
Fundamenta Informaticae XXI (2001) 1001–1024 1001

DOI 10.3233/FI-2012-0000

IOS Press

Strongly Limited Automata

Giovanni Pighizzini∗

Dipartimento di Informatica

Università degli Studi di Milano, Italy

pighizzini@di.unimi.it

Abstract. Limited automata are one-tape Turing machines which are allowed to rewrite each tape
cell only in the first d visits, for a given constant d. When d ≥ 2, these devices characterize the
class of context-free languages. In this paper we consider restricted versions of these models which
we call strongly limited automata, where rewrites, head reversals, and state changes are allowed
only at certain points of the computation. Those restrictions are inspired by a simple algorithm for
accepting Dyck languages on 2-limited automata. We prove that the models so defined are still able
to recognize all context-free languages. We also consider descriptional complexity aspects. We
prove that there are polynomial transformations of context-free grammars and pushdown automata
into strongly limited automata and vice versa.

1. Introduction

Almost half a century ago, Hibbard discovered a characterization of context-free languages which uses
a restricted version of Turing machines, called limited automata [7]. For each integer d ≥ 0, a d-limited
automaton is a one-tape nondeterministic Turing machine which is allowed to rewrite the content of each
tape cell only in the first d visits. He proved that, for each d ≥ 2, the class of languages accepted by
d-limited automata coincides with the class of context-free languages. Furthermore, 1-limited automata
characterize regular languages [18].

Those results have been recently revisited, also investigating descriptional complexity aspects in [15,
14] where, as a preliminary example, a simple 2-limited automaton accepting a Dyck language was pre-
sented. It can be easily observed that the algorithm implemented by such an automaton actually does not

Address for correspondence: Dip. di Informatica, Università degli Studi di Milano, via Comelico 39, 20135 Milano, Italy
∗Partially supported by MIUR under the project PRIN “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”,
code H41J12000190001.

Giovanni Pighizzini
Accepted manuscript
Link to the published version: http://doi.org/10.3233/FI-2016-1439

1002 G. Pighizzini / Strongly Limited Automata

need to rewrite each tape cell two times, so it does not fully use the capabilities of 2-limited automata.
On the other hand, due to the well-known Chomsky-Schützenberger representation of context-free lan-
guages [1], recognition of context-free languages can be, in some sense, reduced to the recognition of
Dyck languages. These observations suggested to us that it might be interesting to investigate if it is
further possible to restrict the moves of 2-limited automata without reducing the computational power
and, in particular, if a device which closely imitates the way used by 2-limited automata to recognize
Dyck languages can accept all context-free languages. This leads us to define strongly limited automata,
that are machines satisfying the following restrictions:

• While moving to the right, a strongly limited automaton always uses the same state q0 until the
content of a cell (which has not been yet rewritten) is modified. Then it starts to move to the left.

• While moving to the left, the automaton rewrites each cell it meets that is not yet rewritten up to
some position where it starts again to move to the right. Furthermore, while moving to the left the
automaton does not change its internal state.

• In the final phase of the computation, the automaton inspects all tape cells, to check whether or
not the final content belongs to a given 2-strictly locally testable language. Roughly, this means
that all the factors of two letters of the string which is finally written on the tape should belong to
a given set.

We prove that in spite of those limitations all context-free languages can be accepted by these devices.
Hence, strongly limited automata characterize the class of context-free languages. To prove that each
context-free language is accepted, we use a non-erasing variant of the Chomsky–Schützenberger rep-
resentation, obtained by Okhotin [13]. We also observe that the description of the resulting machine
has polynomial size with respect to the grammar which specifies the language. The converse inclusion
derives considering the computational power of 2-limited automata. However, in the paper we directly
provide a conversion from strongly limited automata to pushdown automata, which produces a machine
having a description of size polynomial with respect to the size of the description of the given strongly
limited automaton. In contrast, the conversion of 2-limited automata into pushdown automata requires
exponential size [15].

In 1996 by Jancar, Mráz, and Plátek [10] considered a different restriction of limited automata, called
forgetting automata. These machines can modify tape cells only by erasing their contents, using a unique
fixed symbol. They proved that forgetting automata which are forced to erase the content of tape cells
while moving to the left characterize the class of context-free languages. It should be clear that those
models represent restrictions of 2-limited automata. (For more recent investigations about variants of
forgetting automata we refer the reader to [3, 4].) In the last part of the paper we discuss the differences
between strongly limited automata, forgetting automata, and other variants of devices which work by
rewriting a tape that, at the beginning of the computation, contains the input.

2. Preliminaries

In this section we recall some basic definitions useful in the paper. Given a set S, #S denotes its
cardinality and 2S the family of all its subsets. Given an alphabet Σ and a string w ∈ Σ∗, let us denote

G. Pighizzini / Strongly Limited Automata 1003

by |w| the length of w, by wR its reversal, namely the string obtained by taking the symbols of w in
reverse order, and by ε the empty string.

We assume the reader to be familiar with standard notions from formal language and automata theory,
in particular with the notions of finite automaton, pushdown automaton, context-free grammar (see,
e.g., [9, 17]).

The notion of local language will be widely used in the paper. In order to recall it, first we remind
the reader that a regular language L is strictly locally testable [12] if there is an integer k such that
membership in L can be “locally” verified by inspecting all factors of length k in the input string. In
the case k = 2 we simply say that the language is local. More precisely, given an alphabet Σ and
two extra symbols B,C /∈ Σ, we say that a language L ⊆ Σ∗ is local if and only if there exists a
set F ⊆ (Σ ∪ {B,C})2 of forbidden factors such that a string x ∈ Σ∗ belongs to L if and only if no
factor of length 2 of BxC belongs to F .

Given the set F it is easy to define a finite automaton AF which recognizes L. While scanning a cell
containing a symbol a, AF just remembers the symbol b in the previous cell and moves to a rejecting
state in the case ba is a forbidden factor. Otherwise, it moves the head on the next cell remembering
the symbol a and continues in the same way. Hence, AF can be obtained using a different state qa for
each a ∈ Σ ∪ {B,C}. Notice that AF could contain equivalent states. Hence, after minimization we
obtain an automaton that enters a same state qa each time it reads the symbol a (unless a forbidden factor
has been already discovered). However, we could have qa = qb for different symbols a and b. We can
make a completely similar discussion if we are interested to recognize a local language from right to left,
as we will do in the paper. We can also observe that the local language L can be defined in terms of
allowed factors, namely, the set of 2-letter factors that do not belong to the set F .

We are interested in comparing the description sizes of devices and formal systems. (For surveys
in the area of descriptional complexity see, e.g., [5, 8, 11].) We can measure the size of a context-free
grammar by counting the total number of symbols which are necessary to write down its productions. In
a similar way, in the case of pushdown automata or other kinds of machines, we can consider the total
number of symbols specifying the transition table. For a detailed discussion we address the reader to [6].

3. Dyck Language Recognition

The machine model we are discussing in the paper was inspired by a very simple algorithm for the
recognition of the language of balanced sequences of brackets. The algorithm, already presented as an
example in [15, 14], uses rewriting operations in a very restricted way. Hence, before introducing the
model, in this section we are going to illustrate it.

For each integer k ≥ 1, we denote by Ωk the alphabet of k types of brackets, which will be repre-
sented as { (1,) 1, (2,) 2, . . . , (k,) k}. The Dyck language Dk over the alphabet Ωk is the set of strings
representing well balanced sequences of brackets.

The Dyck language Dk can be recognized by a machine M which starts having the input string on
its tape, surrounded by two end-markers B and C, with the head on the first input symbol. From this
configuration, M moves to the right to find a closed bracket) i, 1 ≤ i ≤ k. Then M replaces) i with a
symbol X /∈ Ωk and changes the head direction, moving to the left. In a similar way, it stops when during
this scan it meets for the first time a left bracket (j . If i 6= j, i.e., the two brackets are not of the same

1004 G. Pighizzini / Strongly Limited Automata

() (([])) () X X ((X X X) () X X X X X X X X X XX X X X X X X X X X

Figure 1. Some steps in an accepting computation of the automaton M of Algorithm 1 on input () (([])) () .

Algorithm 1: Recognition of the Dyck language Dk

1 start with the head on the first input symbol
2 while symbol under the head 6= C do
3 move the head to the right
4 if symbol under the head =) i (with 1 ≤ i ≤ k) then
5 write X
6 repeat
7 move the head to the left
8 until symbol under the head 6= X
9 if symbol under the head 6= (i then REJECT

10 write X

11 repeat
12 move the head to the left
13 until symbol under the head 6= X
14 if symbol under the head = B then ACCEPT
15 else REJECT

type, then M rejects. Otherwise, M writes X on the cell and changes again the head direction moving to
the right. This procedure is repeated until M reaches one of the end-markers. (See Figure 1.)

• If the left end-marker is reached, then it means that at least one of the right brackets in the input
does not have a matching left bracket. Hence, M rejects.

• If instead the right end-marker is reached, then M has to make sure that every left bracket has a
matching right one. In order to do this, it scans the entire tape from the right to the left and if it
finds a left bracket not marked with X then M rejects. On the other hand, if M reaches the left
end-marker reading only Xs, then it can accept the input.

Now we look more into the details to the implementation of this procedure, which is summarized in
Algorithm 1.

The machine M starts the computation in the initial state q0 (line 1). While moving to the right to
search a closed bracket (line 3), M does not need to keep in its finite control any other information, so
it can always use the same state q0. On the other hand, after a closed bracket) i is found, 1 ≤ i ≤ k,
M needs to remember the index i in order to find a matching open bracket (i. This is done by using a
state qi for moving to the left while performing the search and the next rewriting on lines 6–10. The final
loop and test (lines 11–15) can be performed using a further state qC. Notice that each cell containing a
closed bracket is rewritten in the first visit, while each cell containing an open bracket is rewritten in the
second visit.

G. Pighizzini / Strongly Limited Automata 1005

We now consider a generalization of Dyck languages that will be used in the paper and we show
how to modify the machine M to recognize it. The generalization is obtained by introducing extra
symbols [13]. More precisely, for each integer `we can add ` new symbols to Ωk, called neutral symbols.
We denote the alphabet so obtained by Ωk,`. The extended Dyck language D̂k,` over Ωk,` is the set of
all strings w ∈ Ω∗k,` which can be obtained by padding strings in Dk with neutral symbols. It should be

clear that D̂k,` is a context-free language.
We can easily modify the machine M in order to accept the extended Dyck language D̂k,`. The

new machine M̂ uses the same set of states as M . The only difference in the algorithm is when the head
of M̂ reaches a cell containing a neutral symbol. M̂ could just ignore the symbol, moving to the next cell
along the same direction, without changing the state. However, for our purposes, it is useful to rewrite it,
using X, if the cell is reached while moving to the left (line 7). With this procedure, only neutral symbols
at the outer level, namely which are not enclosed in brackets, are not rewritten. Hence, at the end of the
final scan, M̂ accepts if and only if the string finally written on the tape between the end-markers is a
string formed only by Xs and neutral symbols.

By summarizing, the state set of M̂ consists of the following parts:

• An initial state q0 which is the only state used while moving to the right.

• A set of states QL = {q1, . . . , qk} which are used to move to the left.

• A set of states QΥ which are used to move to the left during the final complete scan of the input.

Furthermore, we observe that M̂ cannot change the head direction when it does not rewrite the current
cell (except on the right end-marker). In the state q0, moving to the right, M̂ can rewrite just one cell and
then it has to turn its head to the left. On the other hand, in a state q ∈ QL, moving to the left, M̂ rewrites
all the cells not yet rewritten that are visited, until it changes the head direction and re-enters state q0. Up
to this moment, M̂ does not change its internal state.

A pair of symbols in a string w belonging to an (extended) Dyck language D is said to be a matching
pair if it is formed by an open and a closed bracket of the same type which match, namely the factor
of w surrounded by them belongs to w. For instance, the first and the last symbols in (() (())) form
a matching pair, but not in () (()) .

4. Strongly Limited Automata

We are now ready to introduce the model we are studying in this paper, which behaves in a way very
similar to the machine M̂ described at the end of Section 3.

A strongly limited automaton is a tupleM = (Q,Σ,Γ, δ, q0, qB), where:

• Q is a finite set of states, which is partitioned in the three disjoint sets {q0}, QL, and QΥ.

• Σ and Γ are two finite and disjoint sets of symbols, called respectively the input alphabet and
the working alphabet of M. Let us denote by Υ the global alphabet of M defined as Υ =
Σ∪Γ∪{B,C}, where B,C /∈ Σ∪Γ are two special symbols called, respectively, the left and the
right end-marker.

1006 G. Pighizzini / Strongly Limited Automata

• δ : Q×Υ→ 2{L99, 99K,
X←−, q X←↩, X↪→q, q 7→| X ∈ Γ, q ∈ Q} is the transition function, which associates a

set of possible operations with each configuration ofM.

• q0 is the initial state.

• qB ∈ QΥ is the final state.

We now describe howM works, providing an informal explanation of the meaning of the states and of
the operations thatM can perform. First of all, we assume that at the beginning of the computation the
tape contains the input string w ∈ Σ∗ surrounded by the two end-markers. Tape cells are counted from 0.
Hence, cell 0 contains B and cell |w|+1 contains C. The head is on cell 1, namely scanning the leftmost
symbol of w, while the finite control is in q0.

The initial state q0 is the only state which is used while moving from left to right. In this state all the
cells that have been already rewritten are ignored, just moving one position further, while on all the other
cellsM could be allowed either to move to the right or to rewrite the cell content and then turn the head
direction to the left, entering a state in the set QL. To this aim, in the state q0 the following operations
could be possible:

• Move to the right 99K
Move the head one position to the right without rewriting the cell content and without changing
the state.

• Turn to the left q X←↩
Write X ∈ Γ in the currently scanned tape cell, move one position to the left, entering in state q ∈
QL. After a sequence of moves from left to right, with this operationM rewrites the content of
the current cell and changes the head direction, entering a state q ∈ QL.

We point out that these two operations are not allowed in states other than q0. One further operation
(qC 7→, described later) is possible in q0, when the right end-marker is reached, to activate the final phase
of the computation.

The states in the set QL are used to move to the left. In a state q ∈ QL, the automatonM ignores all
the cells that have been already rewritten, just moving to the left. On the remaining cells thatM visits, it
always rewrites the content up to some position where it turns its head to the right. During this procedure,
M changes state only at the end, when it enters again in q0. In a state q ∈ QL the following operations
can be allowed:

• Move to the left L99
Move the head one position to the left without rewriting the cell content and without changing the
state. This move is used only on cells that have been rewritten.

• Write and move to the left X←−
Write X ∈ Γ in the currently scanned tape cell, move one position to the left, without changing the
state. This move can be used only on cells not yet rewritten.

• Turn to the right X↪→q0

Write X ∈ Γ in the currently scanned tape cell, move one position to the right, entering in the
state q0. Even this move can be used only on cells not yet rewritten.

G. Pighizzini / Strongly Limited Automata 1007

If the left end-marker is reached while scanning to the left in a state of QL then the computation stops
by rejecting (technically the next transition is undefined). On the other hand, if the right end-marker is
reached while scanning to the right in q0, the machine starts a final phase where it completely scans the
tape from right to left and then stops. During the last phaseM checks the membership of the final tape
content to a local language. If some forbidden factor is detected then the next transition is undefined and
henceM rejects. To this aim, in this phase only states from the set QΥ are used. We assume that there
is a surjective map from Υ to QΥ. We simply denote as qX the state associated with the symbol X ∈ Υ.
Note that X 6= Y does not implies qX 6= qY. The following operation is used in this phase:

• Check to the left qa 7→
On a cell containing symbol a ∈ Υ, move to the left remembering the state associated with a.

If no forbidden factor is found, M finally violates the left end-marker in the state qB. In this case the
input is accepted. Otherwise, the computation of M stopped in some previous step and the input is
rejected. Hence, we assume that M accepts its input if and only if from the cell containing the left
end-marker it can further move to the left entering the final state qB.

Formally, the transition function δ has to satisfy the conditions listed below.

• For the state q0:

– δ(q0, a) = {99K} if a ∈ Γ,

– δ(q0, a) ⊆ {99K} ∪ {q X←↩| q ∈ QL, X ∈ Γ} if a ∈ Σ,

– δ(q0,C) = {qC 7→},
– δ(q0,B) is undefined.

• For each state q ∈ QL:

– δ(q, a) = {L99} if a ∈ Γ,

– δ(q, a) ⊆ { X←−, X↪→q0 | X ∈ Γ} if a ∈ Σ,

– δ(q, a) is undefined if a ∈ {B,C}.

• For each state qX ∈ QΥ:

– δ(qX, a) ⊆ {qa 7→}, where a ∈ Υ.

Notice that, according to those restrictions, the description of a strongly limited automaton can be written
using a number of symbols which is polynomial in the number of the states and in the cardinality of the
global alphabet.

Example 4.1. Consider the alphabet Ω2, with brackets represented by the symbols (,) , [,] . The Dyck
language D2 is accepted by a strongly limited automaton with Γ = {X}, QL = {q1, q2}, QΥ =
{qX, qB, qC}, and the following transitions (we omit braces for the sake of the brevity):

• δ(q0, () = δ(q0, [) = 99K, δ(q0,)) = q1
X←↩, δ(q0,]) = q2

X←↩,

• δ(q1, X) = δ(q2, X) = L99, δ(q1, () = δ(q2, [) = X↪→q0 ,

1008 G. Pighizzini / Strongly Limited Automata

• δ(q0,C) = qC 7→, δ(qC, X) = δ(qX, X) = qX 7→, δ(qX,B) = qB 7→.

It can be observed that the states qC, qX, qB used for the final scan can be merged in a unique state qB.
In fact, in this example the purpose of the final scan is to check that all the input symbols have been
rewritten, namely, no symbol a ∈ { (,) , [,] } is left on the tape. If such a symbol is discovered, then
the next transition is not defined and hence the computation rejects.

To accept the extended Dyck language, with a neutral symbol | , we can add the moves δ(q0, |) = 99K

and δ(q1, |) = δ(q2, |) = X←−.
In this way, on input w in the language, when the right end-marker is reached all brackets and neutral

symbols enclosed in matching brackets are rewritten by X. For example, w = | | [| | (|)] | (| |) [] |
is transformed into x = | | XXXXXXX | XXXXXX | . Hence, in the last scan the automaton has to verify
that no brackets have been left. Again, only the state qB with transitions defined only on symbols C, X, | ,
and B is enough to this aim.

Notice that in the previous example the final tape content is a sequence of strings z1z2 · · · zk, k ≥ 0,
where for i = 1, . . . , k, either zi is a factor of the input which has not been rewritten, namely, zi ∈
Σ+, or zi ∈ Γ+ is a factor which corresponds to a block of matching open and closed brackets (with
possible extra neutral symbols inside) which have been rewritten along a “zig-zag” trajectory starting
from the innermost closed bracket. For instance, the above displayed final content x can be decomposed
as z1z2z3z4z5z6, where z1 = | | , z2 corresponds to the input block [| | (|)] , z3 = | , z4 corresponds
to (| |) , z5 corresponds to [] , and z6 = | .

A similar decomposition of the tape content can be found while recognizing any other language,
when the head of a strongly limited automaton reaches the right end-marker, namely immediately before
the final scan. Rewritten blocks zi’s represent sequences of symbols that have been matched during
the inspection of the tape. This observation will be helpful for the transformation of strongly limited
automata into pushdown automata presented in Section 6.

Example 4.2. The set PAL of palindromes over the alphabet Σ = {a, b} can be recognized by a strongly
limited automaton M with a three letter working alphabet Γ = {X, Y, Z} and the set QL = {pa, pb}.
Using a nondeterministic strategy, M starts to inspect the input from the center to check the matching
between symbols in the first and in the second half at the same distance from the center. The symbols in
the first half of the input are rewritten by Y, those in the second half by X. When the input has an odd
length (also this information is guessed by M), its central symbol is rewritten by Z. Hence the final tape
content enclosed between the end-markers should belong to Y∗(Z + ε)X∗ + a + b (the last two terms in
the expression correspond to inputs of length 1 which are accepted without any rewriting).

Formally, M has the following transitions:

• δ(q0, a) = {99K, pa X←↩}, δ(q0, b) = {99K, pb
X←↩}

Scanning the tape from left to right, reading a cell containing an input symbol the automaton either
continues to move to the right, or rewrites the symbol (so guessing that it is the leftmost symbol
not yet inspected in the second half of the input) and moves to the left to check if the rightmost
symbol left in the first half is matching.

• δ(q0, γ) = {99K} and δ(pa, γ) = δ(pb, γ) = {L99} for γ ∈ Γ
Rewritten cells are ignored.

G. Pighizzini / Strongly Limited Automata 1009

• δ(pa, a) = { Z←−, Y↪→q0}, δ(pb, b) = { Z←−, Y↪→q0}, δ(pa, b) = δ(pb, a) = { Z←−}
Reading an input symbol while moving to the left, M either guesses that it is the central symbol,
so rewriting it by Z and further moving to the left, or verifies the matching with the last input
symbol inspected in the second half, so rewriting it by Y and reversing the head direction, to start
to search again, in the state q0, the leftmost symbol not yet rewritten in the second half or the right
end-marker.

• The transitions in the final phase are defined in such a way to allow exactly the following 2-letter
factors: Ba, Bb, BY, YY, YZ, ZX, XX, XC, bC, aC, BC.

In Section 8 we will show that the language PAL cannot be accepted by any strongly limited automaton
that uses a working alphabet with fewer than 3 symbols.

Example 4.3. The deterministic context-free language L = {anb2n | n ≥ 0} is accepted by a strongly
limited automaton which guesses each second b. While moving from left to right and reading b, the
automaton makes a nondeterministic choice between further moving to the right or rewriting the cell by X
and turning to the left. Furthermore, while moving to the left, the content of each cell containg b which
is visited is rewritten by Y, still moving to the left, and when a cell containing a is visited, its content is
replaced by Z, turning to the right. In the final scan the machine accepts if and only if the string inscripted
between end-markers is of the form Z∗(YX)∗. In Section 7 we will show that nondeterministic choices
are essential to recognize this language L using strongly limited automata.

Example 4.4. The deterministic context-free language L = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0} is
accepted by a strongly limited automaton in the following way. Each time a cell containing a letter b is
reached, it is rewritten by X, turning to the left in a state nondeterministically chosen between q1 and q2.
In q1, when an a is reached it is rewritten by Z, turning to the right, while in q2 when an a is reached it
is rewritten either by Y, further moving to the left, or by Z, turning to the right. The machine accepts if
and only if the final tape content between the end-markers belongs to cZ∗X∗ + d(ZY)∗X∗. Even for this
language L nondeterministic choices are essential, as we will show in Section 7.

5. Context-Free Language Recognition

In this section we show that each context-free language is accepted by a strongly limited automaton.
Since strongly limited automata are a subclass of 2-limited automata which, in turn, characterize context-
free languages [7], we then immediately conclude that strongly limited automata characterize context-
free languages too. Our result is founded on the well-known theorem of Chomsky-Schützenberger,
which states that each context-free language can be represented in the form h(Dk ∩ R) where h is an
homomorphism, Dk is the Dyck language over an alphabet with k types of brackets, and R is a regular
language [1]. Recently Okhotin [13] proved some non-erasing variants of this result. The first one states
that for each language which does not contain any string of length 1 it is always possible to consider a
non-erasing homomorphism h. Using this variant, a construction of 2-limited automata from context-free
languages has been done in [14]. In that construction, tape cells are rewritten in the first two visits. Here,
we provide a different construction, which produces a strongly limited automaton. Our new construction
is based on a further variant of the Chomsky-Schützenberger Theorem, which makes use of extended
Dyck languages and is restricted to letter-to-letter homomorphisms [13, Thm. 3]:

1010 G. Pighizzini / Strongly Limited Automata

Theorem 5.1. A language L ⊆ Σ∗ is context-free if and only if there exist numbers k, ` ≥ 1, a regular
language R ⊆ Ω∗k,` and a letter-to-letter homomorphism h : Ωk,` → Σ such that L = h(D̂k,` ∩R).

Given a context-free language L, let k, `, R, and h be as in Theorem 5.1. We now describe a ma-
chineM accepting L. In a first version,M uses a two track tape. On the first trackM keeps the input w,
while on the second track it writes a nondeterministically guessed string x ∈ D̂k,`. The string x is gener-
ated in the first phase of the computation by simulating another machine M̂g discussed later. After that,
M scans the tape in order to verify whether or not x ∈ R and w = h(x).

Actually, M does not need to keep a two track tape. When M̂g generates the symbol xj ∈ Dk,`,
j = 1, . . . , |w|,M immediately verifies whether or notwj = h(xj), wherewj and xj denote the symbols
in position j in strings w and x, respectively. If the outcome is positive, then the computation continues
by replacing wj by xj on the tape, otherwise the computation stops by rejecting. Hence, in a final phase,
it remains only to check whether or not x ∈ R.

Before further proceeding, we explain how the machine M̂g works. As a preliminary step, we modify
the machine M that recognizes Dk (see Section 3), to obtain a machine Mg which, given a finite tape
consisting of n cells delimited by two end-markers, writes on it a nondeterministically chosen string
x ∈ Dk of length n (if any). Let us suppose that all the n cells initially contain a blank symbol. The
construction can be easily adapted to the case of cells which initially contain symbols from an alphabet
which is disjoint from Ωk. The machine Mg uses the same set of states of the machine M accepting Dk.
In the initial state q0 the machine moves the head to the right. On a blank cell, Mg can continue to
move to the right or it can write a closed bracket) i, where i is nondeterministically chosen. In the last
case, Mg enters the state qi and starts to move to the left, up to the point where it reaches a blank cell.
Here, Mg writes the open bracket (i and then it re-enters the state q0 and starts to move to the right
repeating the same procedure. If while moving to the left to search a blank position where to write an
open bracket the left end-marker is reached, then the generation is unsuccessful and the computation is
aborted, exactly as in line 9 of Algorithm 1. On the other hand, when the right end-marker is reached,
a scan of the input from right to left is performed, to verify that all the cells have been filled (this final
phase corresponds to lines 14 and 15 of Algorithm 1). We notice that the only nondeterministic decisions
are taken in the state q0. Furthermore, each cell which finally contains a closed bracket is written only in
the first visit, while each cell which finally contains an open bracket is written in the second visit.

We can modifyMg in order to obtain the automaton M̂g generating the extended Dyck language D̂k,`

as follows. While moving to the right, namely in the state q0, the automaton M̂g behaves exactly as Mg.
However, moving to the left in a state qi, when reaching a blank cell the automaton M̂g nondeterminis-
tically chooses between one of the following two actions: rewrite the content of the cell by (i and then
enter q0 and move to the right, or rewrite the content of the cell by a neutral symbol and continue to
move to the left, remaining in the state qi. Furthermore, in the final phase, while moving to the left in the
state qC, each blank cell is rewritten using a neutral symbol.

Going back to the above outlined machineM for the language L, we observe that in the generation
of a string x ∈ D̂k,`, M does not need to simulate the final scan of M̂g. In fact, while performing its
final scan to check if x ∈ R, each time the head ofM reaches a not rewritten symbol wj , it can guess a
neutral symbol xj ∈ h−1(wj).1

1Actually, as stated in the next Theorem 5.2, all strings of length at least 2 in the language R start and end with a matching
pair of brackets. According to the above explanation, matching pairs of brackets are generated from right to left, rewriting with

G. Pighizzini / Strongly Limited Automata 1011

By looking at the structure of the machineM so obtained, we can observe that in order to conclude
that it is a strongly limited automaton it remains to prove that the regular language R is local, which
allowsM to perform the final scan of the tape as explained in Section 4. We do that by closely inspecting
the construction provided in [13] to prove Theorem 5.1. This analysis allows us to rewrite the only-if part
of that theorem by the following statement and also to prove thatM has a description of size polynomial
with respect to the size of a context-free grammar for L.

Theorem 5.2. There exists a polynomial p such that for each context-free grammar G of size s gener-
ating a language L ⊆ Σ∗ there exist numbers k, `, with 1 ≤ k, ` ≤ p(s), a local language R ⊆ Ω∗k,`,

and a letter-to-letter homomorphism h : Ωk,` → Σ such that L = h(D̂k,` ∩ R). Furthermore, for
each x ∈ D̂k,` ∩R either its first and last symbols form a matching pair or x has length at most 1.

Proof:
We summarize the crucial steps of the construction presented in [13].

• First of all, each context-free grammar generating a languageL ⊆ Σ+ can be converted into double
Greibach normal form [16], where the productions have the forms A → bC1 · · ·Ckd and A → a,
with a, b, d ∈ Σ, k ≥ 0, and A,C1, . . . , Ck are variables.

Details are given for the case L ⊆ (Σ2)∗, along the following lines [13, Thm. 1]:

• A grammarG in double Greibach normal form, without rules of the formA→ a, generatingL\{ε}
is considered. Let P denotes the set of G productions.

• Brackets of the form (Ξ
A→bC1···Ckd

and)Ξ
A→bC1···Ckd

are used, where A → bC1 · · ·Ckd is a pro-
duction of the grammar (representing the current production) and Ξ is either a production (the
previous production) or − (in the case the current production is applied at the outer level of the
derivation tree). Hence, the cardinality of the bracket alphabet ΩG so defined is quadratic in the
number of the productions, namely polynomial in the size of the grammar G.

• Let DG be the Dyck language over ΩG.

• A regular language RG is defined using “local” conditions. These conditions define which factors
of length 2 are allowed in a string and which symbols are allowed at the first and at the last position.
A string x ∈ Ω∗G belongs to the language RG if and only if x satisfies those conditions. Hence, the
language RG is local. In particular, the following 2-letter factors are allowed in x:

– for each production A→ bC1 · · ·Ckd, k ≥ 1, and Ξ ∈ P ∪ {−}:

(Ξ
A→bC1···Ckd

(A→bC1···Ckd
C1→γ1 , for C1 → γ1 ∈ P ,

)A→bC1···Ckd
Ci→γi (A→bC1···Ckd

Ci+1→γi+1
, for Ci → γi, Ci+1 → γi+1 ∈ P , i = 1, . . . , k − 1,

)A→bC1···Ckd
Ck→γk)Ξ

A→bC1···Ckd
for Ck → γk ∈ P ,

a neutral symbol each blank position in between. Hence we can conclude that all strings in D̂k,` ∩ R are generated by M̂g

without using the final scan to fill blank positions.

1012 G. Pighizzini / Strongly Limited Automata

– for each production A→ bd and Ξ ∈ P ∪ {−}:

(Ξ
A→bd)

Ξ
A→bd.

Furthermore, the only symbols allowed at the beginning and at the end of x have the form (−S→σ
and)−S→σ, respectively, where S → σ ∈ P .

We point out that according to this last condition, a string x ∈ RG could start by (−S→σ and end
by)−S→σ′ , with σ 6= σ′. However, for x which also belongs to the Dyck language DG, σ 6= σ′

would imply the existence of a factor)−S→σ(Ξ′

Ξ′′ , for some Ξ′,Ξ′′, which is not allowed according
to previous rules. Hence, σ = σ′ for all strings x ∈ DG ∩ RG. Furthermore, the first and the last
symbols in x form a matching pair.

• By considering the homomorphism h : ΩG → Σ:

h
(

(Ξ
A→bC1···Ckd

)
= b h

(
)Ξ
A→bC1···Ckd

)
= d

it is proven that L = h(DG ∩RG).

In the general case, namely L ⊆ Σ∗, the construction can be extended as follows.

• A grammar G in double Greibach normal form (without any restriction) generating L \ {ε} is
considered.

• The alphabet ΩG is obtained by defining brackets as before plus neutral symbols of the form |ΞA→a,
where A→ a is a production of G generating a single terminal and Ξ is either a production or −.
The homomorphism h maps the symbol |ΞA→a into the symbol a. Brackets are mapped as before.

• Let D̂G be the extended Dyck language over ΩG.

• Even in this case, the regular language RG is defined in terms of local conditions, which can also
involve neutral symbols. More precisely, the set of 2-letter factors which are allowed is extended,
with respect to the previously given one, by adding:

– for each production A→ bC1 · · ·Ckd, k ≥ 1, and Ξ ∈ P ∪ {−}:

(Ξ
A→bC1···Ckd

|A→bC1···Ckd
C1→c , for C1 → c ∈ P ,

|A→bC1···Ckd
Ci→c (A→bC1···Ckd

Ci+1→γi+1
, for Ci → c, Ci+1 → γi+1 ∈ P , i = 1, . . . , k − 1,

|A→bC1···Ckd
Ci→c |A→bC1···Ckd

Ci+1→c′ , for Ci → c, Ci+1 → c′ ∈ P , i = 1, . . . , k − 1,

)A→bC1···Ckd
Ci→γi |A→bC1···Ckd

Ci+1→c′ , for Ci → γi, Ci+1 → c′ ∈ P , i = 1, . . . , k − 1,

|A→bC1···Ckd
Ck→c)Ξ

A→bC1···Ckd
for Ck → c ∈ P .

G. Pighizzini / Strongly Limited Automata 1013

The sets of symbols that can appear at the beginning and at the end of strings in RG are extended
by adding neutral symbols of the form |−S→A. Observing the list of allowed 2-symbol factors, we
can conclude that a neutral symbol can appear at the beginning or at the end of a string x ∈ RG
only if |x| = 1. Furthermore, if |x| ≥ 2 and x ∈ D̂G ∩ RG then the first and the last symbol of x
form a matching pair.

Finally, the language RG is defined to contain the empty string if and only if ε ∈ L.

• With this modification, it can be proved that L = h(D̂G ∩RG).

To obtain the polynomial bound claimed in the statement of the theorem, we observe that the cardinality
of the alphabet ΩG obtained in the previous steps is quadratic in the number of the productions of the
grammar G that was given in double Greibach normal form. By analyzing the transformations presented
in [2, 19], it can be observed that each context-free grammar can be converted into this form with a
polynomial increasing of the size of the description. ut

Considering the above presented construction of the machine M and using Theorem 5.2 we have
obtained the following simulation result:

Theorem 5.3. Each context-free language L is accepted by a strongly limited automatonM. Further-
more, M can be obtained with a description of size polynomial with respect to the size of any given
context-free grammar generating L or of any given pushdown automaton accepting L.

Concerning the size of the machine M in Theorem 5.3, an inspection to its construction (see the
discussion at the beginning of this section) allows to observe that its states and its working alphabet
symbols essentially correspond to symbols of the alphabet Ωk,` used to represent the language L in the
form L = h(D̂k,` ∩ R), as in Theorem 5.2. This allows to conclude that the size of the description
of M is quadratic with respect to the parameters k and `, namely, it is quadratic with respect to the
polynomial p in Theorem 5.2 which, in turn, is quadratic with respect to the number of the productions
of the grammar G, in double Greibach normal form, which specifies the language L.

However, the current known upper bound for the conversion of context-free grammars into double
Greibach, even if polynomial, is very high. In fact, as a consequence of a result in [19], each grammar in
Chomsky normal form with v variables and r productions can be converted into an equivalent grammar
in double Greibach normal form with O(v6r4) many productions. Furthermore, it is well-known that the
conversion into Chomsky normal form can square the size of a grammar. In summary, an estimation of
the upper bounds in Theorems 5.2 and 5.3 produces polynomial with high degrees.

6. Simulation by Pushdown Automata

Limited automata can recognize only context-free languages when the number of rewriting in each cell
is bounded by a constant d [7]. From a descriptional point of view, in [15] it has been proved that
pushdown automata can have a size exponentially larger than equivalent 2-limited automata, even when
the accepted language is regular. Here, we prove that starting from strongly limited automata we always
obtain pushdown automata of polynomial size. Hence, strongly limited automata may need descriptions
exponentially larger than the descriptions of equivalent 2-limited automata. In other words, the simplicity
of the operations of strongly limited automata is paid with exponentially larger descriptions.

1014 G. Pighizzini / Strongly Limited Automata

Throughout the section, let us consider a strongly limited automatonM accepting a language L and
defined according to the notations given in Section 4. We are going to describe an equivalent pushdown
automaton A, which implements Algorithm 2.

The algorithm uses the following strategy. Each cell c of the tape can be rewritten byM either in the
first visit, when moving to the right in the state q0M turns to the left, or in the second visit, while moving
to the left in a state of QL. Since the pushdown automaton A can only move to the right, the moves of
the latter type are simulated in two steps: when the head of A reaches the cell c, simulating a move
ofM which visits for the first time c and does not rewrite its content,A saves on the pushdown store the
input symbol written in c, to be inspected later when, in a back mode, the second visit will be simulated.
Due to the restrictions on the state changes, A does not need to simulate the parts of computation which
visit cells that have already been rewritten. With this approach, the difficult point is the simulation of
the last scan of the tape from right to left, where the final content has to inspected. In fact, during the
simulation, the symbols written byM are not kept. Furthermore, as emphasized in Example 4.1, cells
are not rewritten in the same order as they appear in the tape. In order to overcome this problem, when
a cell c is reached, simulating a move of M which visits it for the first time and moves to the right,
A guesses the symbol that will be written during the second visit and saves it on the pushdown store
together with the current symbol, to verify the guess later, while simulating in the back mode the second
visit to c.

In this way, while scanning the input from left to right, the pushdown automaton A can simulate (in
reverse order) the last scan of the tape, in parallel with the other moves ofM.

We now discuss the algorithm more into details. It makes use of the following macros or abbrevia-
tions:

• nSelect(S): nondeterministically selects one element from the set S.

• symb(op): returns the symbol X written on the tape by operation op ∈ {q X←↩, X←−, X↪→q0}.

• state(op): returns the state q reached by the operation op = q
X←↩.

The pushdown automaton A works in two modes:

• In the direct mode, A directly simulates the transitions ofM moving to the right. We remind the
reader that during these movesM remains in the initial state q0. Each iteration of the main loop
(lines 3–21) corresponds to one move ofM which visits for the first time one tape cell c. In this
phaseM has two possibilities: either to move to the right, without changing the content of c, or
turn to the left, after rewriting c.

In the former case (lines 7–9), the content of c will be changed whenM will return on the cell for
the second time, moving to the left. A guesses the symbol X that will be written on the cell in the
second visit and saves it on the pushdown store together with the current symbol a, for a future
verification (line 18). It is also possible thatM will return on that cell for the second time only
in the last scan of the tape, namely, without changing the content of the cell. For this reason, in
line 7, the current tape symbol may also be guessed. (The corresponding verification will be done
on line 26.)

In latter case, A enters the back mode (described below), after saving the symbol X written on the
cell (line 11) and the state q (line 12) which will be used in that mode.

G. Pighizzini / Strongly Limited Automata 1015

Algorithm 2: The pushdown automaton A
1 stack initially empty, head on cell 1
2 Xprec ← B // last symbol

3 while end of the tape not yet reached do
4 a ← read() // simulation of state q0
5 op← nSelect(δ(q0, a)) // op ∈ {99K, q X←↩}
6 if op = 99K then
7 X ← nSelect(Γ ∪ {a})
8 push(X)
9 push(a)

10 else // op =q
X←↩

11 X ← symb(op) // saved to be used on lines 20-21

12 q ← state(op) // current state, used while scanning to the left

13 repeat
14 b ← pop()
15 Y ← pop()

16 op← nSelect(δ(q, b)) // op ∈ { Z←−, Z↪→q0}
17 Z ← symb(op)
18 if Y 6= Z then REJECT

19 until op = Z↪→q0 // iterate when op = Z←−
20 if δ(qX, Xprec) = ∅ then REJECT
21 Xprec ← X

22 if δ(qC, Xprec) = ∅ then REJECT
23 while stack not empty do
24 a ← pop()
25 X ← pop()
26 if a 6= X then REJECT

27 ACCEPT

During the direct mode, A also simulates (in reverse order) the last scan of the input, from the
right to the left end-marker (lines 20–21). In this part of the computation, that will be discussed
later, the symbol X saved on line 7 or on line 11 is used.

• In the back mode, A verifies that the information previously guessed and saved on the pushdown
matches with a sequence of moves of M to the left. First of all, A remembers the state q used
byM moving to the left. Then, for each cell c visited by A while moving to the left, A works as
follows (lines 14–18).

If the cell c has been visited only one time (i.e., moving from left to right), then A gets its original
content b from the stack, together with a symbol Y ∈ Γ, previously guessed visiting c in normal
mode (line 7). Then A selects a transition of M from state q with input b and verifies that the
symbol written in the cell by such a transition is Y, rejecting when the test fails (line 18). If the
selected transition moves to the left, then A continues to operate in the back mode, otherwise it
resumes the direct mode. We remind the reader that whenM visits a cell which has already been
rewritten, it just skips it, moving along the same direction and without changing its state (except
in the final scan). For this reason, no information is kept for those cells byA and in the back mode

1016 G. Pighizzini / Strongly Limited Automata

they are not considered at all. For the same reason, to resume the direct mode A does not need
to simulate any transition from the head position ofM to the current head position of A (which
represents the first cell not yet visited byM) because all those transitions cannot change the tape
content and the internal state q0 ofM.

When the head reaches the right end-marker,M makes a final scan from right to left, in order to verify
each 2-letter factor of the string on the tape (including the end-markers). If some forbidden factor is
found then the next transition is undefined and the computation stops. The same verification can be
easily performed from left to right, simulating the same set of states. This is done by A on lines 20–21.
At each iteration of the main loop (lines 3–21), A reads a symbol a from its input tape and guesses or
directly computes the symbol X that replaces a on the tape (lines 7 and 11, respectively). On line 20
A verifies that the symbol is compatible with the symbol Xprec written byM in the cell immediately to
the left. To do that, it is enough to verify that the transition δ(qX, Xprec) used byM to make the same
verification (moving from the right) is defined. To complete the simulation of the last scan, when exiting
the main loop, A has to verify the existence of the initial transition of the last scan, from the state qC
on the rightmost tape symbol. This is done on line 22. At this point, the stack should contain exactly
information corresponding to tape cells that have not been rewritten byM. For those cells two copies of
the original input symbol have been pushed on the stack (cf. lines 6–9). Hence A makes a final check of
the stack before accepting.

From Algorithm 2, we observe that the pushdown automaton A keeps in its finite state control the
variables a, b ∈ Σ, Xprec, X, Y, Z ∈ Γ ∪ {B}, q ∈ Q, and op which ranges over the set of possible
operations (not including those which are used in the final scan). Actually, a and b are not used at the
same time, so only one variable ranging on Σ is enough for both of them. Furthermore, the value of Z
derives from that of op. Since the number of possible operations is O(sw), it turns out that the number
of possibile states of A is O(is2w4), where s = #Q, w = #Γ, and i = #Σ. The cardinality of
the pushdown alphabet is i + w. Since each stack operation can push or pop at most one symbol, this
allows to conclude that the size of the description ofA is polynomial with respect to the one of the given
strongly limited automatonM.

Theorem 6.1. Each strongly limited automaton can be simulated by a pushdown automaton of polyno-
mial size.

Example 6.2. Let M be the strongly limited automaton described in Example 4.1, which accepts the
extended Dyck language. In Figure 2 some snapshots during an accepting computation of M on in-
put w = | ((|) | ()) are depicted. Corresponding snapshots in a simulating computation of the push-
down automaton A described in Algorithm 2 are represented in Figure 3. Now, we compare the two
computations.

(a)→(b) From the initial configuration, moving to the right, M repeatedly executes the operation 99K

up to the first closed bracket. This phase is simulated byA (lines 6–9) storing the guessed symbols
on the stack (left column) together with the symbols that are read from the tape (right column).

(b)→(c) M executes the operation q1
X←↩, by rewriting the cell and turning to the left. This operation is

directly simulated byA just updating the information in its finite control (lines 11–12) and entering
the back mode.

G. Pighizzini / Strongly Limited Automata 1017

(a) B |
↑

((|) | ())C (b) B | ((|)
↑
| ())C (c) B | ((|

↑
X | ())C (d) B | (XXX |

↑
())C

(e) B | (XXX | (
↑

X)C (f) B | (XXX | XX)
↑
C (g) B | (

↑
XXXXXXXC (h) B | XXXXXXXXC

↑

Figure 2. Some snapshots of the tape of the strongly limited automatonM, with the head position, during the
accepting computation described in Example 6.2.

(b-c) | ((|)
↑
| ())

X |
X (
X (
| | (d) | ((|) |

↑
())

X (
| | (e) | ((|) | ())

↑

X (
X |
X (
| |

(f) | ((|) | ())
↑

X |
X (
| | (h) | ((|) | ())

↑
| |

Figure 3. Some snapshots of the pushdown automaton A during the accepting computation described in Ex-
ample 6.2. The labels refer to the corresponding configurations of M in Figure 2. In each snapshot, the tape
content with the head position are represented on the left, while the pushdown content is represented on the right.
Since each time A increases its stack, a guessed symbol X is pushed together with an input symbol a (lines 8–9
of Algorithm 2), and, furthermore, each time the stack is decreased in size, two symbols are removed, the stack is
represented in a compact way by using two columns. The left column contains guessed symbols, the right column
contains copies of input symbols.

(c)→(d) M continues to move the head to the left and to rewrite, up to a cell containing an open bracket,
which is also rewritten. Here,M turns to the right, executing X↪→q0 , and continues to move to the
right, executing 99K, up to a not yet visited cell. In this phase, each move of M to the left is
simulated by A checking if it is compatible with the two symbols on the top of the stack (loops on
lines 13–19), which are removed.

(d)→(e) Further moving to the right, the head ofM reaches a cell containing the next closed bracket.
The cell is rewritten and the head is moved to the left. Even in this case, A in direct mode pushes
symbols on the stack, reaching the configuration in Figure 3(e).

(e)→(f) After rewriting the cell containing the open bracket, and turning to the right, with one further
move to the right, the head of M reaches the last input cell, which contains a closed bracket.
Notice that at this point (f), three cells in the part of the tape to the left of the head are not yet
rewritten. Those cells are represented on the stack of A.

(f)→(g)→(h) With similar sequences of moves,M rewrites the cell, turn its head to the left, and moves
up to the matching open bracket (and also rewriting the neutral symbol which is visited during
these moves). Then the head is moved to the right finally reaching the right end-marker. The
pushdown automaton A simulates the first step by moving the head to the right of the input. The
remaining steps are simulated in the back mode, without moving the input head and checking the
information on the stack. At the end, the stack contains the information corresponding to the only
symbol that does not have been rewritten byM.

1018 G. Pighizzini / Strongly Limited Automata

At this point,M has to execute the final phase, inspecting the tape from right to left. This part has been
simulated by A during the previous steps, while moving from left to right.

7. Determinism vs Nondeterminism

In Section 5 and 6 we proved that strongly limited automata characterize the class of context-free lan-
guages. It is quite natural to ask what is the computational power of the deterministic version of these
devices and, in particular, if they are able to capture the class of deterministic context-free languages as
deterministic 2-limited automata [15].

The answer is negative. On the one hand, we can give examples of deterministic context-free lan-
guages which are not accepted by deterministic strongly limited automata. On the other hand, our sim-
ulation of strongly limited automata by pushdown automata presented in Section 6 does not preserve
determinism. In particular, in line 7 of Algorithm 2, nondeterministic choices are introduced to guess the
final content of the tape. This is useful to simulate the final scan of the tape, in parallel with the other
phases of the computation. Hence, with our simulation, it is also not clear if each language accepted by
a deterministic strongly limited automaton is a deterministic context-free language. This problem is left
open for future investigations.

Let us examine some of these aspects more into details. First of all, due to the restrictions on the use
of the states while moving to the right, there are simple examples of deterministic context-free languages
which require nondeterministic choices to be accepted by strongly limited automata. We give a proof of
this fact for the languages presented in Examples 4.3 and 4.4 which are clearly deterministic context-free.

Theorem 7.1. Each strongly limited automaton accepting the language L = {anb2n | n ≥ 0} is nonde-
terministic.

Proof:
By contradiction, let M be a deterministic strongly limited automaton accepting L.

First of all, we notice that δ(q0, a) =r
Y←↩, for some r, Y, should imply that each input starting with

the letter a is rejected, because in the first transition the head would immediately reach the left end-
marker. Hence, δ(q0, a) =99K. Furthermore, if δ(q0, b) =99K then M will scan each input from {a, b}∗
from left to right, reaching the right end-marker without any rewriting. So in the last scan of the tape, M
should decide whether or not the input string (read in reverse way) belongs to L. Since L is not regular,
this cannot be done. Hence δ(q0, b) =p

X←↩, for some p, X.
Now, let us consider an input x = anb2n ∈ L. Each time the head of M reaches a cell containing

a letter b, the cell is rewritten and the head is moved to the left. The only way to reach another b, and
finally the right end-marker to start the final scan, is to reverse the head direction when, moving from
right to left, a cell containing the symbol a is found. Since the number of a’s in x is less than the number
of b’s, at some step during this computation the left end-marker will be reached, so rejecting x. ut

For the language of Example 4.4 we make use of the following result:

Lemma 7.2. Let Σ be an alphabet containing at least three different symbols a, b, d. Consider x =
da4b2, y = da5b2, and L ⊆ Σ∗. If x ∈ L and y /∈ L then each strongly limited automaton accepting L
is nondeterministic.

G. Pighizzini / Strongly Limited Automata 1019

Proof:
The argument is similar to the one used to prove Theorem 7.1. Suppose we have a deterministic strongly
limited automaton M accepting L. First, we observe that δ(q0, a) = δ(q0, d) =99K, otherwise on each
input starting with daa (and hence on x = da4b2 ∈ L) the head will hit the left end-marker rejecting.

If also δ(q0, b) =99K, then M on both inputs x and y will scan the entire tape from left to right
without any rewriting, so reaching the right end-marker with BdaaaabbC and BdaaaaabbC on the tape,
respectively. Since the sets of 2-letter factors in these strings coincide, this implies that either both x
and y will be accepted in the final scan, or both of them will be rejected, which is a contradiction. Hence,
δ(q0, b) =p

X←↩, for some p, X.
We also notice that δ(p, a) = Y↪→q0 , for some Y, otherwise x should be rejected because the head will

finally hit the left end-marker, in a sequence of moves to the left. (In the case δ(p, d) = Z←−, this happens
in the sequence of moves to the left which starts after rewriting the first b; otherwise δ(p, d) = Z↪→q0 and
this happens in the sequence of moves to the left which starts after rewriting the second b).

According to these moves, we can conclude that on x and y, when the head of M will reach the right
end-marker the tape contents will be BdaaYYXXC and BdaaaYYXXC, respectively. Again, since these
two strings contain exactly the same 2-letter factors, this would implies that both x and y are accepted or
both of them are rejected, which is a contradiction to the assumption that M recognizes L. ut

As a consequence of Lemma 7.2, we immediately get the following result:

Theorem 7.3. Each strongly limited automaton accepting the language L = {canbn | n ≥ 0} ∪
{da2nbn | n ≥ 0} is nondeterministic.

We could slightly relax the definition of strongly limited automata, by introducing a set of states QR,
with q0 ∈ QR, used while moving to the right, and allowing transition between states of QL and of QR
while moving to the left and to the right, respectively, but still forbidding state changes on rewritten
cells and by keeping all the other restrictions. Let us call the model so obtained an almost strongly
limited automata. We observe that the simulation by pushdown automata presented in Algorithm 2 can
be adapted for almost strongly limited automata. So the recognition power of these devices is the same
as strongly limited automata, namely they characterize context-free languages.

Concerning the relationships between determinism and nondetermism, as already pointed out, the
simulation by pushdown automata does not preserve determinism. On the other hand, the deterministic
context-free languages considered in Theorems 7.1 and 7.3 are accepted in a deterministic way by almost
strongly limited automata. In particular:

• To recognize L = {anb2n | n ≥ 0}, a machine can move from left to right to locate the second b
on the tape, rewrite it and move back to rewrite the first b and the last a on the tape. This can be
repeated until one end-marker is reached. In more detail, the head moving from left to right scans
the a’s and the symbols already rewritten remaining in the state q0. When a cell containing b is
reached, the machine still moves to the right entering a state q1. From this state, if another b is
found, the machine rewrites it by X, enters a state p and starts to move to the left. In p, each b is
rewritten by X and each rewritten symbol is ignored, still moving to the left, until a cell containing
an a is found. This cell is rewritten by Z, reentering q0 and turning to the right, to repeat the same
procedure, up to reach the right end-marker. The input is accepted if and only if the final content
of the tape inscripted between end-markers is a string of the form Z∗X∗.

1020 G. Pighizzini / Strongly Limited Automata

• To recognize L = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0} it is enough to remember in the finite
state control the leftmost input symbol, after the first step. This information is used to decide how
many a’s need to be rewritten for each b. In particular if the first symbol is a d, a transition in the
state QL is used while moving to the left, in order to count two letters a.

It would be interesting to know if almost strongly limited automata are able to accept all deterministic
context-free languages without taking nondeterministic decisions.

8. Comparisons with Other Models

In the introduction, we mentioned that the class of context-free languages has been characterized in 1996
by Jancar, Mráz, and Plátek in terms of a kind of forgetting automata [10].

We briefly mention that forgetting automata can erase tape cells by rewriting their contents with a
special symbol. However, rewritten cells are kept on the tape and are still considered during the compu-
tation. For instance, the state can be changed while visiting an erased cell. In the variant of forgetting
automata that characterizes context-free languages, when a cell which contains an input symbol is visited
while moving to the left, its content is rewritten, while no changes are done while moving to the right.

This way of operating is very close to that of strongly limited automata. However, in strongly limited
automata the rewriting alphabet can contain more than one symbol. Furthermore, rewritten cells are
completely ignored (namely, the head direction and the state cannot be changed while visiting them)
except in the final scan of the tape from the right to the left end-marker.

To emphasize the difference between strongly limited automata and forgetting automata, we now
prove that each strongly limited automaton accepting the set PAL of palindromes needs a working alpha-
bet of at least 3 symbols (cf. Example 4.2).

The proof is by contradiction. Suppose M is a strongly limited automaton with working alphabet
Γ = {X, Y} accepting PAL.

First of all, we observe that 99K∈ δ(q0, a). Otherwise, each input starting with a should be rejected
because from the initial configuration either the only possible move turns the head to the left (if p Z←↩∈
δ(q0, a), for a state p, symbol Z ∈ Γ) reaching the left end-marker, or the machine stops (if δ(q0, a) = ∅).
In a similar way, 99K∈ δ(q0, b).

Lemma 8.1. Any accepting computation of M on inputs aba and bab will rewrite all input symbols.

Proof:
Without loss of generality, we give the proof only for x = aba. First, we observe that according to the
definition, a strongly limited automaton accepts an input either without any rewriting, or rewriting at least
two consecutive cells. Hence, the strings a, b ∈ PAL should be accepted by M without any rewriting.
This implies that the 2-letter factors Ba, Bb, aC, bC are allowed. On the other hand, factors ab and ba
cannot be allowed, otherwise strings such as ab or ba will be accepted. This also implies that in order to
accept the string x = aba the machine has to make at least two rewritings.

Now, we suppose that M has an accepting computation on x which rewrites exactly two cells. Ac-
cording to the previous observation, these cells should be consecutive. Hence, there are 8 possibilities for
the final content of the tape: BYXaC, BaYXC, BXXaC, BaXXC, and the ones obtained by switching X
and Y. Without loss of generality we restrict our analysis to the first 4 possibilities. We can show that

G. Pighizzini / Strongly Limited Automata 1021

all of them give a contradiction. The details are presented in Table 1, which contains an horizontal block
for each possibility and considers several subcases. We illustrate our argument, just discussing some of
them.

Suppose the final content of the tape in an accepting computation on x is BYXaC. We consider all
the possibilities for the final content of the tape in an accepting computation on y = aa (2nd column).
For example, on the 5th line we suppose that the final content on y is BXYC. Then, on the string
x′ = aaba (3rd column) there exists a computation which first rewrites the factor ab by YX, to obtain
the tape content BaYXaC (4rd column), and then rewrites the two remaining a’s, with the head which
finally reaches the right end-marker and the string on the tape is BXYXYC (5th column). The rewriting of
the factor ab is obtained by moving to the right from the leftmost input symbol and, from the second tape
cell, by imitating the behavior of M on the prefix ab of x, so reaching the rightmost a, after rewriting ab
by YX. From the rightmost a, the behavior of M on x′ is simulated, moving to the left, and rewriting the
two remaining a’s (ignoring the cells already rewritten), as in the computation on y, and finally reaching
the right end-marker. The 2-letter factors of the final tape content on x′, namely BX, XY, YX, YC, are
also 2-letter factors of the final tape contents in at least one the two considered accepting computation
on x and y. This implies that those factor are allowed and hence that x′ is accepted by M . This is a
contradiction since x /∈ PAL.

The other cases in the first and in the second block of the table are proved in a similar way. In the
last two blocks, we obtain an accepting computation on x′ by combining the computation on x with
itself. ut

As a consequence of Lemma 8.1, since the working alphabet of M consists of two symbols X and Y,
there are 8 possibilities for the final tape contents in accepting computations on strings x = aba and y =
bab. Among them, 6 can be excluded as illustrated in Table 2. (The table presents 3 possibilities in
the case of the string x. The other 3 are obtained by exchanging X and Y. Furthermore, the result
can be extended to the string z by exchanging a and b.) The only remaining possibilities for the final
tape contents in accepting computations on x and z are BXYXC and BYXYC. We now inspect all the
combinations.

• The final tape contents on x and z are the same.
Without loss of generality we assume that the content is BXYXC. On input x′ = abababbabba,
M can simulate the computation on x on the factor from position 3 to position 5 and then the
computation on z on the factor from position 7 to 9 so obtaining Ba bXYX bXYX b aC on the tape.
Then, moving the head to the rightmost a the machine can simulate the moves of the computation
on x. The rightmost a is rewriting by X, while reversing the head direction, all the b’s are rewritten
by Y, all cells already rewritten are ignored and, finally, the leftmost a is rewritten by X, while
turning to the right. Hence the machine continues to move to the right, up to reach the end-marker,
with the tape containing BXYXYXYXYXYXC. The 2-letters factors of the tape content are BX,
XY, YX, and XC, which are also factors of the final tape content in the accepting computation on x.
Hence, they are allowed. This implies that x′ is accepted, which is a contradiction since x′ /∈ PAL.

• The final tape contents on x and z are different.
Without loss of generality we assume that the contents are BXYXC and BYXYC, respectively. On
input x′ = ababab, M can simulate first the accepting computation on x, rewriting the first three
input symbols, and then, the accepting computation on y rewriting the remaining input symbols,

1022 G. Pighizzini / Strongly Limited Automata

final tape on x final tape on y x′ intermediate tape final tape on x′

BYXaC BaaC abaa BYXaaC BYXaaC

BYXaC BYYC aaaba BYYa baC BYYYXaC

BYXaC BXXC abaa BYXaaC BYXXXC

BYXaC BYXC ab BYXC BYXC

BYXaC BXYC aaba BaYXaC BXYXYC

BaYXC BaaC aaba BaaYXC BaaYXC

BaYXC BYYC aaba BYY b aC BYYYXC

BaYXC BXXC abaaa BaYXaaC BaYXXXC

BaYXC BYXC ba BYXC BYXC

BaYXC BXYC abaa BaYXaC BXYXYC

BXXaC – aabba BaXX b aC BXXXXaC

BaXXC – abbaa Ba bXXaC BaXXXXC

Table 1. Proof of Lemma 8.1: we cannot have an accepting computation on x = aba which rewrites exactly
two tape cells. Each row in the table represents a case of the proof and leads to a contradiction, by the following
argument. Suppose that the final tape content in the accepting computation on x is the string in the 1st column and
the final tape content in an accepting computation on y = aa is the string in the 2nd column. Combining parts
of those two computations, we can prove that on the input x′ in the 3rd column there exists a computation such
that the head reaches the right end-marker having on the tape the string in the 5th column. (In the 4th column is
represented the tape content at the intermediate step of such a computation, when after moving from right to left a
factor has been rewritten and the head is turned to the right.) Since all the 2-letter factors of the final tape content
on x′ are also factors of the final content in at least one of the accepting computations on x and y, the computation
on x′ is accepting. Being x′ /∈ PAL, this gives a contradiction. In the last two rows, we do not consider y: the
accepting computation on x′ is obtained by combining the computation on x with itself.

final tape on x final tape on y x′ intermediate tape final tape on x′

BXXXC BXXC abaaa BXXXaaC BXXXXXC

BYXXC BYXC aaaba BaYX b aC BYYXXXC

BYYXC BYXC abaaa Ba bYXaC BYYYXXC

Table 2. Suppose we have an accepting computation on x = aba rewriting all tape cells. This is possible only
reaching the rightmost input symbol, rewriting all the input while moving to the left, and then moving to the right
reaching the end-marker. For each row in the table, if the final content of the tape is the string on the 1st column
then there is a computation on y = aa finally having on the tape the string in the 2nd column. (The computation
on y imitates the given computation on x, without the moves on the letter b.) Combining such computations, we
can obtain a computation on the string x′ on the third column, which first rewrites an input factor obtaining the
content in the 4th column and then rewrites the remaining symbols, reaching the right end-marker with the tape
content represented in the 5th column. Since all the 2-letter factors of the final tape content on x′ are also 2-letter
factors of the tape content on x, which belongs to an accepting computation, the string x′ should be accepted byM .
Since x′ /∈ PAL this is a contradiction.

G. Pighizzini / Strongly Limited Automata 1023

to reaching the right end-marker with BXYXYXYC on the tape. As in the previous case, x′ should
be accepted, which is a contradiction since x′ /∈ PAL.

As a consequence, we obtain the following:

Theorem 8.2. Each strongly limited automaton accepting the set PAL of palindromes needs a working
alphabet of at least three symbols.

With similar techniques we can prove that two symbols are necessary to recognize palindromes of
even length.

Actually, the above argument uses a finite set S of strings (the palindromes of length≤ 3 and a small
number of strings of length ≤ 11 that are not in PAL). Hence, a result as Theorem 8.2 holds for each
language L such that S ∩L = S ∩ PAL. Notice that a such L could be a regular or even a finite language.

Corollary 8.3. There are infinitely many finite languages that require a working alphabet of at least three
symbols to be recognized by strongly limited automata.

As a consequence of Theorem 8.2, strongly limited automata with a unary working alphabet recog-
nize a proper subclass of context-free languages. We conjecture that the same is true for the extended
model discussed in Section 7, namely almost strongly limited automata, which are allowed to make state
changes while reading input symbols, when the working alphabet is restricted to one symbol. In fact, the
devices so obtained are very close to deleting automata, a restriction of forgetting automata that deletes
tape cells while moving to the left. This means that cells already rewritten are removed from the tape
or, equivalently, they are ignored in subsequent steps. As proved in [10], deleting automata recognize a
proper subclass of context-free languages. The only difference between almost strongly limited automata
with a unary working alphabet and deleting automata is that in the former model a final scan of the tape
is performed (including deleted and not rewritten positions) to check the membership to local language.

By the way, the set of palindromes can be recognized by an almost strongly limited automaton M
using a one letter working alphabet, in the following way. In order to verify if the input x has the
form wσwR, with σ ∈ Σ∪{ε}, at the beginning of the computation M in the initial state moves its head
to some position, where it guess that the second half wR of the input starts. Furthermore, M guesses
whether or not the input length is odd. Then M rewrites the symbol, remembers it in the finite control,
and turns its head to the left. If the input length was guessed to be odd, then M rewrites one more input
symbol (which should be the central symbol), still moving to the left. Then M compares the current
input symbol with the symbol stored in the finite control, if they match then M rewrites the tape cell and
turn to the right to search the first cell not yet rewritten. In this way, the computation of M can continue
by verifying matching between symbols in the second half of the input and symbol in the first half. The
only nondeterministic decision is taken at the beginning, to select the first symbol of the second half and
to guess whether the length of the input is odd.

Acknowledgments

The author wish to thank the anonymous reviewers for stimulating comments and useful remarks. In par-
ticular, the proof of Theorem 7.3 was strongly simplified according to a referee suggestion. Furthermore,
one comment from the same referee gave to the author the inspiration for Corollary 8.3.

1024 G. Pighizzini / Strongly Limited Automata

References
[1] Chomsky, N., Schützenberger, M.: The Algebraic Theory of Context-Free Languages, in: Computer Pro-

gramming and Formal Systems (P. Braffort, D. Hirschberg, Eds.), vol. 35 of Studies in Logic and the Foun-
dations of Mathematics, Elsevier, 1963, 118–161.

[2] Engelfriet, J.: An Elementary Proof of Double Greibach Normal Form, Inf. Process. Lett., 44(6), 1992,
291–293.

[3] Glöckler, J.: Forgetting Automata and Unary Languages, Int. J. Found. Comput. Sci., 18(4), 2007, 813–827.

[4] Glöckler, J.: A Taxonomy of Deterministic Forgetting Automata, Int. J. Found. Comput. Sci., 21(4), 2010,
619–631.

[5] Goldstine, J., Kappes, M., Kintala, C. M. R., Leung, H., Malcher, A., Wotschke, D.: Descriptional Complex-
ity of Machines with Limited Resources, J. UCS, 8(2), 2002, 193–234.

[6] Harrison, M. A.: Introduction to Formal Language Theory, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1978, ISBN 0201029553.

[7] Hibbard, T. N.: A Generalization of Context-Free Determinism, Information and Control, 11(1/2), 1967,
196–238.

[8] Holzer, M., Kutrib, M.: Descriptional Complexity — An Introductory Survey, in: Scientific Applications of
Language Methods, Imperial College Press, 2010, 1–58.

[9] Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Languages and Computation, Addison-
Wesley, 1979.

[10] Jancar, P., Mráz, F., Plátek, M.: Forgetting Automata and Context-Free Languages, Acta Inf., 33(5), 1996,
409–420.

[11] Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages, EATCS Bulletin,
111, 2013, 70–86.

[12] McNaughton, R., Papert, S. A.: Counter-Free Automata (M.I.T. Research Monograph No. 65), The MIT
Press, 1971, ISBN 0262130769.

[13] Okhotin, A.: Non-erasing Variants of the Chomsky-Schützenberger Theorem, in: Developments in Lan-
guage Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012. Proceedings
(H. Yen, O. H. Ibarra, Eds.), vol. 7410 of Lecture Notes in Computer Science, Springer, 2012, ISBN 978-3-
642-31652-4, 121–129.

[14] Pighizzini, G., Pisoni, A.: Limited Automata and Regular Languages, Int. J. Found. Comput. Sci., 25(7),
2014, 897–916.

[15] Pighizzini, G., Pisoni, A.: Limited Automata and Context-Free Languages, Fundam. Inform., 136(1-2),
2015, 157–176.

[16] Rosenkrantz, D. J.: Matrix Equations and Normal Forms for Context-Free Grammars, J. ACM, 14(3), 1967,
501–507.

[17] Shallit, J. O.: A Second Course in Formal Languages and Automata Theory, Cambridge University Press,
2008.

[18] Wagner, K. W., Wechsung, G.: Computational Complexity, D. Reidel Publishing Company, Dordrecht, 1986.

[19] Yoshinaka, R.: An elementary proof of a generalization of double Greibach normal form, Inf. Process. Lett.,
109(10), 2009, 490–492.

