UNIVERSITA DEGLI STUDI DI MILANO
FACOLTA DI SCIENZE E TECNOLOGIE

Ph.D. course in Industrial Chemistry,
Chemistry Department

Computational studies of
Protein-Protein and
Protein-Antibody interactions

Implication for Molecular Design

Supervisors: Ph.D. Candidate:
Prof. Laura Belvisi Filippo Marchetti
Prof. Giorgio Colombo Cycle XXXIII
Coordinator:

Prof. Dominique Roberto

Anno Accademico 2019-2020






Contents

Contents i
Motivationl iii
1 Introductionl 1
[1.1 A general view of Protein-Protein Interactions|. . . . . . . .. . .. 1
(1.1.1  Landscape and population shift in protein binding| . . . . . 3

(1.1.2  The impact of different binding models| . . ... ... ... 4

1.2 Computational methods| . . . . . ... .. .. ... ... ...... 4
[1.2.1 Docking| . . .. ... .. ... .. .. 5

[1.2.2  Molecular Dynamics| . . . . . . .. ... ... ... ..... 5

[1.3  How to predict the interaction regions on proteins and study the

| consequences of binding| . . . . ... ... ... 6
(1.3.1  Energy decomposition and MLCE method|. . . . . . . . .. 6

(1.3.2  Evolutionary Trace|. . . . . . . ... ... ... ... .... 8

1.4 Small molecule modulation of dynamic states| . . . . . . ... ... 10
[1.4.1  Goodness of prediction assessment| . . . . . ... ... ... 12

(I Protein-Protein interfaces and Antigen-Antibody recogni- |
itionl 15
|2 Trade-off between evolution and energy in PPlIs | 17
2.1 Computational implementation| . . . . . . . ... ... ... .... 19
P2 Resulsl. . . . . oo 23




ii

[3 Detection of PPIs in antigenic proteins]

B1

Antigen recognition in the immune system|. . . . . . . . ... ...

B2

Epitope prediction in multidomains proteins|. . . . . . . . . . . ..

3.3 Case of study: tully glycosylated SARS-CoV-2 spike protein| . . . .

[3.3.1 Introductionl . ... .. ... .. ... ... ... .. ...

[3.3.2  Protein structure and the role of the glycan envelope|. . . .
3.3.3  Implementation|. . . . . . . ... ... ... ... ... ...

(I Consequences of Binding|

4 Computational study of allosteric proteins|

4.1 An allosteric model: Human Hsp90|. . . . . . . ... ... ... ..
4.2 Building a learning classificator for ligand activity| . . .. ... ..
M21 Tntroductionl . ... ... ... .. ... ... 0.
4.2.2  Computational Implementation| . . . . . .. ... ... ...
4.2.3  Results and Discussionl. . . . . . . ... ... ... ... ..
4.3 Allosteric effects in integrin avpg6 | . . . . . . .. ... ... ...
65_Conclusions
APP d

A KS and AD values complete list|

IB AUC values complete list|

|C Molecular structure of all compounds|

ID Features comparison|

|[E ECFP and SVM comparison|

[ Distance Fluctuation analyses|

(Bibliography|

33
33
35
37
37
39
40
41

49

51
ol
53
93
95
o7
63

71

77
77
83
89
95
99

103

105



Motivation

Proteins are the workhorses of cells: they carry out the most disparate tasks,
from structural organization of cytoskeleton, to active and passive transport, to
the catalysis of chemical reactions and the relay of information. Proteins do not
work in isolation but in finely regulated networks, where they interact with other
partners in a delicate interplay of formation and disruption of multicomponent
assemblies.

The genomic revolution, the advancements in experimental analytical and struc-
tural approaches, and the development of proteomics and interactomics have made
available a wealth of data to analyse. Chemistry occupies a center-stage position
in this scenario, as chemical principles in chemistry underlie the determinants of
interactions while the development of small molecule interactors of biomolecules
may help understand the wiring of specific biological pathways. In parallel, the
unprecedented increase in computer power in the last few years has had a dramatic
impact in our capacity to investigate biological systems at the highest possible level
of resolution. In this context, high performance computing has opened the possi-
bility to investigate complex systems by simulating their dynamics and study of
equilibrium and non-equilibrium settings in realistic settings. Molecular Dynam-
ics (MD)simulations have emerged as one of the privileged methods to disentangle
the intricacies of biochemical systems. For each atom of the system one can solve
its Newton equations of motion, obtaining a trajectory in the phase space for the
entire system, and study its behavior in equilibrium and non-equilibrium condi-
tions. The constant rise in computational power gave the possibility to scientists
to study larger and larger systems, while the advances in experimental techniques
enhanced the possibility for direct comparisons between wet and in silico data at
similar levels of resolution. Yet, despite the validity of Moore’s Law (i.e., the ex-
ponential growth of the computing power due to transistors miniaturization), the
timescale of the events that can be simulated has an upper limit of the millisecond
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with tailor-made computers which is not enough to study some biologically rel-
evant phenomena, such as protein-protein interactions of the effects of allosteric
ligands on the actual functionally-oriented motions of proteins. Starting from
these considerations, in this thesis, I have set out to develop and validate novel
methods to predict the location of potentially interacting surfaces on proteins and
to predict the impact of small molecules on the activation vs. the inhibition of pro-
teins’ functional dynamic states. To this end, I have combined physico-chemical
approaches to the study of protein dynamics and generate novel approaches that
may overcome the current limitations of pure brute force MD simulations.

The work reported in this thesis is split in two parts, the first part is dedicated
to the study of methods for the prediction of protein-protein binding while in
the second part is adressed the study of the consequences of protein binding. In
Chapter 1, I will give a general introduction to the problem of protein-protein
interactions and to the approaches we have developed in this context. I will also
introduce Machine Learning methods and Artificial Intelligence concepts, which
we have applied to extract from normal MD simulations descriptors able to indi-
cate whether a certain ligand will result in the activation or inhibition of protein
functional states. In Chapter 2 there is a comparison of distinct approaches for
the prediction of residues involved in protein interfaces. In Chapter 3 there is an
application of prediction methods for the detection of epitopes in SARS-CoV-2
spike protein. In Chapter 4 there are presented two analysis of allosteric systems.
One is the implementation of a learning classificator inside a docking protocol, in
order to discriminate the activity of a ligand. The second is the study of allosteric
signal in the dynamics of integrin av36.



CHAPTER

1

Introduction

1.1 A general view of Protein-Protein Interactions

Interactions among proteins are essential for the maintenance of cellular activity
and the modulation of protein complexes formation has an impact on signal trans-
duction, correctness of folding, antibody recognition and many other biological
processes. Therefore the comprehension of the physico-chemical traits underlying
the formation of those complexes and their interactions will be crucial for the
rational design of new drugs. It is important to underline that the same general
physicochemical principles underpin the binding mechanisms of different types of
biomolecules, from proteins to nucleic acids. Therefore, it is possible to classify
the interactions without explicitly indicating the chemical nature of the ligands
using different criteria. A possible classification criterion may reside in the size
of the ligand, that is the distinction between small molecule or macromolecule
binding, or a classification between “inactive” or “active” molecule, whereby the
interacting particles can be considered as rigid or dynamics bodies, respectively.
Further choices could be stability of the protein as a monomer and/or the dynamic
profiles of the proteins and the ligands. Once the generality of the principles is
pointed out, one can focus on general cases with a protein-protein and protein-
peptide interactions and the models used to describe these interactions. Different
general conceptual models have been developed to describe protein interactions,
which I will briefly revise in the following.

Lock and Key

The first model for interactions in proteins (which covers both the cases of protein-
protein and protein-ligand interactions) is “ Lock and Key ” (LK) mechanism
proposed by Fisher in 1894[91]. This theory considers the interaction of proteins
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2 1. Introduction

only on the basis of surface complementarity of the binding partners, that are
supposed to remain rigidly preorganized in their unbound structure conformation
upon the binding event.

Induced Fit

The idea of binding proteins viewed as rigid blocks, central in the “ Lock and Key ”
model, was called into question, arising the hypothesis of alteration of the protein
conformations upon binding. This hypothesis was corroborated by the observation
of the experimental crystal structures of bound vs. unbound molecules, which
highlighted changes in the backbone of the structures [23]. On this basis, the
Induced Fit (IF) model was first proposed by Koshland, explaining protein binding
as a series of conformational changes that are triggered progressively through
molecular association[I10]. It may be expressed as:

R + L = RL = (RL)* (1.1)

where the receptor (R) and the ligand (L) first form the complex RL and subse-
quently a conformational change leading to the final, active state (RL)*[117].

A notable example of the characterization of induced fit in protein binding is
represented by a study by Stella et al., who built a model using quantitative
data[I85]. The authors conducted time-resolved fluorescence analysis in order to
study the kinetics of GST P1-1 dynamics. Fluorescence data results indicated
that apo-GST has flexible regions and the protein adopts at least two families of
conformations. With this data they could prove the relevance of structural fluc-
tuation for the binding model: the process is divided in two steps. In the absence
of substrate the region of the binding site has frequent (with timing faster than
milliseconds) fluctuations between the different structures, the flexibility helps the
partner to binds forming a weakly bound intermediate complex. Subsequently a
much slower transition stabilize the complex in a final conformation. In this case
the fluctuations in the unbound conditions help the substrate to reach an optimal
docking pose.

Conformational Selection

Improvement in spectroscopy and nuclear magnetic resonance technique extend
the ability of scientists to probe conformations of folded protein in states alter-
native to the native, ground state. Such conformations may be populated as
a consequence of the thermal activation of specific dynamic modes. Structural
investigations permitted to observe that these higher-energy conformers are com-
patible with the conformational variations observed in ligand binding events or in
catalytic steps in enzymes[123][208]. Therefore, is not necessary to have binding-
induced structural rearrangements and protein binding can be rationalized with
the Conformational Selection (CS) model. The CS model was first proposed by
Monod et al.[140] describing protein allostery and later adjusted for protein in-
teractions by Kumar et al.[I17]. Starting experimental observations were made
by Zavodszky[218] and successively the theory strengthen when Frauenfelder pub-
lished his paper on the energy landscape of protein[93]. This model depicts the
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unbound state of a protein as an ensemble of conformations, in which the eventual
bound conformation pre-exists the binding event. During the binding event, the
ligand selects its partner among the conformers in the ensemble, the final struc-
tures of the complexes depending on their binding energy. The conformational
selection process may be formalized as follows:

R R" R .. +L = (R'L)* (1.2)

where R, R”... are different conformers of protein receptor R; ligand L selects
and binds in the activated complex (R L)* with one of the conformers (R” in this
case) without intermediate steps. The processes taken in account, conformational
changes and binding/unbinding paths, need thermal activation and the crossing
of a free-energy barrier. Usually processes of this kind spend less time in the
transition (time required for barrier-crossing) with respect to the states between
barrier-crossing events (dwell times)[208]. That is observed in single-molecule
experiments where transition times between conformations of a protein happen
below experimental resolution, and the conformational changes are detected as
leaps between conformers[176].

1.1.1 Landscape and population shift in protein binding

The wider conceptual generalization for protein-protein and protein-ligand bind-
ing is represented by energy landscape model. This was initially applied to study
folding mechanism with the introduction of folding funnels and subsequently it was
extended to provide a general theory for protein binding[132]. Given that proteins
display a moltitude of conformations in solution they could be defined in terms of
statistical distributions. In particular the number of conformers depends on the
flexibility of the molecule: for example, the more rigid is a protein, the smaller is
the ensemble of structures. Moreover, the populations of conformers do not follow
a plain distribution but some conformers have higher statistical weight, while for
others the weight might be low. According to the funnel concept for folding, mul-
tiple conformations run downhill along the funnel by multiple routes and in prox-
imity of the funnel bottom there are a range of different conformers[27][93][124].
The extent of the ruggedness of the bottom, defined by the depths of the wells and
the height of the barriers, affects the size of the ensemble of conformations[132].
Similar characteristics are found in binding processes. Therefore, it is possible
to extend the core idea of folding funnels into binding funnels. A binding funnel
has a rugged bottom, like the folding one, that defines a conformational ensem-
ble of protein complexes. In this case the ruggedness establishes in what manner
the structures in the complex are allowed to bind, and what structures of the
complexes can be populated[117].

This model could be extended to the so-called Dynamic energy landscape con-
sidering the hypothesis that the landscape of a funnel is not static but can change.
The essence of the extension lies in the addition of environmental factors[197]. The
environment can change due to merely physical factors, such as temperature, pres-
sure, pH or ionic concentration, or, in alternative, the factor could be a binding
partner. Studies by Sabelko et al. showed the possibility of environmental influ-
ence, observing a non exponential kinetics in the folding of some proteins caused
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by a modulation of the free energy surface following a raise in temperature from 2
to 88 C°[I70]. The landscape is thus determined by specific environmental condi-
tions; alterations of those conditions modify the wells’ steepness, the bumps and
barrier heights of the funnel. For example, if the funnel was to become gradu-
ally sharper and sheerer, this would imply that external factors make the protein
more rigid. Dynamic changes in the landscape imply that the also the kinetic
of transition between conformers are modified and, consequently, the size of the
populations associated to the conformers. A population shift can be observed:
structures that had small statistical weight become more represented in the en-
semble and vice versa.

1.1.2 The impact of different binding models

For a better comprehension of the binding mechanism it is interesting to evaluate
the impact of the different binding models on the studies of protein interactions.
Indeed, some studies tried to characterize the association of flexible proteins and
the impact of IF and CS[47]. Stein et al. carried out a systematic study developing
a metric system in order to assess the frequency of rigid binding and the energetic
cost of a conformational change[I84]. The authors use both RMSD (root-mean-
square deviation) differences and descriptors derived from normal mode analysis
to find that most of the analysed proteins do not display notable structural re-
arrangement upon association, suggesting that LK model may represent a wide
range of binding events. In cases with significant conformational changes, many
kinetic signatures for IF and CS are found although for some proteins the metric
cannot discriminate between the models. In addition, it also shown that struc-
tural changes in the backbone do not pay an high energetic price. The authors
suggest that all three modality can coexist and that for certain families or domains
one of the model prevails over the others. The process of structural changes is
often coupled to ligand binding and that coupling could be complicated, making
it difficult to distinguish between an IF or a CS mode. Progresses were made us-
ing data obtained in relaxation experiments, like single-molecule FRET (Forster
resonance energy transfer) or NMR (nuclear magnetic resonance), where bind-
ing/unbinding occurrence and conformational changes were decoupled showing a
time order[208]. In order to better represent this dual behaviour, Csermely et al.
proposed an extension of the original conformational selection model to include
both lock-and-key and induced fit, describing the binding as a mutually condi-
tional step-wise recognition and encounter process[39]. In this context, a local
version of CS models could also be developed, where some protein segments, such
as hinge areas or zones with separate motion, are considered more significant than
others in the binding event.

1.2 Computational methods

In this section I introduce two common computational methods that have been
used to study the problem of recognition between two proteins or between a ligand
and a protein, that are Docking and Molecular Dynamics. Next, I will give an
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overview of the methods used and developed in this thesis to tackle those problems.

1.2.1 Docking

Protein-ligand and protein-protein docking have been representing the common
practice in the prediction of relative partner orientations in bound protein com-
plexes. At its basics, molecular docking is based on modelling the interactions be-
tween compounds including electrostatic Coulomb-like potentials, van der Waals
forces and hydrogen bonds. In order to quantify the goodness of the binding pose
all the interaction terms are condensed in a docking score and various methods
have been developed over the years for the docking score evaluation and the gen-
eration of the poses. In the example of elementary rigid-body systems the ligand
position is searched by scanning a six-dimensional space, three dimension for ro-
tations plus three for translations, for a correct fitting in the binding site[4]. This
trivial example was improved introducing a molecular mechanics energy functions
and information about the location of binding residues. During the last decades
many different docking algorithms have been released for both academic and com-
mercial use. In the case of protein-protein binding, the docking approach can

be seen as a “ ab initio ”

method for the generation of viable hypotheses on
the relative placement of interaction partners and for the definition of potential
complex structures. In general, most of those algorithms employ optimal shape
complementarity as a core ratio in interactions prediction[I80]. The most popular
methods use fast Fourier transform correlation [II8][I11], that helps in the indi-
viduation of the regions with an optimized match between complementary protein
surfaces, or geometric hashing methods for a fast comparison of geometric surface
descriptors[I35]. Another option in the generation of complexes is the simulation
of protein-protein encounters with molecular dynamics (MD), Monte Carlo, Brow-
nian motion or multi-start energy minimization[217]. Those approaches add to the
binding partners a form of structural flexibility but are definitely slower than FFT
or hashing methods. Conformational changes are also included with the addition
in the energy minimization step of collective normal mode directions[216]. Finally,
if the proteins are docked starting from completely unbound partners, a wide en-
semble of candidates is created, and the selection of the best solutions among
all the candidates could be subjected to the low accuracy of scoring functions.
The process could be improved adding experimental data about the binding re-
gions or residues known to be in contact in the complexes obtained, for example,
with site-directed mutagenesis, cross-linking experiments, NMR studies, FRET
characterizations etc. Some software explicitly incorporates this information to
guide the search process in the definition of the most likely bound conformations.
The most used examples include HADDOCK [48], ClusPro[214], PyDock[I52] or
ZDOCK[R0Q].

1.2.2 Molecular Dynamics

Molecular Dynamics is a method for the simulation of a many-body system evolv-
ing under the laws of classical mechanics. The aim of such simulations is the
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sampling of physical plausible states for the computation of properties at equilib-
rium. Basically, a Molecular Dynamics task consists in the integration of Newton’s
equation of motion (see Formula [1.3)), collecting a spatial trajectory of the atoms

of the system.
d*z; F
> = — (1.3)
dt m;
meaning that a particle ¢ of mass m; moves subjected to a force F,. The force can
be derived from the potential function V (7) that describe the essential interactions

of the system:

ov
81“2-
The potential function comprises the interactions between all the particles and

can be viewed as a potential energy term in function of atomic positions 7 =
r1,72,...,7N. A common expression V for a all-atom protein simulation is:

F= - (L4)

=S L Y gme—eo)u DT AR

bond angles impdihed (1 5)
Cio(i C’ 1,7 iqi )
I Z Kw 1 1 cos mb Z 12 ] 6(6 ]) + q:q;
re. Amegerri;
dihedral (3,5) J 1)

All bonded, angular and dihedrals are modelled with harmonic terms, while for
long range interactions both Lennard-Jones and Coulombian potentials are used.
The parameters are obtained from experimental data and by exploiting high qual-
ity ab initio calculations, then collected in a force field. During the years several
types of force field were produced, and the choice of the appropriate set of param-
eters is restricted to the context in which it has been developed for. Different sets
of force fields and integration algorithms were developed because the simulation
of molecular systems with a huge variety of atoms and interactions, constraint
and boundary conditions requires a refined treatment with sophisticated software.
Commonly used software packages for the simulation of molecular systems were
provided by both academia and development houses, such as: AMBER, NAMD,
GROMACS, CHARMM and CHARMm[30][147] [2][26].

1.3 How to predict the interaction regions on proteins
and study the consequences of binding

In this thesis, the main questions are the prediction of the potential interaction
sites on a protein, as well as the evaluation of the possible consequences of bind-
ing. Here, I will briefly review the main methodological approaches I applied and
further developed to tackle these two fascinating problems.

1.3.1 Energy decomposition and MLCE method

As stated in the initial paragraph of this chapter, structure, dynamics and bind-
ing are strictly intertwined. In this context, the investigation of the determinants
of protein structural 3D organization can aptly inform on the location of regions
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endowed with functional, partner recognition properties. To start putting this
subject in perspective, the analysis of the impact of mutations on protein sta-
bility shows differences from highly susceptible sites to zone where the effect on
stability is low[139], suggesting that the stabilization energy of a protein has an
unbalanced distribution among the residues. Extensions of this context reach out
to the rationalization of enzyme catalysis: the concept of Discrete Breathers, i.e.
zones where the protein can store the energy received by excitation|[I72][I57], has
permitted to build a theoretical frameowork of biological behaviours such as the
ability of enzymes to redirect the energy obtained after substrate docking to carry
out chemical reactions[86]. It has computed that discrete breathers can release
from 20 to 65% of the reserve of energy during structural rearrangements|[39][158].
In this framework, our group developed a method to extrapolate the contribu-
tion of residues to the stability of a protein starting from the crystal structures of
the native state. Overall, the method, called the Energy Decomposition Method
(EDM) analyses the organization of pair-interaction energy[193]. It consists in
the extrapolation of the main components of the matrix of interactions of all
residues pairs, obtained on a single reference structure or averaged over an MD
trajectory. For the energetic interactions only nonbonded terms are considered
including Coulomb electrostatic and van der Waals potentials with the addition
of a solvation related term using a MM-GBSA or MM-PBSA approach. The pair
interaction term, for the couple of amino acids ¢ and j, is thus:

Eznjb — Elgzjlect + EZ\;dW + ijolv (16)

Those terms form a Nz N interaction matrix, for a protein with N residues, which
can be represented in terms of eigenvectors:

N
M;; = Z)\kwfwf (1.7)
k=1

where the eigenvalue is A* and wf are the components of the corresponding eigen-
vector. The total non-bonded energy can thus be defined as:

E™ ="M, (1.8)
ij

The eigenvectors are reordered in the summation according to the associated eigen-
value so that the first is the lowest (most negative), in this case \j@'@!T is the
term with the highest contribution to the total energy. In the case of globular
proteins with a well-defined structure, it was verified that the interaction matrix
can be approximated by the matrix M [193][143]:

Mij ~ MZJ = Alwilw]l (1.9)

reducing noise due to tenuous interactions in the identification of residues with a
relevant contribution to stability. Therefore the total energy becomes:

E™ =" \wlwj (1.10)
ij
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The physical meaning is that every couple of residues (7,j) interacts with an
energy approximated to Alw}w}. A1 is a coupling parameter that defines the energy
associated to the eigenvector @!'. The components of @' represent the contribution
of each single residue to the global stabilization energy of the protein.

The energy decomposition was further extended for the study of multi-domain
proteins[95] and interactive regions prediction[I73|[155]. In the latter case, the
extended method is called MLCE (Matrix of the Local Coupling Energy). The
rationale behind MLCE is that binding regions appear to have little role in par-
ticipation in stabilization of the 3D structure, as they should be prone to support
conformational changes and establish new interactions with a new partner at a
minimal energetic cost. In the case of protein antigen-antibody interaction, more-
over, interaction regions, a.k.a. epitopes, should be able to undergo mutations
without impacting on the stability of the functional folded state[I69]. For these
reasons, our algorithm searches for localized networks with low intensity coupling
with the remainder of the protein in the simplified interaction matrix. To this
end, it is necessary to add topological information to the energetic one in order to
unveil localized region with minimal internal coupling, which define potential in-
teraction patches. That is obtained filtering the approximated interaction matrix
with a contact map built with the scheme:

1 ifry; <6.5
Cy=4 7= (1.11)
0 ifr;y; >6.5

Where 7;; is the distance from residue ¢ and j and the cut-off is 6.5 A. The final
Matrix of the Local Coupling Energy is then computed with:

Lij = Cyj - Mj; (1.12)

In this matrix the interactions between residues L;; is then filtered to extract
only the coupling with the weakest interactions. Such regions represent putative
interaction areas (or epitopes).

1.3.2 Evolutionary Trace

Evolutionary studies have highlighted that proteins may preserve their folds even
in the face of low sequence conservation. Indeed, it was aptly demonstrated that
a group of homologous proteins with sequence similarity as low as 20% could
display a maximum RMSD variation of 2.4 A[35]. At the same time, residues in
active sites tend to have a lower mutation rate, meaning a push towards activity
preservation from evolution[224]. Those observations suggested scientist to look
at the most conserved residues for the prediction of functionally relevant regions.
One requirement for this task is the definition of a figure of merit to report on
the actual conservation of a residue in a family of proteins. For the measurement
of amino acid conservation, it is possible to make use of Shannon’s entropy[178§],
defined as:

S@) = pla, a)in(p(z, a)) (1.13)
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where for a residue x the value p(z,a) is the probability to have amino acid a in
position z. The probability to find a certain amino acid in a position could be
approximated with occurrence frequency, which can be computed from Multiple
Sequence Alignments (MSA) of different proteins homologous to the one under
study: in this picture every column of a MSA corresponds to the amino acids that
are detected for a certain position in the protein fold and the occurrence frequency
of every amino acid is obtainable by simple counting. The highly conserved sites
are the ones with a lower entropy: in fact the lowest value is observed with a
single amino acid at a certain position (no variability, occurrence frequency of 1).
The value then raises while the variance is increased. Entropy gives a significant
evaluation of the variability but it does not contemplate how the amino acids are
distributed with respect to the similarity of the sequences and if the divergence is
driven by evolution. For example, we can consider two residues (positions in the
alignment) with the same frequency for an amino acid. In one case, the presence
of the amino acid is shared only among sequences with high similarity while in
the other case the amino acid is widespread regardless of the degree of similarity
among sequences. In the first case, it is fair to hypothesize that there is an evo-
lutionary pressure for the preservation of that particular amino acid, at least in a
subgroup of protein, whereas in the second the occurrence of the same amino acid
can be considered accidental. In the first case, the amino acid conservation may
be a reverberation of a functional need.

In order to overcome this problem, the group of Dr Lichtarge (at Baylor College
of Medicine) developed a technique that combines the computation of Shannon’s
entropy with phylogenetic information[I38]. The evolutionary trace method con-
sists in the building a phylogenetic tree from the sequences in the MSA using
an UPGMA algorithm, then evaluate the entropy in every subgroup defined with
increasing distance cutoff from leaf to the root. This approach permits to control
if the frequency detected for a certain amino acid is due to a conservation main-
tained in the subgroups or is just an accidental occurrence. The general expression
of the real value evolutionary trace is:

N
EVT(2) =14 wWnode(n) Y wgroup(9)S(g, ) (1.14)
n=1 g

where S(g,z) = =), f(g,2z,a)ln(f(g,x,a)) is the entropy of the single subgroup
g, Wnode(n) is the weight assigned to the node n and wgpoup(g) is a further weight
assigned to the subgroup g. The weights can be used if it is necessary to emphasize
more some groups than others. One example may be the need to favour sequence
similar to the protein in study: in this case, it is possible to set a group weight de-
pendent on the distance from the reference protein. For an unbiased scoring all the
sequences in the alignment could be considered equally and the weights become:
Wnode = 1/N and wgroup = 1. The MLCE and evolutionary trace algorithms
will constitute the core approaches to our studies of protein interactions, entailing
the general case of protein-protein complex formation and the specific case of the
prediction of regions where interactions with antibodies can be established.
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1.4 Small molecule modulation of dynamic states

One part of this thesis will also be dedicated to predict the effects of ligand binding
(in particular small molecules) in inducing specific dynamic states in proteins.
In the general framework of the conformational selection model, modifying the
dynamic states of a protein will result in a perturbation of its interaction surfaces
and a modulation of its interaction spectra. The question is then whether we
are able to predict the onset of specific states of a protein, activated or inhibited
for instance, from the study of its interactions with small molecule ligands and
internal dynamics.

Learning algorithms

The field of artificial intelligence is made of algorithms that do not require a spe-
cific programming for the task which they are assigned to but rather they aim learn
how to complete a certain job through a process of trials and errors. For a formal
point of view we can refer to the definition: “ A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P , improves with experience
E. ”( see http://www.deeplearningbook.org/)[109] Usually the aim of learning
a feature is to identify the variables that describe experimental data. Sometimes,
however, those variables are hidden in the dataset or even not measurable. In these
cases, machine learning methods can have the power to recognize defined patterns
in the data. Indeed, they are used in a wide range of tasks that span from face
recognition to text mining. In the structural biology field, the interest in machine
learning is justified by the improvement in techniques and procedures that have
increased the quantity of biological data that is machine readable, helping in the
development of new approaches of artificial intelligence for biomedical studies and
prospecting an impact in clinical pharmacology[221]. In particular, the field of
machine learning is adequate for systems characterized by a large dimensionality
and that is the case of chemical and physical spaces. Therefore their role in drug
discovery is being actively investigated. In fact, it is possible to find applications
of those tools in virtual screening [I15][66], in molecular dynamics for the genera-
tion of efficient collective variables for metadynamcs[I87] or for the prediction of
protein activity[116]. Machine Learning tools can be divided in two main groups:
unsupervised and supervised learning. Unsupervised learning means that the fea-
ture to learn is not known in the data while in supervised learning the data are
labelled with the feature that has to be learned. In our case, only supervised
methodologies will be discussed. The base approach for the dataset management
is to split the database in two parts: one will be dedicated to the effective training
and the other is needed for testing the trained model. The insertion of a testing
step of the method is important because the training implies only the optimization
of the system on the available dataset but the model should be able to repeat the
task on new data, otherwise it will be useless. Overfitting occurs when a trained
system has good performance on the training test but fails in prediction of new
data.

Several supervised methods were developed. Here, we will use three common
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models that are: logistic regression, support vector machine and random forest.

Logistic Regression

The logistic regression, or logit regression, is a statistical method used to classify
objects. Basically the method consist in evaluating the probability of an instance
to be associated to the condition used for the classification, the single probability
is computed with a logistic function. The logistic function is a sigmoid curve
defined on the real space with values ranging between 0 and 1, formally expressed
as: )
S(t) = m (1.15)
The function ¢ is assumed to be linear and in the case of a single variable model
become t = by + byx. When more variables are considered ¢ is the generalized
with t = b7Z = by + Zfil b;xi, for a system of N variables b is the vector of
coefficients and Z is the vector of variables. The learning is reached computing
the error obtained on a train dataset, the error represents the divergence of the
function outcome from the real value of the data. The process is repeated with
an optimization algorithm to find the best b parameters that minimize the error.
In order to reduce overfitting a constraint is added to the error function (F) in
the minimization and the total function to be minimized become:

minb,C (||BH2 +C- E(y(b)a yobs)) (116)

where y(b) is the predicted outcome and y.ps is the expected outcome. The min-
imization runs between the modulation of the factor C, that gives the impact of
the error function, and the constraint ||b||?> that represent the magnitude of the
parameter vector. The constraint works as a penalty giving a disadvantage when
the parameter vector becomes too large and this is necessary for overfitting reduc-
tion because if the parameters are limited the system has less option for adapt to
the training cases, in other terms the model variance is diminished meaning that
difference in the input variables results in low difference in the predictions. There-
fore, it helps in balancing the model between training accuracy and extrapolation
ability.

Support Vector Machine

Support Vector Machines (SVM) are a class of supervised learning methodolo-
gies suitable for classification. Essentially, this algorithm separate instances in
a dataset representing each data as a point in a N-dimensional space, i.e. each
data is defined by N variables, building an (N — 1) dimensional hyperplane. The
optimal plane is found reducing the error according to data labels and maximizing
the margin, the minimum distance from the plane and the separated groups, an
higher margin involves a more robust model. A hyperplane is individuated by
the equation wTz—b = 0, where the w vector is the normal to the plane and the
value % resemble how much the plane is shifted from the origin. Therefore the
components of the vector w and the value b are the parameters we are interested
for.
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The optimal parameters are obtained through a minimization of the loss function
defined as:

N

1

NZmax[O,l—yi(d)Tfi—b)] + a||@||? (1.17)
=1

The term y;(wTz;—b) > 1 implies that the point 7 lie in the correct side of the
separation plane without falling in the margin, otherwise the loss function will be
penalized. Just like the Logistic Regression model there is a pay-off between the
correctness of the classification and the magnitude of the parameters vector here
modulated by the value of a.

Random Forest

It is an algorithm for classification consisting in building an ensemble of decision
trees during training and predicting the classes via consensus with the idea that a
forest will unify the efforts increasing the performance respect to a tree. A decision
tree is a set of decision rules organized with an hierarchical tree and the training is
necessary to find the optimum order of rules that let a correct classification of the
data. In practice when an instance with NV variables has to be classified a tree is
generated with a descending processes from the root to the leaves, at every node
the following step is decided with a classification rule on one of the variables. The
optimal tree is built starting from the root and for every node is chosen a decision
rule on the variable that gives the lowest error in classification. There are several
ways to compute the error and to define the decision rules.

A shortcoming of Decision Trees is the tendency to overfitting to the training
data99] and Random Forest can obviate this defect. With Random Forest a group
of different trees is generated, each tree is determined with a stochastic reduction
of the set of features of the dataset in order to reduce the correlation among
the trees. Once an ensemble of N tree is produced the instance x is assigned to
the class that gives the best results in the forest, an example of the assignment
procedure can be built considering the set of trees T', vj(x) the leaf node where z is
puttedin 7 (j =1,2,...,N) and ¢ ( ¢=1,2,...,C) a certain class. The probability
that x is associated to c is:

_ Pev(@)
S P (cr,v5(x))

The instance z is then associated to the class ¢ that maximize the value of:

P (clvj(x))

(1.18)

N
ge(x) =D P(clv;(x)) (1.19)
j=1

with this discriminant function g is possible to maintain the training accuracy
while the results are averaged[105].
1.4.1 Goodness of prediction assessment

Once the models to use are set is important to measure if the system is working
properly and giving significant predictions. Firstly, the results can be summarised
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counting the number of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN). It is difficult to make an esteem of the predictor’s ability
just considering those numbers alone, therefore is common practise to use a metric.
During the years various metrics were proposed, each one with his peculiarity.
The first metrics to use for obtaining general information about the predictor’s
behaviour are accuracy (ACC) and error (ERR), ACC is the sum of correct cases
respect the whole number of cases while the ERR is the complementary to one:

TP+ TN
ACC_FP+FN+TP+TN (1.20)
FP+FN
ERR= pp i pNyrproN — L~ ACC (121)

Sometimes this measures are too general for the specific scope of our predictor,
for example we can be interested on the precision of the postive cases predicted
by our method or what is the probability to have false positive. For this reason
other metrics are employed for give more insight on the predictor’s ability. For
getting information about TP is possible to compute the fractions of TP respect
to all the positive predictions and it is called precision (PRE) but also the number
of TP respect the the real positive cases could be interesting, i.e the recall or true
positive rate (TPR). Otherwise the fraction of the retrieved cases respect all the
negative ones, called fall-out or false positive rate (FPR), is a possibility with its
complementary the specificity or true negative rate (TNR):

PRE_ R;f}P (1.22)

TP
TPR= s (1.23)
FPR::FPﬁﬁnV (1.24)
TNRzquﬁﬂvzl—F?R (1.25)

It does not exist a perfect metric that is always good, but it has to be evalu-
ated case by case. For example we may be interested that the real positive cases
were predicted with a good confidence and this mean to optimize the recall pa-
rameter, but in this way we have to be aware that the number of FP could be
elevated. In order to try a balance between different measure other combinations
were proposed, such as the FI score:

PRExTPR
PRE+TPR

Finally, another common way to control the performances for both TP and FP
is the use of the ROC (Receive Operating Characteristic) curve. This method
consist in building the curve of TPR vs FPR that were computed changing the
cut-off on the selection parameter of the predictor. The diagonal correspond to
the performances of a random predictor and if the curve goes above the diagonal
it means that there is an actual prediction ( the TPR is increasing faster than the
FPR).

F1=2 (1.26)
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CHAPTER

2

Trade-off between evolution
and energy in PPIs

Biological pathways rely on a series of sophisticated networks of proteins that in-
teract with each other. Usually those interactions depend on the characteristics of
the protein surfaces that facilitate recognition and binding to the partner [13][31].
Modification of these patterns may provoke the insurgence of diseases. The study
of the physicochemical traits driving the formation of protein-protein interfaces at
a theoretical level gives the opportunity to isolate the segments responsible for the
interactions increasing our knowledge of the relationship among sequence, struc-
ture and protein activity. Those information will have practical reverberations:
in fact the reconstruction in atomistic detail of the patterns that guide surface
binding could be useful for the development of new drugs that interfere with PPIs
as target. Despite the fact that the performances in drug discovery are getting
better, there is a variety of interesting PPIs that are considered difficult to target
and only a small amount of compounds, directed to protein interfaces, arrived to
drug stage in the trials[I3][88]. For this reason a better knowledge of the surface
features of protein interfaces may be helpful for a guided design of new proteins
and small-molecules able to interfere with PPI formation.

Analysis and prediction of the regions responsible of the interaction among pro-
teins has been conducted in different studies, from theory to experiments. Residue
substitution tests on the surfaces highlight that just a limited amount of residues
can strongly impact on the interface[14][36]. The accumulation of interactomic
information, from sequence to structural data, support the development of com-
putational data-driven analysis [I46][112]. In this context, the improvement of
the performances of techniques for interface prediction, using various criteria[46]
and properties, is noteworthy. Generally speaking deVries et al.[46] describe three
groups of features to use for prediction and two methods for combine them. The
features are separated with respect to the level of information, some variables
are linked to the kind of amino acids in the sequence (like statistical propensity
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evaluations), in other cases the information is extrapolated from the residue con-
servation among the protein family, and the third group of methods is related
to three dimensional data of the protein structure. Those variables can be com-
bined with two different approaches: patch-based method, where the values are
averaged on a subsample of residues, or an approach based on the single residue
value, whereby the variables are computed for every residue and then the most
relevant ones are selected. In this approach, the sequence or spatial contiguity is
not considered.

In the past years different methods that take advantage of diverse paradigms
were implemented. Andreani et al.[I0] reviewed a series of studies for the evalua-
tion of the parameters that drive the binding zone predictions, varying from the
use of mixture of variables that may regulates the interaction, like electrostatic
properties or hydrophobicity, to the quantification of the evolutionary pressure
on the surface, that showed a potential for improving structural based methods.
Such concepts are extended in a review by Lua et al.[I31] with the discussion
on the improvement of docking algorithms using residue evolutionary conserva-
tion in support to binding affinity computation and the dovetail analysis on the
surfaces of physicochemical and geometric properties. Advances in interfaces and
contact prediction are obtained also with the employment of coevolution-based
approaches[I53][188]: an example is the work of Ovchinnikov et al.[I50] where
coevolutionary data extracted from multiple sequence alignment are used to com-
pute a pairing score that resemble the coupling strength of evolution between two
residues and then testing the system on 28 protein complexes. Coevolutionary
data have also been used to build a prediction score with the combination of frag-
ment docking and direct coupling analysis. The obtained scores supported the
selection of multiple binding sites according to their druggability. Importantly,
the technique was tested with proteins related to well-studied diseases[I5]. An-
other flourishing field is the application of artificial intelligence[195]. Moreira et
al.[141] developed a method for prediction of interaction hot spot building a score
made by 881 features, with a mixture of sequence and structural terms, trained
on a dataset composed by over 500 residues collected from 53 non-redundant pro-
teins, achieving good accuracy. Others learning algorithms for hot spot detection
were reported by Keskin et al.[I13] suggesting that surface accessibility gave the
most consistent impact. Remaining in structural based approaches it is interesting
to cite the work by Kuttner et al.[I21[[120]. The authors study the dynamics of
the backbone measuring residue stability assuming that interface recognition is
guided by complementarity of “stability patches’, finding those areas in the neigh-
bourhood of the binding zone centre. Furthermore, predictive information can
be retrieved from interatomic databases making advantage of the conservation of
protein-protein relationship among species. Through network analysis, it is possi-
ble to obtain interologs, interactions of the orthologous genes of other organisms,
for the prediction of the interactions of the studied protein. The server performs
with a specificity from 72% to 98% while the sensitivity remains below 59%[94].

In this chapter we tackle the question whether the analysis of energetic terms
and evolutionary profiles of residues on the surface can be harnessed to identify
the regions more likely to be involved in interactions. A necessary observation
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is that the aim is not to estimate the binding energy between two interacting
proteins. It has been shown that a protein complex may be stabilized with the
help of suitable forces among the protein involved [200]. A considerable role is
played by the effect of solvation terms as it has been shown that the residues in
the interface are the less prone to be penalized by desolvation [90]. Finally, the
dynamic rearrangement of the sidechains of interfacial residues could be clearly
highlighted with elastic network methods[219].

A further step is to compare the chemical and physical traits with evolutionary
pressure in the framework of the consideration of the ability of one protein to bind
other proteins.

In this context, we formulated the hypothesis that sequence features are linked
to the preservation of residues relevant for protein functionalities and energetic
features are connected to the stabilization of the molecular structure: protein
interfaces, essential for the correct activity of the protein inside the cell, have
been subjected to evolutionary pressure to choose and maintain those physical
and chemical configuration that ensures operative interactions. Starting from this
concept, the quantification of the conservation of the amino acid type on the pro-
tein surface may disclose the residue preserved by evolutionary constraints for
maintaining their activity, in the case of PPIs the interaction with a partner. In
parallel, the evaluation of intraprotein energetics, that includes the interactions
among residues of the same protein, in combination with structural characteriza-
tion may reveal the presence of coordinated networks of residues apt to interact
with a partner. The concrete interaction among two molecules can effectively take
place if viable adjustments cause a bound state free energy smaller than the un-
bound state one. The observations that residues can be arranged in sectors could
be seen as an indicator of energetic and evolutionary traits[125][I30][98]: the divi-
sion of the protein in subgroups could be functional. In fact while one sector works
for the maintenance of structure stability, others groups can form an interface in
a protein complex. The assumption is that two approaches, that are grounded on
distinct assumptions, may complete each other and produce a convenient compre-
hensive picture, recapitulating the evolutionary and physicochemical requirements
for interface definition. Here, we therefore set out to propose a comparison and
a combination of two previously developed approaches, namely the Matrix of Lo-
cal Coupling Energy (MLCE) for the energetic term and the Evolutionary Trace
method to investigate the evolutionary preservation of the residues.

2.1 Computational implementation

Data set construction

Firstly a wide data set is gathered choosing various monomeric proteins involved in
the establishment of molecular complexes. Through experiments are determined
the conformations of the binding monomers taken alone and the corresponding
complex. In this way, we have knowledge about the “best guess” for the real inter-
face region for all the isolated partners, that information can be used as a reference
for the performance testing of those algorithms we are going to test. The struc-
tures are collected from the 5th edition of the ”docking benchmark” constructed
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by Vreven et al.[202]. The original set consists of 230 unbound monomers and
for every couple there is the respective complex. The choice of the candidates is
aimed at obtaining a coverage of small-medium monodomain proteins, which vary
in length from 29 (1LUO, trypsin inhibitor) to 597 (1R42,ACE2) residues. More-
over, items that are involved in 3 or more interactions, cases of multiple protein
family, man-made or composite proteins and protein without evolutionary anno-
tations are discarded from the selection, decreasing the bulk of the original set
to 84 complexes and 163 monomers. In addition to this, the data set employed
by Scarabelli et al.[I73] is integrated for a better coverage of cases with antigens,
ultimately resulting in a set of 103 complexes and 183 monomers.

In the released docking database there is a subdivision of the PDBs according
to their rigidity in binding: rigid-body, medium and difficult. Rigid-body refers
to the proteins that display minor modifications when the monomer undergoes
binding, whereas medium and difficult groups are the structures that manifest
an appreciable reorganization, defined by the intensity of the variation: small for
medium and large for difficult. The measure used by Vreven et al. to discriminate
among the groups while evaluating protein-protein docking results is I-RMSD.
This measure is obtained by overlapping the unbound monomer on the complex,
then computing the RMSD of the Ca atoms of the sites that have at least one
atom in the radius of 10 A from any atom of the partner. Complexes where the
I-RMSD larger than 2.2 A are labelled as difficult, those having an I-RMSD lower
than 1.5 A and a ratio between non-native and native contacts that is below 0.4
are marked as rigid-body. All the other cases are labelled as medium. In the final
database we include 107 rigid-body, 31 medium and 25 difficult systems, the full
list is referred in appendix

Surface and interface definition

Usually the demarcation between inner (core) and surface residues could be am-
biguous. For our purpose the boundaries are chosen with the use of solvent ac-
cessible surface area (SASA), considering a residue on the surface if the total
contribution to SASA of all the atoms is equal or bigger than 25 A2, This defini-
tion has been applied for every analys, and the utilisation on the monomers taken
alone. For the extraction of the interface residues from the crystal complexes the
SASA data are employed as well. Operatively, SASA for the entire complex and
the SASA of the monomers separately are computed; every residue in which the
total SASA differs more than 1 A2 is assigned to the interface. In case we are
dealing with antibodies (Abs) is necessary to apply an expedient calculation. In
fact Abs are composed by a heavy and a light chain but both EVT and MLCE
analysis are conducted on monomers; therefore, only the heavy chain is consid-
ered and when calculating the SASA the residues on the inter-chain interface are
omitted.

For the effective interface evaluation-prediction the workflow is split in two steps:
first the residue are ranked according to a score then top-ranking sites are grouped
in connected patches.
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Scores definition

Once surface residues and binding zones are determined, it is necessary to de-
fine the methods and scores for the energetically and evolutionary analysis. The
internal energies are obtained with the support of MLCE technique, that evalu-
ates a reduction to eigenvectors of a NxN matrix of non-bonded potential terms,
where IV is the number of residues. The nonbonded terms include van der Waals,
electrostatics interactions and solvent effects. The eigenvalue decomposition em-
phasizes the regions where energetic pairing among residues are more robust or
more breakable: the surface segments the are weekly coupled with the rest of the
protein are the ones more prone to establish an interaction without interfering
with the global stability. Summarising, we can say that the supposed interfaces
consist of frustrated energetic couplings. The energetic couplings are computed
using an MM-GBSA approach with the amberl4 software, the force field em-
ployed is ff14SB. The obtained interaction matrix is approximated by the first
eigenvalue, as expressed in the equation [1.9] and therefore the per-residue con-
tribution is determined by the first eigenvector, respect to the original MLCE
the approximated matrix is not filtered by a contact map but is only used for
the computation of the scores. As previously mentioned the quantification of the
contribution of evolution is computed with the Evolutionary Trace method, an im-
proved version of the information entropy. Through the scanning of an ensemble
of sequences belonged to the same protein family, the information entropy is com-
puted in a hierarchical tree architecture: a lower entropy value reflects an higher
conservation for the selected site, therefore an higher propensity to occupy a role
in the protein activity. The calculation are made with the Mammoth server of
the Lichtarge group (http://lichtargelab.org/software/ETserver) using the
real value Evolutionary Trace (rvET) defined by the formula[l.14] with an uniform
weight distribution, thus the equation is reduced to:

N-1 n
s(h) =1+ %Zpg(w,k)ln (p?(m, k)) (2.1)
n=1 g=1

where the score s for the site k is obtained computing the occurrence frequency
of an amino acid of the 7 type in every instance of the subtree g. The values are
computed with the default setting of the server: the reference sequences are ob-
tained from the database (/mammoth/blast/data/customuniref90) derived from
BLAST with a e-value limit of 0.5 and then aligned using muscle algorithm[53],
the phylogenetic tree is obtained with the UPGMA approach using the blosum62
matrix as a base[182] [101].

In this work three different scores are computed for every residue, the definitions
for a site ¢ are:

e MLCE score is the module of the i-th component of the first eigenvector
normalized by the maximum value in the vector.

e EVT score is the real value obtained with the formula 2.7] for the i-th site
divided by the maximum value of the whole protein.
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e EVT + MLCE is direct sum of EVT and MLCE score.

Various feasible scores were tested, like the use of logarithm, however no significant
improvement was detected.

Building potential interaction patches

The top-ranking sites alone individuate only hot spots, but we are interested in
networks of good-scoring connected residues. Therefore the following step is the
construction of surface patches bringing together the best scoring sites. To this
aim, the proteins are represented as a graph, where the best-scoring residues are
the nodes and the contacts connecting them are the edges. A contact between
two spots is placed if the distance of the Ca atoms is below 9 A. After the graph
is built, it is possible to extract subsections of the graph that are completely
connected, i.e. the subgroup of nodes where all the nodes are joined through a
path. These subgraphs are called connected components. An easy way to identify
the nodes that take part in a connected component is the deep first search (DFS)
algorithm[196], described in tabld2.1]

Step | Description

1 Make a list of every node (best-scoring residues) and
associate a label to each node

2 Reset the labels for every node and set a general vari-
able clusterID to zero

3 Select the next node in the list

4 If a selected node has label equal to 0 assign the cur-

rent value of clusterID to the label variable, continue
to step 4. Elsewhere return to step 3, because the
current node was assigned to a cluster before.

5 Perform a cycle to every neighbour (other nodes con-
nected to the current one) and call DF'S recursively.
6 When all the neighbours are visited the DFS recursion

stops. Add 1 to clusterID an go back to step 3.

Table 2.1: Schematic example of the DFS algorithm used.

The residues are ranked according to their score, only the cases with a score
smaller than a cut-off are selected. In fact, a low value corresponds to low energetic
coupling (for MLCE score), high evolutionary conservation (for EVT score) and
both the features for EVT 4+ MLCE score. Since the ranges of the values can vary
from case to case, we preferred to use a system-dependent cut-off on the scores and
a general cut-off on patches dimension. The cut-off value is determined starting
from 0.1 for EVT score and 0.2 for EVT + MLCE score and building the relative
patches; at this point if the biggest patch has less than 10 residue the procedure is
repeated increasing the limiting values by 0.1 for EVT and 0.2 for EVT + MLCE,
as far as a patch with 10 or more spots is discovered. Energetic scores show a
different distribution with respect to EVT; for this reason the cut-offs of MLCE
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scores are modified in a logarithmic fashion: [1076,1072,1074,1073,5-1073,1072,5-
1072,1071,5 - 1071,1]. It is necessary to stress that the experimental information
of the interfacial residues are used only for comparison with our prediction, since
the measure are evaluated on isolated monomers without complex information.
Furthermore, as a clarification, I want to point out that both the approaches used
do not expect to compute the binding affinities or other pairing terms: in fact,
there are several features involved in binding affinity estimation, like protein or
water conformational changes, that are not considered in our methods.

2.2 Results

The practical assumption that is behind the analysis is that sites that lie in the
binding region are more preserved by evolution (in order to maintain a proper
functionality) or have a low participation in the reinforcement of protein energetic
stability. To be more precise, it is plausible to imagine that a residue with a
fundamental role for the function of the binding site needs to be preserved; on
the other hand, a substantial variance in amino acid type, for sites in surface
zones that are not designated for protein-protein interaction, is expected. This
different behaviour should be highlighted by a distinct entropic measure for in-
terfacial residues respect to non-interacting ones. In parallel, a focus on the fold
energetics should determine the presence of chemical patterns for the binding re-
gion, analysing the strength of amino acid pair interactions and their involvement
in the global structure stability: as it is often necessary that the interface con-
forms with the partner surface, it needs the possibility to undergo conformational
adjustments. Thus, residues forming the binding region should not be intensely
coupled to other segments of the fold.

The analysis on sequence-based and structure-based data has the goal to de-
termine sets of residues that display a distinct arrangement with respect to the
rest of the molecule. First of all, it is necessary to inspect energetic and entropic
data to verify if is possible to statistically discriminate binding zones from the
rest of the protein surface. For this purpose, the interfaces individuated in the
experimental complexes are used as a “ground truth” for the real binding regions;
then the residues are split in two groups: one with interfacial residues and the
other with the rest of the surface. With the use of the Kolmogorov-Smirnov (KS)
statistical test[3], the differences between the profiles of the real binding residues
(sample) and the remaining surface ones (reference distribution).

At this point, a study of evolutionary differences of interaction sites respect
to a reference distribution is set out. The hot spots for functional relevance are
determined through the evaluation of entropic information in an evolutionary tree
built from multiple sequence alignments. The evolutionary profile are determined
with the real value Evolutionary Trace equation [138]. For the energetic char-
acterization of PPI binding regions, all the energetic coupling between residues are
computed in all the protein structures in the dataset using the previously men-
tioned MLCE method. The first eigenvector is used as energetic profile without
filtering the approximated interaction matrix. The components of the eigenvector
are assigned to the relative residue and the set split in two groups according to
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the principle described before.
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Figure 2.1: Here are showed the histograms of the pvalues obtained in the Kolmogorov-
Smirnov test. Every count reflects a protein-protein complex included in the bench-
mark. Both the EVT and MLCE profiles display a pronounced signal in the region
where pvalues are below 0.05, meaning that in both cases the measures are capable
to discriminate real binding regions for several complexes.

After the profiles of EVT and MLCE are obtained for the whole dataset of 183
systems, for every protein the data are split in sample and reference distribution
for the statistical test. The Kolmogorov-Smirnov test obtains a significant fraction
of instances with a good confidence level (pvalue smaller than 0.05) that the two
distribution, the sample and the reference one, are different: in the case of EVT
values approximately 46% have a p-value below 0.05, percentage that grows to 51%
in the case of energetic data (MLCE), Figure If the limit for good separation
is raised to a pvalue of 0.1 the percentage increase to 51% and 57%, for EVT
and MLCE respectively. Those results are checked doing again the test with the
Anderson-Darling (AD)[9] statistical approach, another test to compute if a data
set is probably drawn from a reference distribution. The number of well-separated
interfaces are comparable to the KS ones, obtaining a percentage of cases below a
pvalue of 0.05 near 50% for both EVT and MLCE (see Figure , for a full list
of the values see appendix [A]

The preceding analyses exhibit a signal for the proposed measures in the case of
interface residue, suggesting that zones of the surface, in a consistent number of
cases, are likely to be split in sites of interaction and non-interactions ones. The
following step is to ask if this knowledge may be helpful for interface prediction.
To answer this question, all the database of structure is analysed ranking all
residues with an EVT or a MLCE metric. Observing the procedure described
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Figure 2.2: Here are showed the histograms of the pvalues obtained in the Anderson-
Darling test. Every count reflects a protein-protein complex included in the bench-
mark. Both the EVT and MLCE profiles display a pronounced signal in the region
where pvalues are below 0.05, reproducing the similar behaviour that is observed for
the KS test.

before hypothetical surface patches of interaction zones are generated and three
different scores are used for the ranking: EVT, MLCE and EVT + MLCE scores.
The predicted binding regions vary in number and size, depending on the score
chosen. The reference interfaces obtained from crystals have an average dimension
of 25 residues. The computed patches superimpose to the area of the reference
ones in more than half the cases, for EVT score it happens 77% of the times,
75% for MLCE and up to 85% with the union of EVT and MLCE. The mean
size of the generate patches is of 20 residues for MLCE and 10 for EVT score,
with a mean of 2 and 2.4 numbers of patches, respectively. EVT + MLCE score
generates 2.5 putative sites per case on average, those sites have a mean dimension
of 12 residues. Despite the extent of generated patches is on average lower than
the actual interface, is observed an overlap between putative and “real” patches
in a consistent percentage of systems. Occasionally, a bigger overlap is observed
with the combination of two or more computed binding sites that are close in the
protein surface (see figure .

The assessment of the quality of the value of the obtained predictions is con-
ducted through a Receiver Operating Characteristics (ROC) analysis, run over the
whole structure databased considered. The generated patches are compared with
the experimental ones counting the predicted spots that lie on the interfaces. To
be more precise, the value of true positive (TP), false positive (FP), false negative
(FN) and true negative (TN) is calculated, with the definitions:
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3CP1 1LXD

&

Figure 2.3: Here are illustrated some examples of generated binding sites, computed
with the score MLCE + EVT. In blue colour is indicated the target protein while
the binding partner of the experimental complex is represented in transparency, and
the predicted patches are coloured red. In every case three distinct orientations are
presented. The choice of the systems covers good, medium, and bad predictions. The
PDB codes of the structures are listed from the left to the right and top to bottom:
3CPI, 1LXD, 1GEQ, 1QRQ, 1V49, and 2X9B.

e TP, the count of experimental binding residues that are properly predicted.
e FP, the count of non-interfacial residues that are predicted as hot spots.

e FN, the count of experimental binding residues that are not predicted.

e TN, the count of non-interfacial residues that are not predicted.

Two variables that help in the estimation of the goodness of the prediction are
the true positive rate (TPR) and false positive rate (FPR) defined by equations
[[223] and [T.24] A higher value for the TPR rate means encouraging prediction,
in this case the FPR should be small. The ROC curve gives the TPR rate in
function of FPR, the slope of the curve will indicate if is more favourable to
find TP respect FP when the margins of the patches are increased. The ROC
curves are computed varying the cut-off quantity in the building patches phase
of the interface prediction process, the interval of variation are those previously
indicated. A simple number that discriminates if a ROC curve describes a good or
a bad predictor is the Area Under the Curve (AUC): if the value of AUC is greater
than 0.5 we can estimate that the predictor is superior respect to a random one.
The percentage of cases with AUC above 0.5 is 54% for MLCE score and 71% for
EVT score and the mean value is 0.51 and 0.58 respectively. The combination of
EVT + MLCE gives an AUC bigger than 0.5 in 70% of the systems, with a mean
value of 0.58. If the curves are constructed considering the predictions of all the
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residues of the dataset at once is easier to visualize the global performances of the
three scores, with a confirmation that EVT have a good AUC in more case than
MLCE, EVT + MLCE do not improve globally (see Figure [2.4)).
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Figure 2.4: Examples of ROC curves. These are the curve produced with the addition of
the predictions made considering all the systems as a one. ROC curves are coloured
in red for EVT, light green for MLCE, and purple for EVT+ MLCE, while in black
is signed the theoretical curve produced by a random predictor.

It is important to remember that not all the protein-protein interfaces are de-
signed in a lock and key fashion, but in many cases the region suitable for binding is
subjected to a wide structural reorganization while changing from unbound to the
docked state. In our model the monomers are evaluated only in the state prior to
binding and the possible conformational modifications are not taken into account.
This could limit the prediction ability. Anyway, the analyses conducted ascertain
that performances even improve when the protein undergoes a substantial struc-
tural variation. In order to verify this condition, it is possible to split the data set
in three groups according to the respective rearrangement observed in binding and
the correspondent level of complication for the prediction: rigid-body (no reorga-
nization), medium (light reorganization) and difficult (large reorganization). The
grouping criteria were previously defined. In the database the rigid-body class has
a percentage of good prediction of 72.8% for EVT score and 53.2% for MLCE,
those values raise to 83% for EVT and 58% for MLCE in medium class and to 80%
in EVT and 60% MLCE scores for difficult cases. The EVT + MLCE score have
a similar trend: 72.8% of positive predictions in the rigid-body class, whereas in
medium and difficult classes the rate goes, respectively, to 80.6% and 84% (for a
complete list of the values see appendix[B] Since EVT score is sequence-dependent
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it is not surprising that the performances could increase for difficult targets. On
the other hand, it is interesting that this behaviour also emerges for the MLCE
score, that is structure-dependent.

These results suggest those descriptors are capable to take advantage of the
information related to the evolutionary pressure for the definition of an optimized
region as a binding one, unbeknown to others. In addition, since MLCE is focused
on the determination of poorly coupled regions provided with favourable structural
organization that encouraging adaptability, arise the hypothesis that such energy-
based measure can localize the segments that are flexible enough to rearrange their
structure in the moment that the partner establishes an interaction.

Impact of protein function on performances

Starting from the line of reasoning stated above, it is reasonable to ask the question
if EVT and MLCE display a different behaviour in the case of a particular protein
family and if the existence of a link to the biological role can be hypothesised.
In order to answer these questions, the entire database is split into 6 functional
classes: antibodies, enzymes, antigens, inhibitors, signal transduction, and struc-
tural proteins ( that are molecules that bind to the extra cellular matrix (ECM)
and assemble the cytoskeleton, such as actin, profilin, metavinculin and twinfilin).

For enzymes and signal transduction classes similar trends are observed, the
EVT score gives a percentage of good predictions, respectively, of 81% and 83%
that are greater than 51% and 47% for the MLCE score, see Figure[2.5] In the case
of enzymes the binding site requires to be intensely preserved in order to maintain
those residues indispensable for the correct interaction with the substrate, compel
it in the right spot during the pre-reactive phase and complete the desired chemical
reaction. For this kind of problem the MLCE score works worse that the EVT
metrics, for the reason that it searches for segments that are detached from the
energetic core of the structure and display adaptability, whereas the active site of
enzymes usually shows rigidity and structural coordination. Signal transduction
cases face a comparable problem, with the sequence that need to be preserved
and the configuration require a defined coordination for the correct regulation
of the reactions (like sulfation, phosphorylation, hydrolysis, etc.) that carry the
information during the pathway.

For inhibitor proteins, both the scores present good results: 75% for EVT and
80% for MLCE, suggesting that for these molecules there is a conservation of amino
acids without losing conformational flexibility. The connection of the inhibitory
function, that may modulate the activity of enzymes and signal transmission, with
a little evolutionary entropy in the binding site could suggest a pressure for the
choice of the optimal organization of residues to obtain a favourable interaction
with the partner. On the other hand, the interfaces have weaker energetic pairings
compared to the other parts of the protein sustains the concept that inhibitors
can bind to two or more partners with the use of a versatile remodelling. These
observations can still be applicable in the case of structural class that present
72% of positive predictions for EVT and 81% for MLCE, by which the sequence
preservation in the binding site allows correct identification of the partner and con-
struction of the complex at the base of cellular skeleton. At the same time, weak
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couplings help in preserving the necessary flexibility to match different binding
targets (occasionally in crowded surroundings).

class of protein function fraction of positive cases number of
elements
EVT EVT + MLCE MLCE
antibody 0.3 0.2 0.4 10
enzymes 0.83 0.77 0.51 53
antigens 0.33 0.41 0.5 24
inhibitors 0.75 0.8 0.8 20
signal transduction 0.81 0.78 0.47 65
structural 0.72 0.81 0.81 11

Table 2.2: Summary of the counts of positive predictions for EVT, MLCE, and EVT +
MLCE scores, separated for the defined classes of activity of the proteins.

Lastly, the antigens and antibodies classes stand out in a noticeable way. For
antigenic proteins, the region of interaction has commonly a low evolutionary
pressure, likely because a conserved trait could limit the activity of the infectious
agent in the body. The resilience to mutations is a weapon for an antigen to avoid
the control of the host immune system, while keeping the structural character-
istic needed for the pathogen life cycle. On the other hand, antibodies show a
preserved conformation for the binding region, with the participation of an hyper-
variable zone that is necessary to follow antigens modifications. The existence of
that highly mutable region could interfere with the EVT predictions, whereas the
organized energetic couplings may be individuated by the MLCE. For these classes
the performances are greater for MLCE that the EVT score: 50% (antigens) and
40% (antibody) compared with 33% and 30%, the results are summarized in the
table 2.2
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Figure 2.5: Scatter plot of the values of AUC computed with MLCE score versus EVT
score for every class, the letters refer to: (A) antibodies, (B) enzymes, (C) anti-
gens, (D) inhibitors, (E) signal transduction, and (F) structural. The diagonal line
(coloured blue) split the points that have a MLCE score greater than EVT (green
region above) from the cases in which EVT does a finer work (underlying light-blue
region). The grey square circumscribes the region of point missed by both measures,
i.e. the systems in which the prediction with our approach is harder. Enzymes and
signal protein exhibit not many cases in the grey square and the majority of points
are situated in the light-blue zone. Antigens have the majority of the cases in the
green zone and 8 cases in the grey square, indicating that for EVT and MLCE scores
it is harder to predict this class. Inhibitors are even distributed among above and
down zones and only 1 case is situated in the grey square. Structural proteins exhibit
an empty grey square and many of the cases are in the light-blue region. In the end,
antibodies result the most challenging to be predicted, in fact with fifty percent of
the points in the grey square, almost all of the correctly predicted are in the green
region.
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2.3 Conclusions

In this chapter, I showed and discussed the viable exploitation of evolutionary
and structural stability knowledge for the detection and characterization of the
surface regions designated for protein-protein interactions. Firstly, the hypothesis
is formulated that the site of the protein intended for the selection of the specific
target in an important pathway could need an evolutionary pressure to preserve the
characteristics that allow his activity. In addition, the binding process is regulated
by the physical and chemical features of the amino acid involved. Successively,
we suppose that with the definition of an evolutionary and an energetic measure,
for the consideration of the set of problems previously mentioned, it is possible to
construct a score that helps in the individuation of protein-protein interfaces.

It is intriguing that for some functional classes (such as the one responsible for
signal transduction and the enzymes), evolutionary pressure is the driving factor
for the regulation of the binding site, whereas in other classes energetic couplings
have a relevant influence, like the cases of antigen-antibody recognition, inhibitors
and proteins with a structural role. With those results, it is possible to argue
on the existence of a balance between the measures. With this background it is
suggested that when studying a new system, without any knowledge about the
interactions, it may be helpful to make use of a combined approach, of the scores
discussed, in order to obtain a first guess on the placement of the putative binding
region. Successively, from the experimental point of view, it is possible to intervene
with perturbations of those sites with a mutation analysis or the development of
new compounds suitable to bind in the interface[I3]. As a final clarification, it is
important to notice that the methods presented in this chapter are not intended
to evaluate binding energies or affinities among the proteins forming a complex:
for that scope there are various supplementary properties to be considered, for
example the intensity of the interactions on the interfaces involved, the dynamical
aspects of the interacting site compared between the complex and the monomer
taken alone, the consequences in the inner motions of the protein and, lastly, the
solvation activity of the features used. The method defined in this work serves the
important purpose to help to formulate initial guess of putative patches on the
surface involved in binding and, for example, could be complementary to other
approaches like protein docking algorithms[48|[174][11], with the use of binding
constraints in support of the process.
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CHAPTER

3

Detection of PPIs in anti-
genic proteins

There is a little number of events that have a such huge impact on public health
and economic system as the insurgence of infectious diseases[I56]. Moreover, in
spite of the great improvements brought to pharmacology, the design of a cure for
many known pathogens is still a challenging task.

Vaccination and antibody based therapies represent the best options to cure
and prevent the spread of diseases for which drugs are not available. At the cell
level, the function of the human immune system is based on a series of protein-
protein and peptide-protein interactions. The study and characterization of those
interactions could help in the development of engineered proteins (or peptides) as
antigens to be used in diagnostics or for vaccines production.

During my PhD I was interested in the computational characterization and
prediction of antigenic interaction sites of the SARS-CoV-2 Spike Protein.

3.1 Antigen recognition in the immune system

The core defence to fight with pathogens is a sophisticated mechanism, composed
by cells and various molecules, called immune system[I54]. The correct function-
ing of this system requires complex processes, like learning and saving in memory
precious information, that entail the participation of a vast amount of factors.

Firstly, it is possible to define two kinds of response of the immune system:
innate immunity and adaptive immunity. Innate immunity is an early reaction to
infectious agents that is not specialized for the pathogen to fight and, also, does
not develop resistance to secondary exposures to the same agent. On the other
hand, adaptive immunity requires time to spring into action but it is specific to the
invading agent with the generation of an immunological memory. The vitality of

33
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both the reactions is necessary for the proper operation of the immune system. In
order to achieve adaptive immunity the organism possesses an important typology
of white blood cells, called lymphocytes[I86]. In particular the activity of these
kind of cells could be distinguished in two distinct reactions: a cellular response
that is carried out by the cytotoxic T lymphocytes (CTL), named also killer T
cells, and a humoral response that consists in the secretion of antibodies by B
type lymphocytes. The activity of these cells is supported by an additional class
of lymphocytes called T-helper cells.

A fundamental step for both the responses is the individuation of antigens and
the region of the antigen that is recognised by lymphocytes, called “epitope”. In
the case of T cells, the lymphocytes recognize the major histocompatibility com-
plex (MHC), a specific protein type widespread on the membrane of the host cells.
In immune responses, pathogenic protein antigens are commonly degraded and the
resulting fragments are exposed in the form of peptides on the membrane with
the help of MHC, to prompt inspection T cells. When a CTL recognizes a spe-
cific peptide in a MHC, a response is activated which starts to induce apoptosis
(programmed cell death) to the infected cell. For the recognition of the epitope
in complex with MHC, the T cells possess receptors molecules, T Cell Receptors
(TCR). Since there are many possible epitope to identify the receptors are ex-
pressed in a huge variety, it is estimated that any human presents at least 108
different receptors at the same time.

On the other hand, the humoral response is based on the activity of B cells.
Those lymphocytes are able to produce antibodies (Abs), proteins composed by
immunoglobulin domains (Ig). There are five types of Abs, IgA, IgG, IgD, IgE
and IgM, and all of them share the same essential subunit formed by a tetramer
composed by two heterodimers; each heterodimer is divided in a light chain (LC)
and a heavy chain (HL). These chains form the typical “Y” shape, with the binding
region on the terminal arms of the Y. This site is called “hypervariable loop”
because it is produced in a multitude of variations in the organism, in order to
better adapt to the antigen.

One B cell is specialized in production of a single Ab type, that is located on
the membrane as long as the cell remains inactive. In that position an Ab is able
to bind to antigenic material thus activating the B cell that starts proliferating
and producing other Abs that are eventually secreted. With respect to T cells,
Abs have an increased recognition capacity because in addition to peptides they
can bind to whole antigens, such as proteins or viruses. The epitopes recognized
by Abs can be linear or conformational, the latter consisting of residues that are
physically situated at distinct position in the protein sequence but are grouped in
a contiguous surface in the 3D fold.

Once an Ab is bound to the antigen, it may neutralize its activity, and this in-
hibitory effect is considered of significant relevance in controlling viral infections[64][56].
In other cases the binding is not sufficient for the inhibition of the infectious agent
but those non-neutralizing antibodies can still be protective, for example acting
as a marker for the intervention of other immune cells.

In an organism the collection of the available antibodies depends on environ-
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Figure 3.1: On the left there is a scheme of the essential subunit of an antibody. Dif-
ferent colours highlight the separation among light and heavy chains. With dotted
areas are filled the variable region of both the chains, on the far end of the struc-
ture in correspondence of the antigen binding site. On the right there is a surface
representation of the subunit (pdb code: 1ligt) with the typical Y shape.

mental influences endured during lifetime. The first time an organism is exposed
to a pathogen the B cells start proliferating and, thanks to the high propensity of
antibodies to mutate and adapt, the response becomes more and more efficient.
The information acquired is then stored in memory cells. In the case of a sec-
ondary exposure to the same antigen, memory B cells are activated resulting in
the secretion of an increased number of high-affinity antibodies compared to the
first time. This learning ability is known as “ secondary immune response ” and
is the core mechanism of vaccination.

Vaccines production started with the inoculations of attenuated living pathogens.
Over the decades this method revealed some limitations, such as the impossibility
to grow in vitro the infectious agent or a pathogen that do not activated humoral
response because his life cycle is inside the cell, therefore it requires T cells to be
eliminated. With the improvement of sequencing techniques it became easy to
obtain information about the pathogen proteome. At this point it was possible
to develop a vaccine without the employment of the whole pathogen, in fact only
the antigen that activates the immune reaction is required. This novel technique
is known as Reverse Vaccinology [162] and was successfully used for the first time
for the vaccine against Meningococcus B[71].

3.2 Epitope prediction in multidomains proteins

The approach employed for the prediction of the epitope in an antigenic protein
refers to the idea used before for general protein-protein interfaces: the residues
necessary for the maintenance of the core stability of the system have little role
in establishing protein interactions.
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The MLCE method is developed for the detection of the residues that are poorly
energetically coupled to the structural core: in fact the individuation of such
residues pairs permits to define regions with frustrated bonds. However, in the
previous use of this method the decomposition of the matrix of non-bonded in-
teraction energy EVB( van der Waals, electrostatic) is truncated only to the first
eigenvector (vector with the lowest eigenvalue). In many cases this approxima-
tion is capable to detect residues important for the stabilization[I193][37][143] and
it generally holds in case of monodomain proteins. For multidomain systems it
has been shown that an increased number of eigenvector is required. Therefore
the analysis of these cases requires further improvements introduced by Genoni et
al.[95]. If we think that an eigenvector defines a region of well-connected residues
pairs (a block in the interaction matrix) for one domain proteins, when more do-
mains are considered the interaction matrix becomes composed by more blocks,
each one of them defined by different eigenvectors. If we select for every domain
the eigenvector that optimally represents, it is possible to obtain the approximated
matrix:

Np
ENP ~ MNP =3 Nwiw] (3.1)
=1

Np is the number of proteins domains, this matrix will have a block structure
corresponding to the domains position. To deal with more realistic cases, it is
necessary to consider that the eigenvectors of the EVB matrix consist in a super-
position of different components (groups of distinct blocks). Therefore, more than
a single eigenvector will be necessary to obtain a coverage of every domain. In
order to use the bare minimum number of eigenvectors, it is necessary to mini-
mize the overlap between vectors reducing the redundancy of the representation.
The eigenvectors are filtered in order to highlight only the most relevant elements,
selecting the components that have a value greater than a threshold ( median of
the distribution of the absolute values). Once all the relevant elements of every
vector are computed it is possible to select the minimum subset that permit a
complete coverage. The vectors are selected starting from the one that have the
lowest eigenvalue, then the others are chosen extracting from the whole set the
vector that display the smallest overlap of the relevant components with the vec-
tors that are previously selected. These precautions help in the reduction of the
redundancy of domain coverage, obtaining a final matrix:

Ne
ENB ~ M = Z Aiwiw, (3.2)
i=1

with N, the number of essential eigenvectors, that is usually larger than Np. The
essential non bonded matrix (equation is then filtered with a symbolization
scheme to highlight the most relevant couplings, obtaining a symbolized matrix
that is further submitted in a cluster algorithm to delimit domains borders. At
the end of all the processes the final matrix M* will possess only those coupling
that have the mildest and the more intense energetic interactions.

The epitope prediction is achieved following the MLCE procedure, where the
decomposed energetic matrix is filtered removing non local couplings. A contact
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map C' is built labelling a residue pair as neighbours if their three dimensional
distance is below the arbitrary limit of 6 A; the contacts are computed among H
atoms for glycine, C3 atoms for non glycine types and C1 atoms if we are dealing
with glycans. The matrix of the local pairwise coupling energies (MLCE) is then
obtained through the entrywise product of the approximated interaction matrix
and the contact map:

MLCE=M%0C (3.3)

Once the MLCE matrix is computed the values of the local couplings are ordered
obtaining a rank of energetic interactions according to their robustness, from the
mildest to the more intense interaction. The extraction of putative epitopes is
obtained picking only the coupling that are under a certain threshold defined in
percentage, the width of the threshold will define the extent of the area of the
epitopes.

3.3 Case of study: fully glycosylated SARS-CoV-2 spike
protein

SARS-CoV-2 is the etiological agent of COVID-19, a severe respiratory disease
with seriously disruptive socioeconomic impacts[24]. The spike protein (S) is the
pivotal intermediary of the virus transmission and thus has captured most of the
attention for the production of vaccinees and diagnostics, being the first point of
contact between the virus and the host. In this section, I reported an application
of the energetic decomposition method described before for the detection of sub-
networks of frustrated interprotein interactions as putative epitopes for the fully
glycosylated S protein.

3.3.1 Introduction

The insurgence of COVID19 syndrome begun in Wuhan, China, and then dif-
fused around the world becoming a universal pandemic[69]. The pathogen caus-
ing this severe disease, the new coronavirus SARS-CoV-2, has infected more
than 46.000.000 people and caused more than 1.200.000 deaths to date (source
https://coronavirus. jhu.edu/). Since the infection is widespread on the globe
the use of social distancing precautions may not be enough to control the diffu-
sion worldwide. For this reason there, it is urgent to design new drugs or vaccines,
that are the unique measures for disease containment to bring social life back
to normality. There are various trials in progress for the development of vac-
cines (as reported in https://www.nytimes.com/interactive/2020/science/
coronavirus-vaccine-tracker.html) or new tests for repurposing compounds
known for the treatment of different syndromes[I119][127][168]. The SARS-CoV-2
is surprisingly efficient in taking advantage of the cell host pathways to infect and
replicate. This feature is typical in the Coronaviridae family, a group of viruses
specialized in the infection of different species of animals and, in the human case,
cause of various pathologies that afflict the liver, the nervous and respiratory
system[8][210], as well as responsible for epidemics in the past[34][40]. Common
to SARS-CoV and MERS-CoV, other members of the Coronaviridae family, the
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surface spike protein (S) has a central role in the process of cell infection, that hap-
pens through the interaction with the human receptor of angiotensin-converting
enzyme 2 (ACE2)[215][194]. After molecular recognition the S protein is divided
by the activity of serine protease, such as trypsin and cathepsins, facilitating the
entrance of the virus in epithelial cells[168]. It is relevant that a great part of the
vaccines studied for COVID-19 are based on recombinant expressions of the spike
protein. The resolution of the complete structure of the protein S heterotrimer
has been obtained with cryogenic electron microscopy (cryo-EM)[213][205][204]
giving improvement in the comprehension of the molecular individuation of the
receptor biding domain (RBD) of S protein by ACE2[2I5]. On the other side,
in silico analyses bring the focus on the dynamics of the spike protein at an
atomic level, elucidating the function of polysaccharides widespread on the pro-
tein surface[29][97][181]. Other studies put the attention on the factors that drive
the viral binding to the human cell, i.e. the interactions among spike and ACE2
proteins[220] [183][206].

This enrichment of information will assist the comprehension of the mechanism
underlying recognition of the spike protein, acquiring details of the necessary traits
to elicit effective Abs. The details gathered may be used for the study and de-
velopment of enhanced antigenic material starting from S protein, such as the
definition of domains or epitopes that can be reproduced with engineered pep-
tides. This phase would occupy a central part in the selection and improvement of
promising vaccines and Abs used for treatment and, moreover, the enhancement
of diagnostic devices. Furthermore information gained regarding molecular inter-
actions and recognition may be suitable in the future in the event of comparable
epidemics with the employment of optimized methods to novel antigens. To be
more precise, in case of an outbreak of a new infectious agent, versatile computa-
tional approaches could be quickly adapted to select and design engineered protein
or peptide based vaccine candidates.

In this section, I present a study on three dimensional structures of the S pro-
tein with its glycosylation resolved. The conformers are taken from the atomistic
molecular dynamic (MD) trajectories supplied by the Woods group[97][96] for the
detection of putative epitopes. To this purpose, the ab initio predictor of inter-
acting regions presented before is applied with the addition of glycans treatment.
This approach is grounded on the hypothesis that the antigen binding site for Abs
could be formed by a subnetwork of residues with weak energetic pairings with re-
spect to the stability core of the protein: such segments should display frustrated
interactions among each other and the rest of the protein. The obtaining of a
proper docking of another protein is possible if the free state results in an higher
free energy respect to the docked one through opportune interactions among the
molecules[I73][95]. Moreover, low energetic pairings with the remainder of the
structure supply these segments with a large structural flexibility that may be
necessary for the rearrangement of the interface during the binding event [177][58].
Another consequence of weak couplings is the possibility to mutate with minimum
energetic cost in the absence of alteration in protein’s conformation and stability.
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These are peculiar traits of the antigenic epitopes.

In this work the used method is shown to be capable to detect sites that are
comparable with the Abs binding sites discovered in latest structural immunol-
ogy works, even in the presence of glycans. In addition other putative epitopes
are predicted (still not investigated at the moment), these sites may be employed
for the design of improved antigens, in both engineered peptides or extracted do-
mains. In the end, the results obtained support the analysis about the molecular
roles underlying the structural reorganization supporting the activity of the pro-
tein. As far as I know, this methodology is among the first that allows epitope
detection considering glycans based just on the characterization of the energetics
of the antigen taken alone. It is significant that the method works in the absence
of experimental information about Ab recognition and epitope location of homol-
ogous proteins and does not require a specific parametrisation, such as structural
or sequence features. The process is versatile and transferable to different systems.

3.3.2 Protein structure and the role of the glycan envelope

According to their structures, the viral fusion proteins can be classified in three
different types[211]. The SARS-CoV-2 spike is a protein of the first class composed
by three monomers of 1273 residues length. As described by Casalino et al.[29] it
is possible to distinguish three topological parts of the protein: the head, the stalk
and the cytoplasmic tail. In the head is located the subunit S1 that is formed
by the N-terminal domain (NTD) and the receptor binding domain (RBD), the
determinant of the recognition of the ACE2 through the receptor binding motif
(RBM)[76]. To reach a proper binding with ACE2 the RBD can swing from a
bent closed to an extended open position. These two alternative conformations are
referred as “ up ” and “ down ”. The RBM is hidden to the solvent in the “ RBD
down ” position and become exposed when the conformation switch to the “ RDB
up 7. After the RBD, there is a furin cleavage site regarded as important to prepare
the S protein for membrane fusion and cell infection[19]. This site separates the
S1 from the S2 subunit. The S2 has a relevant participation in connecting and
merging the host membrane with the viral one. In this subunit there is a second
cleavage site that frees the fusion peptide (FP), a segment that induce membrane
merging after its insertion in the cell[12]. After the FP are located the central helix
(CH) and the connecting domain (CD). In the final residues there is the stalk part,
that consist of the heptad repeat 2 (HR2) and the transmembrane domain (TM),
and the cytoplasmic tail (CT).

Another relevant structural property of this protein is the dense coverage of
glycosyl-moieties on the surface. This envelope is a common trait of fusion proteinz
in viruses[52][38], and it is believed to have an active role in viral infection [84][207].
In this context the case of HIV-1 envelope spike (Env) is emblematic. The Env
shows and extended area of glycosylation sites[82] and the carbohydrates are so
compacted that they occupy a significant fraction of the whole Env molecular
weight[65]. It is supposed that the widespread presence of glycosylated residues,
inert from an immunological point of view, allows the pathogen to avoid the Abs
and lymphocytes recognition[6][38][207]. This deceit that is particularly efficient
for HIV-1 could be more vulnerable in the case of Coronaviruses S protein, in fact
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Figure 3.2: In figure A there is a scheme with the relevant parts of the full S protein
with the three dimensional representation of the Head part. There are highlighted
the NTD in blue, the RBD in green, the CH in orange and the FP in red. In B there
is a focus on the protein S top with the “ RDB up ” coloured red and “ RBD down ”
in blue, the structure show a different exposition for the RBM, respectively in yellow
and in green.

these proteins exhibit a lower glycan coverage[84]. The SARS-CoV-2 S protein
displays around 22 glycosylation sites[I2] that were recently investigated by the
Amaro group[29]. The Authors computed the SASA of the full-length protein
comparing the system in the absence of glycans with a full glycosylated system.
The results show that the SASA reduction due to the glycan shield is higher in the
stalk compared to the head part, meaning that the latter presents more weakness
in the coverage that can be helpful to be employed as a target. It is significant that
the RBD in the down conformation has a greater SASA reduction than the upward
position, suggesting an increased role of swing mechanism between the two states
in hiding the RDB domain. In addition, it is found that two glycosylation sites
(N165 and N234) are relevant for the stability of the “ RBD up ” conformation.

3.3.3 Implementation

The structures used are extracted from the trajectories of fully glycosylated SARS-
CoV-2 S protein (PDB code 6VSB) provided by the Woods group[97], six distinct
molecular dynamics runs of 400 ns for a total 2.4 us. In the elaboration of the
structures, we used the parameters originally chosen by Woods et al. in the simu-
lations: the force field ff14SB[133] is employed for every residue save glycosylated
asparagines, in that case the GLYCAM_06j is used[114]. In order to obtain rep-
resentative conformations to use for the energetic calculations the trajectories are
concatenated and aligned, then clustered referring to the root-mean-square devia-
tion of Ca atoms in the RBD domain using the cpptraj tool of Ambertools17[30]

The selected algorithm is the hierarchical agglomerative[44] with threshold e
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equal to 0.5. In the three most numerous clusters the central structure is se-
lected, solvent and ions were removed. The trimer displays two monomers in a
“ RBD down ” and a single monomer in a “ RBD up ” conformations, only the
monomer with the domain in the upward position is considered for the analysis.
The three monomers chosen are successively minimized with the standard proce-
dure for the tool sander of the AMBER package. The minimization of 200 step
is performed with the generalized Born implicit solvent model in the version of
Onufriev et al.[149] and the cut-off for both Lennard-Jones and Coulomb terms is
set to 12 A. At this step the counterions (implicit) concentration is 0.1 M and the
solvent accessible surface area is evaluated with the LCPO algorithm[209]. In the
end, the interaction matrix is computed, for every structure, with the MM-GBSA
approach, keeping the same parameters of the previous step except the zeroing
of counterions concentration and the changing of the solvent accessible algorithm
with the ICOSA. The interaction matrix is then processed with the MLCE method
for multidomain proteins described before.

3.3.4 Results and Discussion

The MLCE method computes the interactions among neighbour residues and for
the selections of the weakest residue pairs the couplings are ordered according to
the strength, from the weakest to the strongest. Then the regions with a poor
energetic coupling are detected, selecting only the pairs under a cut-off expressed
in percentile. In order to obtain a more complete scenario, two different cut-offs
are chosen: one set of pairing is extracted from the 15th percentile and another
set from the 5th. The variation of this “ margin of softness ” will change the
extent of the detected region, helping in the individuation of the most relevant
parts. As a clarification, it is important to stress that variations of the S protein
structures can reflect in distinct outcomes, since the matrix of energetic couplings
relies on the physical conformation of the molecule. The predicted areas of poorly
coupled residues are considered for the determination of immunological relevant
domains and epitopes. Starting with the broader margin (cut-off of 15%) the whole
monomer of S protein is subdivided in putative immunoreactive domains[70]. The
alm is to discover the regions that have the potential to interact with Abs but
are usually concealed from recognition when situated inside the whole structure.
Neutralizing epitopes with great reactivity may be displayed in just few transient
conformers that X-ray and cryo-EM models are unable to highlight. The exposure
to Abs interaction of these elusive areas via a single separated domain could bring
new opportunities in the design of new antigens[70]. The use of more restrictive
cut-off of 5% brings the attention to those little fragments that are central to
establish interactions with Abs, information that is helpful for the design of new
antigenic peptidomimetics. For this scope the selected fragment needs to have a
minimal length of six residues. The selection with higher cut-off detect a wide
group of frustrated energetic couplings in the RBD domain, indicating that this
domain is the part, of the “ RBD up ” monomer used, more prone to interact
with an Ab (see Figure . The regions found are obtained through consensus
among the three structures extracted from molecular dynamics and, noteworthy,
they have a good superposition with epitopes known to interact with nanobodies
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Figure 3.3: In this figure is shown the three dimensional structure of the protein S head
with the glycan envelope coloured blue. On the right there is the projection on the
protein sequence of the antigenic domains and epitopes detected. In above line there
are shown the epitopes found with the narrow margin (5th percentile), while in the
lower line there are the antigenic domains detected with the broader margin (15th
percentile), the three different colours refers to different domains.

or Abs ( as it is shown by latest X-ray and cryo-EM models). An interesting ex-
ample is the good match with the binding site of the monoclonal Ab CR3022 [72],
which dock in an elusive epitope that is visible for the recognition after relevant
conformational reorganizations[29], see Figure

Another antigenic domain is identified in a region that covers great part of the
N-terminal domain. In a paper by Chi et al.[81] is reported that the epitope
recognised by novel Ab 4AS8 is in this domain. A third area with low energetic
couplings is located in the terminal zone of the NTD domain. This part is in the
neighbourhood of the density for fragments of antigen binding (Fab) of COV57, a
newly studied Ab with a neutralization property that is alternative to the action
of RBD-binding Abs, as it is verified with latest cryo-EM study of Abs-S protein
interaction62]. A work by Zhou et al.[222] shows that Ab 7D10 for MERS inter-
acts in the same region. In addition the local coupling method detect a putative
area with good reactivity into the S2 subunit in the CD domain. In this domain,
the region of binding of 1A9 is detected, an interesting Ab able to cross-react with
the spike proteins of coronavirus in different species, including human and bats.
In this antigenic domain is also contained a groups of glycan. This could be linked
to a novel discovery where an epitope that includes carbohydrates is positioned
around this region and is bonded by an Ab that recognises carbohydrates HIV-1

bnAb 2G12[74] (see Figure [3.4).

The definition of domains with poorly coupled groups of residues can have
other functional involvement in addition to epitope detection. In fact the part
of the protein that are not necessary for structural stabilization can undergo wide
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Figure 3.4: Predicted interactions zones and known epitopes. The groups of residues
of the detected antigenic domains are highlighted with colours, green for the NTD,
magenta in the case of RBD and red in the end of the S protein head. The location
where is experimentally determined the interaction with antibodies is labelled with
the respective antibody name, the structrure is represented in two specular images.
In the centre is shown the interaction site of antibody CR3022 in correspondence
with the antigenic domain coloured magenta.

conformational rearrangements that support the biological activity. The borders
of the NTD antigenic domain (Figure green colour) are located in vicinity to
the furin-cleavage site ( indicated by the motif RRAR ), necessary to prime the
fusion mechanism of S protein. Therefore, this wide area of weak contacts in the
NTD can perform a movement in order to support the cut of this motif, inducing
the separation of the S1 subunit from the S2[204][190]. Moreover, there is a [-
sheet in the border of the CD domain that is in vicinity of the fusion peptide. It
could be rational to presume that the presence of a cluster of frustrated couplings
in the terminal of the S protein head could assist the structural changes necessary
to give to the FP a better exposure, thus helping the peptide insertion into the
cell membrane[190].

On the whole, these results sustain the feasibility of the MLCE method to detect
parts of the protein that can display an interesting antigenic activity, since they
are more liable to be involved in the humoral response respect to the rest of the
protein. There are observed putative antigenic domains different from the RBD
that can be bound for the neutralization the the virus. This aspect is particularly
relevant considering that the RBD is a target of Abs without neutralization activ-
ity ( for example, CR3022 [72]). Therefore, it is proposed as a feasible therapeutic
option the employment of a mixture of antibodies that bind in distinct areas of S
protein [81]. This consideration may find a basis in the cure of others epidemics
where a cocktail of Abs was employed. In this scenario, Regeneron Pharmaceu-
ticals is chasing a cocktail based treatment for COVID-19 that is being tested in
clinical trials[57].
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C105

Figure 3.5: Putative epitopes detected in the RBD domain with the lower cut-off (5%)
are set against experimentally determined Ab docking. The Abs binding (C105, S309,
AB23 and nanobody H11-D4) are shown with a surface representation (coloured blue
or blue/pink) and the monomer used in the analyses is showed in grey. The green
area highlight the position of the predicted epitope.

When the selection of the areas with poor couplings is made with a more restric-
tive margin (cut-off of 5%) the attention goes to the fragments of S protein that
establish interactions with Abs, i.e. conformational epitopes. Remarkably, one of
the epitope detected, made by residues (348)A-(352)A-(375)S-(434)TAWNS(438)-
(442)-DSKVGG(447)-(449)YNYL(452)-(459)S-(465)E-(491)-PLQS(494)-(496) Q-

(507)PYR(509), includes zones of the protein that make interactions with Abs
C105 (PDB code 6XCN)[62], S309 (PDB codes 6WPT and 6WPS)[63], AB23
(PDB code 7TBYR)[83] and with the nanobody H11-D4 (PDB code 6Z43) and
with another engineered nanostructure (PDB code 7C8V), see Figure

Moreover, it is interesting to notice that also an epitope with glycans is detected
and it is observed to be included in the interaction site of the Ab S309[63]: the pre-
dicted fragments consists of residues (332)ITNLC(336)-(361)C with the addition
in position N334 of the fucosylated N-glycan chitobiose core (Man/31-4GlcNAcS1-
4[Fucal-6]GlcNAcS-Asn)[114]. The detected area is noteworthy in the proxim-
ity of the RBM. Another individuated region, with residues (365)YSVLYN(370)-
(384)PTKLN(388), overlap with a significant fraction of the evasive epitope delin-
eated by Wilson et al.[72] (see Figure, that is the binding site of the Ab EY6A
(PDB code 6ZDH). It is stressed, one more time, that the detection of those re-
active areas is just conducted with the use of plain structural data produced from
a monomer of the glycosylated spike protein conformation that is extracted from
MD trajectories.

The narrow margin in the epitope area definition (cut-off 5%) permits to detect



3.3 Case of study: fully glycosylated SARS-CoV-2 spike protein 45

an antigenic fragment, that includes the residues (184)GN(185)-(242)- LAL(244)-
(246)R-(248)Y-(258)WTAGA(262), in the NTD domain. Inside this epitope are
found sites R246 and W258, both known as crucial factors for the interaction
among NTD and the Ab 4A8[81], see Figure Lastly, there is the predic-
tion of immunogenic segments in the zone that goes through residue 1076 to
1146, where is located the segment 1111-1130 corresponding to the experimen-
tal epitope of the mAb 1A9[85]. To be more precise the identified patch is:
(1076)TTAPAICH(1083)-(1087)A-(1092)-REG(1094)-(1096) FVSNGHWFVTQR
N(1108)(1112)P-(1114)I-(1116)T-(1118)DN(1119)-(1126)C-(1129) V-(1132)IVN
NTVYDPLQPELD(1146).

EY6A

Figure 3.6: Here is showed the Ab EY6A in complex to spike protein monomer. The
Ab (PDB code 6ZDH) is in a surface representation coloured blue/pink and binds
to the RBD of the spike monomer, coloured white. The putative epitope is coloured
green, the binding is shown in two distinct views, highlighting the goodness of the
overlap.

Overall, the applied method is capable to individuate putative antigenic domains
or epitopes in the S monomer using only structural and energetic data: in the
comparisons the technique predicts accurately from 20 to 80% of the residues
involved in mAbs recognition extracted from X-ray complexes. Given that various
(mixtures of) reactive residues of the antigen could be target of distinct Abs
during a polyclonal proliferation (like what happens in the human organism), the
individuation of just a minimum segment provided with immunological activity
may supply the necessary help to the design of new compounds able to elicit
neutralizing antibodies.

In this context, the sequences detected with the narrow margin (5th percentile)
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RBD
RBD.

Figure 3.7: Here is showed the Ab 4A8 in complex with the spike protein monomer.
The Ab, depicted in surface representation, is coloured blue/pink and the spike
monomer white. The detected epitope is coloured green. The Figure shows how the
Ab interacts with the NTD domain and the overlap with the green region suggests
the formation of contacts.

may be employed for the creation of engineered epitopes in a peptide format.
The production of epitopes of this kind would require the design of structured
peptidomimetics of the original antigenic segment, including optimisation of the
peptide stability via the use of non-natural amino acids. In this way it is possible
to recreate the structural circumstances that cause the humoral immune response.
The peptides detected could be exploited as models for novel vaccines or probes
for serologic diagnostic tools ( such as ELISA or microarray tests) for the indi-
viduation of Abs that flow in the blood which are secreted after the exposure to
SARS-CoV-2, in particular those that can operate a proper neutralization. In
addition, this probes may be a convenient instrument for the individuation of
novel mAbs and testing compounds for drug design. A relevant characteristic of
the used MLCE method is that the whole spike protein carbohydrates envelope
is considered for the detection of active epitope. The glycans do not display an
uniform function but they tend to have a distinct behaviour, depending on the
case. On the protein there are groups of glycans that exhibit a strong energetic
interactions with the rest of the protein, these segments are not predicted as bind-
ing sites but contributes to the global stability of the S protein. On the other
hand, the decomposition method is able to detect groups of carbohydrate chains
that are weakly coupled to the structure core and are labelled as putative binding
sites for Abs (or fragments of them), these areas suggest probable imperfections
in the carbohydrates shield that may be target of new small molecules or used
as a starting point for new vaccines. The parts of this envelope that are in the
first group present a dual role, to hide the pathogen from immune recognition,
therefore increasing its dangerousness, and to supply an additional mechanical ac-
tivity. An example is represented by a couple of glycans that is showed in Figure
One is the complete carbohydrate segment linked in N234 (see Figure
A), that is reported by the Amaro’s group to be relevant in the stabilization of
the “ RBD up ” conformation[29]. Site-directed mutation of this site with alanine
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produces a relevant population shift at the expense of the “ RBD up ” state[100].
The other case is the fragment of carbohydrate chain of the residue N165 that is
coloured in yellow in Figure|3.8/ B. The glycan in the site N165 has an active role in
regulation conformational transitions, principally for the “ RBD up ” state[100].
Interestingly this fragment of the glycan is not predicted as a binding site and
therefore it acts to hide the virus from Abs in the area close to N165, but the rest
of the residue chain (in orange in the Figure B) is detected to have probably
immunogenic activity, in fact it has weak energetic coupling to the monomer.

Figure 3.8: Carbohydrates chains with distinct activity. In A there is the glycan of the
residue N234, that is individuated as a stability agent for the protein structure. In
B is shown the glycan linked to N165, here the prediction finds a dual function of
the chain, a part works for stability (yellow) and another acts as immunogenic agent
(orange).

It is remarkable that the used method is able to predict Ab-binding sites close
to no immunogenic glycans despite (or in some aspects thanks to) its simple theo-
retical basis relying on the individuation of frustrated contacts in the protein.
According to this result it is plausible to think that the shielding activity of
these specific oligosaccharides could be bypassed and made ineffective through
the disclosure of the subjacent peptide structure. Moreover, information about
the glycans that are recognised into the epitopes can be employed for the study
of engineered antigens in the form of glycosylated peptides. This last concept is
significant: in fact novel synthetized compounds capable of imitating the specific
features of original antigens (behaving as a proper substitute) introduce attractive
chance to increase the properties of the immune reagents designed considering the
simpler purification and manageability, reduced expenses and optimized stability
in different states. In addition, the employment of this kind of compounds can
decrease the possibility of cross-reactivity with other antigens present, a common
situation when recombinant proteins are used. An expressed viral protein (and
every protein grounded diagnostic tool) usually needs more limiting environmental
parameters (like temperature) for the warehousing, carriage and supervision for
the maintenance of the antigens in its characteristic functional fold. This line of
reasoning still holds for vaccines made by inert infectious agents.
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In conclusion, these results show that the prediction of immunoreactive epi-
topes of the SARS-CoV-2 spike protein is possible with the analysis of unbiased
structural data. The confirmation with experimental complexes expands the com-
prehension of the molecular basis for interactions, which can be transferred into
novel vaccine candidates or testing tools. Moreover, the exposed method gives
possible functional involvement as it is suggested from the individuation of the
domains and zones that are significant for correct behaviour of the biological sys-
tem. For this reason the technique seems adequate for the detection of potential
modulation of the protein activity in presence of mutations caused by future viral
spread and host adaptation. In the end, the opportunity to cluster this multi-
faceted molecular machinery into functional parts may be used for the definition
of a coarse-grained system able to simulate the protein for an higher timespan.
The development of structure-driven in silico methods of this type may expand the
applicability of unbiased analysis and molecular simulations. At a practical level,
the creation of libraries of detected immunoreactive peptides (also glycosylated)
would increase the efficiency of the screening of candidates for vaccine design.
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CHAPTER

4

Computational study
of allosteric proteins

Allosteric regulation is the modulation of protein functions with the binding of a
ligand in a region distinct from the active site. The reasearch of the mechanism
that can illustrate the allosteric effect has required scientists’ dedication in the
past 50 years[32]. Since the description of the basic two-state system by Leff[126],
two main approaches were adopted: a thermodynamic approach, consisting in
the mathematical modelling of the reactions using the concentration of the states
as variables[54][73], and a structural approach, that is based on the analysis of
residues connection and comunication among different areas of the protein[45].
These complementary criteria can be joined under a free energy landscape model,
that is capable to merge the analysis of structural induced modulation with quan-
tification of the population shift using shared descriptors[I9§], in the same way
of the unification of conformational selection and induced fit in protein binding
models.

During my PhD I was involved in the study of two allosteric systems, adopt-
ing structural approaches. Firstly I developed a method for classification of the
activity of allosteric ligands of Hsp90 protein, inserting learning algorithms in a
docking protocol. The secondary task is the study of allosteric effect in the av36
integrin with extended molecular dynamic simulations.

4.1 An allosteric model: Human Hsp90

The Heat Shock Protein 90 is a molecular chaperon essential for the cell life
cycle[I75]. This molecule is widespead in the organism and constitutes around 1-2
% of the dry cell mass, percentage that grows to 4-6 % in stressed cells[122][89].
Recently it is showed that Hsp90 become a nucleating site for the costruction of ro-
bust multiprotein complexes that improve cell survival, presenting tumor-specific
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Figure 4.1: In figure A there is a representation of the Hsp90 dimer, the distinct domains
are highlighted: the NTD in green, MD in white and CTD in red. On the right side,
Figure B depicts a schematic view of the chaperon cycle.

patterns that are missing in cell in usual condition[59].

The Hsp90 family can be distinguished in three isoforms. Cytosolic Hsp90 that
is involved in signal transduction, cell preservation and growth, has clients like
hormone receptors and kinases. The mitocondrial isoform is TRAP1 responsible
of the folding of mitocondrial proteins necessary for homeostasis and respiratory
cycles. The last isoform, GRP94, is present in the endoplasmic reticulum serving
proteins like IgGs and integrins. The protein has a homodimeric structure with
monomers of around 700 residue lenght, subdivided in three principal domains:
the N-terminal domain (NTD), the middle-domain (MD) and the C-terminal do-
main (CTD). The two monomers form a stable dimerization interface in the CTD
forming a V-shaped complex.

For the function of its chaperone activity the homodimer undergoes to a con-
formational cycle[I60], moving from an open state to closed one with the NTDs
binding to each other’s and then back to the open state. It is demonstrated that
to obtain the reaction cycle is required the hydrolysis of ATP in a binding pocket
situated in the NTD[104]. For this reason the complete cycle is depicted in five
steps: firstly ATP molecules dock in the active site of NTD, this event induces the
dimerization of the Nlobes of the monomers, after the dimerization takes place the
hydrolysis of ATP molecules with the consequence of conformation opening and,
finally, nucleotide release.

This kind of sophisticated machinery needs the formation of structurated signal-
ing pathways between different parts of the protein. Prodromou et al. showed that
the deletion of the CTD inhibits the ATPasic activity of the NTD, highlighting an
active role of Clobe in the protein modulation and providing a proof of allosteric
regulation[161]. Further information are provided by the release of a Cryo-EM
structure[201] of Hsp90 in complex with cochaperon Cdc37 and a client, Cdk4 ki-
nase. The complex unveils Hsp90-client interactions in the region between CTDs
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interface and MD. Studies of the dimer in different nucleotide concentration bing
additional insight on the reaction cycle. It is found that the conformation with a
double ATP molecule docked is poorly represented in solution|[164] and, also, it is
obtained a mixed (ATP-ADP) closed conformation, showing that a double ATP
state is not necessary for NTD dimerization[55]. This negative cooperation among
the NTD interfaces is an additional proof of the comunication between CTD.

4.2 Building a learning classificator for ligand activity

4.2.1 Introduction

The improved knowledge of gene organization coupled with the advances in gene
editing and structural analysis methods can potentially start a whole new era
in drug discovery[199][212]. In particular, improved target identification can
shed light on biomolecules whose perturbation via small molecule binding re-
sults in a functional response, transforming a disease phenotype into a normal
one. The extraordinary complexity of biochemical networks in healthy and dis-
ease conditions[I5I][I06] and the costs associated to drug discovery are however
hampering the advent of this new era of therapeutics, as shown by the relatively
low numbers of new drugs approved in the last few years[60][75]. Most drug dis-
covery efforts aim at targeting the active sites of enzymes or the orthosteric sites
of regulatory proteins. Because of the evolutionary and structural conservation of
such sites across the proteome, issues related to selectivity, off-target effects and
development of drug resistance have started to appear.

In this context, allosteric ligands have recently emerged as a viable comple-
ment or alternative to active- site directed molecules, with novel potential as drug
candidates or chemical tools|[78|[177][88]. Allosteric ligands bind to sites that are
generally distinct and distal from the classic orthosteric ones. In doing so, they
can perturb the target not only by inhibition but also through modulation or acti-
vation of specific functions. This represents an advantage in terms of fundamental
and applicative perspectives. In fundamental research, chemical modulators (ef-
fectors) can be used to direct signaling pathways and whole cells towards desired
functional states, representing important tools for understanding the roles of spe-
cific biomolecules in complex biochemical networks[189][223]. In biomedical ap-
plications, since they target sites that are generally less evolutionarily conserved,
allosteric ligands can be highly selective, even among different members of the
same protein family[I71], providing new opportunities for therapeutic discovery.

To date, most (non-natural) allosteric ligands/drugs have been discovered using
high-throughput screening. The ever growing amount of sequences and structural
information combined with the increases in computing power and the improve-
ment of predictive algorithms are starting to facilitate the discovery of allosteric
modulators, but major challenges remain to develop approaches focused on ratio-
nal drug design.

Computational approaches to the problem have focused on variations on the
theme of molecular docking. Binding affinities predicted by docking simulations
are routinely used in virtual screening to estimate relative ligand rankings and
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to inform further steps in lead identification[129][20]. Efficient screening of large
libraries of compounds is achieved by the use of approximate scoring functions and
simplified strategies for conformational sampling[68]. Typically a static model of
the target structure is used. However, recently the influence of protein dynam-
ics on the recognition process has been more accurately modelled using ensemble
strategies[25] [148] [41][79]. These strategies involve the docking of a molecular lig-
and libraries over an ensemble of selected geometries of the protein, creating a
more realistic representation of the ligand bound to the different expected con-
formations of the target. The use of an ensemble of conformations reduces the
dependence of the docking results on the target structure[28]. Ensembles can
be extracted from unbiased molecular simulations of apo structures|7] and more
often by sampling of protein conformations from holo structures containing first-
generation ligands[33]. Under the assumption of conformational selection, a set
of different ensembles representing different binding states would have selective
preferential binding for different ligands. Based on this hypothesis, previous stud-
ies have used ‘a panel of ensembles’ for virtual screening[192], whereby a vector
of binding affinities against the panel is used to generate a specific fingerprint for
each ligand.

This type of data has high dimensionality both in the chemical and conforma-
tional space and is best suited for analysis using Machine Learning (ML) methods,
that have been increasingly adopted in drug discovery studies. Indeed, they con-
tributed to improvement of performance in virtual screening studies|[115][18][136]
and they have been effectively used in the enhancement of structural based virtual
screening and scoring[145][61]. ML methods are mostly data-driven and their per-
formance is often dependent on the size and quality of the dataset. To this end,
they may present limited transferability and care is required in reporting results
and scope of applicability.

The combination of ML with molecular simulations can dramatically advance
the process of selection of allosteric ligands with a desired impact on the function
of the target. Indeed, a major limitation in docking simulations is the lack of
information on the functional consequences of the allosteric binding event. While
relative binding affinities and geometries can be reproduced close to experimental
accuracy, there is no predictive score to discriminate inhibitors from activators,
agonists from antagonists or partial agonists[203]. Experimental assays typically
report on the orthosteric function, in most cases by direct measurement of a rel-
evant biochemical parameter that involves the active/orthosteric site. This may
not necessarily reflect the affinity of binding at the allosteric site [I59][165][67].
In most cases, binding is only one aspect of an intricate interplay of structural
and dynamic factors that emerge from the cross-talk between the allosteric ligand
and the protein and define functional responses. As a consequence, the deriva-
tion of structure-activity relationships (SARs) for allosteric ligands is typically
much more complex than for orthosteric ones. This unmet challenge calls for new
approaches that integrate information on binding, conformational dynamics, and
biological activity because the desired readout of the binding event is a change of
functional state in the protein, that is not directly or easily modelled by single
docking calculations.
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Here, to progress along this fascinating avenue, the potential of ML models
trained on molecular simulations is explored in order to predict the functional
effect of allosteric ligands on proteins. Allosteric ligands can either activate or
inhibit protein function. As a test case, the attention is focused on the difficult
case represented by the Hsp90 chaperone system, a molecular machinery essen-
tial for cell development and maintenance, that works by facilitating the folding
of a broad spectrum of clients [92][179])[163][175]. Proteins of the Hsp90 family
(Hsp90 in the cytosol, Grp94 in the ER and Trapl in mitochondria) are homod-
imers with two chains consisting of three globular domains, the N-terminal (NTD),
Middle and C-terminal (CTD). The functions of the chaperone are regulated by
ATP hydrolysis in the N-term domain, where ATP processing is coupled to Hsp90
conformational reorganization and consequent client remodelling. Early work by
Neckers’ group and recent computational studies reported an allosteric site at the
boundary between the M- and C-terminal domains that modulates ATP-related
functionalities[88][134]. The discovery of this allosteric site facilitated the devel-
opment of different series of allosteric ligands that are able to perturb Hsp90
mechanisms, by either inhibition or activation of ATP processing. Kinetic and
biochemical data indicated that the functional effects of the ligands are critically
coupled to their influence on the conformational dynamics of the protein.

In this work, we ask whether it is possible to develop a reliable predictor of
activation/inhibition for Hsp90 allosteric ligands. Model training is driven by
ensemble-based structural, dynamic and energetic characterization of allosteric
binding.

4.2.2 Computational Implementation
Molecular Dynamics simulation and analysis

The protein structure coordinates (PDB ID: 2CG9) for yeast Hsp90 were down-
loaded from the Protein Databank (https://www.rcsb.org/). Initial pose for
ligand docking were derived from previously published models[79][144][142]. MD
simulations were run with Gromacs 2018.2[2] with Amber03 force field[22]. The
protein-ligand complex was solvated with TIP3P water model in a dodecahedral
box with minimal distance from the solute of 14 A, counterions were added to
neutralize the system. After a minimization the molecules were equilibrated for
100ps in NVT ensemble and successively in NPT ensemble for 100ps. The simu-
lations were conducted at constant temperature of 300K and at constant pressure
of 1 bar, with a coupling time of 2 ps. The electrostatic term was described by us-
ing the particle mesh Ewald algorithm[42], the LINCS algorithm [103] [87][L02] was
used to constrain all bond lengths. Available ATP parameters for amber force
field[137] were used and ligands topologies were generated using AnteChamber
software with AM1-BCC charge model. For each ligand-protein complex a 400ns
of simulation was run. Cluster analysis was performed on a combined metatra-
jectory of all simulations with the representative ligands. Rigid roto-translation
fitting and RMSD calculations were made on alpha carbon atoms of secondary
structure segments extracted with VMD software[107]. Clustering was performed
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with Gromos algorithm[43] using a cut-off between 2 and 2.5 A.

Molecular Docking and fingerprint analysis

All systems were prepared using the Schrodinger Suite: bond orders and atomic
charges were assigned and the hydrogens were added, protonation states were
evaluated on acid and basic enzymes and hydrogen bonds were optimized. The
protein was then minimized with a cutoff of 0.3 respect to starting configuration.
The Glide[77] software was used for molecular docking: the putative binding site
was mapped on a grid with dimensions of 48 A, enclosing box, and 28 A, inner
box. Calculation with fixed receptor and flexible ligand were made with stan-
dard precision (SP) modality with OPLS3e Force Field. No additional changes
to default settings were made. Fingerprint similarities were computed with the
Canvas program of the Schrodinger Suite, typing scheme is atom distinguished by
functional type with no scaling in 32 bit.

Supervised and Unsupervised Learning

In house scripts for cluster analysis and supervised learning prediction were devel-
oped in Python using scikit-learn functions (https://scikit-learn.org/stable/
index.html). Source code is available at https://github.com/alepandini/
LIGXF.
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Figure 4.2: Here there is a scheme of the procedure implemented for this work.
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4.2.3 Results and Discussion

The approach used to classify allosteric ligands as activators or inhibitors of ATP
hydrolysis in Hsp90 entails three steps (see Figure4.2)). First, a panel of structural
ensembles is generated by cluster analysis of conformations from molecular dynam-
ics simulations of representative holo structures, in which Hsp90 is bound to ATP
in the N-terminal domain and to an allosteric effector in the allosteric site. Then
a library of allosteric compounds is docked against the Hsp90 structural panel.
Finally, a predictive model for functional classification of the allosteric ligands is
trained keeping into account the structural, dynamic and energetic properties of
the resulting complexes. From the literature, 133 compounds with known activity
against Hsp90 were collected, comprising 49 inhibitors and 84 activators (for the
complete list see Appendix. This dataset was used to train and test the predic-
tive model. The protein conformational ensembles for docking were generated by
atomistic molecular dynamics simulations in explicit water of Hsp90 in complex
with three different ligands: one activator (CC26) and two inhibitors (ND2 and
Novobiocin) (see Figure [4.3)).
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Figure 4.3: Here is showed the 2D structure of the ligands used in the simulations.

To keep the generation of the structural ensembles independent from the dataset
used for training, these ligands were not included in the training and test datasets.
Each replica of molecular dynamics was run for 400ns saving structures every
100ps and the resulting trajectories were combined into a single metatrajectory.
The panel of structural ensembles for docking was built to approximate the most
relevant states in Hsp90 functionally oriented dynamics. To this end, geometrical
cluster analysis of the metatrajectory was repeated using four different reference
frameworks: the backbone atoms of N-terminal domain (Clust-N); the backbone
atoms of Middle domain (Clust-M); the backbone atoms of N-terminal and Middle
domains (Clust-NM) and the backbone atoms of Middle and C-terminal domains
(Clust-MC). In addition to these domain-based frameworks, a cluster analysis of
the allosteric site was performed, where the ligand binding site was defined as the



58 4. Computational study of allosteric proteins

ensemble of residues that are within Inm of any bound allosteric ligand in at least
75% of all visited structures collected in the metatrajectory.

Next, the three most representative structures from each of the four domain-
based ensembles were selected as a target for docking experiments. In addition,
the two main representative structures resulting from the allosteric-site based clus-
tering were added. Two structures were enough to recapitulate more than 95% of
the structural variability observed in the pocket. Cluster analysis of the molecu-
lar dynamics metatrajectory yielded 14 representative protein structures for the
following step of docking. This collection was generated to capture the propensity
of Hsp90 to populate conformations potentially endowed with different functional
properties. After docking the ligand library to each of the selected representative
structures, three measures were calculated for every resulting complex: the dock-
ing score of the best pose for every representative structure, the root mean square
(RMS) of the docking score for the 10 best poses and, finally, the RMSD on the
atomic positions of the first 10 poses, reporting on structural adaptation within
the pocket. A total of 42 features was thus used for ML prediction.

The underlining hypothesis of this study is that features describing the docking
results of a ligand against a panel of distinct conformational ensembles can be used
as ‘dynamic fingerprints’ of its functional effect on the protein. This hypothesis
were tested under three assumptions: 1) the separation of activators and inhibitors
cannot be directly detected in the feature space by cluster analysis; 2) the sep-
aration of activators and inhibitors requires modelling a complex relationship by
supervised learning; 3) the separation cannot be trivially obtained by use of small
molecule fingerprints in the absence of information on the protein structure and
dynamics.

None of the features described above can independently be used as a classifier
and directly separate inhibitors from activators. This is evident from the distribu-
tion of values for every single feature against the two known ligand classes: in all
the cases the pair of per-class distributions overlap (see boxplot in Appendix @
This suggests that a model based on the combination of these features is required
to discriminate between the two classes. The first step is to test if the separation
of the two groups of ligands can be directly detected with an unsupervised learning
approach.

To this end cluster analysis was performed. Two different algorithms were
used: k-means and agglomerative hierarchical clustering with target cluster num-
bers ranging from 2 to 4. The ability to correctly separate ligand classes in the
clusters was estimated by cluster purity, that has values between 0 (when the class
labels are completely mixed in the clusters) and 1 (clusters composed by only one
class). Both algorithms have similar purity values, in particular when 2 clusters
are considered the purity is low (0.66 for K-means and 0.69 for hierarchical) and
with more clusters the purity raises, remaining below 0.80 (for 4 clusters: k-means
have 0.78 of purity and hierarchical have 0.79). The increased purity is due to the
reduced size of clusters that helps adapt to the class separation. Yet, the value
in the case of 2 clusters reveals that is difficult to detect a segmentation of the
compounds in the functional classes directly by cluster analysis. This suggest that
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Measure LR SVM RF
Balanced Accuracy 0.88 0.89 0.74
Precision 0.92 096 0.81
Recall 0.88 0.85 0.85

Table 4.1: In the Table are reported the performances of the three models tested.

it is not possible to automatically partition the space of the data to identify in-
hibitors and activators. A model trained on properties from the different binding
conformations is therefore needed.

In this framework, a classification model was built using supervised learning.
Three widely used algorithms were compared: Logistic Regression (LR) as a
baseline, Support Vector Machine (SVM) and Random Forest (RF). The per-
formances of the three methods were compared after training and test using the
holdout method, where the dataset is randomly split in training set and test set
with the proportion of 70% and 30% respectively. The performance in prediction
is reported in Table

LR and SVM show similar performances while RF has poorer performance.
Nevertheless, all three methods show a better classification power compared to
the cluster segmentation. 10-fold cross-validation without shuffling was performed
to exclude any bias due to the simple holdout split and to further compare the
methods. This approach also highlighted possible variability across the datasets
and facilitated interpreting the performance with more insight on the chemical
features of the molecules (see below). SVM shows the best performance with
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Figure 4.4: Here is the performances of the 10-fold crossvalidation for all the models.
The value of balanced accuracy for every fold is noted, the values for Logistic Re-
gression are in grey, Random Forest are in orange and SVM in blue.
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an average balanced accuracy of 0.90, compared to 0.87 (LR) and 0.79 (RF). In
Figure [£.4] per-fold balanced accuracy is reported. Only for one fold, values are
below 0.8. The results show consistency in performance by SVM across the set.
Finally, the possible dominance of one type of ensemble features (docking score,
rmsd, rms) in the prediction was assessed by selectively excluding each feature
in turn and repeated cross-validation. In each case the variation in the average
performance was not statically significant, z test score below 1 (see Figure ,

therefore no feature was detected as dominant.
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Figure 4.5: Boxplot of the distributions of the accuracy values for SVM. The A sample
represents the SVM trained on all the variables, in the other samples the measure
are obtained with the drop-out of one of the variables. All the samples display an
overlap on the distribution of values.

The classification model trained on docking against the panel of representative
conformations does not directly account of chemometrics properties of the ligands.
In the context of compound selection, it is interesting to compare the classification
model with a direct analysis of the chemical properties of the compounds. This
is to assess if correct classification can be obtained by small molecule fingerprints
in the absence of information on protein structure or dynamics. Our dataset
comprises molecules representative of different chemotypes (see Appendix . It
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may be possible to qualitatively cluster these molecules with respect to shared
scaffolds: in our case, this results in eight different groups (Figure [4.6]).
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Figure 4.6: Here is shown the subdivision of the employed molecules in distinct groups,
according to a shared scaffold. The 2D structure of the scaffolds are divided in eight
groups, from left to right: CheCOSP molecules (CC), coumarina based inhibitors
(CB), goniothalamin (GT), dihydropyridines (DP), the biphenyl inhibitors set is
splitted in two groups (BP1 and BP2), the Zinc Group (Z) and lastly the compound
labelled with 1 make its own group (Unk).

Yet, the compounds can still display substantial differences in their substituents
in terms of dimensions, charges and functional groups. Therefore, a classification
based only on the core of the molecules would give only a rough estimate of the
chemical variability in the dataset. For this reason, to explore the possibility of
classifying the function of molecules based only on their chemical properties, we
used a more quantitative method based on cheminformatics similarity criteria. A
common method to evaluate the similarity among compounds is to compute the
Tanimoto coefficient on molecular fingerprints[16]. The efficacy of similarity algo-
rithms tends to vary with biological activity; therefore the choice of the fingerprint
model usually depends on the system under study. Here, our aim is specifically to
introduce a metric for the comparison with our ML-dynamics based predictions.
Since the best fingerprint model for our dataset is not known we tried two widely
used methods: ECFP, a method that maps a molecule with a set of fragments
radially grown from each heavy atom; and MACCS, that accounts for the pres-
ence/absence of specific structural features[I67]|[1]. In both cases the molecules
are clustered using k-means algorithm with a cluster number varying from 2 to 4
(Table 2).

The ECFP fingerprint works better in separating the compounds between acti-
vators and inhibitors when only 2 clusters are chosen, while with 3 or 4 clusters
the separation is similar. With 3 clusters we found that the CheCOSP[79] group
is separated. This consists only of activators validated by experimental charac-
terization. The result shows that, despite a shared scaffold, there is a substantial
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MACCS ECFP
Activators Inhibitors Activators Inhibitors

K=2

Cluster 1 33 48 12 49
Cluster 2 51 1 72 0
K=3

Cluster 1 45 1 67 0
Cluster 2 0 47 17 2
Cluster 3 39 1 0 47
K=4

Cluster 1 16 0 42 0
Cluster 2 0 47 14 2
Cluster 3 36 1 0 47
Cluster 4 32 1 28 0

Table 4.2: In the Table is shown the separation among Activators and Inhibitors in
different clusters for both MACCS and ECFP fingerprints. Using a k-mean algorithm
the dataset is splitted with different values of K, i.e. the number of clusters. With
K=2 ECFP have a better separation of Inhibitors from Activators respect to MACCS.

chemical variety in the group.

The best result obtained by ECFP fingerprint on two clusters was compared
with the best ML predictive model obtained by SVM (all data in Appendix .
The comparison was broken down by chemical groups to explore how the two ap-
proaches perform on different subclasses of ligands. In Figure we report the
fraction of correct classifications for every group in our dataset. For the three
inhibitors group (BP1, BP2 and CB) a high fraction of correctly classified is ob-
served for ECFP, meaning that inhibitors have good chemical similarity, whereas
for activators the fraction for ECFP is high only for CC group. In all the other
groups (Z, DP, Unk and GT) the fraction is 0. Interestingly, the SVM model
correctly predicts as activators even the groups with low similarity with CC (the
group most extensively characterized at the experimental level). In this context,
we notice that SVM still correctly predicts group Z to 0.3 (0.0 in the case of finger-
prints), DP to 0.6, Unk and GT to 1. In contrast, inhibitors of the CB groups have
good similarity with the rest of inhibitors but they are not correctly predicted by
SVM.

Overall, the results of this comparative analysis suggest that the characteriza-
tion of allosteric binding with the partner protein, which reverberates the cross-
talk between the ligand and the receptor, captures the main structural and dy-
namic determinants at the basis of allosteric modulation. On the one hand, this
approach is not dependent on the similarities among the molecular structures of
the libraries of compounds under exam. Yet, considering that specific functional-
ities may determine recognition, binding and the successive functional regulation,
it is important to underline that the relevance of specific chemotypes for functional
modulation emerges from the ML analysis. This aspect is aptly captured by the
suitable combination of docking and Molecular Dynamics.
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Figure 4.7: In this Table are reported the fraction of correct predictions obtained with
SVM method compared with the cluster separation of ECFP values. An entry of
the ECFP cluster is considered correctly separated if is situated in the cluster that
contains the majority of his class. The values are in pink for ECFP and in blue for
SVM, the fractions are evaluated for every scaffold group separately.

The most successful predictor is a learnt supervised model built on features
describing the protein-ligand interaction across the whole set of representative
structures from the conformational panel. Attempts to use only some features or
some structures leads to poorer performance. This is consistent with the current
understanding that functional activation by allosteric ligands is often mediated
by the ligand “selecting” some of the conformational states. Information on both
selected and non-selected states is required to identify effective binding. This
also suggests that the model has learnt the relationship between selective binding
patterns and functional effect. Therefore, the need for more sophisticated unsu-
pervised algorithm is explained: this relationship is multivariate, not known in its
analytical form and complex.

It can be suggested that the ML strategy we have presented here, while demon-
strated on a specific but highly challenging case, is not system-specific and could
be extended to the study of other allosterically regulated systems: in this context,
this method can be proposed as a valid complement to the selection of allosteric
leads for potential drug-development.

4.3 Allosteric effects in integrin av6

The integrins are a class of transmembrane receptors that permit cell anchoring to
the extracellular matrix (ECM) and also contribute to the connection among cells
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in metazoan organisms. Moreover, these proteins are able to induce important in-
tracellular pathways through the binding to the cytoskeleton[I08]. Here we focus
on a specific type that is av86. This integrin has the peculiarity to be present
only on epithelial cells. Throughout embryo development integrin av36 has high
expression levels in forming lungs, skin and kidney, while its expression is consid-
erably reduced in developed healthy tissues[I7]. In contrast, increased expression
of av(36 has been related to an enanched aggressiveness in different forms of tu-
mor, such as colon and ovarian cancer or endometrial carcinomalI7]. In addition
integrin avB6 is involved in the recognition of the Transforming Growth Factor
B (TGFp), a family of molecular factors that are central for organism develop-
ment and are linked to cancer generation[166], and activation of the associated
pathways.

This integrin is a molecule of significant size, composed by two distinct subunits,
an av subunit of 1048 residue length and a $6 subunit of 788 residue with a size
similar to other integrins. The two subunits extend from the cell membrane and
form non covalent bonds in the apical domains; the extracellular structure could
be divided in an head part and two legs connected to the transmembrane domains.
The Headpiece consists of two terminal domains of av subunit (the b Propeller
and the thigh) and two domains of 56 ( bl and the hybrid ). In the between of
bPropeller and bl interface there is the site for the recognition of a residue motif,
Arg-Gly-Asp (RGD), that is conserved in many partners, such as fibronectin,
vitronectin and TGF proteins[191]. Integrin activation, defined as an increase of
the affinity for RGD ligands, is regulated by a swing between two conformations:
when inactive, the structure forms a bent conformation with the head pointing
towards the membrane, while when it is activated the protein is extended with the
loop between thigh (or hybrid) domain and the leg working as a “knee”. From a
structural point of view the activation mechanism has partially become accessible
since the release of X-ray crystal of protein headpiece in complex with the binding
region of the Latency Associated Peptide (LAP) of pro-TGF53[49].

In the past years different studies have started to shed light on the activation of
integrin avf6 and binding to pro-TGFfS complexes, with the consequent TGFf
release. Recent work by Dong et al. have shown the importance of the hybrid do-
main in regulating binding affinity, hybrid domain removal produce a 50 fold higher
activity[51]. Moreover, the study of the pro-TGFf activation induced by integrin
avB6 has shown, in cell experiments, that deletion of the 56 cytoplasmic domain
inhibits the activation, suggesting that a mechanical force might be necessary to
TGF S release. The role of the two subunits in the traction-based pro-TGF S acti-
vation has been investigated with steer molecular dynamics (SMD), where a force
is applied to avB6 pro-TFGA1 complex on one subunit terminal residue and re-
sisted by the pro-TGF 1 molecule[50]. The authors showed that the only subunit
that resist to the mechanical traction required for TFGfA1 release is the 86, sug-
gesting that this subunit is principally involved in allosteric regulation. In spite
of these results it is still difficult to depict the effect of the peptide on the integrin
dynamics.

In order to acquire further details of the effect of the peptide on the structure



4.3 Allosteric effects in integrin av;36 65

and its dynamic, it could be interesting to analyse the effect that the LAP peptide
produce on the structure and its dynamics. The main scope of the study is to
analyse the dynamical and structural properties that could be connected to the
allosteric (de)activation of the integrin. To this end, molecular dynamics simula-
tions are attempted. Starting from the crystal structure (pdb code 4UM9), two
systems are prepared: one with the bounded peptide and one in the apo form. For
the simulations the Amber18 package with the ff99SBIldn force field is used[128§].
Both the structures were solvated, with an explicit solvent box of the TIP3P
model, Na+ counterions are added to obtain electroneutrality. In the metal ion
binding sites Mg2+ are modelled with the parameters derived by Allner et al.[5].
The final systems consist of more than 200000 atoms. Each system was submitted
to a 100 ps equilibration (NVT and NPT) then simulated in unrestrained condi-
tions, for both the cases (APO and peptide bounded) 4 replicas were conducted of
1 ps each in the NPT ensemble; temperature and pressure were set to 300K and
latm with the use of Berendsen and Langevin algorithms[21][225].

As a first thing we observe the effect of the ligand on the global protein structure,
measuring the variation of the radius of gyration (RG) of the molecule (see Figure
. The starting crystal has a radius of gyration of 34.1 A, the trajectories of
APO and LAP depict a distribution of the RG that has a two peaks shape for LAP
case, with a small peak around 33.5 A and a larger peak around 35.8 A, whereas the
APO case has a broader distribution with a well-defined peak around 37.5 A and a
shoulder at smaller values. The results clearly show that the starting configuration
is not represented in the simulated ensembles, in addition the protein in absence of
ligand (APO) seems to possess a greater freedom of movements arriving to extend
over 37 A of RG. Since the central rearrangement happens in the protein legs,
in particular in the swing-out of the hybrid domain, the analysis is then focused
on the specific domain motion and internal reorganisation. The RMSD values
on Ca atom are computed for every domain. Moreover, in order to observe the
mobility of the thigh and hybrid domain in the respective subunit, two measures
of their displacement are also computed, i.e. the rmsd of the thigh domain upon
structural alignment on the bP domain and the rsmd of the hybrid domain after
the alignment on the bl domain. The values show similar distributions for both
APO and LAP configuration in all of the four domains, with the thigh and the
hybrid having a broader distribution with respect to the other two. The measures
of the displacement show that the thigh is extremely flexible in the subunit. In fact
it reaches large rmsd values, with the APO and the LAP systems having similar
distributions. The displacement of the hybrid domain from the starting closing
position is more contained, but the distribution of the values in APO configuration
show a peak in higher values respect to the LAP case (see Figure F).

The thigh domain gives most of the contribution to the motion of the protein,
and this is not surprising because the domains in the 56 subunit have a double
reinforcement, having a pair of polypeptide connections strengthen by disulfide
bonds, that is necessary to resist the mechanical traction. Nevertheless, this do-
main has little contribution to the modulation of the dynamic occurred with the
peptide binding, in fact the hybrid domain has a relevant decrease in the rmsd
values range, suggesting an increased rigidity of the subunit when the peptide is
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bound.

Further confirmation of this result can be obtained computing the distance
fluctuations (DF), i.e. the fluctuations of the distances among residue pair over
the whole trajectory, for a pair of residues ¢ and j:

DFyj = ((rij — (rij))?) (4.1)

The values form a matrix with the DF value of every pair, and to evaluate the
contribution of every residue to the DF of the rest of the protein is computed
the sum of every column of the DF matrix (formula , obtaining a per residue
score. The DF profiles for APO and LAP configuration are very close except
for the residues of the hybrid domain, were the APO case has more DF score
respect to the LAP, meaning that with the peptide bound the domain has lower
fluctuations (see Figure for the complete matrices see Appendix .
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Figure 4.8: Here is represented the structure of avf6 integrin. The £ subunit is formed
by bl, colored in blue, and the hybrid, in pink, while the o subunit consist of the
b Propeller, in red, and the thigh, in green. In yellow is showed a peptide of pro-
TGFg33.
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Figure 4.9: Here are represented the distribution of Radius of Gyration for the APO
(black) and the LAP bound (red) configurations. The value of RG for the starting
structure is colored in green.
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Figure 4.10: Here are reported the total column counts of the DF matrix. The residues
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Figure 4.11: In the Figure are reported the distribution of the rmsd in the bP (A),
bI (B), thight (C) and hybrid (D) domains, displaying similar distributions of the
values for APO and LAP configurations. The measures of the displacement from
the rest of the subunit is showed in E for thigh domain and in F for hybrid.






CHAPTER

5

Conclusions

The study of protein-protein interactions remains a complicated challenge, in spite
of the continuous progresses that are being made in both experimental and theo-
retical fields. In this thesis these problems are investigated from a computational
chemistry point of view using theoretical tools and simulating molecular models
at an atomistic level.

In the first part of the thesis, I studied methods for the prediction of the residues
involved in protein-protein interactions. In chapter 2, I presented two different
scores, one based on evolutionary information and one based on the energetics of
the protein, on a dataset of crystal structures. Both scores have the capability to
discriminate the interface region from the rest of the protein in a relevant fraction
of cases. Moreover, a comparison of the scores efficacy on distinct protein classes
highlights the importance of considering the biological function of the protein on
the performance of the method used for the prediction of interface residues.

In chapter 3 the energetic method for interface residues prediction is used for
the detection of antigenic epitopes on the spike protein of SARS-CoV-2. The
regions predicted were confirmed against experimental complexes expanding our
understanding of the molecular basis for interactions. In perspective, the acquired
knowledge could be used for the design of novel vaccine candidates and diagnostic
tools and to increase our readiness in the case of future epidemics.

In the second part there, I focussed on the study of two allosteric systems,
presented in chapter 4. Firstly a method is presented for the integration of an
ensemble docking protocol with a learning classifier for allosteric ligands of the
protein Hsp90. The method reaches a good accuracy in classifying the activity of
these ligands and this approach seems to reduce the dependency on the chemical
similarity of the compounds used for the training. The method is tested on a
limited dataset and further developments could be achieved in the future if the
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library of compounds is increased. In the end, I presented the initial analysis of
an allosteric signal for integrin av/6 in complex with a pro-TGF S peptide, with
the use of molecular dynamics simulations. The data suggest that the presence of
the peptide induces a rigidification of the legs of the structure, in particular for a
specific domain.

In conclusion, with my thesis I showed how the development and use of computa-
tional and theoretical approaches can be very helpful in the study of the structure-
dynamics-function relationships in biological problems. The hope is that with the
increase of accessible structural data the strategies presented can be further op-
timised and find extended reach. Combining the application of computational
chemistry techniques with the improvement of models and atomistic simulations
will permit to acquire new knowledge on the fundamentals trait of protein-protein
interactions.
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APPENDIX

A

KS and AD values complete
list

Here is the complete list of the p-values, for EVT and MLCE data, produced with
Kolmogorov-Smirnov (KS ) and Anderson-Darling (AD) methods. The entries are
sorted referring to the pdc code of the “Complex”, i.e. the protein-protein crystal
used as a benchmark for the evaluations. In “Monomer” are listed the pdb code
the structure used for the calculations.

Complex Monomer EVT pvalues MLCE pvalues
‘ KS AD KS AD
1A2K 10UN  0.01962 0.04335 0.01285 0.01182
1A2K 1QG4 0.00012 0.00001 0.39582 0.39449
1ACB 1EGL 0.53601 0.67010 0.00015 0.00087
1ACB 2CGA  0.01588 0.05452 0.27513 0.41297
1AFV 1GWP  0.51531 0.87830 0.00003 0.00000
1AHW 1TFH 0.72129 0.81813 0.00072 0.00003
1AK4 2CPL 0.00212 0.00225 0.00403 0.00243
1AK4 4J93 0.43648 0.36281 0.35533 0.21066
1ATN 11JJ 0.54841 0.60690 0.08677 0.19492
1ATN 3DNI 0.40755 0.57711 0.22334 0.28559
1AVX 1BA7 0.39693 0.29394 0.12339 0.21474
1AVX 1QQU  0.11743 0.27805 0.80819 0.92044
1AY7 1A19 0.00002 0.00000 0.32815 0.21121
1AY7 1RGH 0.03612 0.09591 0.00114 0.00188
1AZS 1ABS 0.49945 0.44841 0.43939 0.57670
1AZS 1AZT 0.00009 0.00001 0.04903 0.01198
1B6C 1D60O 0.02585 0.03839 0.09286 0.27594
1BGX 1AY1 0.00001 0.00002 0.00010 0.00000
1BGX 1TAQ 0.03654 0.07526 0.08114 0.26200
‘ Continued on next page ’

7



78

A. KS and AD values complete list

1BUH
1BUH
1DQJ
1DQJ
1E6J
1E6J
IEAW
IEAW
1EXB
1EXB
1EZU
1EZU
IFES
IFFW
IFFW
1FSK
1GL1
1GL1
1GPW
1GPW
1GRN
1GRN
1HOD
1H9D
1H9D
1HCF
1HCF
114D
114D
11C4
11QD
1JMO
1K74
1K74
1KAC
1KAC
1KKL
1KKL
1KTZ
1KTZ
1LFD
1LFD
IMHP
1MLO
1MQS

1DKS
1HCL
1DQQ
3LZT
1A43
1E60
1EAX
9PTI
1QDV
1QRQ
1ECZ
ITRM
1A03
IFWP
3CHY
1BV1
1K2I
1PMC
1K9V
1THF
1A4R
1RGP
1K59
1EAN
1ILF
1B9S
IWWB
1149
IMH1
3LZT
1D7P
2CN0O
IMZN
1ZGY
1F5W
INOB
1JB1
9HPR
1M9Z
1TGJ
1LXD
5P21
1CK4
1DOL
1IAM

0.10842
0.16773
0.03724
0.08909
0.47983
0.00002
0.55519
0.08161
0.20405
0.13564
0.26734
0.11009
0.52854
0.00016
0.66576
0.01523
0.34100
0.47252
0.00007
0.39655
0.00002
0.00001
0.86116
0.04704
0.01088
0.04061
0.05915
0.00913
0.00121
0.05501
0.02772
0.27065
0.00001
0.00001
0.72954
0.23251
0.34940
0.00564
0.14936
0.69346
0.37617
0.00029
0.01924
0.42853
0.02133

0.14496
0.07548
0.12974
0.31898
0.55374
0.00003
0.59646
0.17814
0.21769
0.19309
0.30878
0.14224
0.31669
0.00064
0.88569
0.03330
0.37286
0.54939
0.00006
0.42723
0.00003
0.00000
0.88208
0.01585
0.00438
0.15595
0.17135
0.00192
0.00059
0.37783
0.03810
0.39004
0.00000
0.00000
0.90662
0.31988
0.33881
0.00830
0.37139
0.53826
0.29214
0.00012
0.01401
0.46861
0.08125

0.23894
0.00565
0.69725
0.21692
0.00042
0.09128
0.63219
0.15819
0.71220
0.03218
0.22186
0.75884
0.00128
0.30779
0.00073
0.00018
0.29214
0.28694
0.07724
0.00858
0.00103
0.00031
0.00235
0.03231
0.38177
0.00558
0.04613
0.00706
0.10560
0.28795
0.00027
0.01077
0.00040
0.00058
0.36949
0.09749
0.00565
0.00058
0.16925
0.35224
0.49505
0.00320
0.18202
0.51361
0.00012

0.30447
0.01036
0.75170
0.20593
0.00021
0.02651
0.83276
0.12234
0.78937
0.02760
0.37589
0.97566
0.00291
0.40460
0.00127
0.00012
0.27828
0.23952
0.18138
0.04146
0.00127
0.00125
0.00133
0.06949
0.42839
0.00549
0.01031
0.00124
0.09176
0.32815
0.00012
0.02362
0.00162
0.00149
0.59829
0.08832
0.01252
0.00537
0.11011
0.32961
0.47838
0.04796
0.18616
0.59236
0.00001

Continued on next page
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1MQ8
INMC
INSN
INW9
INW9
10AK
10C0
10C0
10PH
10PH
1PKQ
1PPE
1PPE
1QFW
1ROR
1ROR
1R8S
1RJL
1RKE
1RKE
1SYX
1SYX
1TPX
IWDW
IWDW
1XU1
1XU1
1Y64
1Y64
1YNT
1YVB
1YVB
170K
170K
175Y
1Z5Y
1ZHH
1ZHH
2A9K
2A9K
2AJF
2AJF
2B4J
2B4J
9BTF

1MQY
7NN9
1KDC
1JXQ
20PY
1AUQ
1B3K
2JQ8
1QLP
1UTQ
1PKO
IBTP
1LUO
1HCN
1SCN
2GKR
1R8M
1P4P
1SYQ
3MYI
1127
1QGV
1UW3
1GEQ
1V8Z
1U5Y
1XUT
1UX5
9FXU
1KZQ
1CEW
2GHU
1YZM
9BME
1L6P
9B1K
1JX6
9HJE
1U90
2C8B
1R42
2GHV
1BIZ
1Z9E
1137

0.11879
0.02230
0.00513
0.04124
0.11492
0.04964
0.63578
0.47189
0.00118
0.26066
0.61045
0.12891
1.01072
0.64957
0.00038
0.87298
0.00001
0.27244
0.23640
0.00026
0.05921
0.15881
0.01224
0.00001
0.04085
0.42915
0.16269
0.00583
0.53906
0.00020
0.02825
0.08346
0.00034
0.00003
0.00005
0.01074
0.61539
0.79629
0.00412
0.12875
0.00024
0.01480
0.18230
0.21073
0.17502

0.08609
0.01792
0.02633
0.00552
0.08058
0.15531
0.67480
0.57640
0.00062
0.61346
0.67323
0.15744
0.84332
0.65235
0.00901
0.99291
0.00000
0.22556
0.12208
0.00038
0.31324
0.15615
0.00373
0.00000
0.01765
0.35373
0.16247
0.00407
0.38687
0.00023
0.04426
0.45829
0.00740
0.00014
0.00003
0.06878
0.62488
0.80256
0.00508
0.15513
0.00151
0.02068
0.39511
0.08210
0.10844

0.32910
0.28224
0.04089
0.08926
0.03374
0.00002
0.17483
0.02693
0.08080
0.11282
0.00001
0.32738
0.02788
0.11709
0.37580
0.07437
0.03815
0.00001
0.11097
0.00133
0.15449
0.00056
0.34985
0.00276
0.05198
0.00017
0.04574
0.00265
0.00198
0.00135
0.49367
0.33124
0.07974
0.00136
0.17624
0.00448
0.00097
0.31544
0.00326
0.00051
0.00004
0.31109
0.00708
0.05896
0.30214

0.42444
0.24707
0.07887
0.21750
0.07119
0.00000
0.26741
0.01532
0.12449
0.16771
0.00000
0.51777
0.03958
0.38176
0.51847
0.04644
0.01546
0.00000
0.39965
0.00149
0.45788
0.00533
0.44862
0.01109
0.00000
0.00005
0.04707
0.00205
0.00000
0.00019
0.36539
0.44914
0.16594
0.00018
0.24693
0.03525
0.00070
0.33690
0.00266
0.00350
0.00000
0.32797
0.00824
0.04140
0.19975
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A. KS and AD values complete list

2BTF
2CFH
2CFH
2FJG
2GTP
2GTP
2H7V
2H7TV
2HLE
2HLE
2125
2125
2IDO
2IDO
2JOT
2J0T
2JEL
2MTA
2MTA
203B
203B
208V
208V
20UL
20UL
20ZA
20ZA
2PCC
2PCC
28IC
25IC
2SNI
2SNI
2VIS
2VIS
2X9A
2X9A
270E
270E
3A4S
3A4S
3BIW
3BIW
3CPH
3CPH

1PNE
1S7Z7
2BJN
2VPF
1GFI
2BV1
1MH1
2H70
1IKO
2BBA
2124
3LZT
1J54
1SE7
1D2B
966C
1POH
2BBK
2RAC
1J57
17ZM8
1SUR
2TRX
2NNR
3BPF
3FYK
3HEC
1CCP
1YCC
1SUP
3SSI
1UBN
2CI2
1GIG
2VIU
1562
2X9B
1V49
2D11
1A3S
3A4R
2R1D
3BIX
1G16
3CPI

0.47349
0.00002
0.00009
0.52374
0.00031
0.00002
0.00001
0.69620
0.00018
0.03280
0.00240
0.36576
0.74710
0.69562
0.92797
0.00022
0.03568
0.02665
0.00490
0.02193
0.00051
0.36092
0.00002
0.00009
0.06921
0.00721
0.00002
0.40793
0.00651
0.00204
0.10401
0.00015
0.46675
0.00001
0.04892
0.49912
0.06878
0.04379
0.00002
0.62811
0.02010
0.18900
0.91645
0.00074
0.00005

0.11455
0.00001
0.00069
0.52660
0.00359
0.00003
0.00000
0.90647
0.00085
0.02089
0.00167
0.20966
0.93509
0.26026
0.98533
0.00041
0.03833
0.03854
0.00136
0.02708
0.00545
0.33398
0.00001
0.00003
0.45741
0.01902
0.00000
0.50139
0.00398
0.01089
0.32513
0.00222
0.83527
0.00000
0.04816
0.62379
0.44064
0.02336
0.00000
0.38344
0.01580
0.26298
0.75337
0.00040
0.00000

0.00339
0.00036
0.07291
0.00011
0.00072
0.01066
0.10136
0.00005
0.25018
0.01684
0.00001
0.00004
0.65756
0.58654
0.00002
0.25123
0.00014
0.00529
0.01522
0.25435
0.45767
0.53863
0.00467
0.14317
0.48415
0.08607
0.87345
0.16408
0.35859
0.16062
0.00611
0.56325
0.13578
0.00661
0.02195
0.00267
0.05481
0.00003
0.30022
0.84766
0.13788
0.00223
0.02667
0.00418
0.00034

0.00638
0.00012
0.06046
0.00002
0.00495
0.04432
0.03832
0.00000
0.24883
0.02552
0.00000
0.00012
0.82705
0.65668
0.00021
0.14485
0.00011
0.03594
0.02655
0.31461
0.52061
0.64993
0.02048
0.41136
0.70292
0.03172
0.96957
0.26045
0.42749
0.15035
0.02508
0.50348
0.23430
0.00038
0.01436
0.00242
0.08842
0.00015
0.42872
0.84853
0.25319
0.00146
0.04173
0.00110
0.00026
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3DAW
3DAW
3F1P
3F1P
3FN1
3FN1
3H11
3H11
3H2V
3H2V
3LVK
3LVK
3PCS
3PCS
3SGQ
3SGQ
3V6Z
3V6Z
ACPA
AFZA
AFZA
AGXU
AGXU
AHX3
AHX3
4177
ATZ7
AM76
AM76

11JJ
2HD7
1P97
1X00
9EDI
2LQ7
3H13
437
1WI6
3MYT
1DCJ
3LVM
3PC6
3PC7
20VO0
2QA9
3KXS
3V6F
8CPA
1UPL
3GGF
1RUZ
AGXV
1C7K
AHWX
1ERK
9LS7
1C3D
IM1U

0.02222
0.00001
0.00407
0.00138
0.13243
0.34223
0.13523
0.00035
0.73605
0.21574
0.00029
0.67765
0.68738
0.00452
0.10716
0.02797
0.65654
0.00001
0.07229
0.00001
0.25245
0.25298
0.00001
0.00006
0.36607
0.00153
0.00355
0.16389
0.18682

0.02752
0.00002
0.00128
0.00223
0.16093
0.59690
0.31637
0.00343
0.57458
0.22754
0.00003
0.46698
0.89082
0.03788
0.29674
0.02228
0.99508
0.00000
0.15148
0.00000
0.09444
0.31639
0.00001
0.00004
0.29602
0.00604
0.00369
0.27475
0.03974

0.31038
0.30420
0.12952
0.17999
0.02183
0.03940
0.01487
0.00898
0.02929
0.56814
0.06052
0.00036
0.05843
0.00217
0.83309
0.02925
0.01775
0.03455
0.02781
0.00005
0.00009
0.00400
0.10958
0.97481
0.01291
0.01787
0.00080
0.16671
0.17159

0.43423
0.47156
0.07122
0.28016
0.00223
0.14853
0.01261
0.03993
0.01276
0.52861
0.02743
0.00074
0.01920
0.01746
0.98360
0.04686
0.05772
0.05582
0.19487
0.00000
0.00014
0.00297
0.01827
0.98191
0.01001
0.03846
0.00024
0.21423
0.21588
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A. KS and AD values complete list




APPENDIX

B

AUC values complete list

Full list of the AUC value computed for EVT, MLCE and EVT+MLCE methods.
The list is sorted respect to the pdb code of the “Complex“. It is also indicated
the degree of flexibility of the interface: R is for rigid body, M for medium, D for
difficult and N for not labelled. It is also reported the group of activity of the
protein with the labels: antibody (Ab), enzymes (Ez), antigens (Ag), inhibitors
(In), signal transmission (ST) and structural (Sr).

Complex Monomer Hardness Group EVT MLCE EVT+MLCE

1A2K 10UN ST 0.63315 0.68931 0.72917
1A2K 1QG4 ST 0.92419 0.53791 0.87818
1ACB 1EGL In 0.51990 0.82526 0.70675
1ACB 2CGA Ez 0.63461 0.47668 0.58771
1AFV 1GWP Ag 0.48195 0.16880 0.28083
1AHW 1TFH ST 0.53959 0.27993 0.40755
1AK4 2CPL Ez 0.69385 0.73333 0.81692
1AK4 4J93 Ag 0.41279 0.58188 0.40892
1ATN 11JJ Sr 0.49537 0.52116 0.51240

1ATN 3DNI
1AVX 1BA7
1AVX  1QQU
1AY7 1A19
1AY7  1RGH
1AZS 1ABS
1AZS 1AZT

Ez 0.53209 0.54224 0.53975

In 0.58947 0.43217 0.55071

Ez 0.66838 0.46936 0.58774

In 0.96667 0.65370 0.90463

Ag 0.68556  0.25506 0.49258

Ez 0.56151 0.46711 0.60000

ST 0.81818 0.51578 0.83633
1B6C 1D60O Ez 0.65222 0.52632 0.66512
1BGX 1AY1 Ab 0.21875 0.44935 0.22543

‘ Continued on next page ‘
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B. AUC values complete list

11QD 1D7P
1JMO 2CNO
1K 74 1IMZN
1K74 1ZGY
1KAC 1F5W
1KAC INOB
1KKL 1JB1

1KKL 2HPR
1KTZ 1M9Z
1KTZ 1TGJ
1LFD 1LXD
1LFD 5P21

IMHP 1CK4
1MLO 1DOL

Ag 0.28701 0.76809 0.46382
Ez 0.57780 0.43320 0.49700
ST 0.86302 0.36940 0.75833
ST 0.81817 0.39144 0.73513
Ab 0.53279 0.61326 0.60469
Ag 0.59709 0.60259 0.77379
Ez 0.60422 0.30687 0.55045
Ez 0.77047 0.81652 0.87865
ST 0.61686 0.35153 0.63123
ST 0.56410 0.37628 0.50128
ST 0.59860 0.44798 0.58075
ST 0.80390 0.75411 0.86450
Ag 0.67760 0.54286 0.65455
ST 0.64848 0.61449 0.66816

1BGX 1TAQ D Ag 0.58905 0.46239 0.52774
1BUH 1DKS R ST 0.60251 0.40873 0.61442
1BUH 1HCL R ST 0.58406 0.42177 0.56584
1DQJ 1DQQ R Ab 0.51845 0.51716 0.50833
1DQJ 3LZT N Ez 0.38024 0.56640 0.45336
1E6J 1A43 R Ag 0.46804 0.76316 0.63628
1E6J 1E60 R Ab 0.08149 0.41544 0.12990
1EAW 1EAX R Ez 0.65168 0.50176 0.60714
1EAW 9PTI R In 0.65079 0.64484 0.59821
1EXB 1QDV R ST 0.33929 0.39397 0.33259
1EXB 1QRQ R Ez 0.48919 0.56376 0.54623
1EZU 1ECZ R In 0.54758 0.58548 0.57540
1EZU 1TRM R Ez 0.62151 0.49117 0.60201
1FES8 1AO03 N Ag 0.45267 0.39736 0.43753
1FFW 1IFWP R ST 0.79196  0.52054 0.85357
1FFW 3CHY R ST 0.48561 0.82727 0.65682
1FSK 1BV1 N Ag 0.70103 0.21263 0.45773
1GL1 1K21 R Ez 0.59463 0.54245 0.60849
1GL1 1PMC R In 0.50625 0.39167 0.32083
1GPW 1K9V R Ez 0.78319 0.51176 0.76891
1GPW 1THF R Ez 0.54880 0.34888 0.49311
1GRN 1A4R M ST 0.81422  0.30889 0.63711
1GRN 1RGP M ST 0.84786 0.24013 0.68586
1HOD 1K59 N Ag 0.51734 0.74919 0.66035
1H9D 1EAN R ST 0.29427 0.66840 0.41884
1H9D 1ILF R ST 0.68286  0.55086 0.65029
1HCF 1B98 R ST 0.63725 0.47304 0.57892
1HCF 1WWB R Ab 0.33483 0.33227 0.28169
114D 1149 R ST 0.32338 0.71852 0.53519
114D 1MH1 M ST 0.78763 0.45498 0.73333
11C4 3LZT N Ez 0.35281 0.57013 0.43896

N

D

R

R

R

R

M

M

R

R

M

M

N

R
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1MQ8
1MQ8
INMC
INSN
INW9
INW9
10AK
10C0
10C0
10PH
10PH
1PKQ
1PPE
1PPE
1QFW
1ROR
1ROR
1RSS
1RJL
IRKE
IRKE
1SYX
1SYX
1TPX
1WDW
1WDW
1XU1
1XU1
1Y64
1Y64
1YNT
1YVB
1YVB
170K
170K
17Z5Y
175Y
1ZHH
1ZHH
2A9K
2A9K
2AJF
2AJF
9B4J
9B4J

1IAM
1MQ9
7NN9
1KDC
1JXQ
20PY
1AUQ
1B3K
2JQ8
1QLP
1UTQ
1PKO
IBTP
1LU0
1HCN
1SCN
2GKR
1R8M
1P4P
1SYQ
3MYI
1127
1QGV
1UW3
1GEQ
1V8Z
1U5Y
IXUT
1UX5
2FXU
1KZQ
1CEW
2GHU
1YZM
2BME
1L6P
2B1K
1JX6
2HJE
1U90
2C8B
1R42
2GHV
1BIZ
1Z9E

MO I I I B A I B A II 200D I I I ZEE 002008 B 2B ZIBTIIZEZS 222 E

0.28962
0.63701
0.29310
0.27771
0.71521
0.63838
0.32895
0.55013
0.55714
0.28436
0.63538
0.48462
0.60254
0.51339
0.40640
0.72533
0.49848
0.88194
0.44602
0.60549
0.78261
0.29980
0.67050
0.67954
0.89485
0.61758
0.54330
0.67361
0.64259
0.56740
0.24543
0.64366
0.58109
0.84933
0.83869
0.82846
0.72661
0.49680
0.45797
0.71146
0.40919
0.26081
0.29954
0.31402
0.63404

0.73113
0.57558
0.57101
0.37967
0.63582
0.49164
0.57895
0.55556
0.36250
0.61351
0.39428
0.31255
0.42679
0.79464
0.42672
0.55412
0.70000
0.40262
0.68750
0.50498
0.66848
0.65039
0.65625
0.48302
0.65025
0.54545
0.79657
0.32118
0.54941
0.61438
0.27449
0.56641
0.47077
0.39600
0.72561
0.45833
0.27131
0.56040
0.42940
0.36731
0.23658
0.60749
0.44815
0.76601
0.70213

0.44843
0.60387
0.34497
0.27082
0.69967
0.60493
0.45263
0.57296
0.32679
0.38649
0.59385
0.34777
0.57892
0.64732
0.36946
0.70977
0.66970
0.79940
0.57623
0.60192
0.79176
0.44531
0.73024
0.64856
0.87723
0.64146
0.68832
0.46007
0.66924
0.63252
0.20303
0.58420
0.59783
0.74400
0.87777
0.86797
0.60759
0.55321
0.41097
0.61434
0.21104
0.36149
0.28449
0.49009
0.69574

Continued on next page




B. AUC values complete list

3A4S 3A4R
3BIW 2R1D
3BIW 3BIX
3CPH 1G16

ST 0.79613 0.51042 0.70089
Sr 0.62724 0.27384 0.50717
Ez 0.45464 0.46564 0.38788
ST 0.86688 0.78450 0.91802

2BTF 11JJ D Sr 0.63056 0.52222 0.63089
2BTF 1PNE R St 0.57063 0.28986 0.44545
2CFH 1877 M ST 0.83299 0.76468 0.83766
2CFH 2BJN M ST 0.28798 0.68367 0.33985
2FJG 2VPF N Ag 0.52905 0.88176 0.80473
2GTP 1GFI R ST 0.72565 0.32386 0.59713
2GTP 2BV1 R ST 0.85526 0.31652 0.77485
207V 1MH1 M ST 0.88207  0.45000 0.82989
2H7V 2H70 M ST 0.50949 0.56013 0.57278
2HLE 1IKO R ST 0.76842 0.52295 0.84511
2HLE 2BBA R ST 0.63487 0.61034 0.63333
2125 2124 R Ab 0.24955 0.82576 0.48173
2125 3LZT N Ez 0.52797 0.17213 0.26760
2IDO 1J54 D Ez 0.50498  0.48007 0.48090
2IDO 1SE7 D Ez 0.50208 0.49115 0.45469
2J0T 1D2B R In 0.51766 0.83634 0.75126
2J0T 966C R Ez 0.76540 0.56703 0.74517
2JEL 1POH N Ag 0.31404 0.16744 0.15895
2MTA 2BBK R Ez 0.81646 0.61835 0.62152
2MTA 2RAC R ST 0.78896  0.35649 0.66753
203B 1J57 D In 0.65123 0.59627 0.67089
203B 1ZM8 D Ez 0.72835 0.46078 0.66687
208V 1SUR R Ez 0.63254 0.43214 0.57302
208V 2TRX R Ez 0.88024 0.73953 0.92374
20UL 2NNR R In 0.77813 0.54088 0.73201
20UL 3BPF R Ez 0.63177 0.45149 0.61823
20ZA 3FYK M ST 0.65075 0.61376 0.69923
20ZA SHEC M ST 0.71931 0.49722 0.71966
2PCC 1CCP R Ez 0.56745 0.57329 0.61398
2PCC 1YCC R ST 0.76582  0.58047 0.77358
25IC 1SUP R Ez 0.68167 0.57802 0.69506
2SIC 3581 R In 0.32820 0.17797 0.24268
2SNI 1UBN R Ez 0.76027 0.43511 0.73903
2S5NI 2CI2 R In 0.45415 0.63062 0.47145
2VIS 1GIG R Ab 0.11805 0.32481 0.11905
2VIS 2VIU R Ag 0.34448 0.65672 0.53086
2X9A 1562 R ST 0.42732 0.25464 0.28306
2X9A 2X9B R Ag 0.34911 0.35357 0.30089
27Z0E 1V49 M ST 0.62607 0.76854 0.74239
270E 2D1I M Ez 0.84896 0.47623 0.85136
3A4S 1A3S R Ez 0.53198 0.56007 0.50216

R

R

R

M

Continued on next page ]




87

3CPH
3DAW
3DAW
3F1P
3F1P
3FN1
3FN1
3H11
3H11
3H2V
3H2V
3LVK
3LVK
3PC8
3PC8
35GQ
35GQ
3V6Z
3V6Z
4CPA
4FZA
AFZA
4GXU
4GXU
4HX3
4HX3
4177
4177
4M76
4M76

3CPI
113J
9HD7
1P97
1X00
9EDI
2L.Q7
3H13
4337
1WI6
3MYT
1DCJ
3LVM
3PC6
3PC7
20VO0
2QA9
3KXS
3V6F
S8CPA
1UPL
3GCF
1RUZ
AGXV
107K
AHWX
1ERK
9LS7
103D
IM1U

W EEINA I IR EEIEEAN A I I IBOIOOODOOTOET

0.90026
0.73618
0.84069
0.66346
0.73550
0.49584
0.50119
0.46617
0.73490
0.34764
0.47892
0.83989
0.54245
0.64709
0.75676
0.60937
0.70443
0.39663
0.08580
0.68522
0.85280
0.54139
0.43866
0.11548
0.82902
0.48864
0.78449
0.75818
0.50880
0.55769

0.77623
0.52073
0.53622
0.42962
0.60133
0.66536
0.65357
0.64575
0.45714
0.59259
0.57342
0.63864
0.27290
0.37833
0.22475
0.50240
0.69774
0.34890
0.65278
0.41489
0.36624
0.74752
0.70109
0.44464
0.47845
0.68455
0.38563
0.15699
0.39680
0.34568

0.92416
0.70747
0.87718
0.58115
0.78616
0.57817
0.62222
0.51574
0.66406
0.52273
0.53464
0.84079
0.42309
0.56598
0.48222
0.76923
0.70025
0.45330
0.12623
0.57338
0.71361
0.66838
0.52808
0.13274
0.75096
0.64545
0.77717
0.40923
0.45893
0.46013
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B. AUC values complete list




APPENDIX

C

Molecular structure of all
compounds

2D representation of the structure of the ligand used for the ensemble docking
scoring. Every molecule is labelled with an entry ID.
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C. Molecular structure of all compounds
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C. Molecular structure of all compounds
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C. Molecular structure of all compounds




APPENDIX

D

Features comparison

Here are reported the boxplot of the distribution of values for every single feature
against the two known ligand classes: inhibitors and activators. Inhibitors are in
red and activators are in orange. The legend of the features is:

Score docking score for the best pose.

RMSD rmsd of the docking score for the ten best poses.

RMS RMS of atomic position respect to the best pose, averaged over the ten best poses.
Bs Clustering on the binding site.

Nd Clustering on the N-term domain.

Md Clustering on the Middle domain.

NM Clustering on both N-term and Middle domains.

MC Clustering on both Middle and C-term domain.

Numbers 1,2,3 First, Second and Third representative structure of the cluster analysis.
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D. Features comparison
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98 D. Features comparison
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APPENDIX

¥ ECFP and SVM compari-
son

In this table are reported the comparison of the best result obtained by ECFP
fingerprint on two clusters with the best ML predictive model obtained by SVM.
For SVM the compounds that are correctly predicted are labelled as True, for
ECFP we reported the cluster number in which each compound is assigned, the
cluster with majority of inhibitors is 1.

ID Group Class SVM ECFP

1 Z activator  False 1
2 BP2 inhibitor  True 1
3 BP2 inhibitor =~ True 1
4 BP2 inhibitor = True 1
5 BP2 inhibitor ~ True 1
6 BP2 inhibitor = True 1
7 BP2 inhibitor  False 1
8 BP2 inhibitor = True 1
9 BP2 inhibitor  True 1
10 BP1 inhibitor = True 1
11 BP1 inhibitor  True 1
12 BP1 inhibitor = True 1
13 BP1 inhibitor  True 1
14 BP1 inhibitor  True 1
15 BP2 inhibitor  True 1
16 BP2 inhibitor = True 1
17 BP2 inhibitor  True 1
18 BP2 inhibitor ~ True 1
19 BP2 inhibitor  True 1

‘ Continued on next page
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100 E. ECFP and SVM comparison

20 BP2 inhibitor  True
21 BP2 inhibitor =~ True
22 BP2 inhibitor  True
23 BP2 inhibitor ~ True
24 BP2 inhibitor  True
25 BP2 inhibitor ~ True
26 BP2 inhibitor  False
27 BP2 inhibitor ~ True
28 BP2 inhibitor  False
29 BP2 inhibitor =~ True
30 BP2 inhibitor  True
31 BP2 inhibitor  True
32 BP2 inhibitor = True
33 BP2 inhibitor  False
34 BP2 inhibitor  True
35 BP2 inhibitor =~ True
36 BP2 inhibitor =~ True
37 BP2 inhibitor ~ True
38 BP2 inhibitor =~ True
39 BP2 inhibitor ~ True
40 BP2 inhibitor  True
41 BP2 inhibitor ~ True
42 BP2 inhibitor ~ True
43 BP2 inhibitor =~ True
44 BP2 inhibitor ~ True
45 BP2 inhibitor ~ True
46 BP2 inhibitor  True
47 BP2 inhibitor ~ True
48 BP2 inhibitor ~ True
49 Ukn activator  True
50 cC activator  True
51 CcC activator  True
52 cC activator  True
53 CcC activator  True
54 cC activator  True
55 CcC activator  True
56 CcC activator  True
57 CcC activator  True
58 CcC activator  True
59 CcC activator  True
60 CcC activator  True
61 CcC activator  True
62 CcC activator  True
63 CcC activator  True
64 CcC activator  True 2

‘ Continued on next page
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102 E. ECFP and SVM comparison

110 CcC activator  True
111 cC activator  True
112 CcC activator  True
113 CcC activator  True
114 cC activator  True
115 CcC activator  True
116 cC activator  True
117 CcC activator  False
118 cC activator  True
119 CcC activator  True
120 cC activator  True
121 CcC activator  True
122 CB inhibitor  False
123 CB inhibitor  False
124 DP activator  True
125 DP activator  True
126 DP activator  False
127 DP activator  True
128 DP activator  False
129 DP activator  True
130 activator  True
131 activator  False
132 GT activator  True
133 cC activator  True
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APPENDIX

F

Distance Fluctuation anal-
yses

The Distance Fluctuation matrix for the APO and LAP state of integrin av36
are computed extracting around 1000 conformations for every replica, the final
matrix is obtained averaging over the 4 matrix (one for every replica) for every
state. In Figure A there is the matrix for the APO state, in Figure B for the LAP
bound conformation.
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