
Directed weighted improper coloring

for cellular channel allocation

Claudia Archetti(1) Nicola Bianchessi(2)

Alain Hertz(3)∗ Adrien Colombet(4) François Gagnon(4)

(1)Department of Quantitative Methods

University of Brescia, Brescia, Italy

(2)Department of Information Engineering

University of Brescia, Brescia, Italy

(3)Department of Mathematics and Industrial Engineering
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Abstract

Given a directed graph with weights on the vertices and on the arcs, a θ-improper
k-coloring is an assignment of at most k different colors to the vertices of G such that
the weight of every vertex v is greater, by a given factor 1

θ
, than the sum of the weights

on the arcs (u, v) entering v with the tail u of the same color as v. For a given real
number θ, we consider the problem of determining the minimum integer k such that
G has a θ-improper k-coloring. Also, for a given integer k, we consider the problem
of determining the minimum real number θ such that G has a θ-improper k-coloring.
We show that these two problems can be used to model channel allocation problems
in wireless communication networks, when it is required that the power of the signal
received at a base station is greater, by a given factor, than the sum of interfering
powers received from mobiles which are assigned the same channel. We propose set
partitioning formulations for both problems and describe branch-and-price algorithms
to solve them. Computational experiments are reported for instances having a similar
structure as real channel allocation problems.
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1 Motivation

In wireless communication networks of the first and second generation, the concepts of
cellular channel allocation and spatial frequency reuse were the key ideas that have driven
the immense initial success of mobile telephony [13]. In this context, geographical regions
were divided into cells, theoretically hexagonal, and each cell had a dedicated number of
antennas with an associated set of frequency bands. For example, in the original AMPS,
American Mobile Phone System, seven sets, which can be further subdivided into three
subsets, were the original ‘colors’ with which one would allocate the channels to the regions
(see Figures 1(a) and 1(b)). In actual systems, many configuration of base stations are
deployed according to the geo-demographic situation. In simple systems and in low density
demographic areas, the base stations use omni-directional antennas and are thus viewed
as being at the centre of the cells 1(a). However in most systems, the base stations have
three, 120◦ sectored, antennas, which permits to effectively discriminate the radio visibility
horizon into three distinct parts. The base station is then viewed as being at the edges of
three cells as in figure 1(b).

A similar scheme existed for GSM and the practical allocation problem consisted in
selecting the set of channels associated with a cell or even sub-sets associated with an
antenna. The criteria for channel selection consists in minimizing the mutual interference
caused by transmission on the same channel in different cells or geographical regions. This
may be reduced to maximizing the geographical distance between channel reuse. With
real world cells, which differ in size and shape, the problem typically required coloring
algorithms to solve them [18, 7].

In the third generation of mobile systems, the introduction of CDMA (Code Division
Multiple Access) has enabled the reuse of the whole frequency band in each cell [13].
Instead of dividing the signal space in time or frequency between users, a code or pseudo-
random sequence is used to differentiate the signal from each transmitter. Interference is
tolerated up to a certain degree between transmitters within an area. In this context the
coloring schemes and associated research projects were of much reduced importance.

In their latest incarnations, the fourth generation mobile standards mainly use Orthog-
onal Frequency Division Multiple Access schemes [12]. These schemes divide the signal
space in time slots and orthogonal frequencies. At the middle of a cell, all slots of time
and frequency are allocated to users. These cover the whole frequency band. At the edge
of the cell, only part of the band is used and a three color scheme is used (see Figure 1(c)):
only a third of the whole frequency band is available at the edge of each cell to reduce
interference. In these latest standards the base station uses sectored but also multiple
antennas, which are jointly managed. The base station is thus usually viewed as being
in the centre of the cell. This is what we will assume in this paper. Furthermore, a
form of spatial multiplexing may also be used within a cell by applying MIMO techniques
(Multiple-Input Multiple-Output). This permits to allocate the same time-frequency slot
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to a number of users which are joined through quasi-independent paths. By storing the
signal gain between each pair of antennas in a matrix, it is possible to perform some forms
of diagonalization of this matrix to obtain independent transmission streams.

For these latest standards, the superposition of signals is tolerated to a certain degree
[17]. That is, for a given signal that is denoted as the desired signal, one can tolerate
the superposition of all other signals if their projection on the signal space-time is less
powerful than the desired signal by a certain factor. Finally, when distances are relatively
short, such as in dense urban areas, the random thermal noise, always present at a received
antenna, becomes non-significant and the interference from other users or other cell sites
dominate the communication performances. In this context, the capacity of the wireless
communication scheme is said to be interference limited or dominated. The allocation
of a time-frequency slot is akin to the allocation of a color. As a simplifying factor but
without loss of generality, we will discount the angular separation of mobiles and compute
the contribution of each mobile to the reception of the same colored signals at a base
station as a function of distance.
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Figure 1. Three different types of channel allocations.

More formally, let M = {m1, · · · ,mn} be a set of mobiles and B = {b1, · · · , bt} a set of
base stations. Let dip denote the Euclidian distance between the mobile mi and the base
station bp. The positions are assumed here to be in two dimensions (in three dimensions
one must account for a number of other factors such as floors). The received power Pip at
bp of a signal from mi is computed as follows:

Pip =
α rip
dip

γ

where
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• α is a constant summarizing the effects of antenna configuration and position,

• rip is a random variable synthesizing the desired channel models: it would typically
be the product of an exponential random variable to denote short term fading and
a log-normal random variable for shadowing [7],

• γ is the attenuation factor which typically varies from 2 in free-space to 4 for Non-
Line Of Sight (NLOS) in urban areas.

Each mobile is assumed to be assigned to a given base station. Let c(i) denote the
channel, or color, assigned to mobile mi. Also, for a channel k, let us denote by Ck the
set of mobiles mi assigned with channel c(i) = k. An admissible coloring scheme would
require that the power of all received signals at their assigned base stations are greater,
by a given factor 1

θ
, than the sum of interfering powers received from mobiles which are

assigned the same channel. More precisely, for a mobile mi assigned to a base station bp,
we have the following constraint:

∑

mj∈Cc(i),j 6=i

Pjp ≤ θ Pip. (1)

where 1
θ
is the maximal admissible signal-to-interference ratio.

The rest of the paper is organized as follows. In the next section, we propose two graph
coloring models which are equivalent to finding a channel assignment satisfying (1). Set
partitioning formulations for both problems are given in Section 3, while branch-and-price
algorithms are proposed in Section 4. Computational experiments are reported in Section
5 for randomly generated instances.

2 Graph coloring problems

Given an undirected graph G = (V,E) with vertex set V and edge set E, a k-coloring of
G is a function c : V → {1, · · · , k}. The coloring c is proper if no edge has both endpoints
with the same color, otherwise it is improper. A k-coloring is θ-improper if every vertex v
is adjacent to at most θ vertices having the same color as v. For a given graph G and an
integer θ, the Improper Coloring Problem (ICP) (also called Defective Coloring Problem
in [10]) is to determine the minimum integer k such that G has a θ-improper k-coloring.
The ICP is NP-hard since it is proved in [10] that the problem of deciding if there is a
θ-improper k-coloring of a graph G is NP-complete for k = 2 and θ ≥ 1 and for all pairs
(θ, k) with k ≥ 3 and θ ≥ 0.

In this paper, we study an extension of the ICP to directed weighted graphs. Let
G = (V,A,W, ω) be a directed graph with vertex set V , arc set A, and with two functions

4



W : V → R
∗
+ and ω : A→ R

∗
+ that associate a weight W (v) to every vertex v ∈ V and a

weight ω(u, v) to every arc (u, v) ∈ A. We denote N−
v the set of immediate predecessors

of vertex v (i.e., u ∈ N−
v if and only if (u, v) ∈ A). For a real number θ, we say that a

function c : V → {1, · · · , k} is a θ-improper k-coloring of G if, for every vertex v ∈ V , the
following constraint is satisfied:

∑

u∈N−

v | c(v)=c(u)

ω(u, v) ≤ θW (v). (2)

For a given directed graph G = (V,A,W, ω) and a real number θ, we define the Directed
Weighted Improper Coloring Problem (DWICP) which is to determine the minimum in-
teger k such that G has a θ-improper k-coloring. The link between the channel assign-
ment problem of Section 1 and the DWICP can now easily be seen. Indeed, for a set
M = {m1, · · · ,mn} of n mobiles and a set B = {b1, · · · , bt} of t base stations, we can
construct a complete directed graph G = (M,A,W, ω) with an arc in both directions
between each pair of mobiles, and with W (mi) = Pip and ω(mj ,mi) = Pjp, where bp is
the base station to which mi is assigned. The construction of G is illustrated in Figure
2(a). It follows from these weight definitions that equations (1) and (2) are equivalent,
which means that finding a channel assignment satisfying (1) is equivalent to determining
a θ-improper k-coloring of G.
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Figure 2. Three graph coloring models.

5



For a given directed graph G = (V,A,W, ω) and a positive integer k, we also define
the Directed Threshold Improper Coloring Problem (DTICP) which is to determine the
minimum real number θ such that G has a θ-improper k-coloring.

Araujo et al. [1] have studied the DWICP and the DTICP in the particular case where
W (v) = 1 for all vertices v in G and ω(u, v) = ω(v, u) for all pairs {u, v} of vertices in
G (which means that there is an arc from u to v if and only if there is an arc from v to
u and the corresponding weights are identical). In such a case, G can be considered as
undirected since each pair (u, v) and (v, u) of arcs can be replaced by an edge {u, v} of
weight ω(u, v) linking u with v. It is proved in [1] that both the WICP and TICP (i.e.,
the undirected versions of the DWICP and DTICP) are NP-hard, which means that both
the DWICP and DTICP are also NP-hard.

Other graph coloring models have already been proposed for the solution of channel
assignment problems. For example, instead of imposing constraints (1), some mobile
operators prefer to avoid interference by forbidding the use of the same channel by mobiles
mi and mj if Pjp is larger then λPip for a given real number λ, where bp is the base station
to which mi is assigned. One would typically impose a minimal distance, counted in cells,
with which a color is reused. Hence, for a mobile mi assigned to a base station bp, equation
(2) is replaced by

Pjp ≤ λPip ∀mj ∈ Cc(i).

In such a case, one can simply build an undirected graph G = (M,E) in which two
mobiles mi and mj are linked by an edge if and only if Pjp > λPip or Piq > λPjq, where
bp and bq are the base stations to which mi and mj are assigned respectively. The channel
assignment problem is then to determine a proper k-coloring in G, where k is the number
of available channels. The construction of G is illustrated in Figure 2(b). Note that this
can be seen as a special case of the DWICP, where θ is any real number strictly smaller
than 1, W (mi) = 1 for all vertices mi ∈M , and

ω(mi,mj) = ω(mj ,mi) =

{

1 if there is an edge in G linking mi with mj

0 otherwise.

A variant could be to try to minimize interferences. Consider the complete undirected
graph G = (M,E) and let us associate a weight ω(mi,mj) = Pjp + Piq to the edge
linking mi with mj in G, where bp and bq are the base stations to which mobiles mi

and mj are assigned respectively. The construction is illustrated in Figure 2(c). By
denoting Er the set of edges having both endpoints with color r, the channel assignment
problem is then to find an improper k-coloring with minimum total interference computed
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as
∑k

r=1

∑

{mi,mj}∈Er
ω(mi,mj). Such a coloring problem was studied, for example, in

[16].
Another popular model for cellular channel allocation is based on L(p, q) labelings.

Given a graph G and two non-negative integers p and q, an L(p, q)-labeling of G is a
labeling of its vertices such that adjacent vertices are labeled using colors at least p apart,
and vertices having a common neighbor are labeled using colors at least q apart. It follows
that an L(1, 0)-labeling of G is also a proper coloring of its vertices. For a survey of this
widely studied problem the reader is referred to [9].

3 The problem formulations

Given a directed graph G = (V,A,W, ω), a real number θ̄ and positive integer k̄, both the
DWICP and DTICP can be modeled by means of set partitioning formulations. Let us
consider the following notations:

• P (V ) is the set of all nonempty subsets of V ;

• Ωs
v =

∑

u∈s ωuv is the weight covered by vertex v ∈ s, s ∈ P (V ).

The DWICP aims at finding the minimum number of color classes k such that G has
a θ̄-improper k-coloring for a given real number θ̄. We denote Sθ̄ the set of all subsets s
of vertices such that Ωs

v ≤ θ̄Wv for all v ∈ s, i.e., Sθ̄ is the set of all feasible color classes
w.r.t θ̄. The problem can be modeled as follows:

min
∑

s∈Sθ̄

σs (3)

∑

s∈Sθ̄ | v∈s
σs = 1 ∀v ∈ V (4)

σs ∈ {0, 1} ∀s ∈ Sθ̄, (5)

where σs is a binary variable equal to 1 if subset s ∈ Sθ̄ is selected as color class, 0
otherwise. The objective function (3) calls for the minimization of the number of classes
used to color all the vertices. Constraints (4) impose to associate a color with each vertex.
Constraints (5) ensure integrality requirements for all the variables.

On the other hand, the DTICP is to determine the minimum real number θ such that
G has a θ-improper k̄-coloring for a given positive integer k̄. Here θ is a variable, and the
actual value of θ defines the set of all feasible color classes. The problem model is the
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following:

min θ (6)
∑

s∈P (V ) | v∈s
σs = 1 ∀v ∈ V (7)

∑

s∈P (V ) | v∈s
Ωs
v σs ≤ θWv ∀v ∈ V (8)

∑

s∈P (V )

σs = k̄ (9)

σs ∈ {0, 1} ∀s ∈ P (V ) (10)

where σs is a binary variable equal to 1 if subset s ∈ P (V ) is selected as color class, 0
otherwise. The objective function (6) calls for the minimization of the θ-value guaranteeing
the feasibility of the selected color classes. Constraints (7) impose the coloring of each
vertex. Constraints (8) ensure the feasibility of the selected color classes according to θ.
Constraints (9) fix the number of color classes to select. Finally, constraints (10) are the
integrality constraints on the σs variables.

In the following, we will refer to problem (3)–(5) or (6)–(10) as the master problems
(MPs); distinctions will be made whenever required.

4 The branch-and-price algorithms

The number of variables characterizing the MPs, i.e., the number of vertex subsets defin-
ing color classes, is exponential and, even for small size instances, solving the problems
explicitly is impractical. We thus develop two branch-and-price algorithms ([8, 11]). For
the considered MP, at each node of the branch-and-bound tree, variables (columns) of
the problem are generated applying the column generation technique to the linear relax-
ation of the so called restricted MP, augmented by the branching constraints (see [11] for
a complete survey of column generation methods). We denote the linear relaxation of
the restricted MP, augmented by the branching constraints, as RLMP. LMP is the linear
relaxation of MP augmented by the branching constraints. At each column generation it-
eration, a pricing problem, also called subproblem, is solved in order to generate negative
reduced cost variables to be added to the RLMP. When no negative reduced cost variable
is found, the LMP has been solved to optimality and the column generation algorithm
ends. Branching rules are applied to recover feasibility when the solution of the LMP is
fractional. In the following subsections, the main components of the algorithms addressing
the MPs (3)–(5) and (6)–(10) will be illustrated in details, making distinctions whenever
required.
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4.1 Pricing problems

The pricing problems consist in finding the vertex subset s yielding the most negative
reduced cost. More formally, let us consider the following binary variables:

• for every vertex v ∈ V , we define xv = 1 if vertex v belongs to s, 0 otherwise;

• for every arc (u, v) ∈ A, we define yvu = 1 if both vertices u and v belong to s, 0
otherwise.

While addressing the DWICP, at the root node of the branch-and-bound tree, the
pricing problem is the following:

min c̄∗ = −
∑

v∈V
πv xv (11)

xu + xv − 1 ≤ yuv ∀(u, v) ∈ A (12)
∑

u∈N−

v

ωuv yuv ≤ θ̄ Wv xv ∀v ∈ V (13)

xv ∈ {0, 1} ∀v ∈ V (14)

yuv ∈ {0, 1} ∀(u, v) ∈ A (15)

where πv is the dual cost associated with constraint (4) for vertex v. Constraints (12)
ensure consistency among the x and the y variables, while constraints (13) impose that
the chosen vertex subset belongs to Sθ̄.

When the DTICP is considered, the pricing problem at the root node of the branch-
and-bound tree is the following:

min c̄∗ = −
∑

v∈V
πvxv −

∑

v∈V
ρv

∑

u∈N−

v

ωuvyuv − β (16)

xu + xv − 1 ≤ yuv ∀(u, v) ∈ A (17)

2yuv − xu − xv ≤ 0 ∀(u, v) ∈ A (18)

xv ∈ {0, 1} ∀v ∈ V (19)

yuv ∈ {0, 1} ∀(u, v) ∈ A (20)

where:

• πv is the dual cost associated with constraint (7) for vertex v;

• ρv is the dual cost associated with constraint (8) for vertex v;

• β is the dual cost associated with constraint (9).

9



Here, consistency among the x and the y variables is ensured by imposing both constraints
(17) and (18). Moreover, in this case, the chosen vertex subset belongs to P (V ). If any
upper bound ¯̄θ on the optimal value of θ would be known in advance, the search space
could be reduced by adding constraints

∑

u∈V
ωuvyuv ≤

¯̄θWvxv ∀v ∈ V (21)

to (17)–(20), and imposing thus to select the vertex subset in S ¯̄θ
.

At non-root nodes of the branch-and-bound tree, the pricing problem models are mod-
ified by taking into account branching constraints as described in Section 4.3.

The aim of solving the pricing problem is to generate variables of the LMP with a
negative reduced cost. In order to try to avoid solving this problem with an exact method
(which can be very time consuming), we first use the following heuristic pricing algorithm.
Each column belonging to the optimal basis of the current RLMP is considered as the
initial solution s (i.e., subset of vertices) of a descent method. We then evaluate (using
function (11) or (16)) all feasible neighbors obtained from s by inserting a new vertex,
removing a vertex, or replacing a vertex u ∈ s by a vertex v /∈ s. If the best feasible
neighbor is strictly better than s, then the process is repeated with the best neighbor as
new current solution s. All negative reduced cost columns found during this process are
returned to the column generation algorithm.

If no negative reduced cost column is found by the heuristic pricing algorithm, we
solve the pricing problem exactly by introducing model (11)–(15) or (16)–(21), eventually
augmented by the branching constraints, in a commercial MILP solver.

4.2 The column generation algorithms

Let S be equal to Sθ̄ and S ¯̄θ
while addressing the DWICP and the DTICP, respectively.

The RLMP is initialized by means of a set S′ ⊆ S defined as follows. At the root node
of the branch-and-bound tree, S′ includes a high cost dummy column through which all
the MP constraints are satisfied. This column is kept in the RLMP until feasibility is
reached. Then, as far as the DWICP is concerned, we generate K subsets s1, · · · , sK and
we insert them in S′. Each si is initialized to the empty set, then the vertices of G not yet
inserted into a subset sj , j < i, are considered sequentially according to their identifiers.
A vertex is inserted into si if its insertion is feasible with respect to constraints (12) and
(13), otherwise it is skipped. On the other hand, when the DTICP is considered, k̄ subsets
s1, · · · , sk̄ are generated and inserted in S′. Each si is initialized again to the empty set.
Then the vertices of G not yet inserted into a subset sj , j < i, are sequentially inserted

into si until |si| =
⌈

|V |
k̄

⌉

, or no more vertices are available. In particular, since subsets

s1, · · · , sk̄ represent a feasible solution to the DTICP, the associated solution value is used
to initialize ¯̄θ.
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In any other node of the branch-and-bound tree S′ includes the dummy column and
the columns generated so far that are feasible with respect to the branching constraints.

Then, iteratively, the RLMP is solved to optimality, and the pricing problem is con-
sidered in order to find new negative reduced cost columns. As already mentioned in the
previous section, we first try to generate columns with a negative reduced cost by means
of a heuristic pricing algorithm, and if we are not successful, we solve the pricing problem
using an exact MILP solver. Note that, while solving the pricing problem to optimality, all
negative reduced cost columns found are returned to the master problem. If no negative
reduced cost column is found, it means that the optimal solution of the current RLMP is
also optimal for the LMP and the algorithm terminates.

The column generation algorithm makes also use of a restricted master heuristic. The
heuristic will be described in detail in Section 4.4. The idea is to take advantage of the
columns generated so far in order to obtain feasible solutions to the addressed problem.
The heuristic is solved every ∆ seconds, and at the end of the LMP solution process.

The availability of a primal bound helps in speeding up the convergence of the branch-
and-price algorithm. For the DTICP a further consideration is needed. The cardinality
of the set S ¯̄θ

depends on the value of ¯̄θ. The lesser the value of ¯̄θ, the greater the dual
bound generated by solving to optimality the LMP. In order to exploit the possibility to
strength the dual bound generated at each node of the tree, while addressing the DTICP,
we consider an improved version of the column generation algorithm. Each time a new
improving feasible solution is found, the value of ¯̄θ is updated. Also, all RLMP columns
which do not satisfy constraint (21) with the updated value of ¯̄θ are removed. Then the
solution process of the current LMP is restarted.

The pseudo-code of the column generation algorithms for the DWICP and DTICP is
described in Algorithm 1 and Algorithm 2, respectively. For the sake of completeness, it
must be pointed out that in Algorithm 2, we keep in the pool of columns only columns
that are feasible with respect to the best primal bound value ¯̄θ found so far.

4.3 Branching scheme

Let S be equal to Sθ̄ and S ¯̄θ
, and let σ∗ or (θ∗, σ∗ ) be the optimal solution of the current

LMP while addressing the DWICP and the DTICP, respectively.
When the optimal solution of the LMP is fractional with respect to σ∗, we hierarchically

apply the following branching rules.
If the value of

∑

s∈S σ∗
s is fractional, we impose

∑

s∈S σs ≤ ⌊
∑

s∈S σ∗
s⌋ in one branch,

and
∑

s∈S σs ≥ ⌊
∑

s∈S σ∗
s⌋+ 1 in the other. Secondly, we apply the standard branching

rules for the graph coloring problem (see [15] and [2]). In particular, given two vertices
u and v, we force them to be in different subsets on one branch (which corresponds to
setting xu + xv ≤ 1 in the pricing problem), and to be in the same subset on the other
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Algorithm 1 Column generation algorithm for the solution of the LMP for the DWICP

Step 1. RMHTime = clock(). iteration = 0.
Step 2. Initialize the RLMP with a subset S′ ⊆ S.
Step 3. Solve the RLMP.
Step 4. iteration ← iteration+1.
if ((root)and(iteration = 10)) or ((clock()− RMHTime) ≥ ∆) then
Step 5. Apply the restricted master heuristic; let UB be the value of the feasible
solution found.
Step 6. RMHTime = clock(). Go to Step 3.

end if

Step 7. Solve the pricing problem heuristically. Let P be the set of negative reduced
cost columns found.
if P 6= ∅ then
Step 8. S′ ← S′ ∪ P . Go to Step 3.

end if

Step 9. Solve the pricing problem to optimality. Let P be the set of negative reduced
cost columns found.
if P 6= ∅ then
Step 10. S′ ← S′ ∪ P . Go to Step 3.

end if

Step 11. Store the optimal solution of the current RLMP, which is optimal for the LMP.
Step 12. Apply the restricted master heuristic; let UB be the value of the feasible
solution found.
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Algorithm 2 Column generation algorithm for the solution of the LMP for the DTICP

Step 1. RMHTime = clock(). iteration = 0.
Step 2. Initialize the RLMP with a subset S′ ⊆ S.
Step 3. Solve the RLMP.
Step 4. iteration ← iteration+1.
if ((root)and(iteration = 10)) or ((clock()− RMHTime) ≥ ∆) then
Step 5. Apply the restricted master heuristic; let UB be the value of the solution found.
if (UB < ¯̄θ) then
Step 5.1. Remove from the RLMP all infeasible columns w.r.t. UB.
Step 5.2. Remove from the column pool all infeasible columns w.r.t. UB.
Step 5.3. ¯̄θ = UB

end if

Step 6. RMHTime = clock(). Go to Step 3.
end if

Step 7. Solve the pricing problem heuristically. Let P be the set of negative reduced
cost columns found.
if P 6= ∅ then
Step 8. S′ ← S′ ∪ P . Go to Step 3.

end if

Step 9. Solve the pricing problem to optimality. Let P be the set of negative reduced
cost columns found.
if P 6= ∅ then
Step 10. S′ ← S′ ∪ P . Go to Step 3.

end if

Step 11. Store the optimal solution (θ∗, σ∗) of the current RLMP, which is optimal for
the LMP.
if (σ∗ is integer) then
Step 12. Let UB be the value of the feasible solution found.
if (UB < ¯̄θ) then
Step 12.1. Remove from the RLMP all infeasible columns w.r.t. UB.
Step 12.2. Remove from the column pool all infeasible columns w.r.t. UB.
Step 12.2. ¯̄θ = UB

end if

else

Step 13. Apply the restricted master heuristic; let UB be the value of the solution found.
if (UB < ¯̄θ) then
Step 13.1. Remove from the RLMP all infeasible columns w.r.t. UB.
Step 13.2. Remove from the column pool all infeasible columns w.r.t. UB.
Step 13.3. ¯̄θ = UB and RMHTime = clock(). Go to Step 3.

end if

end if
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branch (which corresponds to setting xu = xv in the pricing problem). The pair u, v is
chosen as follows: we compute µuv =

∑

s∈S:u,v∈s σ
∗
s , where σ∗ is the optimal solution of

the LMP; we then branch on the pair u, v with the most fractional value µuv (ties are
broken at random). It is worth noting that the former branching rule applies only when
the DWICP is considered.

4.4 Restricted master heuristic

In order to speed up the convergence of the branch-and-price algorithms, as shown in
Section 4.2, we embed in the column generation algorithm a restricted master heuristic
[14]. The basic idea behind restricted master heuristics is to solve the MP, restricted to a
subset of the generated columns, by means of a general solver. The main issue to address
while designing restricted master heuristics is to suitably identify the set of columns over
which the MP is solved. This in order to avoid infeasibility and the device of problem
dependent procedures to recover feasibility. To this aim we adopt the same technique as
described in [5].

Let S̄ denote the set of columns used in the restricted master heuristic. We first
generate at most n̄O subsets C1, · · · , Cr of columns (r ≤ n̄O), and then include all the
columns contained in these subsets into S̄. Each subset Ci is constructed as follows.
Columns in the RLMP and not yet inserted in

⋃

j≤iCj are considered in non decreasing
order of reduced cost. A column is added to Ci if it has at least one vertex that is not
covered (colored) by the columns already contained in Ci. The inclusion of columns into
Ci ends when either all vertices are covered by the columns in Ci or when there are no
more columns available.

The value of n̄O is dynamically adjusted after each restricted master heuristic solution
as follows. If the problem is infeasible, has been solved to optimality, or the solution found
is close to the corresponding dual bound, n̄O is increased. Otherwise n̄O is decreased.
Increasing and decreasing are allowed provided that n̄O stays in the interval [n̄min, n̄max].
A similar restricted master heuristic has been successfully applied also in [6, 3, 4].

5 Experimental results

To test the proposed branch-and-price algorithms, we have generated random instances,
trying to be as close as possible to real instances of the application described in Section 1.
Each instance is characterized by a number n of mobiles, a number t of antennas, and a
value for parameter γ (which has an important impact on the power of the signal received
at an antenna from a mobile). Each instance was obtained as follows.

• We have first generated n random points p1, · · · , pn according to a uniform distri-
bution in the Euclidean plane [100×100]. They represent the positions of n mobiles
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m1, · · · ,mn, and correspond to the vertices of the considered instance.

• We have then generated t new random points q1, · · · , qt, again using a uniform
distribution in the Euclidean plane [100 × 100]. They represent the positions of t
antennas b1, · · · , bt. Each mobile is assigned to the closest antenna, and we denote
s(i) the index of the antenna to which mobile mi is assigned (i.e., mi is assigned
to antenna bs(i)). In order to fit as much as possible with real instances, we forbid
situations where two antennas are too close to each other. This issue is addressed
as follows. In average, if the set of antennas covers all the space and each of them
covers the same area, each antenna covers a surface equal to 1002

t
in the considered

plane. Assuming that the area covered is approximately a circle, the radius of such
a circle would be r, with πr2 = 1002

t
. Hence r = 100√

πt
, which means that the average

distance between two antennas would be 2r = 200√
πt
. But in real cases, the antennas

are not perfectly distributed. We have decided that it is unrealistic to have two
antennas at a distance smaller than 2r

10 = 20√
πt
. Thus, while generating the t points

q1, · · · , qt, we have rejected points if they were at a distance smaller than 20√
πt

from

already generated points.

• For each pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ t we have then generated a real

number αij =
(X2+Y 2)10Z/10

2 , where X and Y are Gaussian random variables N(0, 1)
while Z is a Gaussian random variable N(0, 8), and we have then set the weight
Wmi of each vertex mi and the weight ωmimj of each arc (mi,mj) as follows:

Wmi =
αis(i)

|qs(i) − pi|γ

ωmimj =
αis(j)

|qs(j) − pi|γ

where |x− y| is the Euclidean distance between x and y.

We first analyze the proposed branch-and-price algorithm for the DWICP on instances
with t = 5 and n ∈ {5t, 10t, 20t}. As already mentioned, γ represents the reduction of
power density (attenuation) of an electromagnetic wave as it propagates through space.
Its value is normally in the range of 2 to 4 and we have therefore decided to choose γ in
{2, 3, 4}. Since θ̄ > 1 does not physically apply, while the current technology can easily
deal with θ̄ = 1

8 , we have decided to perform tests with θ̄ in {1, 12 ,
1
4 ,

1
8}.

The branch-and-price algorithms were implemented in C++. Both algorithms were
run on a Windows 7 operating system and compiled under Visual C++ 2010 Express
Edition. The experiments were carried out on an Intel Xeon processor W3680, 3.33 GHz
machine with 12 GB of RAM. CPLEX 12.2.0.2 (32 bit version) was used to solve the linear
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relaxation of the MPs, the pricing problem and the restricted MPs of the restricted master
heuristic. The overall execution time limit for each run was set to 1 hour. In particular,
we allowed CPLEX to be executed in parallel on 6 cores, for an overall maximum CPU
time of 6 hours.

According to a preliminary testing phase we have fixed the parameters of the branch-
and-price algorithms as follows. All negative reduced cost columns found while solving
the pricing problems are inserted in the RLMP. The time limit for each individual run
of the restricted master heuristic is set to 1 minute. The parameter n̄O is initially set to
80, while n̄min and n̄max are set to 15 and 150, respectively. When it is required, n̄O is
increased or decreased by 5. A feasible solution to the restricted MP is considered close
to the corresponding dual bound if the gap is less than 5%. Finally, while addressing
the DWICP and the DTICP, ∆ is set equal to 900 and 300 seconds, respectively (see
Algorithms 1 and 2).

Table 1 contains the results of the experiments for the DWICP. The first four columns
indicate the values of t, n, γ and θ̄. The next two columns provide information on the root
node solution: the optimal value of the LMP appears under column labeled ‘z∗(%)’, and
is expressed as a percentage of the best lower bound obtained at the end of the branch-
and-price algorithm; the time (in seconds) required to compute it is reported in the next
column. The last four columns give the best lower and upper bounds obtained at the end
of the branch-and-price algorithm (columns ‘z∗’ and ‘z∗’, respectively), the percentage gap
between these two values (column ‘gap’), and, in case of a null gap, the time (in seconds)
required to prove optimality (column t).

Table 2 contains exactly the same information as Table 1 but for instances with larger
values of t, and Figure 3 compares the optimal number of colors for the instances with
n = 100, t ∈ {5, 10, 15}, γ ∈ {3, 4} and θ̄ ∈ {12 ,

1
4}. Such a comparison shows, for example,

that for γ = 3 and n = 100, 44 different colors are needed if t = 10 and θ̄ = 1
4 , and

approximately the same number of colors (43 instead of 44) is needed when t = 5 and
θ̄ = 1

2 . This means that half of the 10 antennas can be avoided if the technology makes it
possible to use a signal-to-interference ratio 1

θ
of 2 instead of 4. Similarly, for θ̄ = 1

4 and
n = 100, 52 different colors are needed if t = 5 and γ = 3, and exactly the same number
of colors is needed when t = 10 and γ = 4. Hence, half of the 10 antennas can be avoided
in an area with an attenuation factor γ of 3 instead of 4.

We can observe that for fixed values of t, n and γ, the computing time increases with
θ̄. We also observe that the optimal value of the LMP at the root node is typically very
close to the optimal value.
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Table 1: DWICP for t = 5

t n γ θ̄

Branch-and-price
root node final solution

z∗(%) t z∗ z∗ gap t

5 25 2 1 100.00 0.036 13 13 0 0.037
5 25 2 0.5 100.00 0.017 18 18 0 0.018
5 25 2 0.25 100.00 0.013 20 20 0 0.014
5 25 2 0.125 100.00 0.012 24 24 0 0.013
5 25 3 1 92.86 0.576 11 11 0 0.796
5 25 3 0.5 100.00 0.037 15 15 0 0.039
5 25 3 0.25 100.00 0.018 18 18 0 0.019
5 25 3 0.125 100.00 0.012 22 22 0 0.014
5 25 4 1 96.97 0.058 11 11 0 0.159
5 25 4 0.5 100.00 0.031 14 14 0 0.032
5 25 4 0.25 100.00 0.027 15 15 0 0.028
5 25 4 0.125 100.00 0.019 17 17 0 0.021
5 50 2 1 97.10 0.189 23 23 0 0.673
5 50 2 0.5 100.00 0.095 27 27 0 0.100
5 50 2 0.25 100.00 0.091 36 36 0 0.095
5 50 2 0.125 100.00 0.059 39 39 0 0.063
5 50 3 1 98.33 1.073 24 24 0 1.629
5 50 3 0.5 99.11 0.466 28 28 0 1.237
5 50 3 0.25 100.00 0.080 35 35 0 0.085
5 50 3 0.125 100.00 0.063 41 41 0 0.067
5 50 4 1 99.55 2.458 17 17 0 4.999
5 50 4 0.5 100.00 0.708 22 22 0 0.936
5 50 4 0.25 100.00 0.095 28 28 0 0.099
5 50 4 0.125 100.00 0.077 39 39 0 0.081
5 100 2 1 98.03 66.128 36 36 0 1597.917
5 100 2 0.5 99.44 8.237 45 45 0 12.496
5 100 2 0.25 100.00 3.292 57 57 0 7.660
5 100 2 0.125 100.00 0.624 67 67 0 0.640
5 100 3 1 96.62 134.971 34 34 0 909.294
5 100 3 0.5 97.79 6.880 43 43 0 31.699
5 100 3 0.25 99.36 1.435 52 52 0 2.855
5 100 3 0.125 99.23 0.733 65 65 0 1.763
5 100 4 1 98.28 23.166 38 38 0 166.140
5 100 4 0.5 98.98 0.936 49 49 0 3.651
5 100 4 0.25 100.00 0.717 60 60 0 0.733
5 100 4 0.125 100.00 0.593 72 72 0 0.608
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Figure 3. Comparisons of different instances with n = 100.
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Table 2: DWICP for t = 10 and 15

t n γ θ̄

Branch-and-price
root node final solution

z∗(%) t z∗ z∗ gap t

10 50 2 0.5 100.00 0.205 23 23 0 0.210
10 50 2 0.25 100.00 0.098 29 29 0 0.103
10 50 2 0.125 100.00 0.073 37 37 0 0.077
10 50 3 0.5 96.88 0.231 24 24 0 0.748
10 50 3 0.25 100.00 0.093 30 30 0 0.098
10 50 3 0.125 100.00 0.081 34 34 0 0.086
10 50 4 0.5 100.00 1.038 18 18 0 1.225
10 50 4 0.25 100.00 0.121 24 24 0 0.126
10 50 4 0.125 100.00 0.091 30 30 0 0.095
10 100 2 0.5 98.63 7.551 39 39 0 22.183
10 100 2 0.25 99.02 1.919 51 51 0 5.023
10 100 2 0.125 100.00 0.655 60 60 0 0.671
10 100 3 0.5 99.63 9.313 37 37 0 29.983
10 100 3 0.25 100.00 2.886 44 44 0 2.901
10 100 3 0.125 98.85 1.186 58 58 0 2.980
10 100 4 0.5 100.00 0.936 42 42 0 1.778
10 100 4 0.25 100.00 1.233 52 52 0 1.248
10 100 4 0.125 100.00 0.796 59 59 0 0.811
10 200 2 0.5 99.27 2476.582 69 84 21.74
10 200 2 0.25 99.18 82.040 85 85 0 398.924
10 200 2 0.125 99.52 8.642 104 104 0 19.936
10 200 3 0.5 98.65 1293.133 67 82 22.39
10 200 3 0.25 98.82 135.205 83 83 0 364.682
10 200 3 0.125 99.02 13.603 102 102 0 62.556
10 200 4 0.5 99.23 393.323 63 79 25.40
10 200 4 0.25 99.28 110.089 79 79 0 354.339
10 200 4 0.125 99.31 11.450 97 97 0 25.490
15 75 2 0.5 99.11 8.019 28 28 0 17.129
15 75 2 0.25 100.00 0.328 35 35 0 0.343
15 75 2 0.125 100.00 0.280 43 43 0 0.296
15 75 3 0.5 97.84 13.135 28 28 0 22.776
15 75 3 0.25 100.00 0.374 35 35 0 1.903
15 75 3 0.125 100.00 0.281 45 45 0 0.297
15 75 4 0.5 98.46 5.476 27 27 0 9.906
15 75 4 0.25 100.00 0.390 33 33 0 0.406
15 75 4 0.125 100.00 0.265 40 40 0 0.281
15 100 2 0.5 97.08 24.071 37 37 0 166.764
15 100 2 0.25 100.00 5.445 42 42 0 6.771
15 100 2 0.125 100.00 1.669 50 50 0 1.685
15 100 3 0.5 98.64 56.472 32 32 0 223.330
15 100 3 0.25 99.56 8.970 38 38 0 42.744
15 100 3 0.125 100.00 2.589 47 47 0 2.605
15 100 4 0.5 100.00 1.779 35 35 0 1.794
15 100 4 0.25 100.00 0.858 43 43 0 0.874
15 100 4 0.125 100.00 0.796 52 52 0 0.811
15 150 2 0.5 98.47 888.655 51 60 17.65
15 150 2 0.25 99.25 42.261 63 63 0 145.034
15 150 2 0.125 100.00 2.823 77 77 0 2.870
15 150 3 0.5 97.81 316.743 49 55 12.24
15 150 3 0.25 99.42 76.190 57 57 0 124.410
15 150 3 0.125 99.31 3.074 72 72 0 7.769
15 150 4 0.5 99.15 62.532 47 47 0 200.467
15 150 4 0.25 99.26 91.062 57 57 0 198.239
15 150 4 0.125 100.00 3.088 68 68 0 8.217
15 300 2 0.5 98.16 3600 17 118 594.12
15 300 2 0.25 99.39 3600 86 137 59.30
15 300 2 0.125 99.90 1293.101 132 151 14.39
15 300 3 0.5 - - - - -
15 300 3 0.25 99.49 3600 47 130 176.60
15 300 3 0.125 99.94 1922.313 120 142 18.33
15 300 4 0.5 - - - 109 -
15 300 4 0.25 98.93 3600 77 128 66.23
15 300 4 0.125 100.00 44.023 123 123 0 332.966
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To better analyze the behavior of the branch-and-price algorithm, we report in Table
3 some performance indicators for the instances with t = 5 and n = 100. They are
representative of the results obtained with other values of t and n. The first four columns
of Table 3 indicate the value of the parameters t, n, γ and θ̄ of the considered instance. The
following eight columns refer to the column generation phase. In particular they report
the number of times the pricing problem has been solved (‘it.’) and the number of columns
generated (‘col.’) at the root node (the first four columns) and at non-root nodes (the
next four columns), respectively, while solving the pricing problem heuristically (‘Heur’)
and exactly (‘Ex.’). The following five columns show how the total computing time is
distributed among the restricted linear master problem (‘RLMP’), the heuristic solution
of the pricing problem (‘PPs - heur.’), the exact solution of the pricing problem (‘PPs
- ex.’), and the restricted master heuristic (‘RMHs’). The values in column ‘Total’ are
obtained by summing up the values in the four previous columns. They are smaller than
100% because of additional tasks performed by the algorithm, such as the management
of the pool of columns and of the branch-and-bound tree. The last columns contain
information about the feasible solutions generated by our algorithm. The first five columns
refer to feasible solutions obtained by the branch-and-price algorithm independently of the
restricted master heuristic (i.e., the LMP integer optimal solutions), while the last five
columns refer to the restricted master heuristic. In both cases, column ‘Nbr’ indicates
how many feasible solutions have been produced. The four following columns report data
about the first and the best feasible solution found. In particular, ‘value’ gives the value
of the solution expressed as a percentage of the final dual bound, while ‘time’ is the time
needed to find them, expressed as a percentage of the total computing time.

We can observe that several instances are solved at the root node. When branching is
performed, and thus the number of branch-and-bound nodes is higher than 1, the highest
number of pricing iterations is done at the root node, and, consequently, the majority
of the columns used to solve the problem is generated at the root node. This means
that, to solve the linear relaxation of non-root nodes, we need to perform a small number
of pricing iterations and to add a small amount of additional columns. The columns
indicating the distribution of the computing time clearly show that the exact solution of
the pricing problem is typically the most time consuming part of the algorithm. The last
columns of Table 3 indicate that the restricted master heuristic is able to find a larger
number of feasible solutions when compared to the branch-and-bound. Also, typically the
first feasible solution is found in a short amount of time and is not far from the optimal
solution. When the branch-and-bound is able to find a feasible solution, this solution
corresponds to the best one but it typically takes a long time to find it. This means
that, without the restricted master heuristic, we would not have any upper bound until
approximately the end of the algorithm. It is therefore fundamental to use the restricted
master heuristic to improve the efficiency of the branch-and-price approach.
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In order to analyse the proposed branch-and-price algorithm for the DTICP, we have
performed tests with k̄ ∈ [kmin − 1, kmax +1], where kmin and kmax are the lower and the
upper bounds found when solving the corresponding DWICP problem with θ̄ equal to 1
and 1

8 , respectively. For example, for t = 5, n = 100 and γ = 2, the best lower bound
value for the DWICP with θ̄ = 1 is 36, while the best upper bound value with θ̄ = 1

8 is
67, and we have therefore tested the instances with k̄ ∈ [35, 68].

Figure 4 shows the relation between the number k̄ of colors and parameter θ for
instances with t = 5, n ∈ {50, 100}, and γ ∈ {2, 3, 4}. It can be clearly observed that
the decrease of θ is not linear with the increase of the number of colors. For example, for
t = 5, n = 50 and γ = 4, 5 colors can be saved (17 instead of 22) if θ = 1 instead of 1

2 ,
while 11 colors can be saved (28 instead of 39) if θ = 1

4 instead of 1
8 .
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Figure 4. Relation between k̄ and θ for instances with t = 5 and n = 100.

Instead of filling many tables with the computing times of all tested instances, we
represent in Figure 5 the behavior of our branch-and-price algorithm for the DTICP on
two instances, one with t = 5, n = 100, γ = 2, and the other with t = 15, n = 75 and
γ = 3. The behavior of the algorithm for these instances is representative of the behavior
for all remaining instances. We clearly see that the problem becomes much more difficult
to solve when the number of colors is close to kmin. For example, for t = 5, n = 100 and
γ = 2, our branch-and-price algorithm for the DTICP has found the optimal value of θ
in 13 seconds for k̄ = kmax while 455 seconds were necessary to determine the optimal
solution for k̄ = kmin. For the same instance, but with γ = 4, the increase was from 13
second for kmax to 2491 second (i.e., more than 40 minutes) for kmin. As a consequence,
for larger values of n, we could not solve some instances to optimality. For example, for
instances with t = 15 and n = 150, we have not been able to produce any optimal solution
for values of k̄ ∈ {kmin − 1, kmin + 6}.

To better analyze the behavior of the branch-and-price algorithm for the DTICP, we
report in Table 4 some performance indicators for the instances with t = 5, n = 100 and
for k̄ ∈ {kmin, k1, k2, kmax}, where k1 and k2 are the largest values of k̄ with which we
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have been able to determine a solution of optimal value θ ≤ 1
2 and θ ≤ 1

4 , respectively.
The meaning of the columns is exactly the same as in Table 3, except that we indicate
the value of k̄ instead of θ̄.
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Figure 5. Computing times for the DTICP.

Here again, we can observe that many instances are solved at the root node. When
branching is performed, and thus the number of branch-and-bound nodes is higher than 1,
the highest number of pricing iterations is done at the root node, and, consequently, the
majority of the columns used to solve the problem is generated at the root node. There is
one exception in Table 4 where more than one column is generated at the non-root nodes.
It is for the instance with γ = 4 and k̄ = kmin, where 400 columns were generated in non-
root nodes (280 by the heuristic pricing algorithm and 120 by the exact solver). But even
in this case, 400 is a very small number when compared to the 25788 columns generated
at the root node (25774 of them by the heuristic pricing algorithm). This means that,
to solve the linear relaxation of non-root nodes, we need to perform a small number of
pricing iterations and to add a small amount of additional columns. The columns of Table
4 indicating the distribution of the computing time clearly show that the exact solution
of the pricing problem is typically the most time consuming part of the algorithm. The
last columns indicate that the branch-and-bound algorithm is not able to determine any
feasible solution. In other words, the optimal solution of the LMP is always fractional.
Hence, without the restricted master heuristic, we have no valid upper bound until the
end of the algorithm. It is therefore fundamental to use the restricted master heuristic to
improve the efficiency of the branch-and-price approach. The restricted master heuristic is
able to find a few number of feasible solutions. Typically, the first feasible solution is very
close to the optimal solution, but it is obtained after a large amount of time. The instance
with γ = 3 and k̄ = kmin is an exception where the first feasible solution was produced
after only 0.08% of the total computing time. However, this feasible solution is very far
from the optimal solution which corresponds to the third feasible solution produced by
the restricted master heuristic after 89.37% of the total computing time.
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Table 3: Performance indicators for the DWICP with t = 5 and n = 100.

CG Feasible solutions
Root node Non-root nodes Computing time in % B&B RMHs

t n γ θ̄ Nodes Heur. Ex. Heur. Ex. RLMP PPs RMHs Total Nbr. First Best Nbr. First Best
it. col. it. col. it. col. it. col. heur. ex. value time value time value time value time

5 100 2 1 406 32 724 10 20 543 174 538 172 0.24 2.37 88.11 0.76 91.47 1 100.00 100.00 100.00 100.00 405 130.56 0.02 111.11 88.99
5 100 2 0.5 4 16 288 9 12 5 2 4 1 0.00 5.87 83.39 0.25 89.52 1 100.00 99.87 100.00 99.87 3 117.78 2.50 113.33 65.92
5 100 2 0.25 4 6 130 7 6 6 49 9 6 0.00 5.27 77.81 0.21 83.29 1 100.00 99.79 100.00 99.79 4 115.79 4.07 110.53 83.30
5 100 2 0.125 1 4 49 1 0 0 0 0 0 2.34 26.88 17.19 0.00 46.41 1 100.00 95.16 100.00 95.16 1 110.45 48.75 110.45 48.75
5 100 3 1 134 25 889 12 41 202 110 199 95 0.13 1.86 92.59 0.46 95.04 1 100.00 99.99 100.00 99.99 120 129.41 0.03 111.76 83.63
5 100 3 0.5 28 20 453 5 6 28 4 30 3 0.44 7.00 63.08 1.37 71.89 1 100.00 99.95 100.00 99.95 27 123.26 0.98 113.95 49.21
5 100 3 0.25 3 10 230 2 1 2 0 2 0 0.00 13.70 52.43 0.53 66.65 1 100.00 99.44 100.00 99.44 2 121.15 10.93 109.62 50.26
5 100 3 0.125 3 5 79 1 0 2 0 2 0 0.00 16.85 28.30 0.00 45.15 1 100.00 98.24 100.00 98.24 2 110.77 17.70 101.54 41.58
5 100 4 1 50 24 452 8 20 68 95 79 45 0.17 3.51 85.96 0.57 90.21 1 100.00 99.98 100.00 99.98 49 121.05 0.19 113.16 19.75
5 100 4 0.5 5 8 255 1 0 4 0 4 0 1.29 10.68 44.02 0.85 56.83 1 100.00 99.12 100.00 99.12 4 116.33 8.55 110.20 25.64
5 100 4 0.25 1 4 105 1 0 0 0 0 0 2.18 19.10 31.92 2.18 55.39 1 100.00 95.77 100.00 95.77 1 115.00 42.56 115.00 42.56
5 100 4 0.125 1 3 54 1 0 0 0 0 0 0.00 25.66 20.56 2.63 48.85 1 100.00 97.53 100.00 97.53 1 105.56 51.32 105.56 51.32

Table 4: Performance indicators for the DTICP with t = 5 and n = 100.

CG Feasible solutions
Root node Non-root nodes Computing time in % B&B RMHs

t n γ k̄ Nodes Heur. Ex. Heur. Ex. RLMP PPs RMHs Total Nbr First Best Nbr First Best
it. col. it. col. it. col. it. col. heur. ex. value time value time value time value time

5 100 2 36 1 27 20469 15 26 0 0 0 0 0.38 2.94 93.24 1.88 98.43 0 - - - - 2 101.54 78.39 100.00 92.42
5 100 2 45 1 22 18765 7 4 0 0 0 0 2.38 19.57 59.89 5.60 87.44 0 - - - - 2 102.55 78.16 100.00 91.47
5 100 2 57 1 16 9903 4 2 0 0 0 0 1.48 22.76 60.76 5.35 90.36 0 - - - - 1 100.00 91.12 100.00 91.12
5 100 2 67 1 13 9704 3 1 0 0 0 0 2.23 34.48 35.66 8.24 80.60 0 - - - - 1 100.00 84.82 100.00 84.82
5 100 3 34 1 29 26464 13 26 0 0 0 0 0.30 2.42 93.95 1.71 98.38 0 - - - - 3 50926.11 0.08 100.00 89.37
5 100 3 43 1 22 23091 7 5 0 0 0 0 2.94 18.00 58.50 7.39 86.82 0 - - - - 2 105.78 76.26 100.00 93.43
5 100 3 52 1 20 9425 4 2 0 0 0 0 2.27 24.83 60.54 4.69 92.32 0 - - - - 1 100.00 91.80 100.00 91.80
5 100 3 65 1 27 7901 3 1 0 0 0 0 2.62 48.98 35.59 3.14 90.34 0 - - - - 1 100.00 91.78 100.00 91.78
5 100 4 38 433 29 25774 9 14 634 280 542 120 0.50 2.80 82.18 2.99 88.47 0 - - - - 214 106.27 12.57 100.00 93.98
5 100 4 49 1 15 24021 4 2 0 0 0 0 4.44 22.43 46.83 4.94 78.64 0 - - - - 1 100.00 80.00 100.00 80.00
5 100 4 60 1 10 7651 3 1 0 0 0 0 3.22 23.96 49.89 7.03 84.10 0 - - - - 1 100.00 86.87 100.00 86.87
5 100 4 72 1 11 7595 3 1 0 0 0 0 3.22 26.94 47.99 6.79 84.93 0 - - - - 1 100.00 88.84 100.00 88.84
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6 Conclusion

In this paper we have modeled a cellular channel allocation problem as a θ-improper k-
coloring problem. When θ is fixed the problem, called DWICP, is to minimize the number
k of colors, while when k is fixed, the problem, called DTICP, is to minimize θ. We
have proposed set covering formulations for both problems, with an exponential number
of variables. The models are solved through a column generation algorithm embedded in
a branch-and-bound scheme, giving rise to a branch-and-price solution approach. In order
to decrease the solution time, we have implemented a descent algorithm that solves the
pricing problem heuristically. When variables with a negative reduced cost are generated
with this heuristic, we do not solve the pricing problem to optimality. Also, we have imple-
mented a restricted master heuristic that tries to produce feasible solutions by using some
of the columns generated so far. We have observed that this heuristic is very important
since it produces upper bounds which are hardly obtained by the branch-and-bound (i.e.,
the optimal solution of the linear relaxation of the master problem is typically fractional).

We have performed experiments on instances having the same structure as real exam-
ples of the considered cellular channel allocation problem. While instances with n = 100
vertices (i.e. mobiles) could be solved to optimality, we have seen that larger instances are
difficult to solve, especially when the number of colors (channels) is small and parameter
θ is closer to 1 than to 1

8 .
The proposed branch-and-price algorithms are not appropriate for real time channel

allocation, since computing times should then typically be not larger than a few seconds.
In such a case, heuristic algorithms must be designed for the DWICP and the DTICP, and
we leave this for future developments. The branch-and-price algorithms proposed in this
paper can however be used to evaluate the performance of heuristic algorithms developed
in future researches.
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