
REVIEW

Fabrication and Applications of Micro/Nanostructured Devices
for Tissue Engineering

Tania Limongi1 . Luca Tirinato1 . Francesca Pagliari2 .

Andrea Giugni1 . Marco Allione1 . Gerardo Perozziello3 .

Patrizio Candeloro3 . Enzo Di Fabrizio1

Received: 25 May 2016 / Accepted: 28 July 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of

1–100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions

of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity,

crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured

biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The

present review is organized into three main sections. The introduction concerns an overview of the increasing utility of

nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron

length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell–matrix

interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by

micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques.

In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different

fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.
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Abbreviations

TE Tissue engineering

ECM Extracellular matrix

2D Two-dimensional

3D Three-dimensional

EBL Electron beam lithography

FIBL Focused ion beam lithography

RM Replica molding

PLA Poly(l-lactic acid)

PCL Poly(e-caprolactone)

PLGA Poly(l-lactic-co-glycolic acid)

CNS Central nervous system

PNS Peripheral nervous system

CVD Cardiovascular disease

CNTs Carbon nanotubes

gelMA Gelatin-methacryloyl

1 Introduction

The field of regenerative medicine includes tissue engi-

neering (TE) and research on self-healing events, during

which the organism uses its repairing systems and/or
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foreign biocompatible material to maintain or regrow tis-

sues and organs. The main target of TE is to combine

biocompatible materials, cells, drugs, and active molecules

to restore or improve biological functions. This field is

expanding on a daily basis, through integrating knowledge

such as cell biology, chemistry, materials science, nan-

otechnology, and micro- and nanofabrication [1–3].

In the last few years, because of the combination of their

bulk and surface properties to the overall behavior, nano-

materials have become increasingly important for the

realization of novel TE tools. The development of func-

tional nanostructured materials accomplishes the needs of

sick or damaged tissues in bone, cartilage, muscle, and

neuronal system [4, 5] during the recovery. Tissue function

and physiopathology must be outlined in in vitro experi-

ments and integrated in vivo into host tissue. Materials for

TE must be chosen so that the extracellular space results as

close as possible to the original environment. The ideal

candidate should accommodate cells by ensuring them the

possibility to reform an extracellular matrix (ECM) and,

therefore, to physiologically attach, proliferate, and dif-

ferentiate [6]. Cells in contact with an appropriate bioma-

terial [7, 8], can proliferate, differentiate, and reproduce by

secreting ECM molecules and factors and remodeling their

environments. The principal components of the ECM are

the proteoglycans-rich interfibrillar matrix, structural fib-

rillar proteins as elastin and collagen and other proteins as

laminin, fibrillin, and fibronectin [9]. Since proteins and

others biological molecules are nanoscaled structures, cells

are programmed to interact with nanophase materials; the

mutual interaction between the ECM components and the

receptors present on the cell surface regulates cell behavior

and its development [10].

Surfaces characterized by submicron scale features have

been used to study cells’ response to nanometer-scale

topographical cues that can influence a wide range of cel-

lular functions such as morphology, adhesion, and migra-

tion [11–13]. Nowadays, nanoscale technology, together

with the most advanced microfabrication and post-pro-

cessing modification techniques, supports the realization of

a wide range of two -and three-dimensional (2D and 3D)

bioengineered substitutes for in vitro [14–18] and implan-

tation tests [19–21]. During the last 15 years, the scientific

publication rate of paper treating arguments regarding the

application of nanostructure materials in the TE field

increases year by year. In detail, by making a search in the

Web of Science bibliographic database using the words

‘‘nanostructured, materials, tissue, engineering,’’ it resulted

that the number of the papers published in 2014 was more

than double what it was published in 2012. Nanostructured

materials allowed the creation of efficient biocompatible

scaffolds, thanks to their large surface area and small

dimension. As well as native tissues that are composed of

nanosized biomolecules and of cells that interact with the

ECM, nanomaterials such as nanoparticles [22, 23], nan-

otubes [24, 25], nanofibers [26–29] and other nanostruc-

tured fabricated devices with features smaller than 500 nm,

can closely mimic native biological system by assuring cell

growth and tissue regeneration [14, 30].

With the development of nanotechnology coupled with

advance microfabrication techniques, biocompatible-

nanostructured materials closely fulfill the requirement in

the recovery of native tissues for TE applications. The goal

of this review is to discuss the fabrication and application

of novel nanostructured natural and synthetic polymers and

scaffolds for TE research. Microfabrication, nanolithogra-

phy, and miscellaneous nanolithographic techniques are

discussed in detail along with different applications in

many branches of the modern medicine such as neuro-

science, cardiology, orthopedics, skin, and dermatology.

2 Microfabrication and Nanolithography
Techniques in TE

In the following section, we describe the fabrication of

nanostructured biocompatible surfaces and post-processing

methods that make them suitable for creating novel TE

solutions. Biocompatible scaffolds and surfaces should suc-

cessfully mimic the macro-, micro-, and nanostructure of

systems and organs (macroscale range), cells (microscale

range), and biomolecules (nanoscale range) (Fig. 1a) Wide

arrays of microfabrication techniques have been optimized for

the purpose of creating efficient biomimetic devices. Micro-

fabrication techniques such as micromachining, photolithog-

raphy, metal deposition, electrospinning, wet and dry etching,

thin-film growth, and 3D printing allow the realization of

features on the micron and submicron scale on several types

of materials and surfaces [19, 31, 32]. Other techniques such

as electron beam (EBL) and focused ion beam (FIBL)

lithography assure the fabrication of structures with

nanometer details [33, 34] (Fig. 1b).

2.1 Replica Molding

Standard microfabrication processing methods such as

optical lithography, deposition, and etching, optimized for

materials such as silicon and glass, are usually not suit-

able for natural and synthetic biomaterials without being

coupled with other techniques. Unconventional nanofabri-

cation routes, such as replica molding (RM) and emboss-

ing, have been developed for patterning nanoscale

structures. The formation of this kind of structures requires

a high-resolution master, typically generated by conven-

tional nanofabrication techniques that can be replicated by

molding or embossing [35]. RM and soft lithography
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techniques allowed the obtainment of replicas, realized

using biocompatible polymers (polydimethylsiloxane,

polystyrene, and so on), characterized by nanometric fea-

tures (down to 50 nm) [36]. Hot embossing, thermal

forming, solvent casting, and injection molding require

dedicated tools such as a hot press or injection molding

machines and can be used to create small patterns into

different thermoplastics biocompatible materials.

Limongi et al. [17] described how 3D poly(e-caprolac-

tone) (PCL) pillared scaffolds can be realized using a hot

press. After the fabrication steps that lead to obtain the

Silicon master (Fig. 2a), the first part of the micromolding

process included the melting of PCL pellets (Fig. 2b),

while in the second part of the process, by decreasing the

temperature and providing the appropriate force, the final

structure is obtained after solidification and detachment

(Fig. 2c, d). Microfabricated gel constructs have been

realized using RM techniques. Natural biomaterials such as

collagen, gelatin, and fibroin [37, 38] and synthetic ther-

moplastic biopolymers such as poly(l-lactic acid) (PLA),

poly(e-caprolactone) (PCL), and poly(l-lactic-co-glycolic

acid) (PLGA) have been used in a wide range of TE

application [16, 39]. Through relatively simple fabrication

processes that combine plasma surface treatments with

controlled hot embossing processes, it has been obtained a

spatial control of endothelial cell adhesion and prolifera-

tion [40]. Nanofeatured substrates fabricated using nickel

electroforming against a nanoporous anodic aluminum

oxide followed by nanoinjection molding or hot embossing

process have been developed able to enhance neural dif-

ferentiation [41].

2.2 Etching and Direct-Write Techniques

Nanostructured materials for TE application are realized by

means of different nanotechnology techniques that can be

briefly summarized in two approaches, bottom-up and top-

down. Supramolecular chemistry and surface science are

considered bottom-up approaches; they enable the combi-

nation of various layers that could be made from different

materials and/or incorporate different biochemical cues.

Nanostructured materials can be synthesized with pre-

cisely controlled morphologies, sizes, and seemingly lim-

itless chemical functional groups [42]. In contrast to

Nervous system Neuronal cells Cytoskeletal proteins

Macrostructure Microstructure

Micromachining Metal deposition

Nanostructure

3D printing

Biocompatible
surfaces Thin film growth

Self assembling
Wet and dry

etching

Photolitography

EBL & FIBL
lithography

(b)

(a)

Fig. 1 a Micro- and nanostructure of central and peripheral nervous systems. b The principal micro- and nanofabrication technologies for TE

applications
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bottom-up technologies, biocompatible-nanostructured

surface has been fabricated with a top-down approach, via

etching away bulk material to achieve the required smaller

structural architectures [14] or through electrospinning by

directly shaping the materials into the desired structure

[43]. Electrospinning and novel direct-write 3D electro-

spinning technique, by enabling the production of micro/-

nanoscale-shaped structures such as continuous, self-

aligned, fiber-by-fiber, and template-free manner fibers are

showing growing potential in tissue engineering applica-

tions [44].

Plasma etching, as surface treatment technique, is

becoming more common for TE application, through

modifying the surfaces of implantable devices and med-

ical components, where improvements in wear, friction,

and biocompatibility are required. Using plasma surface

modification technique, it is possible to change the surface

properties of different biomaterials by enhancing their

biocompatibility without altering their bulk properties

[45]. In this contest, nano-textured biocompatible PCL

films were realized on Silicon wafer (Fig. 3a) through a

single-step plasma etching process; these kinds of bio-

mimetic surfaces can be maintained in the cell culture

media for weeks and, once peeled off, (Fig. 3b, c) their

‘‘free-standing’’ use is guaranteed for grow cells since the

roughness (Fig. 3d) confers them high cellular adhesion

performance [16].

Plasma etching represents a nanolithographic process

that, in conjunction with soft lithography, nanoimprint

lithography, and dip-pen lithography, as well as conven-

tional techniques such as EBL and FIBL has been utilized

for patterning surfaces with nanometer resolution.

More specifically, EBL and FIBL represent two of the

most used direct-write fabrication techniques that are able

to realize nanometric detailed patterning by means of

focused accelerated particle beams to scan across a surface.

In particular, EBL has been used for the creation of

nanopillared molds, which were consequently used to hot

emboss PCL surfaces with nanopits [46], and for the fab-

rication of grooves ranging from 20 to 1000 nm width [47].

Cells grown on the patterns with 80–350 nm grooves

showed the most alignment to the pattern and alignment

decreased as the depth and pitch of the grooves decreased.

The depth of the grooves appeared to play a greater role

than the pitch in guiding cell alignment, as cells seeded on

600-nm deep grooves showed greater orientation than on

the 150-nm deep patterns [48]. EBL is often also used in

conjunction with other lithographies such as nanoimprint

and capillary lithography to drastically improve their nat-

ural resolutions [49].

FIBL uses electrostatic and magnetic fields to focus a

low-energy ion beam commonly down to diameters of

50 nm; it can be passed through a stencil onto a surface and

also used in free-form milling processes due to the

Spin coating
Resist removal

Optical lithography
DRIE-Bosh process

Silicon wafer

Hot press

PCL

Mold

press press press

hot hot hot

(a) (b) (c) (d)

Fig. 2 Schematization of the fabrication process for 3D PCL pillared scaffolds using a hot press (on the left). a Silicon master production.

b Micromolding melting step. c Micromolding pressing step. d Final structure obtained after solidification and detachment. Figure adapted from

[17]

(a) (b) (c) (d)392 nm

0 nm
5 μm 5 μm

Fig. 3 Nano-textured PCL film realized through a single-step plasma etching process. a The Silicon wafer acts as a support. b Embedding in cell

culture medium. c Microfilm peeling-off for ‘‘free-standing’’ use. d AFM images of the nanostructured PCL surface. Figure adapted from [16]
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complexities of ion beam optics [50]. FIBL is more fre-

quently used for direct-write on hard surfaces, such as

silicon glass and metals without using polymer resists that

are needed for patterning. Yet, this kind of nanolithography

is successfully used also for biomedical milling tasks, such

as tune hydrogel surface morphology and modulus. During

irradiation, unique nanoscale porous features in regular

formation were observed and the pore parameters were

found to be dependent on ion incident angles [51]. Modern

FIB instruments, equipped with electrostatic optics and a

liquid metal ion source, can achieve a resolution compa-

rable to that of EBL [52]. Applications on a poly-

dimethylsiloxane resulted on topographical modification

for potential TE applications [53].

3 Applications of Nanostructured Materials in TE

A micro- and nanofabrication technological approach can

successfully be applied to TE biomedical demands through

producing nanoparticles, nanofibers, and scaffolds with

nanometric features, which are able to mimicking native

tissues by optimizing biomaterials and structuring their

geometry. Tissue damage and organ failure is a serious

medical condition; the request for tissue regeneration and

organ replacement is expanding year by year because of the

significant shortage of organs available for transplantation.

In order to treat patients with failing or failed organs,

organ-assist medical devices that replicate the functions of

organs have been realized; micro- and nanofabricated

systems can mimic components of native tissue resulting in

effectively in vitro models as well as successful medical

devices for in vivo test.

3.1 Neural Tissue

The physiology of the nervous system presents demanding

challenges to TE research addressing central and peripheral

nervous system injuries (CNS and PNS). The main dif-

ference between the PNS and CNS is the capacity for the

first one to regenerate. The inability of CNS neurons to

regenerate and the formation of a gliotic scar are the major

contributing factors to the irreparable nature of spinal cord

injury [54].

Through the combined efforts of physicians, biologists,

biotechnologists, and engineers, experimental work in

neurological TE application has made great progress.

Micro- and nanotechnology are providing microstructured

scaffolds to promote regeneration and direct repair by

reconnecting axons. By combining traditional microfabri-

cation techniques with nanotechnological tools, it is pos-

sible to realize implantable scaffolds with precisely formed

architectures and to control their surface chemistries,

creating a physiological microenvironment able to promote

neurites’ outgrowth. A completely different repair strategy

tries to repair nerves through the reconnection of damaged

axons immediately after an injury. This strategy uses

microfabrication to realize microelectromechanical sys-

tems that serve as ultramicrosurgical solutions to manipu-

late individual axons without incurring damage [55]. When

cultured on different substrates, neurons are shown to

rearrange their axon growth orientation and network shape

according to the imposed topography [56], while the cell

body does not necessarily follow the same adjustment [57].

It seems that a discontinuous topographical pattern could

promote Schwann cell and axonal alignment, provided that

it hosts anisotropic geometrical features, even though their

sizes range at the subcellular length scale [58].

A new solution was recently published for the 3D

growth of neurons and astrocytes, through the use of silicon

nanostructured devices fabricated by lithographic and

etching techniques [15]. Cylindrical pillars of 10 lm in

height and 10 lm in diameter were arranged in a hexagonal

lattice with periodicity of 30 lm; the sidewalls of the pil-

lars were nano-sculptured with a regular pattern of grooves

using a Deep Reactive Ion Etching Process. The design of

the pillars was in the microscale, but their nanopatterned

sidewall leads to a spatial modulation in the z direction.

The use of this kind of open scaffold represents advance-

ment over current 2D cell culture technologies and assures

neuronal co-culture growth. Flat glial cell monolayer was

suspended between adjacent nanostructured pillars

(Fig. 4a), and neurons spreaded upon the glial carpet with

their multiple neuritic processes (Fig. 4b) that densely

wrap the pillars sidewall (Fig. 4c).

By means of photolithography and micromolding tech-

niques, 3D biocompatible and biodegradable PCL, pillared

substrates were produced to replace of the ones realized in

silicon. A simple, rapid, and economic method of fabri-

cation, which involved photolithography and micromold-

ing techniques, allowed the production of 3D PCL

scaffolds with nanopatterned sidewalls, able to assist

adhesion and growth of human neural stem cells [17].

The important role played by PCL in neuronal regen-

eration research is extensively confirmed, together with its

use for the production of suitable platforms for neuronal

cell growth and proliferation [59–61]. A novel fast-proto-

typing method involving a single-step plasma etching that

allows the realization of novel PCL biocompatible and

bioerodible surfaces resulted as an ideal candidate for the

fabrication of nerve conduits and patches for neuronal

tissue regeneration. Primary hippocampal cultures, plated

on nanopatterned PCL substrates, result healthy as indi-

cated by the smooth surface of cell bodies (Fig. 5a, aster-

isk) and by the dense network of neurites which grow in

tight adhesion with the substrate (Fig. 5a, b, arrows).
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Neuronal class III b-tubulin/synapsin I (Fig. 6a, a0), class

III b-tubulin/neural cell adhesion molecule (Fig. 6b, b0),
and class III b-tubulin/phosphorylated neurofilament pro-

teins (Fig. 6c, c0) were analyzed and show that cells, firmly

adhered to the substrate, form a functional network char-

acterized by a dense pattern of synaptic contacts [16].

3.2 Cardiovascular

Cardiovascular disease (CVD) is a term referred to diseases

of the heart or blood vessels; blood flow to tissue and

organs (brain, heart, kidneys, and so on) can be reduced

as the result of thrombosis, atherosclerosis, or coronary

heart disease.

The American Heart Association estimates that the

2013 overall rate of death attributable to CVD was about

223 per 100,000 Americans. The death rates were 270 for

males and 185 for females [62]. Patients with these con-

ditions and diseases need different treatments, rang-

ing from daily medications to surgical interventions such

as stents, pacemakers, angioplasty, or heart transplants.

In recent years, increasing interest has been directed

toward the study of the complex interplay of the insoluble

ECM adhesion molecules, soluble factors, and hemody-

namic factors regulating vascular growth and remodeling

[63]. The specialized properties of the myocardium and

valvular tissues, including the capability of contraction of

cardiac tissue and the deformation of valves, provide

obstacles for the fabrication of tissue-engineered implants

for cardiac interventions. Tissue-engineered successful

vascular grafts should have mechanical strength for the

prevention of surface thrombosis, and highly organized

structures combining with ECM proteins. It seems that

biomaterial surface modification on the nanoscale enhances

vascularization in tissue-engineered constructs by influ-

encing cell alignment, adhesion, and differentiation

[64–66]. A study regarding the use of collagen-like syn-

thetic self-assembling nanofiber hydrogels successfully

supported the culture of both neonatal rat cardiomyocytes

and human embryonic stem cell-derived cardiomyocytes

[67]. Tubular collagen scaffolds with nanopatterns were

developed; both inside and outside of the tubes, endothelial

cells were seeded on the luminal side, while smooth muscle

cells were seeded on the outside of the tubes. Following co-

culturing in double-sided nanopatterned tubes, it was ver-

ified that tensile strength was enhanced while improving

cell retention in the lumen under blood flow [68].

Nanomaterials have also been found to improve car-

diomyocyte functions; the addition of carbon nanofibers in

PLGA scaffolds promoted cardiomyocyte growth by

increasing both the electrical conductivity and tensile

strength of the scaffold compared to conventional

(a) (b) (c)

Fig. 4 a SEM micrograph showing a flat glial cell monolayer suspended between adjacent nanostructured pillars. b Low magnification of

neuronal somas and its processes. c Neuronal projections densely wrap the pillar nanopatterned sidewall. Figure adapted from [15]

(a) (b)

5 μm 5 μm

Fig. 5 SEM images of primary hippocampal cultures plated on nanopatterned PCL substrates. a Neurons resulted healthy, as indicated by the

smooth surface of cell bodies (asterisk), b Dense network of neurites (arrows), which grew in tight adhesion with the substrate. Figure adapted

from [16]
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polymeric materials [69]. One of the major limitations of

engineered myocardial patches for heart repair is that

insulating polymeric scaffold walls interfere with the

transfer of electrical signals between cardiomyocytes.

Recently, when carbon nanotubes (CNTs) platforms

were used to culture cardiomyocytes, the growth and

electrical activity of the cells were enhanced. Notably,

CNTs remarkably accelerated gap junction formation via

activation of integrin-mediated FAK/ERK/GATA4 path-

way [70]. Furthermore, other group underlines the ability

of multiwall carbon nanotubes to promote changes in

electrical membrane properties of neonatal rat ventricular

myocytes, by proposing them as novel treatments for

arrhythmia and conduction disease [71]. By incorporating

gold nanowires into alginate scaffolds, it has been possible

to bridge the electrically resistant pore walls of alginate

and improved electrical coupling between neighboring

cardiomyocytes [72].

3.3 Musculoskeletal

3.3.1 Bone TE

Musculoskeletal tissue diseases and traumas, such as

intervertebral disk degeneration, tumors, osteoporosis,

arthritis, fractures, and tendinopathies, are common clinical

situations, as they are also related to the aging of the global

population. They usually result in significant loss of bones,

muscle, tendons, cartilage, and ligaments. Advances in

regenerative therapies depend on the choice of the appro-

priate material that would provide the right mechanical

integrity by tuning cell growth and neotissue formation.

By considering the micrometer length scale, bone can be

described as a spongy bone with high porosity or as a

lamellar bone with compact cylindrical osteons. On the

nanometer level, the collagen fibrils and nanohydroxyap-

atite are assembled into ordered and aligned patterns. The

different tissues of the musculoskeletal system are con-

nected with each other, either hard-to-hard tissue, soft-to-

hard tissue, or soft-to-soft tissue. Hence, concerning the

nanostructure of a scaffold is crucial when developing a

solution for composite tissues, such as an osteochondral

graft [73]. The ideal scaffolds, through mimicking the

native ECM environments, should provide structural sup-

port by imitating the mechanical properties of the tissue,

thus allowing nutrients, drugs, and waste transfer through

its porous architecture. Many fabrication technologies such

self-assembly, rapid prototyping, or multiple methods,

offer control over natural or synthetic polymers from nano-

to macroscale [74–77]. Porous chitosan–gelatin composite

βIII/synl βIII/NCAM βIII/SMI-31
(a) (b) (c)

(a') (b') (c')

10 μm 10 μm 10 μm

10 μm 10 μm 10 μm

Fig. 6 Confocal images of primary hippocampal cultures plated on nanopatterned PCL substrates at two magnifications (upper and lower rows).

Neuronal class III b-tubulin/synapsin I (a and a0), class III b-tubulin/neural cell adhesion molecule (b and b0), and class III b-tubulin/

phosphorylated neurofilament proteins (c and c0). Figure adapted from [16]
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scaffolds were fabricated using freeze-drying and freeze-

gelation methods.

It seems that freeze-gelation process is a promising

method for the production of various chitosan-based

composite biomaterials and that the freeze-gelation method

for hydrogel scaffold fabricated scaffolds is a better

method for the growth, proliferation, and viability of

nucleus pulposus cells of the human intervertebral disk

[75]. Merceron et al. described their method for the 3D

biofabrication of a single integrated muscle–tendon unit

construct through using multiple synthetic biomaterials and

different cell types [78]. Direct 3D printing has been suc-

cessfully used to fabricate porous ceramic scaffolds with

fully interconnected channels directly from hydroxyapatite

powder for bone replacement [79].

The microinjection molding technique has been chosen

as an industrially viable process, for the accurate and cost-

effective mass production of molded micro-patterns, which

influence the osteogenic differentiation of human mes-

enchymal stem cell, in the absence of growth factors

commonly used to induce osteoblast differentiation [30].

Recently, microfabrication techniques have been also used

to enhance vascularization in engineered bone substitutes,

while micropatterning, microcontact printing, and micro-

molding have been widely adopted in the development of

in vitro microscale vascularized networks [80].

3.3.2 Cartilage TE

Nanotechnology for cartilage TE application has recently

seen great improvements. Cartilage is an inhomogeneous,

anisotropic, porous-viscoelastic material composed of a

low percentage of chondrocytes embedded in a dense

nanostructured ECM network of elastin fibers, collagen

fibers, and proteoglycans [81]. Compared with bone, it is a

flexible connective tissue that does not require post

implantation vascularization. Micro- and nanofabrication

techniques as micromachining, photolithography, rapid

prototyping, electrospinning, fiber bonding, electrospin-

ning, electrostatic spray deposition, plasma deposition, and

molecular self-assembly have been investigated to mimic

the microscale porosity and the complex organization of

native tissues [82]. Electrospinning represents a successful

technological tool for bone tissue engineering allowing the

reparation of thin or larger defects through electrospun

sheets that may be layered or rolled for the restoration of

the defeats tissues [83]. Using a crosslinking method, novel

chitosan artificial cartilage tissue has been obtained [84].

It should be reviewed, in this contest, the uses of particular

cell-encapsulating hydrogel, such as gelatin-methacryloyl

(gelMA), as a base material for cartilage tissue engineering

solution [85]. The concentration of this polymer, its UV

exposure time, and its thermal gelation before UV exposure

allow for control over hydrogel stiffness and swelling

properties. GelMA solutions have a low viscosity at 37 �C,

which is incompatible with most biofabrication approaches.

However, incorporation of hyaluronic acid (HA) and/or co-

deposition with thermoplastics allows gelMA to be used

widely in biofabrication processes. These attributes may

allow engineered constructs to match the natural functional

variations in cartilage mechanical and geometrical proper-

ties. In stiffer (*30 kPa) photocrosslinked gelMA, and

gelMA/hyaluronic acid hydrogels, chondrogenic rediffer-

entiation occurs, both in vitro [86] and in vivo [87].

3.3.3 Muscle TE

Since the muscle is a particular tissue able to produce force

and motion under the direction of the nerve, engineered

muscle tissues should mimic the native structure with

regards to densely packed and uniformly aligned myofibers

throughout the tissue volume [88]. Skeletal muscle TE

offers its solutions for the treatment of post-traumatic

damages, pathological conditions (diseases like Duchenne

muscular dystrophy and spinal muscular atrophy), and

post-surgery tissue ablation [89, 90].

When engineering a skeletal muscle, one of the key

points is to obtain the muscle fiber formation by aligning

the cells. Micro- and nanofabrication techniques enhance

the possibility to create this kind of tissue. Many tech-

niques such as photo and soft lithography, electrospinning,

hot embossing, and solvent casting have been used to

realize an environment able to induce cell alignment

[91–95]. Since nanotopography greatly influences cell

contact guidance, nanofeatured materials can interact with

cells by mimicking the ECM natural environment. It seems

that the use of biocompatible surfaces characterized by

nanometric structures (pillars, pits, nodes, and nano-is-

lands) promotes cell adhesion, whereas increases in the size

of these features, decreases it [96]. It has been shown that

also the symmetry of these features, as well as the surface’s

roughness, affects cell adhesion on the substrate [97–99].

Electrospinning has been used to fabricate aligned nanofi-

ber scaffolds that induced myoblasts alignment, as the

structure of those fibers resembles the one of native col-

lagen fibrils characterizing the ECM [94, 100]. In order to

improve cells infiltration into the fibers network, direct

electrospinning of a 3D aligned nanofibrous tube has been

realized, promoting cell alignment and myotube formation

[101].

3.4 Skin TE

Skin loss occurs for surgical interventions, thermal,

mechanical and physical–chemical trauma, chronic
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wounds, and also genetic disorders; it can be divided into

epidermal, superficial partial thickness, deep partial thick-

ness, and full thickness based on the depth of the injury

[102–104]. It becomes urgent to replace the damage via

grafts, as it serves to protect from water loss and the risk of

pathogens intrusions. Skin grafts can assist the wound-

healing process by restoring the physiological functions at

that site [105]. Bioengineered skin substitutes emerged

over the past 60 years [106]. They were initially applied to

replace autograft, allograft, and xenograft in burn appli-

cations, but they later found even wider application in the

treatment of chronic venous and diabetic ulcers.

Tissue scaffolds realized using natural and synthetical

materials are able to provide a physical barrier, by

covering the wound, and thus to stimulate the re-ep-

ithelialization process. Among natural polymers collagen,

fibrin, chitosan, gelatin, and elastin have been developed

as biological skin substitutes for wound healing

[107–111]. Several collagen-based dressings in the form

of a gel, sheet, lattice, or sponge are commercially

available and are successful used as temporary covering

for ulcers and burns [112].

Many TE solutions use synthetic materials that are able

to degrade in the place of the implant by allowing host

tissue ingrowth while avoiding the drawbacks associated

with permanent synthetic material implantation. PCL is

one of these materials and is currently utilized for some

medical applications including adhesion barrier and

wound dressing [113]. Its biocompatibility, mechanical

strength, high elasticity, and degradation time issue the

popularity of this polymer in TE contest. The strict

combination of appropriate biomaterials and techniques

can reduce the risk of failure in skin graft; electrospinning

can produce new biocompatible and biodegradable scaf-

folds with a porosity structure that can mimic the one of

the native dermis.

More specifically, electrospun PCL/gelatin scaffolds

developed in association with a gas foaming/salt leaching

process exhibit excellent biocompatibility and

biodegradability [114]. Many studies have shown that

fibroblasts sense their micro-environmental cues;

Limongi et al. [18] described how NIH/3T3 cell cultures

had a successful growth on biocompatible and biore-

sorbable 3D PCL scaffolds. On these surfaces, fabricated

through integrating lithography and micromolding fabri-

cation techniques, cells healthy grew by sensing the

microstructured biopolymer, (Fig. 7a) and by using pil-

lars as stepping stones (Fig. 7b). New progress in the

production of degradable polymers with tunable

mechanical properties and in the optimization of com-

bined micro- and nanofabrication technologies extended

greatly our knowledge of transient, permanent, or long-

lasting engraftment of a regenerated skin.

4 Conclusions

Native tissues are highly organized at the micro- and

nanoscale and mimicking natural tissue structure is the

most important target for TE. The control of the mecha-

nisms underlying how cells sense nanoscale patterns could

enhance scientists’ ability to manipulate cells behavior by

allowing successful development of new methods to grow

artificial tissues/organs and replace the counter parts

in vivo. The actual strategy applied to the biocompatible

and biodegradable nanostructured biomaterials design,

thanks to the identification of the suitable grade of porosity,

effectively contributes to the fabrication of promising

multi- component and multi-functional materials for dif-

ferent TE applications. To conclude, in light of the contents

summarized in this review, we underline how the integra-

tion of medicine and nanotechnology, with regard to

(a) (b)

Fig. 7 SEM images of NIH/3T3 cells suspended on biocompatible PCL nanostructured micropillars. a Fibroblasts within 24 h produced

filopodia sensing the microstructured biopolymer, and b thicker pseudopodia-like processes appeared to use pillars as stepping stones.

Figure adapted from [18]
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microfabrication and nanolithographic techniques, are

deeply impacting modern TE solutions.
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