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Abstract

We numerically investigate the self and collective dynamics in a simple model for

vitrimers, polymeric covalent networks which have the ability to dynamically rearrange

the bond structure via exchange reactions, preserving the total connectivity. Specifi-

cally, we study a binary mixture of tetrafunctional and bifunctional particles through

means of molecular dynamics simulations that naturally incorporate the bond-swapping

mechanism. We specifically focus on the dynamics at small wavevector q, by simulat-

ing eight-hundred thousand particles. We observe two distinct collective relaxation

processes: (i) a fast vibrational damped mode and (ii) a slow network restructuring

dynamics. Unexpectedly, the slow process is characterized by a wavevector independent

(q0) mode originating from the swap motion of the bonds.
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Vitrimers1–3 are a new class of polymeric materials in which the network nodes, despite

the covalent bonding, can change their bonded partners via reversible exchange reactions

with unreacted sites. The ability to dynamically rearrange the network structure and the

external control (for example via temperature) of the rate of exchange opens the possibility

to spontaneously heal internal fractures, recycle the material shape, release applied stresses.

Vitrimers significantly differ from thermoplastics and elastomers. Thermoplastics are made

by melt of polymers which can be multiply reshaped but are formally soluble. Elastomers

are cross-linked polymers via irreversible bonds, and hence the topology of the resulting

network is permanent, preventing the possibility to reshape them. Vitrimers are instead

characterised by a controllable viscosity and can in principle flow under applied stress if

the exchange reaction is sufficiently active. In vitrimers the viscosity is controlled by the

presence of a a catalyst,3–5 whose efficiency follows an Arrhenius temperature dependence,

resulting in a strong-glass-former behaviour in Angell’s classification.6

To grasp the basic feature of a vitrimer system, consider a mixture of two different

macromolecules, indicated as A and B in the following (Fig. 1). Particle A has fA bonding

sites and particle B fB. Only sites on unlike particles can bind to each other, forming a

covalent bond, e.g. a bond significantly stronger than the thermal energy kBT . Under these

conditions, after mixing the A and B particles the bonding reaction quickly proceeds till all

possible bonds are formed. Selecting a non-stoichiometric mixture — i.e. fANA 6= fBNB,

where NA (NB) is the number of particles of type A (B)— when the reaction is completed

the system is composed by a network of AB bonds with a fixed number of unreacted sites

of the majority species (Fig. 1-(a) and (c)). When the thermal vibration of the network

brings one of these unreacted sites close to an existing AB bond, an exchange reaction1,3,7,8

takes place, locally rearranging the network topology. The total number of bonds in the

system (and hence the system potential energy) before and after the swap process, remains

unchanged. Since the total number of bonds is conserved, the dynamics in a vitrimer system

can be considered as a stroll on the flat ground state potential energy surface. In time, the
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system explores all possible maximally-bonded configurations such that the maximisation of

entropy (and only entropy) controls the evolution of the system toward the lowest free-energy

state.

The physics of vitrimers is possibly also shared by physical gels well beyond the per-

colation threshold, when the gel consists of a single almost fully bonded cluster.9–12 Under

these conditions, the thermal energy is sufficiently smaller than the bond energy and the

dynamic evolution is controlled by the activated process of bond breaking and reforming.

Only if a nearby broken bond is present, one of the two newly formed defects can rebind,

contributing to the reconfiguration of the network in a different bonding pattern. Differently

from vitrimers, it is the same energy scale of the bond that controls the swapping rate. Gels

of DNA nanostars with controlled functionality13–16 constitute a very appropriate example

of physical gels with strong binding energies.

In the last years, a small number of theoretical/numerical investigations of these new

materials have appeared. The thermodynamics of vitrimers has been investigated at particle

level modelling the system as a binary mixture of patchy particles17 for which the thermody-

namic perturbation theory introduced by Wertheim18,19 can be analytically solved. Theory

and associated numerical simulations have provided evidence that under dilution vitrimers

do not dissolve. The system progressively expels the majority component, evolving toward

the stochiometric relative concentration. The dynamics of the system has been discussed

either via a continuum model focusing on the macroscopic viscoelastic properties of the net-

work20,21 as well as via patchy particle models17 in which the exchange rate (controlled in

real materials by the concentration of catalyst and by the temperature) was treated as an

external parameter.

In this article we exploit the recently proposed swap algorithm22 to perform Molecular

Dynamics simulations of a binary mixture of A and B particles for different values of the

relative concentration, close to the stoichiometric value. We investigate a eight-hundred

thousand particle system to access the small wave vector q region and make contact with
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Figure 1: Sketch of systems with (a) an excess of (bifunctional) B particles (in green), (b)
a stoichiometric mixture (the case considered in this work) and (c) an excess of (tetra-
functional) A particles (in violet), respectively. (d) The patch-patch interaction potential
Vss(rss) (Eq. 2). The red shaded region gives an idea of the extent of the thermal fluctuations
associated to the value of the temperature used in simulations, kBT = 0.03.

the typical wavelength of light scattering experiments. We focus on the self and collective

dynamics as a function of q. While the self dynamics is properly described by a q−2 law,

we discover a remarkable q-independent (q0) collective slow relaxation time. This peculiar

q dependence, to our knowlege never previously observed in a numerical study, is consistent

with what has been recently measured in gels of DNA tetra functional nano-stars23 and in

systems of microemulsion droplets in solution with telechelic polymers.24 In this last system,

the polymers ends preferentially explore the interior of the microemulsion droplets effectively

providing a transient link between them. Finally, we offer an explanation of the q0 collective

model in terms of diffusive motion of the network defects which provides the mechanism

for allowing the network to explore all possible bonding configurations, reshuffling the local

elastic constants.

Model and Numerical Methods

The model we select is a continuous version of the patchy particle model proposed in Ref.17

The system is composed by NA tetra-functional (fA = 4) particles and NB (fB = 2) bi-

functional particles, with the fraction of A particles indicated as x ≡ NA/(NA + NB). The
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four interacting sites of A particles are arranged in tetrahedral geometry, while the two

sites of B particles are arranged in polar geometry. When NAfA = NBfB (i.e. when

x = xfb ≡ fB
fA+fB

= 1/3) the system at low temperature forms a fully bonded network.

When x ≤ xfb at low temperature all A sites are bonded (and hence pA, the probability

of finding an A site bonded, is unity) but there is a finite fraction of unpaired B sites. As

a result, the probability of finding a bonded B site, pB, is less than unity. More precisely,

when all possible bonds are formed (and x ≤ xfb)

pB =
fANA

fBNB

=
fAx

fB(1− x)
< 1

Hence there is a finite number of unreacted B sites equal to NBfB(1− pB), or equivalently

(fA + fB)(NA + NB)(xfb − x). Similarly, the number of unreacted B particles (e.g. in

monomeric state) is NB(1− pB)2.9 In the simulation we keep constant N = 800000 and vary

x from 0.3 to xfb = 1/3. Table 1 reports some information on the explored states. We

note that the percolation threshold (e.g. the presence of an infinite cluster in the system)

evaluated according to Flory-Stockmayer arguments25 is pApB = 1
fA−1

corresponding to

xperc = 1/7. All samples studied here are thus well beyond percolation.

Table 1: List of the investigated binary systems. The table shows the relative composition
x ≡ NA

N
, the number of unreacted B sites (all A sites are bonded), acting as swapping sites,

the probability pB that a B site is bonded and finally the number of unbonded B monomers.
The total number of particles is in all cases N = 800000.

x ≡ NA
N

# unreacted B sites pB B monomers

0.300 160000 0.857 11450

0.320 64000 0.941 1893

0.325 40000 0.963 739

0.330 16000 0.985 121

0.332 6400 0.994 19

0.3325 4000 0.996 8.5

0.333 1600 0.998 2

1/3 0 1.000 0
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The volume is fixed to 128.163 (in unit of the particle core σ), corresponding to a total

number density ρσ3 = 0.38. Interactions between the centers of mass of AA, AB and BB

particles are modelled via a repulsive WCA potential26

V (r) =


4ε
[(

σ
r

)12 − (σ
r

)6]
+ ε for r ≤ 2

1
6σ

0 for r > 2
1
6σ

(1)

The attractive site-site interaction Vss is active only between distinct A and B pairs, it

is a function of the site-site distance rss and it is modelled through the following function,

inspired by the Stillinger-Weber potential27

Vss(rss) =


2ε
(
σ4
ss

2r4ss
− 1
)
e

σss
rss−rc

+2 for rss ≤ rc

0 for rss > rc

(2)

which encodes a short-range attraction (see Fig.1-(d)). Here σss controls the position of

the minimum of the attractive well (of depth ε) and rc is such that Vss(rc) = 0. We set

σss = 0.4σ and rc = 1.5σss. To implement the single-bond per site condition and the

swapping mechanism we encode the method proposed in Ref.22 A detailed description of the

method can be found in the Appendix. Here we outline the idea behind the algorithm. It

consists in adding a repulsive three-body potential acting on all triplets of bonded sites (ABA

or BAB). If a free B site moves close to an existing AB bond, the additional energetic gain

associated to the formation of an extra bond is compensated by an energetic loss of tunable

strength arising from the three body potential. As discussed at length in the Appendix,

the activation energy for swapping is (λ− 1)ε, being λ ≥ 1 a model parameter. Hence it is

possible to tune it from a condition of vanishing activation energy up to any barrier height.

Since the thermal energy of the simulation is significantly smaller than ε, no bond-breaking

processes are observed. Hence the system dynamics can be described as a restructuring of
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the bonds made possible by the swap process. In this condition, the presence of an activation

energy to the swap process dynamics only controls the speed of the network restructuring,

effectively rescaling the dynamics by an Arrhenius factor dependent on the ratio between

the barrier activation energy and kBT . Since we are interested in understanding how the

bond swapping affects the dynamics of the system, we choose to simulate a system where

the swap dynamics is fastest. That is, when there is no significant energy cost in swapping

the bond (λ = 1, see Appendix). Under these conditions, the time scale of the bond process

is entirely controlled by the stoichiometry of the network.

Mass is measured in unit of the particle mass m, energy is measure in unit of ε, kBT is

also measured in unit of ε, where kB is the Boltzmann constant. Distances are measured

in unit of σ and time is measured in units of t0 ≡
√
mσ2/kBT . The equations of motion

are with the velocity Verlet algorithm with a time step δt = 0.003. We initially employ a

modified Andersen thermostat28 to equilibrate all systems at kBT = 0.03. We then perform

production runs in the NV E ensemble. The specific value of T is irrelevant as far as it is

significantly smaller than ε to guarantee that bonds do not thermally break over the course

of the simulation. Since we select x < xfb, all A sites are always involved in bonds and hence

can not initiate swapping processes. The only possible network reconfiguring events are thus

bond swaps where a free B site reacts with a AB bonded pair replacing the B in the bond.

Structure

To appropriately frame the dynamic information in Fourier space, we show the structure

factor of the system in Fig. 2, the partial components SAA, SAB and SBB and the total

SNN = xSAA + (1− x)SBB + 2[x(1− x)]1/2SAB for two different x values. Considering that

only AB bonds are allowed, the closest distance between two tetra functional particles is

about 2σ, showing up as a well defined peak around π/σ. The B particles appear sharply

coordinated with the A at distance σ (see the clear peak around 2π/σ in SAB). Despite the
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Figure 2: Total (SNN) and partial (SAA, SBB, SAB) structure factors for the x = 0.300 (black)
and x = 0.332 (red) systems.
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Figure 3: (A) Bond autocorrelation function nb(t) for different values of the concentration of
A particles, x. (B) Dependence of the average bond lifetime on xfb− x in log-log scale. The
same graph also shows the slow collective relaxation time τs also as a function of xfb − x.

tetra functional nature of the network formed by the A particles via the ABA bonds, no

pre-peak is observed in SAA, a clear indication of a highly flexible and floppy network.29 The

network flexibility shows up also in the large value of the NN structure factor at the origin,

a quantity related to the system compressibility.30 Finally, we note that the large system

size allows us to investigate in details the region qσ < 2, where all structure factors are close

to their q = 0 limit.
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Bond Dynamics

Fig. 3 provides evidence of the reconfiguration of the network caused by the swapping events.

The figure shows the normalised bond autocorrelation function Cb(t) defined as

Cb(t) =
nb(t)− nb(∞)

nb(0)− nb(∞)
(3)

where nb(t) is the fraction of bonds between pairs of particles which were present at time 0 and

which are still present after time t. At infinite time, nb(∞) = fA/NB. Indeed, after an infinite

time, each A particle has the same probability to be bonded to a B particle ( the number

of possible bonds between particles being NANB). The fANA bonds which were present at

t = 0 can thus be still present at infinite time (after several breaking and forming events)

with probability fANA/NANB simply for statistical reasons. The t dependence of Cb(t) has

a complex shape, which can not be represented, for long times, with a single exponential.

On approaching zero, it develops an apparent power-law with exponent around 1.5-2 whose

precise characterisation in terms of survival probability in the presence of multiple random

walkers31 would require much longer simulations. A meaningful typical decay time τb can

be defined as Cb(τb) = 1/e. τb, plotted as a function of xfb − x in Fig. 3-(b), shows a clear

inverse dependence on the total number of defects, diverging in the defect-free network with

stoichiometric composition.

Tagged particle (self) Dynamics

Mean square displacement

The swap process is at the heart of the network reconfiguration. Both the single-particle

(diffusion) and collective dynamics relaxations are slaved to the local changes in the network

topology. The mean square displacement of A particles for different values of the composition

is reported in Fig. 4(a). The time dependence, as commonly featured in slow dynamics
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Figure 4: (a) Mean square displacement of A particles. (b) Diffusion coefficient of the A and
B particles as a function of xfb − x. We recall here that the number of unreacted sites is
6N(xfb − x).

systems, can be separated in three parts, the very short time ballistic region, a subdiffusive

regime signalled by a plateau and the subsequent diffusive region. The plateau height is

approximatively 0.8σ for the A particles. This quantity indicates the extent of particle

displacement which can take place in the absence of bond-breaking processes. Its large value,

compared to typical values of glass-forming liquids, marks one of the differences between

open low-density gels and glasses. Indeed in glasses the height of the plateau, controlled by

excluded volume interactions, is of the order of 0.1σ.32 The diffusion coefficients, calculated

from the long time limit of the mean square displacement are shown in Fig. 4(b) as a function

of xfb − x. Both for A and B particles the diffusion coefficient can be well represented by

the phenomenological expression

D = D1(xfb − x) +D2(xfb − x)2 = (4)

[D1 +D2(xfb − x)](xfb − x)

This expression includes a linear term modelling the diffusion induced by the swapping of an

isolated reactive site and a quadratic contribution arising from interactions between different

reactive sites, which increases with xfb−x. The rhs of Eq. 4 shows that the same functional

form can also be interpreted as a diffusion process fully controlled by the number of reactive
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sites, diffusing across the network with a diffusion coefficient weakly dependent on their

concentration.

Self Dynamics

The self (or tagged particle) dynamics is properly described in Fourier space by the q-

dependent correlation functions

Fself(q, t) =
〈
eiq·[rk(t)−rk(0)]

〉
(5)

where rk(t) is the position of the generic k particle at time t. The average is over all

particles of the same type and over distinct starting times. An additional average over

different wavevectors with the same modulus can be performed by exploiting the isotropicity

of the system. Fig. 5-(a) shows Fself(q, t) for the A particles (FA
self(q, t)) for several q ≡ |q|

values for one x value. Similarly to the mean square displacement, FA
self(q, t) shows a two-step

relaxation, associated to the decorrelation at fixed bonding and to the slow diffusive process.

The time dependence can be accurately modelled by the functional form

Fself(q, t) = Ae−t/τself,f + (1− A)e−(t/τself,s)
β

. (6)

In the studied q range the stretching exponent β is always larger than 0.85 and approaches

1.0 on lowering q. The inset in Fig. 5-(a), compares FA
self(q, t) and exp(−q2〈r2(t)〉A/6). The

similarity between the two sets of curves for small q is consistent with the expected validity

of the gaussian approximation26 and with the identification of the slow relaxation time τAself,s

with the diffusion time given by (q2DA)−1. Similar results (not shown) hold also for the B

particles and for all other x values.
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Figure 5: (a) Decay of Fself(q, t) for the A particles (FA
self(q, t)) for several q values (0.05 <

qσ < 2) at x = 0.325, highlighting the two-step relaxation process. On decreasing q the
fast relaxation is progressively hidden and the plateau height approaches one. The inset
compares for two different q values (qσ = 0.24 and qσ = 1.92) FA

self(q, t) (full lines) with the
gaussian approximation exp(−q2 < r2(t) > /6) (symbols), always for the A particles. (b)
Wavevector dependence of the self slow relaxation time τAself(q) for the A particles.

Collective Dynamics

The collective dynamics describes the way density fluctuations of different wavelengths evolve

in the system. The normalized correlation function of the density fluctuations is defined as

Fcoll(q, t) ≡
1

S(q)
<

1

N

∑
kj

eiq·[rk(t)−rj(0)] > (7)

where S(q) is the structure factor, the average is again taken over different initial times and

the sum runs over all pairs of particles in the system, irrespective of their identity (NN).

Analogous expressions can be written for the AA and BB components. Fig. 6(a) compares

for a specific small wave vector (qσ = 0.15) the self and the collective correlation functions.

Two observations are relevant: first of all, all partial correlation functions (AA, BB and

NN) decay on the same timescale. In the following we will then focus only on the NN

correlation. Secondly, and more importantly, the self autocorrelation function decays on a

time scale much slower than the collective relaxation. This indicates that particle diffusion

is not relevant for the decay of the collective density fluctuations at small wave vectors.

Fig. 6(b) shows Fcoll(q, t) for a generic x value and several q-vectors, in the region qσ < 2,
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Figure 6: (a) Comparison between self and collective decays for x = 0.332 and qσ = 0.15.
(b) Decay of Fcoll(q, t) for 0.04 ≤ qσ ≤ 2 at x = 0.332, highlighting the two-step relaxation
process. (c) Decay of Fcoll(q, t) for 0.04 ≤ qσ ≤ 2 at x = 0.300. Note how the q-dependent
damped sound almost takes over the α relaxation mode at the smallest investigated q.
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where the structure factor is approximatively flat. For larger q, the local model-dependent

structure becomes relevant, affecting the relaxation time. This large-q region has been

extensively investigated in the case of glass-forming liquids.33–37 The function shows a clear

two-step relaxation, a fast decay associated to damped oscillations and a slow decay that

completes the memory loss process. Remarkable, the slow-relaxation decay is identical,

irrespective of the value of q. In all cases, Fcoll(q, t) can be very accurately modelled by a

damped harmonic oscillator correlation function

Fcoll(q, t) = Ae−t/τf cos(Ωt) + (1− A)e−(t/τs)
β

(8)

where A and (1−A) are respectively the amplitude of the fast and slow relaxation processes,

with associated time-scales τf and τs. The angular frequency Ω accounts for the propagation

phenomenon described by the fast relaxation. The slow process is modelled via a stretched

exponential function, with a stretching exponent β to account for the variety of relaxation

times characterising disordered systems. All fitting parameters (A, τf , τs, Ω and β) depend

on q.

An example of the quality of the fit is shown in Fig. 7(a). The fit allows us to extract

the sound dispersion relation Ω vs. q (Fig. 7(b)) and the damping of the sound mode 1/τf .

The q dependence of Ω at small q is consistent with a sound speed of 0.53 ± 0.03 [σ/t0].

Interestingly, while the fast decay time follows a q dependence that approaches at small q

the expected q−2 behaviour, the slow decay time is essentially wavevector independent. This

feature, already very evident in the shape of the correlation function reported in Fig. 6(b),

is highlighted in Fig. 7(c), that reports τs and τf vs. q for all investigated x.

First of all, the fact that the fast dynamics remains constant even for x → xfb shows

that it can be associated without ambiguity to the vibrational dynamics of the permanent

network of bond. Secondly, the fast relaxation time τf as well as Ω do not significantly

depend on the fraction of reactive sites for the range of x considered here. This can be
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rationalising by considering that, according to the Newton-Laplace equation, the speed of

sound (at small q) can be written as Ω =
√

K
ρ

, where K is the bulk modulus of the material.

Since all investigated systems have the same density (ρσ3 = 0.38), the only possible source of

x-dependence is K which, in amorphous solids, is linked to the total number of bonds.38–40

The fact that, for the systems considered here, this number does not change by more than

≈ 10% explains the weak dependence of Ω on x.

The first decay of the correlation function, of amplitude A results from the decorrelation

process induced by the vibrational dynamics (the normal modes of the network). This process

is significantly faster than the slow process (of amplitude 1 − A) at large q but it becomes

comparable in time (due to the different q dependence of τs and τf ) at very small q. Indeed,

the fact that τs is q-independent determines the presence of a crossover wavevector qc at

which the network restructuring takes place on a time scale comparable with the vibrational

process. Fig. 6(c) provides an illustration of such a case. For much smaller wavevectors,

q � qc, the vibrational dynamics does not take place any longer on a network with static

links but on a “homogeneous” sample for which the memory of the original network links

has been completely washed out. Only below qc, hydrodynamic predictions are expected to

properly model the decay of the density fluctuations in the system.
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Figure 8: Scaling behavior of the slow relaxation time. The main panel shows the good
collapse of the curves obtained by multiplying τs by DB for all but the lowest values of x.
The inset shows that multiplication of τs by (xfb − x) is not sufficient to obtain a proper
scaling.

To identify the reasons behind the q0 behaviour of τs we investigate the dependence of
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τs on x. We report the data in two different ways. First we show in Fig. 3 τs vs. xfb − x at

one small q. The comparison with the bond characteristic lifetime shows that the latter is

always at least a factor of two larger than τs. Therefore, the length scale-invariant relaxation

of the density fluctuations we observe does not require the swapping of all networks bonds.

In fact, only a fraction of all bonds need to swap in order to relax the density. Moreover,

the dependence of τs on the number of reactive sites differs from the one of τb. Indeed, while

the former is well described by a power-law with exponent ≈ −1.2, the latter behaves as

1/(xfb − x). Thus, even if the two time scales are clearly connected (both being linked to

the restructuring of the network) their mutual relation is not straightforward.

Fig. 8 shows instead τs normalized by the diffusion coefficient of the B particles (DB),

to account for the efficiency of the swapping process. As shown in the inset of Fig. 8, the

bare number of reactive sites is not a perfect scaling variable, but it is indeed necessary to

incorporate the minor x dependence of the swapping time (see Eq. 4). The quality of the

scaling of the data shown in the main figure for different x confirms indeed that the timescale

of the swapping process fully accounts for the slow relaxation process.

To grasp why the rearrangement of the network topology through the diffusive motion

of the reactive sites gives rise to a decay of the density fluctuations that takes place on

the same time scale for all lengths, we refer to a recently proposed simple model.23 In

Ref.,23 each independent region of the system (e.g. a region of size larger than any static

correlation length) is considered to be a point particle of fixed mass (the bead) attached

to its neighbouring regions via an elastic constant (the spring) which can fluctuate between

different values. The different elastic constant values mimic the different local elasticity

associated to the different local bonding pattern. The system is thus modelled as a one-

dimensional chain composed of beads and springs in the presence of a thermal bath which

induces a viscous damping and exerts random forces on each bead. The resulting equation
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of motion in the over-damped limit is thus

−kn(un − un−1 − l0) + kn+1(un+1 − un − l0)− γ
dun
dt

+ fn = 0 (9)

where un is the position of bead n, kn is the elastic constant acting between bead n and n+1,

l0 the equilibrium distance, γ the viscous damping on the beads and fn the delta-correlated

random force acting on bead n, whose amplitude is fixed by the dissipation-fluctuation

theorem. Periodic boundary conditions are also assumed. When the elastic constant are

equal (e.g. kn = K for all n) the above equation shows that the density fluctuations relax with

a time τ = γ
K

(ql0)
−2 which grows with q−2, the typical dependence of the dispersion relation

in colloidal crystals. To introduce in the model the possibility that the local elastic constant

changes due to the intervention of swap processes which alter the network connectivity one

can assume that each kn can independently fluctuate between two different equiprobable

values K1 and K2. The autocorrelation time of the spring value can be described assuming

a simple Markov process as

< kn(t)kn(0) >=

(
K1 −K2

2

)2

exp (−t/τs) +

(
K1 +K2

2

)2

(10)

where τs indicates here the average time between changes in the kn values.

A change in the elastic constant brings in a change in the local density which propagates

with the fast damped oscillation motion, providing the channel for density decorrelation. The

numerical solution of this model23 shows in this case the presence of two relaxation processes:

a process with a q−2 dependence (the same observed in the case of identical springs) and an

additional process with a timescale controlled by τs, i.e. the time required by a spring to lose

memory of its initial value. Thus, under the assumption that particle diffusion (not included

in the model) is not relevant for relaxing the density fluctuations and for length scales larger

than any spatial correlation length in the system (such that independent relaxing units can

be defined), this model predicts a wave vector independent α-relaxation process. In the
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system studied here (and in Ref.23), the time-scale associated to the restructuring of the

network plays the role of the characteristic time of the local springs and it is fully controlled

by the rate of the bond-swapping process, which therefore sets the overall relaxation time.

For large length scales, the system can be thus imagined as a composition of independently

relaxing units, all of them forgetting their original state with the same time τs. As a result,

the local nature of the relaxation process and the absence of any correlation between the

relaxation of the relaxing units is at the heart of the q0 behavior. The q0 process would not

be observed if the relaxation of the single unit would require for example a relaxation of the

particle relative composition, which would then impose, by virtue of particle conservation

a diffusive contribution to the relaxation, consistent with the mode-coupling predictions for

binary systems.41,42

The simple model introduced above can be easily generalised by considering a continuous

distribution of spring constants of finite variance. Indeed, these can be considered as proxies

for the varying elasticity, which in turn is connected to the network topology of the local

relaxing units. A sketch of the basic physical idea behind the model is shown in Figure 9.

Finally, we note that the occurrence of a q-independent relaxation time results from the

solution of mode-coupling equations for one-component liquids in the small wavevector re-

gion42 when only density and current fluctuations are included in the theoretical description.

This q0 behavior has been linked to a conservation law.41 Indeed, the occurrence of a q0 mode

in one-component systems has been ascribed to the existence of a conserved quantity (the

number of particles) that is associated to a flux that is also conserved (the overall momen-

tum). By contrast, in mixtures momentum is not conserved at the single-species level,41

since there is inter-species momentum exchange. The present system sits somewhat in the

middle, since it is a binary mixture (and thus should not exhibit a q0 behaviour according to

the above argument), but concentration fluctuations are greatly suppressed by the nearly-

stoichiometric conditions and by the fact that bonding is allowed between unlike species only.

Unfortunately, our results cannot reliably corroborate nor rule out the possibility that the q0
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Figure 9: (a) The sketch represents a collection of independently relaxing units (small
squares), whose size is larger than the static correlation length. The different colours in-
dicate the different values of the local elastic constant, which fluctuate in time, according to
the microscopic dynamics provided by the bond-swapping process. Only when the elapsed
time is of the order of τs the local elastic constant is uncorrelated with the value at time
zero. The horizontal direction indicates the time evolution, the vertical direction indicates
the length scale probed by different wavevectors q (progressively enlarging the field of view).
The relaxation of the elastic constant over any length scale requires the decorrelation of all
independently relaxing units contained in the observed length scale, a time which is always
equal to τs. (b) Collective decay of the density fluctuations for the model (Eq. 9-10) when
τs = 1. Curves for ql0 = 1, 2, 4, 8, 16, 32, 64 are shown. For ql0 & 10, two relaxation processes
are observed, one q-dependent linked to the vibrational dynamics and one q-independent
associated to the spring relaxation process. In the inset a comparison between relaxing and
non-relaxing springs is reported for ql0 = 4 and ql0 = 40.

behaviour observed here is directly connected to momentum conservation on an intermediate

length scale.

Summary and Conclusions

We have investigated, via Molecular Dynamics simulations, the self and collective dynamics

in a non-stoichiometric binary networks in its fully bonded configuration. Specifically we
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have studied the experimentally relevant case3 in which tetravalent particles (A) are mixed

in excess of bivalent particles (B) such that in the fully bonded condition an excess of open

B-type bonds exist. When the thermal vibration of the network brings one of these unreacted

site geometrically close to an existing AB bond, a swap process takes place which allow for

network restructuring. The implementation of the recently proposed swap algorithm22 makes

it possible to perform Molecular Dynamics simulations which mimic exchange reactions.

By simulating very large systems for very long times, exploiting the computational power

of graphic processing units with a home-made code, we have been able to access very small

wave vectors, comparable to the one probed in light scattering experiments (corresponding

wavelength up to 100 times the nearest neighbour distance). We have found that in this small

q region the collective density fluctuations decay with a two-step process. The fast process

is associated to the damped elastic motion of the system at fixed bonding pattern. The

slow-process is associated to the restructuring of the bond network, mediated by a sequence

of elementary bond-switch processes. Interestingly, a single time scale controls the decay of

the slow density fluctuations at all investigated wave vectors. A wave vector independent

collective relaxation has been previously reported in some soft-matter systems, including

rod-like micelles,43 solutions of telechelic ionomers in toluene reversibly connected by the

association of their ionic terminal groups,44 in water-soluble polymers with hydrophobic

end blocks acting as bridges between different droplets24 and in polymer melts.45,46 Recent

simulation of a highly directional tetrahedral network also reported indications of a q0 mode,

but the limited system size did not allow for a proper determination of the small wave vector

behavior.47

Theoretical models based on memory functions48 in which the decay of the memory is

assumed to be independent on the wave vector have been in the past used to interpret the

aforementioned experimental results. Mode coupling theory,42 in the limit of very small wave

vector, also predicts a wave vector independent memory function and a q0 mode. Hence we

speculate that the q0 behaviour should be shared by all systems composed by independently
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relaxing distinct regions in the region of wavelengths larger than the characteristic size of

the relaxing units, if particle diffusion is not relevant. Finally, our results also suggest that

vitrimeric systems, in which the bond-switching mechanism is at the hearth of the network

reconfiguration should have in the q0 mode their characteristic signature.

Acknowledgements

We thank T. Voigtmann and E. Zaccarelli for fruitful discussions.

Appendix: the bond-swapping algorithm

For the sake of completeness, we review here the method introduced in Ref.35 to implement

a bond-swapping mechanism in Molecular Dynamics simulations.

We assume that the system is composed by two type of particles (A and B), with each

having a number of interacting sites providing the particle functionality (or valence). Sites

of unlike species interact through a bonding potential (Eq. 2 and Fig.1d of the main text).

In a swap process, when an unreacted site of a particle finds itself close to a bonded pair, it

gives rise to an activated complex which then decays again in a bonded pair and an isolated

unreacted site. The swap is successful if the incoming particle replaces the originally bonded

particle of the same type. This can be schematised with the reactions

AiBk +Bj = AiBj +Bk or AkBi + Aj = AjBi +Bk (11)

where Aj indicates the j site of a type A particle and analogously Bk indicates the k site of

a type B particle.

An effective computational algorithm must fulfil two conditions: (i) each site should not

be able to form more than two bonds. Indeed, each site should be bonded with two other

sites only during the swap process. This is a necessary condition to model particles with
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well-defined functionalities. (ii) It must be possible to control the activation energy of the

swap process. It should be possible to tune the activation energy from infinity (no-swap

processes, only bond breaking and reforming) to zero (no energetic cost for swapping).

To fulfil the two previous conditions, the method introduced in Ref.22 suggests to comple-

ment the two-body interaction with a three body potential V3b that acts between all triplets

of bonded sites (either ABA or BAB). Indicating with rijss and rikss the distances between

sites i and j and i and k, the three-body contribution reads

V3b(r
ij
ss, r

ik
ss) = λεV3(r

ij
ss)V3(r

ik
ss) (12)

with

V3(r) =


1 for r ≤ σss

−Vss(r)
|ε| for σss < r < rc.

(13)

where λ is a parameter controlling the activation energy, ε is the depth of the two-body

bonding potential, σss is the optimal bonding distance (the position of the minimum in the

bonding potential in Eq. 2) and rc is the cut-off distance in the same bonding potential.

Note that, since Vss(r) is always negative for r > σss, V3 is always positive. Thus the sign of

the three-body contribution is controlled by the sign of λ.

To grasp how the method works, we use the notation of Eq. A11(left) and consider how

the potential energy changes when an unreacted site Bj moves to a distance r < rc from Ai,

the site involved in the AiBk bond. Since the bonding interaction involves only distinct pairs,

only the Ai site is involved in two interactions and hence only one single triplet needs to be

considered (BjAiBk). The potential energy of these three particles is thus given by the sum

of the pair interaction energy between Bj and Ai, the pair interaction energy between Bk and

Ai and the triplet interaction energy between Bj, Ai and Bk. Assuming the limiting case in

which both BjAi and BkAi are at the optimal distance σss, then Vss = −ε and V3b = λε. As
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a result, the total potential energy is −2ε+λε. If λ = 1, then the additional gain of forming

one more bond is exactly compensated by the three-body contribution: the swap process

does not require any energetic cost. On increasing λ, the formation of a triplet becomes

energetically expensive, providing the possibility of encoding the presence of an activation

barrier.

The three-body potential helps also avoiding the formation of multiply bonded sites.

Indeed, if three B interacting sites are close to one A site, then the bonding potential

contributes about −3ε. However, the three body potential gives +3λε (since there are now

three possible triplets), generating a configuration with a significantly higher potential energy

than a bonded pair.

The swap method thus requires λ ≥ 1. For λ = 1 the swap dynamics is most effective,

and the restructuring of the bond network is not hindered. By contrast, values of λ > 1

allow to simulate the effect of an activation energy on the swap process.

References

3. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials

from permanent organic networks. Science 2011, 334, 965–968.

1. Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and

responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173.

2. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks

with glass-like fluidity. Chemical Science 2016, 7, 30–38.

4. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vit-

rimer glass transition. ACS Macro Letters 2012, 1, 789–792.
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