATCH $=\left(\mathrm{FZM}_{h}\right)_{h \geq 1}$ are the variants where we only check whether the given relations or functions 'match through 0', i.e., create a cycle through vertex 0 of the left column.

3 Transducers, reductions, and completeness

A two-way deterministic finite transducer (2DFT) consists of a finite control, an end-marked, read-only input tape accessed via a two-way head, and an infinite, write-only output tape accessed via a one-way head. Formally, it is a tuple $T=\left(S, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{f}}\right)$ of a set of states S, an input alphabet Σ, an output alphabet Γ, a start state $q_{0} \in S$, a final state $q_{\mathrm{f}} \in S$, and a transition function

$$
\delta: S \times(\Sigma \cup\{\vdash, \dashv\}) \rightarrow S \times\{\mathrm{L}, \mathrm{R}\} \times \Gamma^{*},
$$

where $\vdash, \dashv \notin \Sigma$. An input $x \in \Sigma^{*}$ is presented on the input tape as $\vdash x \dashv$. The computation starts at q_{0} with the input head on \vdash and the output tape empty. At every step, T applies δ on the current state and input symbol to decide the next state, the next input head move, and the next string to append to the contents of the output tape; if this string is non-empty, the step is called
printing. We assume δ never violates an end-marker, except if the input head is on \dashv and the next state is q_{f}. For $y \in \Gamma^{*}$, we say T outputs y and write $T(x)=y$, if T eventually falls off \dashv and then the output tape contains y. For $f: \Sigma^{*} \rightharpoonup \Gamma^{*}$ a partial function, we say T computes f if $T(x)=f(x)$ for all $x \in \Sigma^{*}$. If $\Gamma=\{0\}$, then T can also 'compute' each unary string $f(x)$ by printing (not the string itself, but) an encoding of its length; if this is a prime encoding $\# z_{1} \# z_{2} \# \cdots \# z_{m}$ (cf. p. 4) and every infix $\# z_{i}$ is printed by a single printing step (possibly together with other infixes), then T prime-computes f.

Now let $\mathfrak{L}=(L, \tilde{L})$ and $\mathfrak{L}^{\prime}=\left(L^{\prime}, \tilde{L}^{\prime}\right)$ be two problems over alphabets Σ and Σ^{\prime}. A (mapping) reduction of \mathfrak{L} to \mathfrak{L}^{\prime} is any function $f: \Sigma^{*} \rightarrow\left(\Sigma^{\prime}\right)^{*}$ which is computable by a 2DFT and for every $x \in \Sigma^{*}$ satisfies

$$
x \in L \Rightarrow f(x) \in L^{\prime} \text { and } x \in \tilde{L} \Rightarrow f(x) \in \tilde{L}^{\prime} .
$$

Furthermore:

- f is a prime reduction if $\Sigma^{\prime}=\{0\}$ and f is prime-computable by a 2 DFT ,
- f is a homomorphic reduction if $f(x)=g(\vdash) g\left(x_{1}\right) \cdots g\left(x_{|x|}\right) g(-1)$ for some homomorphism $g: \Sigma \cup\{\vdash, \dashv\} \rightarrow\left(\Sigma^{\prime}\right)^{*}$ and all $x \in \Sigma^{*}$.
If such f exists, we say \mathfrak{L} (mapping-)/prime-/homomorphically reduces to \mathfrak{L}^{\prime}, and write $\mathfrak{L} \leq_{\mathrm{m}} \mathfrak{L}^{\prime} / \mathfrak{L} \preceq_{\mathrm{m}} \mathfrak{L}^{\prime} / \mathfrak{L} \leq_{\mathrm{h}} \mathfrak{L}^{\prime}$. Easily, $\mathfrak{L} \leq_{\mathrm{h}} \mathfrak{L}^{\prime}$ implies $\mathfrak{L} \leq_{\mathrm{m}} \mathfrak{L}^{\prime}$.

Lemma 5 If \mathfrak{L} is solved by an s-state 2OFA, then

$$
\mathfrak{L} \leq_{\mathrm{m}} \mathrm{BGAP}_{2 s+1}, \mathfrak{L} \preceq_{\mathrm{m}} \operatorname{UGAP}_{2 s+1}, \text { and } \mathfrak{L} \leq_{\mathrm{h}} \mathrm{TWL}_{2 s} .
$$

The first two reductions are computable and prime-computable, respectively, by 2DFTs with $O\left(s^{4}\right)$ states and $O\left(s^{2}\right)$ printing steps per input; the last reduction maps strings of length n to strings of length $n+2$.

Proof Suppose $\mathfrak{L}=(L, \tilde{L})$ is solved by the s-state 2OFA $M=\left(S, \Sigma, ., q_{0}, q_{\mathrm{f}}\right)$ and let $x \in \Sigma^{*}$. It is well-known that $\mathfrak{L} \leq_{\mathrm{h}} \mathrm{TWL}_{2 s}$ via a reduction f with $|f(x)|=|x|+2$ (even if M is a general 2NFA; e.g., see [8, Lemma 3]). So, we focus on the first two claims. ${ }^{6}$

A segment of M on x is a computation of M on x that starts and ends on an end-marker visiting no end-markers in between, or a single-step computation that starts on \dashv and falls off into q_{f}. The end-points of a segment are its first and last configurations. The summary of M on x is a subgraph $G(x)$ of $K_{2 s+1}$ that encodes all segments, as follows. The vertices represent segment end-points: vertex 0 represents $\left(q_{0}, 0\right)$; vertices $1,2, \ldots, 2 s-1$ represent the remaining points of the form $(q, 0)$ and all points of the form $(q,|x|+1)$; and vertex $2 s$ represents $\left(q_{\mathrm{f}},|x|+2\right)$. Hence, each arrow of $K_{2 s+1}$ represents a

[^2]possible segment. The summary $G(x)$ contains exactly those arrows which correspond to segments that M can perform on x. Easily, every accepting branch in the computation of M on x corresponds to a path in $G(x)$ from vertex 0 to vertex $2 s$, and vice-versa.

Now let the functions $f_{2}(x):=\langle G(x)\rangle_{2}$ and $f_{1}(x):=\langle G(x)\rangle_{1}$ map every x to an instance of $\mathrm{BGAP}_{2 s+1}$ and of $\mathrm{UGAP}_{2 s+1}$. If $x \in L$, then the computation of M on x contains an accepting branch, so $G(x)$ contains a path $0 \rightsquigarrow 2 s$, thus $f_{2}(x)$ and $f_{1}(x)$ are positive instances. If $x \in \tilde{L}$, then there is no accepting branch, hence $G(x)$ contains no path $0 \rightsquigarrow 2 s$, thus $f_{2}(x)$ and $f_{1}(x)$ are negative instances. So, f_{2} and f_{1} are the desired reductions, if they can be computed appropriately.

To compute $f_{2}(x)$ from $x \in \Sigma^{*}$, a 2DFT T_{2} iterates over all arrows of $K_{2 s+1}$; for each of them, it checks whether M can perform on x the corresponding segment, and outputs 1 or 0 accordingly. To check a segment, from end-point (p, i) to end-point (q, j), it iterates over all configurations $\left(p^{\prime}, i^{\prime}\right)$ that are nondeterministically visited by M right after (p, i); for each of them, it checks whether M can compute from $\left(p^{\prime}, i^{\prime}\right)$ to (q, j); the segment check succeeds if any of these checks does. Finally, to check the computation from $\left(p^{\prime}, i^{\prime}\right)$ to (q, j), the transducer could simulate M from $\left(p^{\prime}, i^{\prime}\right)$ and up to the first visit to an end-marker. This is indeed possible, since M would behave deterministically throughout this simulation. However, M could also loop, causing T_{2} to loop as well, which is a problem.

To avoid this, T_{2} simulates a halting variant M^{\prime} of M, derived as follows.

1. We remove from M all transitions performed on \vdash or \dashv.
2. We add a fresh start state q_{0}^{\prime}, along with transitions which guarantee that, on its first transition leaving q_{0}^{\prime}, the machine will be in state p^{\prime} and cell i^{\prime} (since cell i^{\prime} is adjacent to either \vdash or \dashv, this requires either a single step from q_{0}^{\prime} to p^{\prime} on \vdash or a full forward sweep in q_{0}^{\prime} followed by a single backward step on \dashv into p^{\prime}).
3. We add a fresh final state q_{f}^{\prime}, along with transitions which guarantee that, from state q reading the end-marker of cell j, the machine sweeps the tape in state q_{f}^{\prime} until it falls off \dashv (since cell j contains either \vdash or \dashv, this is either a full forward sweep followed by a single step off \dashv, or just a single step off \dashv).

Now we have a 2DFA which first brings itself into configuration $\left(p^{\prime}, i^{\prime}\right)$, then simulates M until the first visit to an end-marker, and eventually accepts only if this simulation reaches (q, j). So, this is a $(2+s)$-state 2DFA that accepts x iff M can perform on x the segment from $\left(p^{\prime}, i^{\prime}\right)$ to (q, j). By [4], this 2DFA has an equivalent halting 2DFA with $\leq 4 \cdot(2+s)$ states. This is our M^{\prime}.

To recap, T_{2} iterates over all $O\left(s^{2}\right)$ arrows of $K_{2 s+1}$ and then over all $O(s)$ first steps of M in each corresponding segment, finally simulating a $O(s)$ state 2DFA in each iteration. Easily, T_{2} needs no more than $O\left(s^{4}\right)$ states and $O\left(s^{2}\right)$ printing transitions, each used at most once. This proves our claim for f_{2}.

To prime-compute $f_{1}(x)$ from $x \in \Sigma^{*}$, a 2DFT T_{1} must print a prime encoding \# $z_{1} \cdots \# z_{m}$ of the length of $\langle G(x)\rangle_{1}$ (also making sure no infix \# z_{i} is split between printing steps). By (2), this length is the product of the primes p_{k} for which the k-th bit of $\langle G(x)\rangle_{2}$ is 1 . So, m must equal the number of 1 s in $T_{2}(x)$ and each z_{i} must encode one of the trivial prime powers of the form p_{k}^{1} corresponding to those 1 s . Hence, T_{1} simulates T_{2} and, every time T_{2} would print a 1 as its k-th ouput bit, T_{1} performs a printing step with output \#z, where z is the encoding of p_{k}^{1}. Easily, the state diagram of T_{1} differs from that of T_{2} only in the output strings on the printing transitions. So, the size and print of T_{1} are also $O\left(s^{4}\right)$ and $O\left(s^{2}\right)$.

For two families $\mathcal{T}=\left(T_{h}\right)_{h \geq 1}$ of 2DFTs and $\mathcal{F}=\left(f_{h}\right)_{h \geq 1}$ of string functions, we say \mathcal{T} (prime-) computes \mathcal{F} if every T_{h} (prime-) computes f_{h}. Furthermore:

- the members of \mathcal{T} are laconic if every T_{h} performs $\leq p(h)$ printing steps on each input, for some polynomial p, and
- the members of \mathcal{F} are tight if $\left|f_{h}(x)\right| \leq p(h) \cdot|x|$ for some polynomial p, all h, and all x.

For two problem families $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1}$ and $\mathcal{L}^{\prime}=\left(\mathfrak{L}_{h}^{\prime}\right)_{h \geq 1}$, we say \mathcal{L} reduces to \mathcal{L}^{\prime} in polynomial size $\left(\mathcal{L} \leq_{2 \mathrm{D}} \mathcal{L}^{\prime}\right)$ if every \mathfrak{L}_{h} reduces to $\mathfrak{L}_{p(h)}^{\prime}$ for some polynomial p, and the family \mathcal{F} of underlying reductions is computed by a family \mathcal{T} of small 2DFTs. Furthemore:

- \mathcal{L} prime-reduces to \mathcal{L}^{\prime} in polynomial size $\left(\mathcal{L} \preceq_{2 D} \mathcal{L}^{\prime}\right)$ if the problems in \mathcal{L}^{\prime} are unary and \mathcal{T} prime-computes \mathcal{F},
- \mathcal{L} (prime-) reduces to \mathcal{L}^{\prime} in polynomial size $/$ print $\left(\mathcal{L} \leq_{2 D}^{\text {lac }} \mathcal{L}^{\prime}\right.$ or $\left.\mathcal{L} \preceq_{2 \mathrm{D}}^{\text {lac }} \mathcal{L}^{\prime}\right)$ if the 2DFTs in \mathcal{T} are laconic,
- \mathcal{L} homomorphically reduces to $\mathcal{L}^{\prime}\left(\mathcal{L} \leq_{\mathrm{h}} \mathcal{L}^{\prime}\right)$ if every \mathfrak{L}_{h} homomorphically reduces to $\mathfrak{L}_{p(h)}^{\prime}$,
- \mathcal{L} reduces to \mathcal{L}^{\prime} under tight homomorphisms $\left(\mathcal{L} \leq_{\mathrm{h}}^{\mathrm{t}} \mathcal{L}^{\prime}\right)$ if $\mathcal{L} \leq{ }_{\mathrm{h}} \mathcal{L}^{\prime}$ and the underlying homomorphisms are tight.
As usual, if C is a class of problem families and \leq a type of reductions, then a family \mathcal{L} is C-complete under \leq if $\mathcal{L} \in C$ and every $\mathcal{L}^{\prime} \in C$ satisfies $\mathcal{L}^{\prime} \leq \mathcal{L}$.

Corollary 2 The following statements are true:

1. BGAP is 2 N /poly-complete and 2 O -complete, under polynomial-size/print reductions $\left(\leq_{2 \mathrm{D}}^{\mathrm{lac}}\right)$.
2. UGAP is $2 \mathrm{~N} /$ unary-complete and 2O-complete, under polynomial-size/print prime reductions $\left(\preceq_{2 \mathrm{D}}^{\mathrm{lac}}\right)$.
3. SHORT TWL is $2 \mathrm{~N} /$ poly-complete under tight homomorphic reductions $\left(\leq_{\mathrm{h}}^{\mathrm{t}}\right)$.

Proof The required memberships, of BGAP in 2N/poly and 2O, of UGAP in $2 \mathrm{~N} /$ unary and 2 O , and of SHORT TWL in $2 \mathrm{~N} /$ poly follow from Lemmas 2 and 3.

For the hardness of BGAP and UGAP, pick any $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1} \in 2 \mathrm{~N} /$ poly \cup $2 N /$ unary $\cup 2$ O. By Corollary 1 , we know $\mathcal{L} \in 2$. So, every \mathfrak{L}_{h} is solved by an s-state 2OFA, where $s=\operatorname{poly}(h)$. By Lemma 5 , this implies $\mathfrak{L}_{h} \leq_{\mathrm{m}} \operatorname{BGAP}_{p(h)}$,
where $p(h):=2 s+1=\operatorname{poly}(h)$ and the underlying reduction f_{h} is computed by a 2DFT T_{h} with $O\left(s^{4}\right)=\operatorname{poly}(h)$ states and $O\left(s^{2}\right)=\operatorname{poly}(h)$ printing steps on each input. So, $\mathcal{F}:=\left(f_{h}\right)_{h \geq 1}$ is computed by the small and laconic 2DFTs of $\mathcal{T}:=\left(T_{h}\right)_{h \geq 1}$, hence $\mathcal{L} \leq_{2 \mathrm{D}}^{\text {lac }}$ BGAP. Lemma 5 also implies that $\mathfrak{L}_{h} \preceq_{\mathrm{m}} \operatorname{UGAP}_{p(h)}$, where the underlying reduction f_{h}^{\prime} is prime-computed by a $2 \mathrm{DFT} T_{h}^{\prime}$ with $O\left(s^{4}\right)=\operatorname{poly}(h)$ states and $O\left(s^{2}\right)=\operatorname{poly}(h)$ printing steps; so, $\mathcal{F}^{\prime}:=\left(f_{h}^{\prime}\right)_{h \geq 1}$ is prime-computed by the small and laconic 2DFTs of $\mathcal{T}^{\prime}:=\left(T_{h}^{\prime}\right)_{h \geq 1}$. So, $\mathcal{L} \preceq_{2 D}^{\text {lac }}$ UGAP.

For the hardness of SHORT TWL, suppose $\mathcal{L} \in 2 \mathrm{~N} /$ poly. Then every \mathcal{L}_{h} is solved by an s-state 2 NFA and its instances have lengths $\leq l$, where $s, l=$ $\operatorname{poly}(h)$. By Lemma 5 , we know $\mathfrak{L}_{h} \leq_{\mathrm{h}} \mathrm{TWL}_{2 s}$ via a homomorphism f_{h} such that $\left|f_{h}(x)\right|=|x|+2 \leq l+2$, for all instances x. Letting $m:=\max (2 s, l+2)$, we have $\mathfrak{L}_{h} \leq_{\mathrm{h}} \mathrm{TWL}_{m}$, via the modification f_{h}^{\prime} of f_{h} which returns the same strings of graphs but with $m-2 s$ additional rows, of isolated vertices. Since $\left|f_{h}^{\prime}(x)\right|=\left|f_{h}(x)\right| \leq l+2 \leq m$, every instance of TWL_{m} returned by f_{h}^{\prime} is also an instance of SHORT TWL ${ }_{m}$. Therefore, f_{h}^{\prime} proves that $\mathfrak{L}_{h} \leq_{\mathrm{h}}$ SHORT TWL ${ }_{m}$. Since $m=\operatorname{poly}(h)$ and the homomorphisms in $\mathcal{F}^{\prime}:=\left(f_{h}^{\prime}\right)_{h \geq 1}$ are tight (clearly), we conclude that $\mathcal{L} \leq_{\mathrm{h}}^{\mathrm{t}}$ SHORT TWL.

4 Closures

We now prove that 2D is closed under all of the above reductions. As usual, a class C is closed under a type \leq of reductions if $\mathcal{L}_{1} \leq \mathcal{L}_{2} \& \mathcal{L}_{2} \in \mathrm{C} \Rightarrow \mathcal{L}_{1} \in \mathrm{C}$.

Lemma 6 Suppose \mathfrak{L}_{2} is solved by an s-state 2DFA. Then the following hold.

1. If $\mathfrak{L}_{1} \leq_{\mathrm{m}} \mathfrak{L}_{2}$ via a reduction which is computable by an r-state 2DFT performing $\leq t$ printing steps on every input, then \mathfrak{L}_{1} is solved by a 2DFA with $O\left(r s t^{2}\right)$ states .
2. If $\mathfrak{L}_{1} \preceq_{\mathrm{m}} \mathfrak{L}_{2}$ via a reduction which is prime-computable by an r-state 2DFT, then \mathfrak{L}_{1} is solved by a 2DFA with $O\left(r s^{2}\right)$ states.
3. If $\mathfrak{L}_{1} \leq_{h} \mathfrak{L}_{2}$, then \mathfrak{L}_{1} is solved by a 2DFA with $2 s$ states.

Proof Part 3 is well-known (e.g., see [8, Lemma 2]), so we focus on the first two claims, starting with 1 . Suppose $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ reduces \mathfrak{L}_{1} to \mathfrak{L}_{2}. Let $T=$ $\left(S, \Sigma_{1}, \Sigma_{2}, ., .\right.$,) be a 2DFT that computes f, with $|S|=r$ and $\leq t$ printing steps on every input. Let $M_{2}=\left(S_{2}, \Sigma_{2}, ., .,\right)$ be a 2DFA that solves \mathfrak{L}_{2}, with $\left|S_{2}\right|=s$. We build a 2 DFA $M_{1}=\left(S_{1}, \Sigma_{1}, ., .,.\right)$ for \mathfrak{L}_{1}.

On input $x \in \Sigma_{1}^{*}, M_{1}$ simulates T on x to compute $f(x)$, then simulates M_{2} on $f(x)$ and copies its decision. (By the choice of f, this is clearly a correct algorithm for \mathfrak{L}_{1}.) Of course, M_{1} cannot store $f(x)$ in between the two simulations. So, it performs them simultaneously: it simulates T on x and, every time T would print a string z (an infix of $f(x)$), M_{1} resumes the simulation of M_{2} from where it was last interrupted and for as long as it stays within z.

The only problem (a classic, from space complexity) is that T prints $f(x)$ by a one-way head but M_{2} reads $f(x)$ by a two-way head. So, whenever the simulation of M_{2} falls off the left boundary of an infix z, the simulation of T
should not continue unaffected to return the next infix after z, but should return again the infix before z. The solution (also a classic) is to restart the simulation of T, continue until the desired infix is ready to be output, and then resume the simulation of M_{2}. This is possible exactly because of the bound t, which implies that $f(x)=z_{1} z_{2} \cdots z_{m}$ where $m \leq t$ and z_{i} is the infix output by T in its i-th printing step. Thus M_{1} keeps track of the index i of the infix currently read by the simulation of M_{2}, and uses it to request z_{i-1} from the next simulation of T.

Notice that M_{1} does not need to explicitly represent the infix currently scanned by the simulation of M_{2}. In fact, the infix z produced by T in a printing step depends only on the current state $p \in S$ and input symbol $a \in \Sigma_{1} \cup\{\vdash, \dashv\}$. Furthermore, for $(q, d) \in S_{2} \times\{\mathrm{L}, \mathrm{R}\}$, let $\left(q^{\prime}, d^{\prime}\right) \in S_{2} \times\{\mathrm{L}, \mathrm{R}\}$ be such that M_{2} from state q on the d-most symbol of z, after a sequence of steps, will finally leave z with a transition from the d^{\prime}-most symbol, entering state q^{\prime}. Hence $\left(q^{\prime}, d^{\prime}\right)$, if exists, is uniquely determined from the pairs (p, a) and (q, d). This means that a sequence of consecutive transitions of M_{2}, which starts by entering some infix z produced by a single step of T and ends by leaving the same z, can be simulated by a single transition of M_{1}, which does not explicitly represent z.

Easily, M_{1} implements the above algorithm with $S_{1}:=S_{2} \times\{\mathrm{L}, \mathrm{R}\} \times[t] \times S \times[t]$, where state (q, d, i, p, j) 'means' that the simulation of M_{2} is ready to resume from state q on the d-most symbol of z_{i+1}, and the simulation of T (to output z_{i+1}) is in state p and past the printing steps for z_{1}, \ldots, z_{j}. As claimed, $\left|S_{1}\right|=O\left(r s t^{2}\right)$.

Now suppose $\Sigma_{2}=\{0\}$ and T prime-computes f. Then M_{1} implements a modification of the above algorithm. Now every string returned by the simulation of T is an infix not of $f(x)$ but of a prime encoding $\# z_{1} \# z_{2} \# \cdots \# z_{m}$ of $n:=|f(x)|$. So, we need to change the way these infixes are treated by the simulation of M_{2}.

By the analyses of $[9,3]$, it follows that there exist a length bound $l=O(s)$ and a $O(s)$-state RDFA $\tilde{M}_{2}=\left(\tilde{S}_{2},\{0\}, \tilde{\delta}, \tilde{q}_{0}, \tilde{q}_{\mathrm{f}}\right)$ such that \tilde{M}_{2} agrees with M_{2} on all lengths $\geq l$, and is in the following 'normal form'. The states $\tilde{S}_{2} \backslash\left\{\tilde{q}_{0}, \tilde{q}_{\mathrm{f}}\right\}$ can be partitioned into a number of cycles $C_{1}, C_{2}, \ldots, C_{k}$. Every rotation on an input y starts on \vdash with a transition into a state \tilde{q} of some C_{j}, and finishes on \dashv in the state \tilde{p} of the same C_{j} that is uniquely determined by the entry state \tilde{q}, the cycle length $\left|C_{j}\right|$, and the input length $|y|$. From there, the next transition is either off \dashv into \tilde{q}_{f} to accept, or back to \vdash and again in \tilde{p} to start a new rotation. Our modified M_{1} will use this \tilde{M}_{2} for checking whether M_{2} accepts $f(x)$.

In a first stage, M_{1} checks whether $n=|f(x)|$ is one of the lengths $<l$, where \tilde{M}_{2} and M_{2} may disagree; if so, then it halts, accepting iff M_{2} accepts 0^{n}; otherwise, it continues to the second stage below. To check whether $n<l$, it iterates over all $\hat{n} \in[l]$, checking for each of them whether $n=\hat{n}$. To check whether $n=\hat{n}$, it checks whether the prime factorizations of the two numbers contain the same prime powers. This needs $1+\hat{m}$ simulations of T on x, for
$\hat{m} \leq \log \hat{n}$ the number of prime powers in the factorization of \hat{n} : during the 0 -th simulation, M_{1} checks that every infix \# z_{i} of every string output by T encodes some prime power of \hat{n}; during the j-th simulation $(1 \leq j \leq \hat{m}), M_{1}$ checks that the j-th prime power of \hat{n} (under some fixed ordering of prime powers) is encoded by some infix \# $\# z_{i}$ of some string output by $T .{ }^{7}$ Overall, this first stage can be implemented on the state set $[l] \times[1+\log l] \times S$, where state (\hat{n}, j, q) 'means' that the j-th simulation of T for checking $n=\hat{n}$ is currently in state q.

In the second stage, $n \geq l$ is guaranteed, so M_{1} can simulate \tilde{M}_{2} instead of M_{2}. This is done one rotation at a time. Starting the simulation of a single rotation, M_{1} knows the entry state \tilde{q} and cycle C_{j} to be used; the goal is to compute the state \tilde{p} of C_{j} when the rotation reaches \dashv. Clearly, this reduces to computing the remainder $n \bmod l_{j}$, where $l_{j}:=\left|C_{j}\right|$ is the cycle length. If n_{i} is the prime power encoded by the infix $\# z_{i}$ of $T(x)$, then $n \bmod l_{j}$ equals

$$
\begin{equation*}
\left(\prod_{i=1}^{m} n_{i}\right) \bmod l_{j}=\left(\left(\cdots\left(\left(n_{1} \bmod l_{j}\right) \cdot n_{2}\right) \bmod l_{j} \cdots\right) \cdot n_{m}\right) \bmod l_{j} \tag{3}
\end{equation*}
$$

So, to compute the value ρ of this remainder, M_{1} simulates T on x, building ρ as in (3): $\rho \leftarrow 1$ at start, and $\rho \leftarrow\left(\rho \cdot n_{i}\right) \bmod l_{j}$ for every infix $\# z_{i}$ inside a string printed by $T .{ }^{8}$ When the simulation of T halts, M_{1} finds \tilde{p} in C_{j} at distance ρ from \tilde{q}. From there, if $\tilde{\delta}(\tilde{p}, \dashv)=\tilde{q}_{\mathrm{f}}$ then \tilde{M}_{2} accepts, and so does M_{1}; otherwise, \tilde{M}_{2} starts a new rotation from state $\tilde{\delta}(\tilde{\delta}(\tilde{p}, \dashv), \vdash)$, and M_{1} goes on to simulate it, too.

Overall, the second stage can be implemented on the state set $\tilde{S}_{2} \times S \times$ $\left[\left|\tilde{S}_{2}\right|\right]$, where state (\tilde{q}, q, ρ) 'means' that the simulation of T for simulating a rotation of \tilde{M}_{2} from state \tilde{q} is currently in state q and the remainder is currently ρ.

Summing up, $S_{1}:=([l] \times[1+\log l] \times S) \cup\left(\tilde{S}_{2} \times S \times\left[\left|\tilde{S}_{2}\right|\right]\right)$. Hence $\left|S_{1}\right|=$ $O\left(r s^{2}\right)$.

Corollary 3 2D is closed under polynomial-size/print reductions $\left(\leq_{2 \mathrm{D}}^{\mathrm{lac}}\right)$, under polynomial-size prime reductions $\left(\preceq_{2 \mathrm{D}}\right)$, and under homomorphic reductions $\left(\leq_{h}\right)$.

Proof Pick any two problem families $\mathcal{L}=\left(\mathfrak{L}_{h}\right)_{h \geq 1}$ and $\mathcal{L}^{\prime}=\left(\mathfrak{L}_{h}^{\prime}\right)_{h \geq 1}$, and suppose $\mathcal{L}^{\prime} \in 2 \mathrm{D}$. Then every $\mathfrak{L}_{h}^{\prime}$ is solved by a $p(h)$-state 2 DFA , for some polynomial p.

If $\mathcal{L} \leq_{2 D}^{\text {lac }} \mathcal{L}^{\prime}$ then every \mathfrak{L}_{h} reduces to an $\mathfrak{L}_{h^{\prime}}^{\prime}$ via a reduction computable by an r-state 2DFT performing $\leq t$ printing steps on every input, where $h^{\prime}, r, t=\operatorname{poly}(h)$. By Lemma 6.1, it follows that \mathfrak{L}_{h} is solved by a 2DFA with $O\left(r \cdot p\left(h^{\prime}\right) \cdot t^{2}\right)=\operatorname{poly}(h)$ states. So, $\mathcal{L} \in 2 \mathrm{D}$.

[^3]If $\mathcal{L} \preceq_{2 D} \mathcal{L}^{\prime}$ then every \mathfrak{L}_{h} prime-reduces to an $\mathfrak{L}_{h^{\prime}}^{\prime}$ via a reduction primecomputable by an r-state 2DFT, where $h^{\prime}, r=\operatorname{poly}(h)$. By Lemma 6.2, it follows that \mathfrak{L}_{h} is solved by a 2DFA with $O\left(r \cdot p\left(h^{\prime}\right)^{2}\right)=\operatorname{poly}(h)$ states. So, $\mathcal{L} \in 2 \mathrm{D}$.

If $\mathcal{L} \leq_{\mathrm{h}} \mathcal{L}^{\prime}$ then every \mathfrak{L}_{h} homomorphically reduces to an $\mathfrak{L}_{h^{\prime}}^{\prime}$, where $h^{\prime}=$ $\operatorname{poly}(h)$. By Lemma 6.3, it follows that \mathfrak{L}_{h} is solved by a 2DFA with $2 \cdot p\left(h^{\prime}\right)=$ $\operatorname{poly}(h)$ states. So, $\mathcal{L} \in 2 \mathrm{D}$.

5 Characterizations and conjectures

Our main theorem is now a direct consequence of [8] and Corollaries 2 and 3.
Theorem 1 The following statements are equivalent to $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$:

1. $2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ poly
2. $2 \mathrm{D} \ni$ BGAP
3. $2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary
4. $2 \mathrm{D} \ni$ UGAP
5. $2 \mathrm{D} \supseteq 2 \mathrm{O}$
6. $2 \mathrm{D} \ni$ SHORT TWL

Proof We have L/poly \supseteq NL iff (1), by [8]; $(1) \Leftrightarrow(2) \Leftrightarrow(5)$, by Corollary 2.1 and the closure of 2D under polynomial-size/print reductions; $(3) \Leftrightarrow(4) \Leftrightarrow(5)$ by Corollary 2.2 and the closure of 2D under polynomial-size prime reductions; and $(1) \Leftrightarrow(6)$ by Corollary 2.3 and the closure of 2D under homomorphic reductions.

The statements of Theorem 1 are believed to be false. In particular (statement 6), it is conjectured that no poly (h)-state 2DFA can check liveness on inputs of height h and length $\leq h$. It is thus natural to study shorter inputs. In fact, even inputs of length 2 are interesting:

How large need a 2DFA be to solve COMPACT TWL_{h} ?
Although it can be shown (by Savitch's algorithm [11]) that $2^{O\left(\log ^{2} h\right)}$ states are enough, it is not known whether this can be reduced to poly (h). We conjecture that it cannot. In other words, we conjecture that L/poly \nsupseteq NL because already:

Conjecture A 2D $\not \supset$ COMPACT TWL.

We find this conjecture quite appealing, because of its simple and symmetric setup: just one 2DFA working on just two symbols. Still, this is an algorithmic statement (it claims the inexistence of an algorithm), engaging our algorithmic intuitions. These are surely welcome when we need to discover an algorithm, but may be unfavorable when we need to prove that no algorithm exists. It could thus be advantageous to complement this statement with an equivalent one which is purely combinatorial. Indeed, such a statement exists: it says that we cannot homomorphically reduce relational to functional match (cf. p. 10).

Conjecture B REL match $\not Z_{h}$ FUN MATCH.

To get a feel of this conjecture, it is useful to note first that $\mathrm{RM}_{h} \leq_{h} \mathrm{FM}_{2^{h^{2}}},{ }^{9}$ and then that this does not imply REL MATCH \leq_{h} FUN MATCH, because of the super-polynomial blow-up from h to 2^{h}. So, Conjecture B claims that this blow-up cannot be made poly (h) or, more intuitively, that no systematic way of replacing h-tall relations with poly (h)-tall functions respects the existence of cycles.

To prove the equivalence of the two conjectures, we first show that checking for cycles is \leq_{h}-equivalent to checking for cycles through the top left vertex.

Lemma 7 The following reductions hold:

1. REL ZERO-MATCH \leq_{h} REL MATCH and REL MATCH \leq_{h} REL ZERO-MATCH.
2. FUN ZERO-MATCH \leq_{h} FUN MATCH and FUN MATCH \leq_{h} FUN ZERO-MATCH.

Proof For part 1, we prove that $\mathrm{RZM}_{h} \leq_{\mathrm{h}} \mathrm{RM}_{2 h^{2}}$ and that $\mathrm{RM}_{h} \leq_{\mathrm{h}} \mathrm{RZM}_{1+h^{3}}$. Both homomorphisms map \vdash and \dashv to ϵ, every $(A, \mathrm{~L})$ to a $(\tilde{A}, \mathrm{~L})$, and every (B, R) to a (\tilde{B}, R).

For the first reduction, we divide $\left[2 h^{2}\right]$ into $2 h$ levels of h items each, and refer to items by level index $l \in[2 h]$ and index-within-level $i \in[h]$; i.e., we view $\left[2 h^{2}\right]$ as $[2 h] \times[h]$. Then:

- Every $(A, \mathrm{~L}) \in \Delta_{h}$ maps to $(\tilde{A}, \mathrm{~L}) \in \Delta_{2 h^{2}}$, where \tilde{A} consists of h 'copies' of A : on each level of even index l, every arrow $i \rightarrow j \in A$ induces the arrow $(l, i) \rightarrow(l+1, j)$, with the corresponding end-points on levels l and $l+1$.
- Symmetrically, every (B, R) maps to (\tilde{B}, R), where \tilde{B} copies B : on each level of odd index l, every arrow $j \leftarrow i \in B$ with $j \neq 0$ induces the arrow $(l+1, j) \leftarrow(l, i)$; in addition, every arrow $0 \leftarrow i$ induces the arrow $(0,0) \leftarrow(l, i)$. Clearly, every arrow in the overlay of ($\tilde{A}, \mathrm{~L})$ and (\tilde{B}, R) either increases the level index or points to the left-column vertex (0,0). (For an example, see Fig. 3c-d.) Hence, this vertex is visited by all cycles (if any) in the overlay, so \tilde{A}, \tilde{B} match iff they match through 0 . Moreover, the overlay of $(A, \mathrm{~L})$ and (B, R) contains a k-long cycle through the left-column vertex 0 iff the overlay of ($\tilde{A}, \mathrm{~L})$ and (\tilde{B}, R) contains a k-long cycle through the left-column vertex $(0,0)$, where the t-th step moves from level $t-1$ to level t, and the last step moves from level $k-1$ to level 0 (here $1 \leq t<k \leq 2 h$). So, A, B match through 0 iff \tilde{A}, \tilde{B} do, and thus iff \tilde{A}, \tilde{B} match.

For the second reduction, we divide $\left[1+h^{3}\right]$ into $1+h^{2}$ levels: one singleitem level, plus h^{2} levels of h items each. The item of the first level is called 0 , and the items of the other levels are called by level index $(i, j) \in[h] \times[h]$ and index-within-level $u \in[h]$; i.e., we view $\left[1+h^{3}\right]$ as $\{0\} \cup([h] \times[h]) \times[h]$. Then:

- Every $(A, \mathrm{~L}) \in \Delta_{h}$ maps to $(\tilde{A}, \mathrm{~L}) \in \Delta_{1+h^{3}}$, where \tilde{A} contains h^{2} copies of A : on each level (i, j), every arrow $u \rightarrow v \in A$ induces the arrow

[^4]$(i, j, u) \rightarrow(i, j, v)$ of the corresponding end-points; in addition, the arrows $0 \rightarrow(i, j, j)$ and $(i, j, i) \rightarrow 0$ are added whenever $i \rightarrow j \in A$.

- Symmetrically, every (B, R) maps to (\tilde{B}, R), where \tilde{B} contains the arrow $0 \leftarrow 0$, plus h^{2} copies of B : on each level (i, j), every arrow $v \leftarrow u \in B$ induces the arrow $(i, j, v) \leftarrow(i, j, u)$.
Clearly, every cycle in the overlay of $(A, \mathrm{~L})$ and (B, R) copies itself on every h item level of the overlay of ($\tilde{A}, \mathrm{~L}$) and ($\tilde{B}, \mathrm{R})$; in addition, every forward arrow $i \rightarrow j \in A$ of the cycle induces the cycle

$$
\begin{equation*}
0 \xrightarrow{\tilde{A}}(i, j, j) \xrightarrow{\tilde{B}} \cdots \xrightarrow{\tilde{B}}(i, j, i) \xrightarrow{\tilde{A}} 0 \xrightarrow{\tilde{B}} 0, \tag{4}
\end{equation*}
$$

where '...' stands for the copies of the remaining arrows of the cycle on level (i, j). (For an example, see Fig. 3e-f.) Conversely, if the overlay of ($\tilde{A}, \mathrm{~L})$ and (\tilde{B}, R) contains a cycle through vertex 0 of the left column, then this is necessarily of the form (4) for some arrow $i \rightarrow j \in A$, and for '. . ' a path within level (i, j) which copies a path from right-column vertex j to left-column vertex i in the overlay of $(A, \mathrm{~L})$ and (B, R). Overall, A, B match iff \tilde{A}, \tilde{B} match through 0 .

For part 2, we prove that $\mathrm{FZM}_{h} \leq_{\mathrm{h}} \mathrm{FM}_{2} h^{2}$ and $\mathrm{FM}_{h} \leq_{\mathrm{h}} \mathrm{FZM}_{h^{3}}$. The first reduction follows simply by the observation that the first homomorphism of part 1 maps functions to functions: if A and B are functions, then \tilde{A} and \tilde{B} are functions as well. The second reduction follows from Lemma 4 and the argument in the proof of Lemma 9 below: the homomorphism can be extracted directly from the h^{3}-state 2DFA solving FM_{h}. (Note that the second reduction of part 2 is not really needed in our arguments; it is included only for completeness.)

Using Lemma 7, we now prove that COMPACT TWL and REL MATCH reduce to each other in such a way that small 2DFAs can solve either both or neither (Lemma 8), and that REL MATCH is solvable by small 2DFAs iff it $\leq_{h^{-}}$ reduces to FUN Match (Lemma 9).

Lemma 8 The following reductions hold:
COMPACT TWL $\leq 2 \mathrm{l}$ lac REL MATCH and REL MATCH \leq_{h} COMPACT TWL.
Proof We first show COMPACT $\mathrm{TWL}_{h} \leq_{\mathrm{m}}$ RZM $_{1+h}$ by a 2DFT which simply sweeps its input $\vdash a b \dashv$ once, and replaces a with $(A, \mathrm{~L}) \in \Delta_{1+h}$ and b with $(B, \mathrm{R}) \in \Delta_{1+h}$, such that $a b$ is live iff A, B match through 0 . Then, we combine this 2DFT with the homomorphism from the first half of Lemma 7.1, to get a new 2DFT which instead prints $(\tilde{A}, \mathrm{~L}),(\tilde{B}, \mathrm{R}) \in \Delta_{2(1+h)^{2}}$ such that A, B match through 0 iff \tilde{A}, \tilde{B} match. So, COMPACT $\mathrm{TWL}_{h} \leq_{\mathrm{m}} \mathrm{RM}_{2(1+h)^{2}}$ by a 2 -state 2 DFT with 2 printing steps per input, and we are done.

We derive A and B from a and b respectively, in two steps (see Fig. 4 for an example):

- First, we convert a, b into $a^{\prime}, b^{\prime} \in \Gamma_{1+h}$ such that $a b$ is live iff $a^{\prime} b^{\prime}$ contains a cycle which visits vertex 0 of the middle column and alternates between a^{\prime} and b^{\prime}.

Fig. 3 Proof of Lemma 7.1. (a) Two symbols $(A, \mathrm{~L}),(B, \mathrm{R}) \in \Delta_{3}$. (b) The overlay of the symbols of (a). (c) The symbols $(\tilde{A}, \mathrm{~L}),(\tilde{B}, \mathrm{R}) \in \Delta_{18}$ obtained by the reduction $\mathrm{RZM}_{h} \leq_{\mathrm{h}}$ $\mathrm{RM}_{2 h^{2}}$. (d) The overlay of the symbols of (c). (e) The symbols $(\tilde{A}, \mathrm{~L}),(\tilde{B}, \mathrm{R}) \in \Delta_{28}$ obtained by the reduction $\mathrm{RM}_{h} \leq_{\mathrm{h}} \mathrm{RZM}_{1+h^{3}}$. Only levels $0,(0,1),(2,0)$ and $(2,2)$ are represented. The other levels are not connected to level 0. (f) The overlay of symbols of (e). Notice that the cycle in the overlay of $(A, \mathrm{~L})$ and (B, R) (see (b)) induces several cycles in the overlay of $(\tilde{A}, \mathrm{~L})$ and (\tilde{B}, R), only two of which pass through the top-left vertex; e.g., $0 \longrightarrow_{\tilde{A}}^{\tilde{A}}(2,0,0) \longrightarrow^{\tilde{B}}$ $(2,0,0) \longrightarrow{ }^{\tilde{A}}(2,0,1) \longrightarrow{ }^{\tilde{B}}(2,0,2) \longrightarrow^{\tilde{A}} 0 \longrightarrow \tilde{B} 0$.

- Then, we convert a^{\prime} and b^{\prime} to A and B.

To get a^{\prime}, we start with a and:
(i) drop all arrows that end on the left column, as they do not affect liveness;
(ii) introduce a fresh vertex 0 in both columns, to get a symbol of Γ_{1+h};
(iii) transfer to this vertex of the right column the origins of all arrows that begin on the left column, so that now all arrow end-points lie on the right column, and a^{\prime} is essentially a binary relation on $[1+h]$;
(iv) add all arrows that are necessary to make this relation transitive.

Symmetrically, to get b^{\prime}, we start with b and:
(i) drop all arrows that begin on the right column;
(ii) introduce a fresh vertex 0 in both columns;
(iii) transfer to this vertex of the left column the destinations of all arrows that end on the right column, so that now all arrow end-points lie on the left column, and b^{\prime} is essentially a binary relation on $[1+h]$;
(iv) add all arrows that are necessary to make this relation transitive.

Fig. 4 COMPACT TWL $\leq{ }_{2 \mathrm{D}}^{\mathrm{lac}}$ Rel match (Lemma 8). (a) Two symbols $a, b \in \Gamma_{5}$. (b) The symbols $a^{\prime}, b^{\prime} \in \Gamma_{6}$ obtained from a and b. (c) The symbols $(A, \mathrm{~L}),(B, \mathrm{R}) \in \Delta_{6}$ obtained from a^{\prime} and b^{\prime}. (d) The overlay of the symbols of (c).

Now, it is straightforward to see that every live path in $a b$ induces a cycle in $a^{\prime} b^{\prime}$ through vertex 0 of the middle column, and vice-versa; moreover, because of transitivity, this cycle can always be chosen to alternate between a^{\prime} and b^{\prime}. Now, the relations A and B are exactly the binary relations on $[1+h]$ that describe the arrows of a^{\prime} and $b^{\prime}:(i, j) \in A$ iff arrow $i \rightarrow j$ is present on the right column of a^{\prime}, and similarly for B and the left column of b^{\prime}. Easily, A, B match through 0 iff a^{\prime}, b^{\prime} contain and alternating cycle through vertex 0 of the middle column, and thus iff $a b$ is live.

We now show RZM $_{h} \leq_{h}$ COMPACT $^{\text {TWL }} 2 h$. Combined with the second half of Lemma 7.1, this implies $\mathrm{RM}_{h} \leq_{\mathrm{h}}$ COMPACT $\mathrm{TWL}_{2\left(1+h^{3}\right)}$, and we are done. The homomorphism maps \vdash and \dashv to ϵ. For the other symbols, we divide [2h] into two levels of h items each, calling each item by level index $l \in[2]$ and index-within-level $i \in[h]$; i.e., we view $[2 h]$ as $[2] \times[h]$. Then, each $(A, \mathrm{~L}) \in \Delta_{h}$ maps to an $a \in \Gamma_{2 h}$ whose right column encodes A, using level 0 for origins and level 1 for destinations: each arrow $i \rightarrow j \in A$ induces on that column the arrow $(0, i) \rightarrow(1, j)$; also, a contains the arrow from $(0,0)$ on the left column to $(0,0)$ on the right. Symmetrically, each $(B, \mathrm{R}) \in \Delta_{h}$ maps to a $b \in \Gamma_{2 h}$ whose left column encodes B, now using level 1 for origins and level 0 for destinations: each arrow $j \leftarrow i \in B$ induces on that column the arrow $(1, i) \rightarrow(0, j)$; also, b contains an arrow from $(1, i)$ on the left column to $(1, i)$ on the right, for each i such that $0 \leftarrow i \in B$. (See Fig. 5 for an example.)

Easily, each k-long cycle witnessing that A, B match through 0 induces in $a b$ a k-long cycle which starts at vertex $(0,0)$ of the middle column, alternates both between the two symbols and between the two levels, and returns to $(0,0)$ via an arrow of b of the form $(1, i) \rightarrow(0,0)$; hence B contains the arrow $0 \leftarrow i$, and thus b contains the arrow from $(1, i)$ on the left to $(1, i)$ on the right; overall, $a b$ contains the live path which starts on $(0,0)$ on the leftmost column, moves to $(0,0)$ on the middle column, and continues as in the cycle, diverging from it only in the last step from $(1, i)$, to jump right. Conversely, if $a b$ is live, then each live path is of this form, and thus cannot exist without a respective cycle through $(0,0)$ on the middle column; this cycle induces a cycle in the overlay of $(A, \mathrm{~L})$ and (B, R), through 0 of the left column. So, A, B match through 0 iff $a b$ is live.

Fig. 5 rel match $\leq_{\text {h }}$ COMPAct twl (Lemma 8). (a) The symbols $a, b \in \Gamma_{6}$ obtained from the symbols $(A, \mathrm{~L}),(B, \mathrm{R}) \in \Delta_{3}$ of Fig. 3a. (b) The string $a b$ as a multi-column graph.

Lemma 9 2D \ni REL MATCH iff REL MATCH \leq_{h} FUN MATCH.

Proof The backward direction follows from Lemma 4 and Corollary 3. For the forward direction, suppose RM_{h} is solved by an s-state 2DFA M, where $s=\operatorname{poly}(h)$. We give a homomorphism $f: \Delta_{h} \cup\{\vdash, \dashv\} \rightarrow\left(\Delta_{s}^{\prime}\right)^{*}$ which maps \vdash and \dashv to ϵ, and every $(A, \mathrm{~L})$ or (B, R) to a symbol (α, L) or (β, R) respectively, such that the relations A, B match iff the functions α, β match through 0 . This proves $\mathrm{RM}_{h} \leq_{\mathrm{h}} \mathrm{FZM}_{s}$, which implies $\mathrm{RM}_{h} \leq_{\mathrm{h}} \mathrm{FM}_{2 s^{2}}$ (by the first half of Lemma 7.2). Since $2 s^{2}=\operatorname{poly}(h)$, it follows that REL MATCH \leq_{h} FUN MATCH.

To build f, we assume that $M=\left([s], \Delta_{h}, \delta, 0, s-1\right)$ and that the only transition into state 0 is the self-loop $\delta(0, \vdash)=(0, \mathrm{R})$. (This does not harm generality: to bring M into the form ($[s], \Delta_{h}, \delta, 0, s-1$), we simply rename its states appropriately; to guarantee the assumption for the start state, we simply introduce a fresh start state 0^{\prime} and let $\delta\left(0^{\prime}, \vdash\right):=\left(0^{\prime}, \mathrm{R}\right)$ and $\delta\left(0^{\prime}, a\right):=\delta(0, a)$ for all $a \in \Delta_{h} \cup\{-\}$, also incorporating the slight increase in size into the assumption that s is polynomial in h.)

Then, for every relation A, we set $f(A, \mathrm{~L}):=(\alpha, \mathrm{L})$ where $\alpha:[s] \rightharpoonup[s]$ satisfies $\alpha(p)=q$ iff the computation of M from state p on the right symbol of $\vdash(A, \mathrm{~L})$ falls off the rightmost boundary into state q. Symmetrically, for every B, we set $f(B, \mathrm{R}):=(\beta, \mathrm{R})$ where $\beta:[s] \rightharpoonup[s]$ satisifies $\beta(p)=q$ iff either the computation of M from p on the left symbol of $(B, \mathrm{R}) \dashv$ falls off the leftmost boundary into q (hence $q \neq 0$, by our assumption for 0) or $q=0$ and the computation falls off \dashv into $s-1$. We claim that A, B match iff α, β match through 0 .

For the forward direction, suppose A, B match. Then the computation $c=\left(\left(q_{t}, j_{t}\right)\right)_{0 \leq t \leq m}$ of M on $\vdash(A, \mathrm{~L})(B, \mathrm{R}) \dashv$ is accepting. By our assumptions for M, we know M starts in state 0 on \vdash, moves right into state 0 again, and eventually falls off \dashv into $s-1$. So, c has the form $(0,0),(0,1), \ldots,(s-1,4)$. Let us drop the first configuration, and 'split' the remaining sequence $(0,1), \ldots,(s-1,4)$ every time it crosses the middle boundary of the input (between cells 1 and 2):

- at forward crossings, the sequence looks like $\ldots,(p, 1),(q, 2), \ldots$ and the 'split' produces a part ending in $(p, 1),(q, 2)$ and a part starting with $(q, 2)$;
- at backward crossings, the sequence looks like $\ldots,(p, 2),(q, 1), \ldots$ and the 'split' produces a part ending in $(p, 2),(q, 1)$ and a part starting with $(q, 1)$.

The result is a list of subsequences $c_{1}, c_{2}, \ldots, c_{k}$, where k is even, every odd-indexed c_{i} computes on $\vdash(A, \mathrm{~L})$, and every even-indexed c_{i} computes on $(B, \mathrm{R}) \dashv$. Moreover, if we let q_{i} be the state of the first configuration of c_{i}, then:

- $q_{1}=0$;
- every odd-indexed c_{i} has the form $\left(q_{i}, 1\right), \ldots,\left(q_{i+1}, 2\right)$, and thus proves $\alpha\left(q_{i}\right)=q_{i+1} ;$
- every even-indexed c_{i} before c_{k} is of the form $\left(q_{i}, 2\right), \ldots,\left(q_{i+1}, 1\right)$, and thus proves $\beta\left(q_{i}\right)=q_{i+1}$; and c_{k} is of the form $\left(q_{k}, 2\right), \ldots,(s-1,4)$, and thus proves $\beta\left(q_{k}\right)=0$.
Overall, the path

$$
0=q_{1} \xrightarrow{\alpha} q_{2} \xrightarrow{\beta} q_{3} \xrightarrow{\alpha} q_{4} \xrightarrow{\beta} \cdots \xrightarrow{\alpha} q_{k} \xrightarrow{\beta} 0
$$

is a cycle through 0 on the left column of the overlay. Hence α, β match through 0 .

Conversely, suppose α, β match through 0 . If $q_{1}, q_{2}, \ldots, q_{k} \in[s]$ is a cycle that proves this, then:

- k is even;
- $q_{1}=0$;
- every odd-indexed q_{i} satisfies $\alpha\left(q_{i}\right)=q_{i+1}$, proving that M from q_{i} on the right symbol of $\vdash(A, \mathrm{~L})$ falls off the right boundary into q_{i+1};
- every even-indexed q_{i} before q_{k} satisfies $\beta\left(q_{i}\right)=q_{i+1}$, proving that M from q_{i} on the left symbol of $(B, \mathrm{R}) \dashv$ falls off the left boundary into q_{i+1};
- q_{k} satisfies $\beta\left(q_{k}\right)=0$, proving that M from q_{k} on the left symbol of $(B, \mathrm{R}) \dashv$ falls off \dashv into $s-1$ (here we use the assumption that no transition enters state 0 on a symbol of Δ_{h}, hence $\beta\left(q_{k}\right)=0$ cannot be due to a computation that falls off the left boundary).
Clearly then, the 'concatenation' of these computation segments proves that M from state 0 on cell 1 of $\vdash(A, \mathrm{~L})(B, \mathrm{R}) \dashv$ falls off \dashv into $s-1$. Given that, in addition, M performs the rightward step from state 0 on \vdash onto cell 1 and state 0 again, we see that M indeed accepts this input. Hence, A, B match.

Combining Lemma 8 and Lemma 9, we see that Conjectures A and B are indeed equivalent.

6 Conclusion

We proved several characterizations of L/poly versus NL in terms of unary, binary, or general 2FAs. Our main theorem complements two recent improvements [5,8] of an old theorem [1], and our approach introduced some of the concepts and tools that had been asked for in [7] for enriching the framework of [10].

It would be interesting to see similar characterizations in terms of unary 2FAs for the uniform variant of the question (L versus NL), or for variants
for other bounds for space and advice length (e.g., LL/polylog versus NLL [8]). Another interesting direction is to elaborate further on the comparison between 2FA computations on short and on unary inputs; for example, using the ideas of this article, one can show that for every $\mathcal{L} \in 2 N /$ poly there is $\mathcal{L}^{\prime} \in 2 N /$ unary such that $\mathcal{L} \preceq{ }_{2 D}^{\text {lac }} \mathcal{L}^{\prime}$. Finally, further work is needed to fully understand the capabilities and limitations of the reductions introduced in this article.

Acknowledgements The first author has been supported by a Marie Curie Intra-European Fellowship (PIEf-GA-2009-253368) within the European Union Seventh Framework Programme (FP7/2007-2013).

References

1. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)
2. Geffert, V., Guillon, B., Pighizzini, G.: Two-way automata making choices only at the endmarkers. In: Proceedings of LATA, pp. 264-276 (2012)
3. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295, 189-203 (2003)
4. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173-1187 (2007)
5. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Information and Computation 209(7), 1016-1025 (2011)
6. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford Science Publications (1979)
7. Kapoutsis, C.: Size complexity of two-way finite automata. In: Proceedings of DLT, pp. 47-66 (2009)
8. Kapoutsis, C.: Two-way automata versus logarithmic space. In: Proceedings of CSR, pp. 197-208 (2011)
9. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite automata using transformation semigroups. In: Proceedings of DLT, pp. 324-336 (2011)
10. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275-286 (1978)
11. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4, 177-192 (1970)

[^0]: Preliminary version presented in the 7th International Computer Science Symposium in Russia, Nizhny Novgorod, July 3-7, 2012 [Lecture Notes in Computer Science vol. 7353, Springer-Verlag, pp. 217-228].
 C.A. Kapoutsis

 Carnegie Mellon University in Qatar - Education City, P.O. Box 24866 - Doha, Qatar. E-mail: cak@cmu.edu
 G. Pighizzini

 DI, Università degli Studi di Milano, I-20135 Milano.
 E-mail: pighizzini@di.unimi.it

[^1]: ${ }^{4}$ We remind the reader that, since \tilde{M} is a SOFA, the direction of the head in its transitions is implicit, i.e, the set of transitions is a subset of $\tilde{S} \times(\Sigma \cup\{\vdash, \dashv\}) \times \tilde{S}$ (cf. p. 5).
 ${ }^{5}$ Notice that \tilde{M} has the transition $\left(q_{\mathrm{f}}, \dashv, \tilde{q}_{\mathrm{f}}\right)$ (cf. note 3). Hence, $q \neq q_{\mathrm{f}}$ here.

[^2]: 6 The two-way liveness problem is classically defined using two-column graphs as alphabet symbols. As pointed out by a reviewer, we could use a modified version of this problem, where each alphabet symbol is defined by just one column with outgoing edges, to the left and to the right, that reach, when symbols are concatenated, vertices in the adjacent symbols. Let TWL ${ }_{h}^{\prime}$ be the problem so modified for graphs of height h. Then in the statement of Lemma 5 we can write $\mathfrak{L} \leq_{\mathrm{h}} \mathrm{TWL}_{s}^{\prime}$.

[^3]: 7 Notice that even in this case, the string produced by T in a printing step (which contains one or more infixes $\# z_{i}$) does not need to be explicitly represented: it only depends on the simulated printing step of T.
 8 When a printing step of T produces an infix $\# z_{i} \# z_{i+1} \cdots \# z_{k}, M_{1}$ can compute in a single step $\left(\left(\cdots\left(\left(\rho \cdot n_{i} \bmod l_{j}\right) \cdot n_{i+1}\right) \bmod l_{j} \cdots\right) \cdot n_{k}\right) \bmod l_{j}$. Since the infix depends only on the printing step of T, this can be embedded in the transition function of M_{1}, without explicitly representing the infix $\# z_{i} \# z_{i+1} \cdots \# z_{k}$.

[^4]: ${ }^{9}$ Fix any bijection π from the binary relations on $[h]$ to the numbers in $\left[2^{h^{2}}\right]$. Then the homomorphic image $f(A, \mathrm{~L})$ of a left symbol $(A, \mathrm{~L})$ is the partial function that only maps the number $\pi(A)$ to itself. The image $f(B, \mathrm{R})$ of a right symbol (B, R) is the partial function in which a number i can only map to itself, and this holds iff $i=\pi(A)$ for some A that matches with B. Clearly then, A, B match iff $f(A, \mathrm{~L}), f(B, \mathrm{R})$ match (by the one two-step cycle going from $\pi(A)$ on the left column to $\pi(A)$ on the right column and back).

