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Abstract—Most of the literature on Delay Tolerant Networks
(DTNs) focuses on optimal routing policies exploiting a priori
knowledge about nodes mobility traces. For the case in which
no a priori knowledge is available (very common in practice),
apart from basic epidemic routing, the main approaches focus
on controlling two–hop routing policies. However, these latter
results commonly employ fluid approximation techniques, which,
in principle, do not provide any theoretical bound over the
approximation ratio. In our work, we focus on the case without
a priori mobility knowledge and we provide approximation
algorithms with theoretical guarantees that can be applied to
cases where the number of hops allowed in the routing process is
arbitrary. Our approach is rather flexible allowing us to address
heterogeneous mobility patterns and transmission technologies,
to consider explicitly the signaling and transmission costs, and
to include also nodes discarding packets after a local timeout.
We then provide a comprehensive performance evaluation of
our algorithms, showing that two–hop routing provides the best
tradeoff between delay and energy and that, in this case, they
find solutions very close to the optimal ones with a low overhead.
Finally, we compare our methods against some state–of–the–
art approaches by means of a DTN simulation environment in
realistic settings.

I. INTRODUCTION

DTNs are sparse and/or highly mobile wireless ad hoc
networks with discontinuous connectivity, which may

occur due to limits in the wireless radio range, sparsity of
mobile nodes, constrained energy resources, attacks, and noise.
One central problem in DTNs is the optimal routing of packets
from a source towards the desired destinations.

When no a priori information is available on the mobility
pattern of the nodes, a common technique for overcoming
lack of connectivity is to disseminate multiple copies of the
packet: this enhances the probability that at least one of
them will reach the destination within a temporal deadline.
This is referred to as epidemic–style forwarding, because,
alike the spread of infectious diseases, each time a packet–
carrying node encounters a new node not having a copy
thereof, the carrier may infect this new node by passing on
a packet copy. A convenient compromise of energy versus
delay compared to epidemic routing is provided by two–hop
routing where the infection is limited to contacts between the
source and intermediary nodes, that is, the source node passes
on the packets to all the mobile nodes she encounters, and
the “infected” mobile nodes can deliver the packets they are
carrying only to the final destination.
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In this paper, we focus on the characterization of two–hop
routing policies for DTNs as in [1]–[3], where the problem
concerns the decision on whether or not forwarding a given
packet to a given mobile node the source is encountering at
a given time. We propose an optimization-based framework
to derive optimal two–hop routing policies which extends the
available approaches in the literature in different directions:
(i) we account for mobile nodes which are categorized in
distinct multiple classes capturing different mobility patterns
and available communication technologies on board; (ii) we
account for the cost for neighbor discovery and signaling
messages exchange to support packet forwarding further al-
lowing mobile nodes to discard the packets they are carrying
upon expiration of a local temporal deadline; (iii) rather than
resorting to fluid approximation to derive optimal two–hop
routing policies, we propose algorithms for finite mobile node
populations with theoretical guarantees; namely we provide
an exponential–time (in the number of classes) algorithm to
find routing policies that are arbitrarily close to the optimal
ones, as well as approximate polynomial–time algorithms; (iv)
we extend our algorithms and analysis to the case where
the routing policy allows an arbitrary maximum number of
hops. Finally, we provide a thorough performance evaluation
with realistic settings of the proposed algorithms in terms
of approximation ratio, scalability in the number of classes,
further evaluating the impact of network parameters onto the
optimal routing policies. We also evaluate our routing policies
with different maximum numbers of allowed hops and we
compare them w.r.t. state–of–the–art routing policies within
The ONE Simulator [4].

The paper is organized as follows. Section II reviews the
relevant literature. Sections III and IV describe the reference
scenario and routing problem. Our approximation algorithms
are presented in Section V while extensions to more than
two hops is addressed in Section VI. Section VII, evaluates
algorithms in synthetic network instances while Section VIII
concludes the paper.

II. RELATED WORK

The main distinctive features of the present work w.r.t.
the reference literature are: (i) we take into account the cost
for neighbor discovery and signaling messages exchange to
support packet forwarding, further allowing mobile nodes to
discard ”older” packets upon expiration of a local temporal
deadline (implying that, differently from what customarily
assumed in the reference literature, the number of copies of
a packet is not monotone–increasing); (ii) we do not resort
to fluid approximation, but rather propose algorithms to find
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optimal routing policies for finite mobile node populations
with theoretical performance guarantees; (iii) we extend our
algorithms to the case where the number of hops allowed in
the routing phase is arbitrary; (iv) we compare our algorithms
w.r.t. state–of–the–art algorithms by means of one of the main
DTN simulators.

We overview here the main body of literature in the fields of
optimizing multi–hop routing and two–hop routing in DTNs.

Multi–Hop Routing. Besides basic epidemic–style forward-
ing schemes operating under a zero–information assumption
(in Section VII-E we briefly review and compare against
them), literature on optimal routing mainly devoted efforts in
scenarios where some knowledge about mobility is available
and can be exploited. The seminal work [5] studies optimal
multi–hop routing strategies when the nodes have a limited
buffer further providing an experimental comparison of the
different routing policies. In [6], the authors address the DTN
routing problem by first proposing an optimization framework
to optimally set the routes and then by introducing a gradient–
based routing heuristic which exploits the concept of con-
nectivity degree. In [7], the authors cast the routing problem
as an optimal stopping rule problem and further propose an
Optimal Opportunistic Routing scheme which maximizes the
average packet delivery probability. In [8], the authors focus
on a multi–hop routing heuristic named Ring Distribution
Routing. In all the aforementioned works, routing decisions
only leverage topological information such as the contact time
and statistics. Differently, recent literature shows that routing
performance can be improved if social information on the
mobile nodes can be leveraged [9]–[12].

Optimal Control for Two–Hop Routing. The seminal
work [13] studies optimal static and dynamic control (proved
to be threshold based) policies for two–hop DTN when mobile
nodes are homogeneous. Furthermore, the authors show that
when the parameters are unknown it is still possible to obtain
a policy that converges to the optimal one by using some
adaptive auto–tuning mechanism. Extensions of such adaptive
mechanism are proposed in [14].

Scenarios where mobile nodes belong to multiple distinct
classes are studied in [3], showing that the routing policy may
be class dependent. The authors resort to fluid approximation
to characterize the routing policies under the assumption
that the number of copies of the packet is monotonically
increasing in time. However, no theoretical guarantee over the
quality of the solutions is provided and, in principle, fluid
approximation may provide arbitrarily inefficient solutions,
see, e.g., [15]. Furthermore, it is not clear whether fluid–
approximation approaches can be extended to more than two
hops. The authors, in [2], extend the previously mentioned
work by considering also non–monotone routing strategies,
whereas Chahin et al. design optimal control rules to maximize
the packet delivery probability under energy budget constraints
[16]. The aforementioned work focuses on routing control
policies which assume disjoint traffic generation and routing,
that is, the routing process is completely decoupled from the
traffic generation one. Alma et al. extend this previous work
to account for the case in which traffic sources continuously
generate traffic during the routing process [17]. The tradeoff

between energy consumption and packet delivery probability
is studied in [18] in the case where packet replication is
allowed at the source to create redundancy in the spread–out
information.

A fluid representation of the routing process is adopted also
in [19], where a scheduling framework is proposed to let each
mobile node locally decide if/when a packet in transmission
should be dropped or forwarded under the assumption that
the packet forwarding process can be approximated by a
time–continuous Markov chain process. In [20], the authors
characterize the probability distribution of the packet delivery
delay for epidemic and two–hop routing schemes; moreover,
they also evaluate the communication cost measured as the
number of replica of a given packet at the time the packet has
been received by the intended destination.

III. REFERENCE SCENARIO

We consider an environment populated by one source node,
one sink node and multiple mobile nodes. Sink and source
nodes may as well be mobile. A packet is initially held by
the source and it must be delivered to the sink no later than τ
time units through two–hop opportunistic routing. (In Tab. I,
we summarize all the symbols used along the paper.) Thus, the
source can decide to deliver the packet to any mobile node she
gets in touch with, and such mobile node can only deliver the
packet to the sink in the event of a direct contact. A mobile
node carrying a packet from the source discards the packet
after a pre–defined time–out (defined below), further refraining
from accepting the very same packet again in the future.

Each mobile node belongs to a specific class c ∈ C. We
denote by Nc the number of mobile nodes of class c. Each
class encodes the features of its nodes, including their mobility
profile and transmission technology. The mobility profile is
characterized by the average speed vc and by the class–specific
time–out value tc (i.e., the time after which the node discards
the packet and does not accept it again in the future). We
denote by ω ∈ Ω a transmission technology (e.g., WiFi).
Transmission technologies are characterized by a number of
parameters that we introduce below. For the sake of simplicity,
we assume each node to use a single technology, while the
source and the sink can use all the technologies. All the nodes
of a class c use the same technology. Finally, the subset of
classes adopting technology ω is Cω ⊆ C.

The interactions among nodes of the same class are reg-
ulated by the following rules/parameters: (i) two nodes are
in contact at a given time if they are within each other’s
transmission range (we denote by Rω the transmission range of
technology ω, and we use, with slight abuse of notation, Rc in
place of Rω when c ∈ Cω); (ii) technology–specific neighbor
discovery procedures are used to dynamically discover con-
tacts over time; (iii) upon neighbor discovery, technology–
specific association procedures are adopted to create peer–
to–peer connections among nodes in contact; (iv) once the
association phase has been carried out, nodes carrying the
reference packet may decide to transfer it to the associated
node if the active routing policy so prescribes.

We assume all the three aforementioned operations per-
formed by nodes to incur in some energy cost. W.l.o.g., let βω
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represent the energy consumed for performing operations (ii)–
(iii) by technology ω, and ρω represent the energy consumed
to transmit the reference packet by technology ω. We will
refer to βω and ρω as to the signaling and transmission costs,
respectively. With slight abuse of notation, we use βc and ρc in
place of βω and ρω , respectively, when c ∈ Cω . All the classes
c ∈ Cω using the same technology ω share the signaling costs
βω .

The implementation details and parameter values for the
routing signaling phase are technology dependent; e.g., refer-
ring to WiFi Direct technology, points (ii) and (iii) include
the required time and message exchange to perform IEEE
802.11 Channel Scanning, Channel Probing, Group Owner
Negotiation and Address Configuration [21]; referring to Blue-
tooth Low Energy technology, points (ii) and (iii) include the
Advertising and Scanning/Initiating phases [22], [23].

We consider a discrete representation of time organized in
time slots whose duration is fixed to ∆ time units and we
denote the total number of useful time slots as K = bτ/∆c,
where the k–th time slot corresponds to the time interval
[k∆, (k + 1)∆).

Transmission opportunities between two nodes are given
by contacts taking place when each node is within the com-
munication range of the other one. As we are considering
two–hop routing schemes, contacts of interest are limited to
those between the source and mobile nodes and between
mobile nodes and the sink. In the following, we mainly rely
on Markovian models for the packet spreading process, that
is, we assume that contacts at the source and at the sink
follow a multi–class Poisson distribution; such assumption
is largely used in the literature to study the performance of
opportunistic routing as it eases up the problem’s tractability
while maintaining practical insights in the routing design
problem [13], [24]–[27]. Recent studies further support such
assumption by showing that Poisson distributions well ap-
proximate the contact numbers in opportunistic networks with
nodes moving according to realistic mobility models provided
that the transmission range is large w.r.t. the reference arena
and the speed is sufficiently large [28]. In the following,
we leverage the formulas derived in [28] to approximate the
pairwise contact creation rate. Namely, in our analysis, λc
(the contact rate of nodes belonging to class c) is defined
as λc = 8ιRcvc

πL2 where ι is a constant set to 1.3693 and L is
the radius of circle in which the nodes move. With Poisson
distributions, optimal policies are zero–memory [13]. That
is, the best policies from a time slot on do not depend on
the contacts happened in the time slots before and therefore
optimal policies do not depend on information available at
runtime.

When a contact happens between the source and any mobile
node that did not receive the packet yet, the source decides to
hand over the packet according to a forwarding policy µ which
depends on the current time and the potential recipient’s class.
Given a time slot k and a class c, the policy profile at time
k is µ(k) = (µ1(k), . . . , µ|C|(k)) where µc(k) indicates the
forward probability at time slot k for class c; we also denote
with µc the entire policy for such class c. In general, when
the packet is forwarded, some energy is spent and the packet’s

delivery probability is increased. We denote with FD(µ,K)
the probability of delivering the message before time K∆
given policy profile µ. Obviously, such value is prevented
from growing indefinitely by an energy budget, denoted by
Ψ, on the total spent energy (including both signaling and
transmission).

IV. OPTIMAL ROUTING POLICIES

A. Problem Formulation

We define Xc,k(µ) as the random variable expressing the
number of mobile nodes of class c that have received the
packet by time slot k, while Yc,k(µ) is a random variable
expressing the number of mobile nodes of class c that still
keep a copy of the packet at time slot k. These variables both
depend on µ and are, in general, different. Indeed, since a
mobile node can both receive and discard a packet before
time slot k, we have that Yc,k(µ) ≤ Xc,k(µ). Furthermore,
we denote by Qc,k,k′(µc) the probability that a mobile node
of class c does not receive any packet in time slots k, . . . , k′

as function of µc which can be expressed as:

Qc,k,k′ (µc) = e
−λc∆

k′∑
i=k

µc(i)

. (1)

The expected number of mobile nodes of class c that receive
a packet in time slots 0, . . . , k is:

E[Xc,k(µ)] = Nc · (1−Qc,0,k(µc)). (2)

Thus, the expected number of mobile nodes of class c that
have the packet at time slot k is:

E[Yc,k(µc)] = Nc · (1−Qc,max{0,k−tc},k(µc)). (3)

The probability that a packet is delivered to the sink by time
k∆ can be defined as:

FD(µ, k) = 1−
∏
c∈C

k−1∏
h=0

X
∗
c,h(λc∆,µ), (4)

being

X
∗
c,h(s,µ) = E[e

−sYc,h(µ)
], (5)

where X∗ is the Laplace–Stieltjes transform (see [13]
for details). Note that Eq. 4 inherently uses the Markovian
assumption on the contact inter–arrival time, which allows to
consider variables Yc,h to be independent w.r.t. the temporal
index h (i.e., the number of mobile nodes holding the packet
is memoryless over time). The constraint on the consumed
energy is:

∑
c∈C

ρcNc(1−Qc,0,K(µc))︸ ︷︷ ︸
transmission costs

+

∑
ω∈Ω

K−1∑
k=0

βω ·

1−
∏
c∈Cω

(
1− µc(k)

)
︸ ︷︷ ︸

signaling costs

≤ Ψ. (6)

The left term of the inequality adds up the expected trans-
mission costs with the expected signaling costs for class c,
given a policy profile µ. In particular, transmission costs are
obtained by multiplying ρc by the expected number of nodes
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TABLE I: Notation Summary.

Network/topology parameters
τ packet delivery deadline
∆ slot duration
K slot number
L radius of the circle
ι constant
C set of classes
c a class in C
Ω set of technologies
ω a technology in Ω
Cω set of classes adopting technology ω
βω signaling cost of technology ω
ρω transmission cost of technology ω
Rω transmission range of technology ω

Class–dependent node parameters
Nc number of nodes in class c
tc packet’s local time to live
vc average speed
Rc transmission range
βc signaling cost
ρc transmission cost
λc contact rate

Scenario parameters
Ψ energy budget
µ forwarding policy

µ(k) forwarding policy at slot k
µc forwarding policy for class c
µ−c forwarding policy for all the classes

except c
µc(k) forwarding policy at slot k for class c
hc threshold for class c

FD(µ,K) probability of delivering the message
before time K∆ given µ

Xc,k(µ) random variable of the number of
mobile nodes of class c that received
the packet by k

Yc,k(µ) random variable of the number of
mobile nodes of class c that still keep
a copy of the packet at time slot k

Qc,k,k′ (µc) probability that a mobile node of
class c does not receive any packet
in time slots k, . . . , k′ given µc

X∗c,h(s,µ) Laplace–Stieltjes transform of Yc,h(µ)

that will receive the packet from slot 0 to slot K; on the other
side, a signaling cost of βω is paid for each time slot k with
the probability that at least one class c ∈ Cω will forward the
packet, i.e., 1−

∏
c∈Cω (1− µc(k)).

The problem of finding the optimal routing policy can be
formally defined as follows: find policy µ∗ that maximizes
FD(µ,K) subject to the budget constraint reported in Eq. (6).

B. Problem Properties

We now show some theoretical properties that we will
exploit in the following.

Property IV.1. Optimal policies either completely consume
the budget or prescribe that all the classes transmit for all the
slots.

Proof. It is easy to see that FD(µ,K) is monotonically
increasing in

∑K−1
h=0 µc(h) and that, as a consequence, trans-

mitting for a larger (expected) number of slots cannot result
in a lower delivery probability.

Similarly to what proposed in [13], we define a threshold–
based policy µc as:

µc(k) =


1 k < bhcc
{hc} k = bhcc
0 k > bhcc

,

where hc is the threshold of class c and {hc} is the fractional
part of hc. The following property, which was holding in the
single-class case, keeps valid also when multiple classes are
allowed.

Property IV.2. Optimal policies are threshold based.

Proof. The delivery delay c.d.f. is FD(µ,K) = 1 −∏
c Γc(µ, s), where Γc(µ, s) =

∏K−1
h=0 X∗c,h(s,µ) and s =

λc∆. Let us denote with µc a non–threshold policy for
class c and with µ̂c a policy obtained by shifting to the
left all the non–empty slots of µc and by rounding them so
that µ̂c matches the definition of threshold policy introduced
above. For any (µc, µ̂c) obtained in this way we have that
Γc(µ, s) ≥ Γ̂c(µ, s) and therefore, defined Γ−c(µ, s) =∏
c′ 6=c

∏K−1
h=0 X∗c,h(s′,µ), we have 1−Γc(µ, s) ·Γ−c(µ, s) ≤

1 − Γ̂c(µ, s) · Γ−c(µ, s), that is, for any given joint policy
µ, if we substitute the marginal policy of a class c with its

threshold version the probability of delivery within K time
slots will not decrease.

Property IV.3. Optimal policies can prescribe non–integer
thresholds for all the classes.

Proof. Consider, e.g., a two–class scenario: K = 20, ∆ =
100, Ψ = 0.7, N1 = 1, N2 = 2, λ1 = 21 × 10−5,
λ2 = 20 × 10−5, t1 = t2 = K. We approximate the optimal
policy profile by discretizing the values of hc with a fine
grid of step 0.01. In addition to these points, we consider
all the points in which the threshold of one class is integer
and the threshold of the other class is calculated in such
a way the budget is completely consumed. We evaluate the
objective function at all these points and select the maximum.
The approximately optimal policy is h1 = 7.87, h2 = 15.91.
Hence, at the optimum, a fractional part is assigned to both
classes.

Property IV.4. The optimization problem with objective func-
tion given by Eq. 4 and constraint given by Eq. 6 is nonlinear
and nonconvex.

Proof. Nonlinearity is trivial. Nonconvexity is proved by
showing the nonconvexity of the feasibility region by com-
puting the Hessian matrix of the budget constraint in Eq. 6
to which we will refer here with u (notice that we restrict
our attention on threshold policies). It can be easily seen
that all the eigenvalues of the Hessian matrix (of the form
−N|c|λ2

|c|∆
2e−λ|c|∆h|c| ) are strictly negative for every policy

profile µ and therefore the feasibility region is non con-
vex.

Some of the above properties show that the optimization
problem is hard and that no exact algorithm is possible.
The adoption of non–convex programming techniques cannot
assure to approximate the global optimum. Hence, we focus
on the problem of developing approximation algorithms and of
studying their theoretical and empirical approximation errors.

V. APPROXIMATION ALGORITHMS

A. Non–Polynomial–Time Approximation Scheme

We start by defining a non–polynomial–time algorithm
returning a solution arbitrarily close to the optimal one. To this
extent, we over–constrain the optimization problem, allowing
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only a single class to have a fractional threshold in its routing
policy. This additional constraint is likely to worsen the
solution quality (see Property IV.3) but it allows us to provide
a combinatorial version of the optimization problem. Indeed,
once all the classes except one have been assigned integer
policies, the potentially fractional policy of the remaining class
is univocally determined either by the policy that consumes all
the remaining budget or the one that transmits until the last
useful time slot (see Property IV.1). To have more precision,
we split each slot of length ∆ in sub–units of length ε∆ where,
for simplicity, 1

ε ∈ N.
We solve optimally this over–constrained problem by enu-

meration. We enumerate all the feasible threshold policies
and we select the best one (see Property IV.2). We report
in Algorithm 1 the necessary steps. At Step 1, the algorithm
initializes F ∗—the variable with the value of the best found
solution—to be zero. Let us denote µ−c the forwarding
policy of all the classes except class c. If the budget cannot
be entirely consumed, then the optimal policy is to assign
hc = (K − 1)/ε to each class c (Steps 2–3). Otherwise, the
algorithm enumerates all the classes c, and for each class c it
enumerates all the policies µ = (µc,µ−c) s.t. µ−c is integer
and budget Ψ is entirely consumed (Steps 5–6). Finally, we
keep trace of the best policy found so far. We now describe an

Algorithm 1 ε–grid search
1: F∗ ← 0
2: if µ s.t. hc = K−1

ε for all c is feasible then
3: µ∗ = µ
4: else
5: for c ∈ C do
6: for every µ = (µc,µ−c) s.t. µ−c is integer and budget Ψ is entirely

consumed do
7: if FD(µ, K−1

ε ) > F∗ then
8: µ∗ ← µ
9: F∗ ← FD(µ, K−1

ε )

efficient scheme to enumerate all and only the feasible policies
µ = (µc,µ−c) s.t. µ−c is integer and budget Ψ is entirely
consumed in Step 6. First, we build a lexicographic (strict)
order �L over C−c = C \ c and we scan lexicographically
the classes in C−c. Then, for each c′ ∈ C−c we determine the
range Ic′ of feasible values for hc′ on the basis of the policies
assigned to the classes c′′ preceding c′ in the lexicographic
order (i.e., c′′ �L c′):

Ic′ (µ−c′ ) ={
max

{
0,min

{
K − 1

ε
, drc′ (µ−c′ )e

}}
, ..,min

{
K − 1

ε
, brc′ (µ−c′ )c

}}
,

µ−c′ =


µc′′ = µc′′ c′′ �L c′

µc′′ : hc′′ = K−1
ε c′ �L c′′

µc : hc = K−1
ε

,

µ
−c′

=


µ
c′′

= µc′′ c′′ �L c′

µ
c′′

: hc′′ = 0 c′ �L c′′

µ
c

: hc = 0

,

µ−c′ is the policy in which the policies of all the classes c′′

with c′′ �L c′ are given by µ and for all the other classes c′′

with c′ �L c′′ the threshold is the maximum one (i.e., K−1
ε )

and therefore the energy budget that can be used for class c′ is
minimized, while µ−c′ is the policy in which the policies of

all the classes c′′ with c′′ � c′ are given by µ and for all the
other classes c′′ with c′ � c′′ the threshold is the minimum
one (i.e., 0) and therefore the energy budget that can be used
for class c′ is maximized.

Function rc′(µ−c′) returns the maximum threshold hc′ for
class c′ given the policy µ−c′ of all the other classes subject to
the energy budget constraint and can be computed as follows:
• initially we compute in closed form:

rc′ (µ−c′ ) = −
log
(

1 + A−Ψ+B
ρ
c′Nc′

)
λc′∆ε

where

A =
∑

c′′:c′′ 6=c′
ρc′′Nc′′

1− e
−λ

c′′∆ε

K−1
ε∑

k=0
µ
c′′ (k)

 ,

B =
∑
ω∈Ω

K−1
ε∑

k=0

βω ·

1−
∏

c′′∈Cω :c′′ 6=c′

(
1− µc′′ (k)

) ,

the above rc′(µ−c′) is the maximum threshold hc′ for
c′ in the case in which hc′ does not affect the signaling
costs due to the technology used by class c′; this happens
when dεrc′(µ−c′)e ≤ maxc′′:c′′∈Cω,c′′ 6=c′{bεhc′′c} where
c′ ∈ Cω , that is, when some class adopting the same
technology of class c′ transmits for the whole slot of
duration ∆ that is the last slot in which class c′ transmits;

• if, solving the above closed form, we obtain
dεrc′(µ−c′)e > maxc′′:c′′∈Cω,c′′ 6=c′{bεhc′′c} where
c′ ∈ Cω , then the policy of class c′ affects the signaling
costs due to the technology adopted by c′. Thus, we can
compute rc′(µ−c′) by solving the following equation:

ρc′Nc′ (1− e
−λcε∆rc′ (µ−c′ ))+

+
∑

ω∈Ω:c′ 6∈ω

K−1
ε∑

k=0

βω ·

1−
∏

c′′∈Cω

(
1− µc′′ (k)

)+

+

K−1
ε∑

k=0

βω ·

1−
∏

c′′∈Cω :c′∈ω,c′′ 6=c′

(
1− µc′′ (k)

)
·
(

1− rc′ (µ−c′ )
))

+

+A−Ψ = 0,

by means of the Newton algorithm. Notice that the
above function has only one variable, rc′(µ−c′), and it is
strictly monotonically increasing. Therefore the Newton
algorithm can be used to obtain an arbitrarily accurate
approximation of the exact solution.

Once the previous steps are done, for every element in
Ic′(µ−c′), we assign it to hc′ and go to the next class
according to the lexicographic order. Finally, once the policies
of all the classes c′ ∈ C−c have been assigned, the policy of
c is easily given by hc = rc(µ−c).

Theorem V.1. The above scheme enumerates all and only
the feasible policies consuming exactly the budget in which at
most one hc is fractional.

Proof. We need to prove that: (i) all the policies except µc
are integer, (ii) the budget is exactly consumed, and (iii) all
and only the feasible policies are enumerated. The first two
points are trivial by construction (given that the policy of c is
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the only potentially non–integer and is computed as the policy
that consumes the budget given the policies of all the other
classes). To prove the third point, we observe that I is always a
well–defined range. Indeed, brc′(µ−c′)c returns the largest hc′
that consumes exactly the remaining budget given the budget
consumed by all the classes preceding c′ in the lexicographic
order. Assigning a policy larger than min

{
K−1
ε , brc′(µ−c′)c

}
violates the budget constraint or violates the deadline τ . If
the policies assigned to the previous classes are feasible,
then brc′(µ−c′)c is always non–negative. As well, brc′(µ−c′)c
returns the smallest hc′ that consumes exactly the remaining
budget given the budget consumed by all the classes preceding
c′ in the lexicographic order and assuming that the classes
that succeed transmit all the slots. Assigning a policy smaller
than max

{
0,min{K−1

ε , drc′(µ−c′)e}
}

does not allow one to
consume entirely the budget. Thus, by construction, for each
policy assigned to class c′ belonging to I , it is always possible
to find a feasible policy for the succeeding classes.

The number of policies enumerated by Algorithm 1 is
exponential in C, being O((K−1

ε )|C|−1). We state the fol-
lowing result on the optimality loss of the solution found by
Algorithm 1.

Theorem V.2. Let F̃D be the value of the solution returned
by Algorithm 1 and F ∗D the value of the optimal solution, then
we have

F̃D

F∗D
≥

1− ( 1
2 )
K−1
ε

1− ( 1
2 )|C|

K−1
ε

.

Proof. Call µ∗ the optimal policy profile and call µ̃c the
policy profile in which h̃c′ = bh∗c′c for all c′ 6= c and
h̃c = h∗c . Obviously, F ∗D ≥ FD(µ̃c,

K−1
ε ) and F ∗D ≥ F̃D ≥

maxc{FD(µ̃c,
K−1
ε )}. This is because µ̃c is a feasible policy

profile in which at most one policy is fractional that is not
assured to consume exactly the budget. We can write a lower
bound for FD

(
µ̃c,

K−1
ε

)
as:

FD

(
µ̃c,

K − 1

ε

)
=

= 1−
∏
c′∈C

K−1
ε∏

k=0

X
∗
c′,k(λc′ ε∆, µ̃c) ≥ 1−

K−1
ε∏

k=0

X
∗
c,k(λcε∆, µ̃c)

By using such lower bound over FD
(
µ̃c,

K−1
ε

)
, we can write:

F̃D

F∗D
≥ max

c

 1−
∏K−1

ε
k=0 X∗c,k(λcε∆,µ

∗)

1−
∏
c′∈C

∏K−1
ε

k=0 X∗
c′,k(λc′ ε∆,µ

∗)


since, given µ̃c and µ∗, we have h̃c = h∗c . Thus, we are
interested in:

min max
c

 1−
∏K−1

ε
k=0 X∗c,k(λcε∆,µ

∗)

1−
∏
c′∈C

∏K−1
ε

k=0 X∗
c′,k(λc′ ε∆,µ

∗)


where the minimization is over all the parameters. Although
the definition of X∗ is intricate, a bound can be derived disre-
garding the exponential nature of all the X∗ and considering
them as arbitrary values in [0, 1]. In this case, for reasons
of symmetry, the values that minimize the maximum ratio

prescribe X∗c,k = 1
2 for all c. This leads to the bound stated

in the theorem.

Notice that the theoretical lower bound does not depend on
whether the signaling costs are present. The worst case is when
K = 2 and |C| → ∞, obtaining a ratio of 1− 1

2

1
ε . However,

it can be observed that the worst case ratio goes to one
exponentially in 1

ε . Thus we can obtain a good approximation
ratio with a small value of 1

ε , e.g., the theoretical lower bound
over the approximation ratio is about 1− 10−4 when 1

ε = 10.
Algorithm 1 is an approximation scheme (AS), given that the
ratio goes to one as ε goes to zero.

B. Polynomial–Time Approximation Algorithm

In this section, we discuss a heuristic approach to approxi-
mate the optimal policy in polynomial time. We restrict our at-
tention to threshold policies and we devise an iterative method
that incrementally constructs the policy µ by increasing, at
each iteration, the threshold for some class. Algorithm 2,
reports the formal steps.

Algorithm 2 i–greedy construction
1: h1, . . . , h|C| ← 0
2: F∗ ← 0
3: while Constraint in Eq. (6) is satisfied do
4: for every class c do
5: ĥc ← hc + min{1, rc(µ−c)− hc}
6: δc ← Gi(F

∗, h1, . . . , ĥc, . . . , h|C|)

7: hc∗ ← ĥc∗ , where c∗ = arg max
c∈C
{δc}

8: F∗ ← F∗ + δc∗

Since we focus only on threshold policies, the algorithm
assumes that µ is uniquely determined by class thresholds.
So, each time a modification is made to a threshold hc we
implicitly assume that µ changed accordingly and vice versa.
Algorithm 2 works on the same discrete–time representation
we introduced above, where each time slot has a temporal
length of ε∆. It starts from an initial empty policy where
thresholds are set to 0 for each class (Step 1). Then, at
each iteration, it evaluates with an objective function Gi each
of a set of local modifications of µ (Steps 5–6) and then
applies the one maximizing such function (Steps 8–9). A local
modification of µ involves a single class c and is represented
by an increment of hc of the quantity min{1, rc(µ−c)− hc},
that is, one more slot or, in case the residual budget would not
be enough, the fractional part that would deplete the budget. In
general, the objective function Gi is defined as a marginal gain
between the current solution value and the one obtained after a
modification would be applied. This is the reason why, besides
class thresholds, Gi takes as argument the value F ∗. Such
variable represents the current solution value computed by
iteratively adding up the marginal gains of those modifications
selected by the algorithm (Step 9). We propose two different
instantiations of the objective function that we will call G1

and G2 and we will speak of a first and a second version of
the algorithm, respectively. In each of the two versions the
computation of Gi will be doable in O(|C|) time, thus the
worst case time complexity of Algorithm 2 is O(K−1

ε |C|
3).
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First Version, Locally Optimizing FD: In the first version of
Algorithm 2, we define G1 in order to obtain the maximization
of the marginal gain of FD, i.e., the delivery probability.
Formally, we have that at Step 6 it holds that Gi = G1 where
G1(F ∗, h1, . . . , h|C|) = FD(µ, (K − 1)/ε)−F ∗. (Recall that
µ is assumed to be the unique policy obtained from thresholds
h1, . . . , h|C|). Under such definition, δc represents the benefit,
in terms of delivery probability, that an additional (integer or
fractional) time slot for class c would introduce at the current
iteration. By exploiting a result presented in [29] we are able
to provide a bound on the solution quality obtained with this
version of the greedy algorithm. The result we will exploit can
be formalized as follows (see [29] for a complete derivation).

Theorem V.3 (From [29]). Given a ground set Θ, a set func-
tion Φ : 2Θ → R, and a positive integer W ∈ N+, let us con-
sider the problem of finding S∗ = arg maxS⊆Θ,|S|≤W {Φ(S)}.
Then if Φ is submodular, we have that for every integer
0 ≤ l ≤ W , Φ(Sl) ≥ (1 − e−l/W )Φ(S∗), where Sl ∈ Θ is
the set built after l iterations of the following greedy element–
selection rule

Si =

{
∅ if i=0
Si−1 ∪ arg maxs∈Θ Φ(Si−1 ∪ {s}) else

(7)

Theorem V.3 states that greedily maximizing a submodular
set function introduces a bounded suboptimality. Eventually,
the bound converges to (1 − 1

e ) (≈ 0.63) when l = W , that
is, when the maximum number of selections allowed by the
cardinality constraint is made.

In order to apply the above result to Algorithm 2, we need to
show that the problem of finding an optimal integer policy can
be expressed as the maximization of a submodular set function
subject to a cardinality constraint. This similarity can be shown
by mapping our problem to the following set–based formal
interpretation. Let us assume that each element in the ground
set θ ∈ Θ is a pair (c, k) where c ∈ C and k ∈ {1, . . . , K−1

ε }.
That is, each element of S prescribes that a specific class
transmits in a specific slot. Then, every subset S ⊆ Θ can be
uniquely associated with an integer (not necessarily threshold–
based) policy µS . Indeed, a unique correspondence between
S and µS can be obtained by the following construction rule:

µ
S
c (k) =

{
1 (c, k) ∈ S
0 else

Therefore, the objective function for a policy µS can be
rewritten as a set function by operating the following simple
assignment: Φ(S) = FD(µS , (K − 1)/ε).

The second necessary step is to derive a cardinality con-
straint to define the problem’s feasibility region. In our prob-
lem, the feasibility of a policy is determined by the budget
limit, namely by the constraint in Eq. 6. For this reason, ideally
one would like to find a W such that |S| > W if and only if
µS violates the constraint in Eq. 6. However, it can be easily
shown that budget feasibility cannot be directly expressed with
a cardinality constraint. The reason is straightforward. The
budget of a policy does not solely depend on the number of
transmitting slots, but also on how those slots are distributed
among the different classes. Nevertheless, a necessary (not

sufficient) cardinality upper bound can be determined via the
following theorem.

Theorem V.4. Any feasible threshold integer policy cannot
assign full probability of transmission to more than W =
min{maxc{rc(µ∅)}, K−1

ε }, where µ∅ is the empty policy.

Proof. Let us assume that ĉ = arg maxc{rc(µ∅)}. Then,
consider a threshold policy µS where |S| > W . If µS is
budget–feasible then, by definition, the policy obtained in this
way should be feasible too: for every (c, k) ∈ S where c 6= ĉ
substitute (c, k) with (ĉ, hĉ+1). However, by definition of W
such a policy cannot be budget–feasible.

Under the above assumption, the optimal integer policy
problem can be associated, up to a relaxation of the feasibility
constraint, with the maximization of the set function Φ(S),
subject to |S| ≤ W . By relaxing the cardinality constraint
we can still derive an approximation bound even though we
cannot guarantee its tightness. In the next step we show FD
submodularity.

Property V.5. The set function Φ is submodular w.r.t. Θ.

Proof. First, let us consider a setting with a single class. From
Property IV.2, we can focus only on threshold policies and
rewrite Φ as a function of h, namely the threshold value (this
value, in general, can be non–integer). Then it can be easily
shown that Φ(h) is a concave function since the Hessian
matrix has strictly negative eigenvalues. Given a function
f : N → R+, then f(|S|) is submodular on the subsets S
of an arbitrary set Ω if and only if f is concave [30]. We can
then conclude that Φ is submodular in the case of a single
class. Let us now show submodularity for the case with two
classes. Let us denoted with ∆Φ(S|e) the marginal gain of
Φ obtained by adding the element e to the set S, namely
adding a transmitting slot to some class to the policy µS . For
submodularity to hold, we need to show that for every Sa,
Sb, e such that Sa ⊆ Sb ⊂ Ω and e ∈ Ω \ Sb we have
that ∆Φ(Sa|e) ≥ ∆Φ(Sb|e). By definition e adds a slot to
a single class, let us assume without loss of generality that
this class is c1. Also, let us denote with Φci our function
computed as if ci was the only present class. Then we have
∆Φ(Sa|e) = [1−(1−(Φc1(S)+∆Φc1(Sa|e)))(1−Φc2(S))]−
[1− (1−Φc1(S))(1−Φc2(S))] = (1−Φc2(Sa))∆Φc1(Sa|e)
and, analogously, ∆Φ(Sb|e) = (1 − Φc2(Sb))∆Φc1(Sb|e).
Since ∆Φc1(Sa|e) ≥ ∆Φc1(Sb|e) by submodularity of Φc1
and Φc2(Sb) ≥ Φc2(Sa) by Φc2 monotonicity, we have that
Φ is submodular. The same reasoning can be extended to an
arbitrary number of classes.

Theorem V.3 can be applied by showing that Algorithm 2
corresponds to the greedy element–selection rule reported in
Eq. 7. The rule of Eq. 7, when applied to the integer policy
problem, proceeds by locally optimal appends in the same way
that Algorithm 2 does. Hence, we have:

Theorem V.6. Let us denote with S∗ the policy returned by
Algorithm 1 and with S1

l the policy constructed by Algorithm 2
(version 1) after l iterations. We then have that FD(S1

l ,K) ≥
(1− e−l/W )FD(K,S∗).
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Proof. The inequality stated in the theorem follows imme-
diately from the following two properties. First, by apply-
ing Theorem V.3 to Algorithm 2 (version 1) we have that
FD(S1

l ,K) ≥ (1 − e−l/W )FD(S∗,K). Second, since Ŝ∗ is
the optimal solution of a relaxed version of the integer policy
problem, it holds that FD(S∗,K) ≤ FD(Ŝ∗,K) .

The previous theorem, provides an online bound on the
solution quality, being it dependent on the number of iterations
the algorithm will succeed in performing without violating the
actual budget constraint. An offline guarantee can be given by
computing the minimum number of slot sc to be assigned
to each class c. This number can be computed by setting
µc′(i) = 1 ∀i 0 ≤ i ≤ K, c′ 6= c and computing the maximum
number of time slots during which c can transmit without
saturating the budget.

Corollary V.7. For any solution S1 obtained with Algorithm 2
(version 1) we have that:

FD(S
1
, K) ≥

(
1− e

−
∑
c∈C

sc/W
)
FD(S

∗
, K).

Second Version, Normalizing G1 with Budget Costs: The
second version of our algorithm adopts objective function G2,
obtained by normalizing G1 with the budget cost that a local
modification (the additional time slot) would introduce. As
a consequence, given a local modification of µ as defined
above, here δc represents a ratio between the marginal gain in
the delivery probability obtained if applying such modification
and the additional transmission costs that would be paid. For
simplicity, we do not consider signaling costs, also because ex-
tending our approximate analysis by including them does not
seem straightforward. Under the assumption that no signaling
costs are present and that we deal with threshold policies, each
transmission has an independent cost and the budget spent by a
policy S is given by ψ(S) =

∑
(c,k)∈S

ρcNce
−λc∆(k−1)(1−e−λc∆)and,

consequently, G2(µ) =
G1(µ)

ψ({(c,hc+1)}) .
If we modify the rule in Eq. 7 by normalizing the objective

function by the budget cost for each candidate element, we
can again show the equivalence between the new rule and
Algorithm 2 (version 2). As a consequence, we can again
resort to a result presented in [29] and provide a quality
bound on the solution obtained with the combination of the
two versions of Algorithm 2 when signaling costs are not
considered.
Theorem V.8. If no signaling costs are present, then it holds
that

max{FD(Ŝ
1
, K), FD(Ŝ

2
, K)} ≥

1

2
(1−

1

e
) max
S⊆Θ:ψ(S)≤Ψ

{FD(S,K)}

Proof. The proof follows immediately by the consideration
made above and a straightforward adaptation of results pre-
sented in [29].

VI. EXTENSION TO MULTI–HOP ROUTING

We initially describe how the formulation of the problem
changes in the case of `–hop routing with ` ≥ 3. At first, we
need some assumptions about the functioning of the routing
protocol. More precisely, we assume that: during a time slot,

if a mobile node contacts both the source and other mobile
nodes carrying the packet, then the mobile node receives the
packet directly from the source, and, if a mobile node has
received a packet from another mobile node before contacting
the source, then the mobile node does not receive the packet
also from the source. Furthermore, as assumed in the case
of two–hop routing, if a mobile node has dropped a packet, it
will never get the packet again in future. With multiple classes,
we have two different scenarios: the one in which a node of
class c cannot transmit the packet to a node of class c′ with
c 6= c′ and the one in which it can do. Our aim is to find the
best (approximate) transmission policy of the source, given
the transmission policies of the mobile nodes (characterized
by time–out tc).

We focus on the extension of Algorithm 2 (although also the
extension of Algorithm 1 is possible, it requires long calcula-
tions and it is less significant requiring exponential time). The
extension can be simply obtained by providing a procedure
to calculate Xc,k necessary to compute objective function F
and a procedure to calculate the cost of a transmission policy.
Indeed, the proof of submodularity and the bounds derived in
Section V-B hold also with `–hop routing.

We focus on the calculation of Xc,k. We initially describe
how, in the basic case of two–hop routing without time–out tc,
variable Xc,k can be computed. This is useful for presenting
the general case. We denote by Xc,k(i,µ) the probability that,
given µ, at slot k there are i nodes of class c directly infected
by the source. The term Xc,k(i,µ) can be computed as:

Xc,k(i,µ) =

i∑
h=0

Xc,k−1(h,µ) (1−Qc,k−1,k(µ))
i−h

(Qc,k−1,k(µ))
n−h

(Nc − h
i− h

)

It can be observed that the computation of Xc,k(i,µ) requires
time and space O(|C|NcK).

We show now how, in the case of two–hop routing with
time–out tc, variables Xc,k and Yc,k can be computed.
With abuse of notation, we denote by Xc,k(i,µ|n) the term
Xc,k(i,µ) when the number of mobile nodes is n, potentially
different from Nc. We have:

Yc,k(i,µ) =


Xc,k(i,µ|Nc) k ≤ tc
Nc−i∑
j=0

Xc,k−tc (j,µ|Nc)Xc,tc (i,µ|Nc − j) tc < k

It can be observed that the computation of Yc,k(i,µ) requires
the computation of Xc,k(i,µ|n) for any n ∈ {1, . . . , Nc}, and
therefore it requires time and space O(|C|(Nc)2K).

Now we focus on the case with `–hop routing. For the
sake of clarity, we present the case with only one class and
without time–out tc, the extension to the general case is
discussed below. Initially, denote by Zk(i1, i2, . . . , i`−1,µ) the
probability that, given µ, at slot k there are i1 nodes with a
1–hop infection, i2 nodes with a two–hop infection, and so
on. Variable Zk is defined in Eq. (8).

It can be observed that computing Zk(i1, i2, . . . , i`−1,µ)
requires time and space O((Nc)

`K). The exponential size in
` cannot be circumvented, being necessary to keep trace of all
the possible configurations of mobile nodes at different hops
that are exponential in `. Then, Xk(i,µ) is:
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Zk(i1, i2, . . . , i`−1,µ) =

i1∑
h1=0

i2∑
h2=0

..

i`−1∑
h`−1=0

Zk−1(h1, h2, . . . , h`−1,µ) · (1−Qk−1,k(µ))
i1−h1 (Qk−1,k(µ))

n−i1−
∑`−1
j=2

hj
(Nc − i1 −∑`−1

j=2 hj

i1 − h1

)

·
∏̀
w=2

(
1−

(
Q

mob
k−1,k

)hw−1
)iw−hw (

Q
mob
k−1,k

)Nc−∑wv=1 iv
(Nc −∑w−1

v=1 iv −
∑`−1
v=w hv

iw − hw

)
(8)

Xk(i,µ) =

i∑
i1=0

i−i1∑
i2=0

· · ·
i−
∑`−3
w=1 iv∑

i`−2=0

Zk

i1, i2, . . . , i`−2, i−
`−2∑
w=1

iv,µ


where Qmob

k−1,k is the probability that two mobile nodes do not
have any contact between slots k − 1 and k. In case of `–
hop routing with |C| classes without time–out tc we need a
structure Zc,k(i1, i2, . . . , i`−1,µ) of size O(|C|(Nc)`K) if a
node of class c cannot transmit to a node of class c′ with
c 6= c′, whereas we need a structure Zc,k(i1,1, . . . , i|C|,`−1,µ)
of size O(n|C|`K) if a node of a given class c can transmit
the packet to nodes of different classes than c. Finally, when
mobile nodes have a time–out tc, it is necessary an extra
multiplicative cost of O(

∑
cNc).

Finally, we now focus on the energy cost of a transmission
policy. The energy cost depends only on the number of mobile
nodes directly infected by the source. That is:

ρc

i∑
i1=0

i1

i−i1∑
i2=0

· · ·
i−
∑`−3
w=1 iv∑

i`−2=0

Zk

i1, i2, . . . , i`−2, i−
`−2∑
w=1

iv,µ

 .

The extension of Algorithm 2 to ` hops is then easy and
involves only Steps 5 and 6. Informally, these steps are
substituted as follows: given a class c, hc is increased by 1 and
both FD and the energy cost are computed as described above.
If the remaining budget is smaller than the cost of increasing
hc by 1, then hc is reduced to satisfy the budget by employing
the Newton algorithm. Finally, values δc and ĥc are returned.

VII. PERFORMANCE EVALUATION

A. Evaluation Setting

We generated instances by considering the discretized pa-
rameter space of Tab. II. The reference scenario is an urban
area populated by mobile devices carried by pedestrians,
bicycles, vehicles equipped with heterogeneous transmission
technologies (ZigBee, Bluetooth 4.0. and WiFi Direct). We
derive the values for ρ and β by considering the technical
specifications of each technology and assuming an application
scenario with a 5kB packet and ∆ = 10s. For simplicity, we
assign the same number of users to each class.

Unless differently specified, we consider up to 3 classes
and a discretization ε ∈ {1, 1/3, 1/5}. This represents a good
tradeoff between accuracy and computational effort to evaluate
our algorithms as shown, see Fig. 1, by the theoretical lower
bound of the delivery probability (Theorem V.2) for different
resolutions and numbers of classes. As it can be seen, a
maximum resolution of ε = 1/5 is a reasonable choice to
guarantee about 95% of the optimal solution quality without
the burden of a prohibitive number of time slots. On the other

TABLE II: Parameters used for experiments.
Delivery
deadline
(τ/∆)

25, 50, 100, 250 time units

Network
radius
(L)

350, 500, 750, 1000m

Number
of nodes
(Nc)

9, 15, 20

Mobility
profiles
(vc)

pedestrians (1.5m/s),
bicycles (6m/s),
vehicles (9m/s)

Technology
ZigBee (ρ = 0.1989J , β = 0.7204× 10−5J , R = 15m)
Bluetooth 4.0 (ρ = 0.1278J , β = 0.1136× 10−5J , R = 50m)
WiFi Direct (ρ = 0.0642J , β = 0.0392× 10−5J , R = 100m)

side, by adopting a maximum number of 3 classes we obtain
a case which is fairly close to the worst case (derived for an
infinite number of classes) and that is computable by means
of our grid algorithm (recall that our grid search requires a
computing time exponential in the number of classes).
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Fig. 1: Theoretical lower bound over solution’s quality (The-
orem V.2).

We use the following benchmarks for evaluating our algo-
rithms in two–hop routing scenarios.

1) Greedy on Arrival Rate: it sorts the classes in descend-
ing order of λc, then it allocates all the possible budget to
the classes from the first one to the last one. The rationale is
that we expect that the larger the arrival rate the larger the
delivery probability. The complexity of this algorithm is low:
the policy can be found by solving at most |C| equations.

2) Class–Independent Policies: it searches for the optimal
solution of an over–constrained problem in which the policies
related to all the classes are the same, formally µ(k) = µc(k)
for all c, and, when the policy is probabilistic, then either the
source transmits to all the classes or it does not transmit at
all. This leads to a new formulation of the budget constraint:

∑
c∈C

ρcNc ·(1−Qc,0,K(µ))+
∑
ω∈Ω

K−1∑
k=0

βω
(

1− (1− µ(k))
|Cω|

)
≤ Ψ



10

By Property IV.1, the optimal policy is such that the bud-
get Ψ is completely consumed and therefore the above
inequality holds with equality. Therefore, the optimization
problem reduces to the problem of finding the policy that
completely consumes the budget. Formally, interpreting the
(class–independent) threshold h as a continuous variable, we
can write:

g(h) =
∑
c∈C

ρcNc · (1− e−λc∆h
)+

∑
ω∈Ω

βωbhc+
∑
ω∈Ω

βω
(

1− (1− h+ bhc)|Cω|
)
−Ψ = 0

Function g is a single–variable function strictly monotonically
decreasing in h and infinitely differentiable. Such a function
admits only one zero, and therefore the above equation admits
only one solution. Such a solution can be found (approxi-
mately) by using the Newton method that, due to the function
property holding in this case, has a quadratic convergence
speed (the number of correct digits roughly doubles in every
iteration). Thus, we obtain an approximate solution of high
quality within very short time.

3) Upper Bound over the Optimal Value: an upper bound
over the value of the optimal solution can be found by using
a variation of the algorithm described in Section V-A. More
precisely, we use Algorithm 1 to enumerate all the policies
consuming entirely the budget and we change each policy
rounding each hc to the smallest integer and then adding
1 for every c. Notice that these new policies violate the
budget constraint. Among all these policies we find the one
maximizing the delivery probability. Its value is an upper
bound over the value of the optimal policy. In the following,
we denote this value as UB. The proof sketch follows. Call
µ∗ the optimal policy profile with (potentially fractional)
thresholds h∗c . Call µ̂ a generic policy profile obtained as
described above. It can be easily observed (it follows from
the fact that, fixed the policies of all the classes but one, the
policy of the remaining class that consumes entirely the budget
is always one) that there alway exists a policy profile µ̂ such
that ĥc ≥ h∗c for all c. Therefore, given that the objective
function is strictly monotone in hc, the objective value of µ̂
is strictly better than the value µ∗.

4) Fluid Approximation: We use the approach described
in [2] based on fluid approximation to derive approximate
routing policies.

B. Comparing l–hops Routing Policies

We apply our greedy algorithms when the number of hops is
in {1, 2, 3, 4, 5, epidemic} to the simulation setting described
above restricting the number of classes to be one. In this case,
our algorithms return optimal solutions. We evaluate how the
delivery probability and the ratio between delivery probability
and the number of expected transmissions in the network
vary as the number of hops varies. The first index provides a
measure of the improvement of the objective function, while
the second index provides a measure of efficiency between
objective function and consumed energy. In all our simula-
tions, we observed that the delivery probability increases in the

number of hops and the increment decreases exponentially in
the number of hops, achieving asymptotically the epidemic
routing, while the ratio between delivery probability and
expected number of transmissions decreases in the number
of hops. We report the data of the most significant simulation
in Fig. 2, in which we use WiFi Direct, bicycles, L = 500m,
K = 25 and a variable number of nodes. This shows that
two–hop routing provides the best tradeoff between delivery
probability and energy consumption, with a ratio of almost
5 w.r.t. the epidemic routing and a ratio of about 2 w.r.t.
three–hop routing. From here on, we focus our performance
evaluation on two–hop routing protocol.
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Fig. 2: Performance at different hops of Greedy construction
(1). At left: delivery probability. At right: delivery probability
divided by expected number of transmissions in the network.
C. Algorithms Performance Analysis with two hops

Fig. 3 reports how FD/UB varies as the values of the
parameters τ, L,Nc vary as summarized in Table II, |C| ∈
{1, 2, 3}, and 1

ε = 5. For each parameter, we average FD/UB
over the other instances sharing the same value for that
parameter. It can be observed that grid search and greedy
constructions obtain a remarkably better performance in each
case when compared with the benchmarking greedy algorithms
based on the arrival rate and the class–independent one. Not
exploiting the knowledge about the different classes and solely
considering the arrival rate turned out to achieve very similar
performances. By increasing the value of τ , it can be seen
how this gap with the benchmarks shrinks, suggesting the
intuition that when the deadline for packet delivery is large
even simplistic policies are able to obtain good delivery prob-
abilities. Another aspect that can be observed is that greedy
constructions revealed to be quite effective for the tested cases,
since they were able to obtain high performances comparable
to the grid search. By increasing the value of L, it can be
seen how this gap with the benchmarks increases, instead
the gap keeps to be approximately constant as Nc and |C|
vary. Interestingly, the approximation ratio of our algorithms
is almost constant (i.e., > 99%) w.r.t. all the parameters values.

A more detailed overview on how the performance (mea-
sured again as FD/UB) varies with ε at different values of
τ is shown by the boxplots of Fig. 4. These graphs show
the similarity in performance between the grid search and
the greedy constructions algorithms. These last ones obtained
worse performances for a limited number of outlier instances.
Also it is evident how having finer resolutions remarkably
improves the solution quality. As shown by the boxplots, the
levels of statistical significance corroborate our claims.

The above results suggest that greedy constructions seem
to be quite effective approaches to approximate the optimal
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Fig. 4: Boxplots showing FD/UB w.r.t. τ for different algorithms.

policy requiring, at the same time, much lower computational
effort than the grid search. In Fig. 5a, we show a com-
parison between computational times obtained with the grid
search and the greedy construction algorithms respectively.
In particular, we evaluated the algorithms’ scalability when
the number of classes grows. To obtain these results we
fixed the values of some parameters (ε = 1/3, τ = 100,
Nc = 10, L = 500) and we generated random mobility
profiles and transmission technologies by uniformly sampling
from the following intervals: Rc ∈ [15, 50], vc ∈ [1, 15],
ρi ∈ [0.05, 0.25], βc ∈ [3 × 10−7, 8 × 10−7]. It is easy to
see how grid search shows an exponential growth in time,
while greedy construction proved to be much more efficient

even for larger number of classes. Considering a deadline of 1
hour, grid search was not able to compute a solution for more
than 4 classes, while greedy construction managed to compute
solution up to 800 classes. Notice that the time needed on
average to find the best policy (i.e., 10s with |C| ≤ 10 and
100s with |C| ≤ 100) may be, in some scenarios, excessively
long. Thus, to have a more accurate estimate of the overhead
in real–world system, we implemented our approximation
algorithms in C language, obtaining a compression of about
100 times (as observed in the literature for MATLAB vs. C
for a number of applications). Such an overhead is compliant
with the most application of DTNs.

Finally, we evaluate the accuracy of the fluid approximation
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approach. For each simulation setting described above, we
run our approximation algorithms and the fluid approximation
algorithm and we compare the solutions in terms of average
FD. In our results, we excluded the basic settings with
|C| = 1, in which the fluid approximation is optimal as
our approximation algorithms. As in other applications, fluid
approximation provides an accurate approximation when the
number of users/mobile nodes is large. More precisely, on
average over the number of classes, the error (in percentage)
of the fluid approximation w.r.t. our greedy algorithms behaves
as 6.44 + 31.01 exp[−0.135

∑
cNc] with a confidence bound

of 95%, providing thus an average error from about 35% for
few mobile nodes to about 5% for 100 mobile nodes. This
suggests that with 100 mobile nodes or less our algorithms,
besides introducing suitability for any number of hops, can
provide an important improvement w.r.t. the state of the art.

D. Two–Hop Routing Analysis

We now focus on how two–hop routing policies computed
with our most viable method (greedy constructions) behave
w.r.t. absolute and relative temporal deadlines, that is τ and
the time to live tc for a particular class c. Indeed, together
with budget requirements, temporal deadlines turned out to be
the most sensible parameters, namely dimensions along which
performance exposed remarkable variations.

Fig. 5b depicts how the delivery probability varies as τ
is set to increasing values for a number of budget settings.
For such experiments we considered again three different
classes (ZigBee, Bluetooth 4.0, and WiFi Direct associated
with mobility profile in increasing speed as per Table II)
with the same number of nodes (20), no packet discarding
and the same relative budget scale we used in the previous
section. The trends confirm the intuition by suggesting that
strict delivery deadlines are a critical factor in worsening the
expected performance of the computed policy. On the other
side, the influence exercised by the budget seems to muffle as
its value becomes higher and higher.

In Fig. 5c we assess the impact of the packet’s time to
live on the delivery probability. In this experiment we used
the same three classes as before but we enabled the packet
discarding behavior setting a given tc equal for all the classes.
We set τ/∆ = 50 in order to disable packet discarding when
tc = 50. What can be observed from the figure is a trend
similar to the one observed for the delivery deadline with the
following interesting difference. Here variations on the budget
constraint seem to have a slightly stronger impact than before,
suggesting that when nodes start to drop packets having extra
units of budget can introduce non–negligible improvements in
the performance.

Fig. 6a and 6b depict a qualitative evaluation of the policies
returned by our algorithms. The same three classes as before
are considered before and, for clarity, we selected an instance
where τ/∆ = 10 (similar trends could be observed in any
other setting). In Fig. 6a, we consider a reference value for
the budget upper bound Ψ and we show how the thresholds of
the optimal policy (obtained with grid search) are distributed
across the three different technologies. It can be observed how,

by increasing the budget, the optimal policy tends to schedule
transmissions with all the three technologies. When the budget
gets smaller and smaller, then the policy tries to rely more on
those technologies that have a longer communication range.

In Fig. 6b we show how policies change as different time to
live values are adopted. We set tc2 = 4 for the class adopting
Bluetooth 4.0 technology and tc3 = 2 for that using WiFi
Direct. The time to live for the class using ZigBee varies as
shown in the picture. As it can be seen, such class is not even
exploited by the policy when its time to live is small, the
other two classes are preferred. Interestingly, WiFi is assigned
a higher threshold even though it has the lowest time to live
(higher transmission range and node velocity provide some
kind of overcompensation). As tc increases, ZigBee starts to be
included in the classes used by the policy until it is completely
preferred over Bluetooth 4.0. Such trend demonstrates how
there are settings where less profitable classes (in terms of
speed and transmission range) can be preferred over better
ones due to a particular configuration of the time to live values.

E. Comparison with state of the art techniques

We complement the previous qualitative observations with
a comparative analysis of our method against a number of
routing schemes proposed in literature that operate under
the same assumption of no a priori mobility knowledge we
took in this work. We selected ONE (Opportunistic Network
Environment simulator) [4] to run our simulations as it offers
embedded support to simulate realistic wireless technologies,
as well as built-in modules running state-of-the-art routing
schemes. Since we are interested in comparing the proposed
approach against state-of-the-art alternatives, we focus here
on results obtained with a specific setting of the reference
scenario parameters; even if the simulation results might ob-
viously change in the absolute value if changing the simulation
environment (i.e., considering different mobility models), the
proposed simulation campaign is indeed insightful to showcase
the relative performances trends of the considered delay tol-
erant routing techniques. In detail, we consider three different
classes of nodes. For simplicity we assume that each class
has the same number of nodes and the same mobility profile
with average speed of 6m/s. Transmission technologies are
ZigBee, Buetooth 4.0, and WiFi Direct for each class respec-
tively (see Table II for the associated parameters). The source
node energy budget is set by taking as a reference the battery
of a smartphone (approx. 5.45Wh) and by considering an
application layer consuming no more than the 30% of the total
energy with a daily maximum load of 20Mb of data. Assuming
that a single application packet has a size of 5kb we obtain a
budget of 1.4715J for each packet delivery. Each packet has to
be delivered within 15 minutes from its creation at the source
and each mobile node (excluding source and destination) has
a local timeout of 5 minutes. Nodes move randomly in a
free environment of radius of 700m. We consider different
number of nodes N ∈ {10, 15, 20, 25, 30} (recall that each
class has the same number of nodes so each experiment has
3N + 2 total nodes populating the environment). For each
N we generate 100 different random joint mobility patterns
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in which we assess the delivery of a single packet at the
destination node with different routing schemes. We consider:

• 2–Hop greedy construction (1): the method studied in this
work where Alg. 2 with G1 is adopted to compute the
multi–class transmission policy for the source node;

• spray and wait: a bounded–copy, multi–hop routing
scheme where copies are forwarded at each encounter
(see [31]); the number of copies present in the network
is bounded by a parameter k that we set at the source as
the maximum number of packet transmissions given the
total energy budget;

• first contact: a single copy, multi–hop, routing scheme
where nodes forward the packet to the first encountered
node;

• direct delivery: a single copy, single–hop, routing scheme
where delivery can be performed only directly from the
source;

• epidemic: multi–copy, multi–hop routing scheme where
the packet is forwarded at every encounter.

Results of our simulations are reported in Fig. 6c. The
epidemic protocol achieves, as expected, the best performance
at the cost of a very large number of transmission in the
network. Our method was able to outperform others for
increasing number of nodes confirming the core motivation of
this work, i.e., that trying to optimize the energy budget with
a threshold policy can be profitable both in terms of delivery
ratio and of spent energy. In particular, our approach was able

to differentiate transmissions to different classes of nodes in a
more optimized way, trying to concentrate more transmissions
towards the classes most likely to be in the position of deliver
the packet in the current remaining time. Direct delivery and
first contact can be considered as baselines for this evaluation.
The apparently counterintuitive better performance of direct
delivery over first contact is due to the presence of the local
timeout in mobile nodes (recall that, the local timeout at the
source node is, by definition, the packet’s time to live).

VIII. CONCLUSIONS

We studied two–hop routing for Delay Tolerant Networks
with heterogeneous technologies considering the signaling
cost of the routing process. We formulated an optimization
problem to derive the optimal two–hop policies and we de-
signed and experimentally efficient approximation algorithms
with theoretical bounds. Finally, we thoroughly evaluated our
algorithms in realistic network settings in terms of approx-
imation ratio and compute time as the parameters change.
We experimentally showed that for all the generated instances
our algorithms have an approximation ratio larger than 99%
and that they scale linearly as the values of the parameters
increase and therefore they can be applied with realistically
large instances.
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