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Mutations in the methyl-CpG-binding protein 2 (MeCP2) are
associated with Rett syndrome and other neurological disorders.
MeCP2 represses transcription mainly by recruiting various co-
repressor complexes. Recently, MeCP2 phosphorylation at Ser 80,
Ser 229 and Ser 421 was shown to occur in the brain and
modulate MeCP2 silencing activities. However, the kinases
directly responsible for this are largely unknown. Here, we
identify the homeodomain-interacting protein kinase 2 (HIPK2)
as a kinase that binds MeCP2 and phosphorylates it at Ser 80
in vitro and in vivo. HIPK2 modulates cell proliferation and
apoptosis, and the neurological defects of Hipk2-null mice
indicate its role in proper brain functions. We show that MeCP2
cooperates with HIPK2 in induction of apoptosis and that Ser 80
phosphorylation is required together with the DNA binding of
MeCP2. These data are, to our knowledge, the first that describe a
kinase associating with MeCP2, causing its specific phosphoryla-
tion in vivo and, furthermore, they reinforce the role of MeCP2 in
regulating cell growth.
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INTRODUCTION
The methyl-CpG-binding protein 2 (MeCP2) is a ubiquitous
protein, the mutations of which cause Rett syndrome, a severe
neurodevelopmental disorder that mainly affects females. MeCP2
binds to methylated DNA and associates with various co-repressor
complexes, thereby working as a methylation-dependent trans-
criptional repressor (Chahrour & Zoghbi, 2007), even though
recent results indicated that it might also activate gene expression
(Chahrour et al, 2008). In the nervous system, MeCP2 phosphor-
ylation was shown to be influenced by extracellular stimuli and to
dynamically regulate gene expression. In particular, MeCP2-
mediated repression of the brain-derived neurotrophic factor
(Bdnf ) gene was found to be reversed by MeCP2 phosphorylation
at Ser 421, causing a change in the binding affinity to the promoter
(Chen et al, 2003). In addition, Ser 421 phosphorylation affects the
ability of MeCP2 to regulate dendritic growth and spine
maturation (Zhou et al, 2006). More recently, neuronal activity
was found to trigger dephosphorylation at Ser 80, decreasing
MeCP2 binding to some of its target promoters (Tao et al, 2009).
Interestingly, Mecp2S80A-knock-in and Mecp2S421A;S421A-knock-in
mice, carrying non-phosphorylatable MeCP2 mutations, showed
altered locomotor activities (Tao et al, 2009), which highlights the
relevance of these modifications in neurological functions.
Besides Ser 80 and Ser 421, several other residues were found to
be phosphorylated in the brain, supporting further the idea that
phosphorylation might strongly influence MeCP2 activities.
Whereas Ser 421 is phosphorylated by a CaMKII/IV-dependent
mechanism, the upstream events causing the phosphorylation of
MeCP2 at Ser 80 remain unknown.

We identified homeodomain-interacting protein kinase 2
(HIPK2) as a new MeCP2-associated kinase in a yeast two-hybrid
screen. HIPK2 regulates cell growth and apoptosis in development
and in response to genotoxic stress (Calzado et al, 2007; Rinaldo
et al, 2007). Here, we identify and characterize HIPK2 as the first
kinase that binds to MeCP2 and specifically phosphorylates it at
Ser 80 in vitro and in vivo.
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RESULTS AND DISCUSSION
HIPK2 is a novel MeCP2-interacting protein
In a yeast two-hybrid screen that used the transcriptional
repression domain (TRD) and the upstream linker region of
MeCP2 fused to the GAL4 DNA-binding domain (DBD-linkTRD)
as bait, we found the carboxy-terminus of HIPK2 to be a novel
interactor of MeCP2. The ADE and HIS reporter genes were
activated in cells coexpressing the HIPK2 C-terminus fused to the
GAL4 activation domain (AD-HIPK2) and the DBD-linkTRD, but
not in cells expressing only the bait or the prey (Fig 1A).
Glutathione-S-transferase (GST) pulldown experiments with
recombinant proteins confirmed the interaction, indicating that
it might be direct (data not shown).

To evaluate whether the two proteins associate in mammalian
cells, we expressed Flag-MeCP2 and enhanced green fluorescent
protein (EGFP)-HIPK2 in human embryonic kidney 293T cells and
immunoprecipitated total cell extracts (TCEs) with GFP antibodies.
Flag-MeCP2 co-precipitates with EGFP-HIPK2 but not with EGFP
alone (Fig 1B). The reciprocal experiment was performed on
Mecp2-null mouse embryonic fibroblasts (MEFs; Fig 1C); EGFP-
HIPK2 was present in anti-MeCP2 immunocomplexes obtained
from MEFs expressing Flag-MeCP2, but not in cells transfected
with the empty vectors. This interaction was confirmed with
endogenous HIPK2 and MeCP2 in human fibroblasts (HFs) in
which either MeCP2 or HIPK2 antibodies, but not an unrelated
rabbit IgG, were able to co-precipitate both proteins (Fig 1D).
Altogether, these data indicate that HIPK2–MeCP2 complexes can
form both in vitro and in vivo.

MeCP2 is phosphorylated by HIPK2 in vitro
We next assessed whether HIPK2 phosphorylates MeCP2 in kinase
assays in vitro. Immunopurified Flag-HIPK2, or a kinase-dead (KD)
HIPK2 derivative (Flag-K221R), were incubated with recombinant

MeCP2 in the presence of g-[33P]-ATP. Wild-type (wt) HIPK2—but
not the KD derivative—phosphorylated both itself and MeCP2.
Western blot (wb) confirmed that both wt and KD HIPK2 are
efficiently immunoprecipitated, and that, as expected, the KD has
faster mobility than wt HIPK2 (Fig 2A).

To identify the specific HIPK2 target residue(s) in MeCP2, we
first mapped the region modified by the kinase. Considering that
the linkTRD of MeCP2 contacts HIPK2, we performed the kinase
assays using two deletion derivatives that retain the interaction
surface. Only the C-terminal region (198–486) was significantly
less phosphorylated compared with wt MeCP2, indicating that the
amino-terminus of MeCP2 or the methyl-CpG binding domain
(MBD) contains the main HIPK2 phosphorylation site(s) (Fig 2B).

MeCP2-Ser 80 is the specific target of HIPK2
The region in MeCP2 targeted by HIPK2 contains three of the total
11 serine/threonine-proline (S/T-P) sites constituting possible HIPK2
targets (Fig 3A). Thus, we first tested two MeCP2 derivatives in
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Fig 1 | HIPK2 interacts with MeCP2. (A) Schematic representation of

human MeCP2 and mouse HIPK2. The shorter black bars indicate the

linkTRD of MeCP2 (aa 162–311) and the MeCP2-interacting region of

HIPK2 (aa 784–883) fused to GAL4 DBD and AD, respectively. AH109

yeast cells expressing DBD-linkTRD and AD-HIPK2 were tested for

growth on selective media to verify bait and prey expression (right) and

interaction (left). Cells expressing DBD-linkTRDþAD and DBDþAD-

HIPK2 were used as negative controls and DBD-p53þAD-SV40 as

positive controls. (B) TCEs from HEK293T cells expressing EGFP or

EGFP-HIPK2 with or without Flag-MeCP2 were immunoprecipitated (IP)

with anti-GFP antibodies and analysed by wb as indicated. The asterisk

indicates a nonspecific band. (C) TCEs from Mecp2-null MEFs expressing

the indicated proteins were immunoprecipitated with MeCP2 antibody;

inputs corresponding to 10% of TCEs and immunocomplexes were

analysed by wb as indicated. (D) Endogenous HIPK2 and MeCP2 were

immunoprecipitated with the indicated antibodies from TCEs of human

fibroblasts; inputs corresponding to 10% of TCEs and immunocomplexes

were analysed by wb with MeCP2 and HIPK2 antibodies. Rabbit IgGs

were used as a negative control. The asterisks indicate non-specific

bands. AD, activation domain; DBD, DNA-binding domain; EGFP,

enhanced green fluorescent protein; HEK, human embryonic kidney;

HIPK2, homeodomain-interacting protein kinase 2; KD, kinase-dead;

MBD, methyl-CpG binding domain; MeCP2, methyl-CpG-binding protein

2; MEF, mouse embryonic fibroblast; TCE, total cell extract; TRD,

transcriptional repression domain; wb, western blot.
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which two or three N-terminal serine residues were substituted
with alanine as HIPK2 substrates (Fig 3A). Two of the mutated
residues (Ser 80 and Ser 164) are putative HIPK2 targets, whereas
the third (Ser 229)—within the TRD—had already been excluded
as substrate in the above experiments. Comparable levels of
phosphorylation were obtained with wt MeCP2 and the double
mutant (S164,229A), therefore we could exclude Ser 164 as an
HIPK2 target. By contrast, a pronounced reduction in MeCP2
phosphorylation was seen with the triple mutant (S80,164,229A).
This differs from the first by having eliminated the Ser 80 phos-
phorylation site as well, indicating that this residue is an HIPK2
target. As the substitution of Ser 80 with alanine also significantly
reduces MeCP2 phosphorylation, this residue seems, at least
in vitro, to be the principal HIPK2 target. This was further
confirmed on in vitro phosphorylated MeCP2 by immunoblotting
with an MeCP2 Ser80 phospho-site-specific antibody (S80P),
the specificity of which was confirmed on either endogenous
MeCP2 or exogenous wt or the S80A non-phosphorylatable
MeCP2 derivative in cortical neurons and in Mecp2-null MEFs
(supplementary Fig S1 online).

To test whether Ser 80 is an HIPK2 target in vivo, we
immunoprecipitated endogenous MeCP2 from HFs transiently
transfected with wt or KD EGFP–HIPK2 or EGFP alone. Immuno-
complexes were resolved on SDS–polyacrylamide gel electro-
phoresis (SDS–PAGE), blotted and immunoreacted with MeCP2 or
S80P antibodies. Aliquots of the same TCEs (input) were used for
wb analyses to demonstrate that equal amounts of EGFP chimeras
were present in the input. As shown in Fig 3B, wt HIPK2, but not
the KD, strongly increased the reactivity for the S80P antibodies,
indicating that HIPK2 can phosphorylate endogenous MeCP2 at
Ser 80 in vivo. As indicated by the empty vector control, MeCP2 is
weakly phosphorylated at Ser 80 in HFs. By contrast, neuronal
cells show higher MeCP2 phosphorylation at Ser 80 (Tao et al,
2009; Fig 3D) and, under our experimental conditions, further
phosphorylation upon ectopic HIPK2 expression could not be
detected by our antibody (Fig 4B; data not shown). Thus, to

confirm the causal role of HIPK2 in MeCP2-Ser 80 phosphoryla-
tion in vivo, we used neuron-differentiated P19 cells (Latella et al,
2001) and primary mouse cortical neurons in which endogenous
HIPK2 was depleted by RNA interference. A strong reduction in
reactivity for the S80P antibody was observed in both cell types
upon HIPK2 depletion, although, as previously described for other
cells (Iacovelli et al, 2009), HIPK2 expression could be only partly
depleted (Fig 3C,D).

Altogether, these data depict HIPK2 as a kinase capable of
phosphorylating MeCP2 in vivo through direct complex forma-
tion. Two other kinases have been reported to be involved in
MeCP2 phosphorylation. Of these, CaMKII and/or IV probably
mediate the activity-dependent phosphorylation of Ser 421 in
neurons, but as no interaction has been established between the
two proteins, it is still unknown whether the CaM kinases target
MeCP2 directly or whether other kinases are involved (Zhou et al,
2006; Tao et al, 2009). Cyclin-dependent kinase-like 5 (CDKL5),
the second kinase, is able to associate with MeCP2 and promote
its phosphorylation in vitro (Mari et al, 2005). In this case,
however, the‘ specific target residue has not been mapped and it is
unclear whether MeCP2 is a target of CDKL5 in vivo.

MeCP2 and HIPK2 cooperate in inducing apoptosis
To begin investigating the functional role of the interaction
between HIPK2 and MeCP2, we expressed the two proteins either
alone or together in various cell lines—HFs, NIH 3T3 fibroblasts,
MEFs and neuron-differentiated P19 cells—and assessed cell
survival. We found increased cell death in each of the tested
cell lines not only, as expected, when HIPK2 was overexpressed
but also with MeCP2 alone (Fig 4A,B). When both proteins were
expressed together, the number of dead cells increased in an
additive manner. This additive effect depends on the catalytic
activity of HIPK2 as coexpression of MeCP2 and the KD mutant
induces a level of cell death similar to that of MeCP2 alone.
Comparable results were obtained with each cell line tested
by using either Trypan blue exclusion or TdT-mediated dUTP
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Fig 2 | HIPK2 phosphorylates the MeCP2 amino-terminus in vitro. (A) HEK293T cells were transiently transfected with the indicated Flag-tagged

proteins or the empty vector (Flag alone). TCEs were immunoprecipitated with Flag antibody and processed as follows: 90% of the immunopreci-

pitated material was incubated with g-[33P]-ATP and recombinant MeCP2. The labelled proteins were separated by SDS–PAGE, transferred to nitro-

cellulose membranes, visualized by autoradiography and subsequently immunoblotted with MeCP2 antibody. Ten per cent of the immunoprecipitated

material was immunoblotted with HIPK2 antibody (lower panel). The background signal, equally present in the empty vector (Flag) and the KD

negative control samples, might be due to non-specifically precipitated cellular kinases. (B) In vitro kinase assay was performed as described in (A),

with the indicated MeCP2 deletion derivatives. Upper four panels, autoradiogram; lower panel, wb. The asterisk indicates a non-specific band. HIPK2,

homeodomain-interacting protein kinase 2; KD, kinase-dead; MBD, methyl-CpG binding domain; MeCP2, methyl-CpG-binding protein 2; SDS–PAGE,
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nick end labelling assays (data not shown), indicating that
MeCP2-induced cell death, similarly to that induced by HIPK2,
is apoptotic.

As HIPK2 phosphorylates MeCP2, we tested whether MeCP2
works downstream from HIPK2 in the induction of cell death and,
therefore, assessed cell viability of Mecp2-wt and Mecp2-null
MEFs upon expression of wt or KD HIPK2. HIPK2-mediated cell
death was reduced in the Mecp2-null MEFs as compared with
that in the Mecp2-wt MEFs (Fig 4C), indicating that MeCP2 is
involved in HIPK2-mediated apoptosis. However, the level of cell
death in the Mecp2-null cells expressing HIPK2 was above the
background levels at each time tested, indicating, as expected,
that the kinase has MeCP2-independent functions in promoting
cell death. The reduced cell death induced by HIPK2 in the
Mecp2-null MEFs was rescued by the concomitant expression of
wt MeCP2 (Fig 4D), further confirming that MeCP2 contributes to
HIPK2-mediated apoptosis.

As MeCP2 performs its best-characterized functions by binding
methylated DNA, we also tested whether the apoptotic functions

require the DNA-binding properties. Indeed, expression of the Rett
syndrome-associated MeCP2-R106W mutant, which is unable to
bind to methylated DNA (Yusufzai & Wolffe, 2000), was unable to
restore cell death levels (Fig 4D). Additionally, when HIPK2 was
expressed with the non-DNA-binding mutant, not only was the
additive effect in inducing apoptosis lost, but also a reduction in
the proapoptotic activity of HIPK2 was observed in a small but
reproducible manner. This apparent dominant-negative effect of
the R106W mutant on the apoptotic function of HIPK2 indicates
that MeCP2 binding to methylated DNA might modulate the
interaction of HIPK2 with the proper transcription factors and
cofactors involved in the apoptotic response (Calzado et al, 2007;
Rinaldo et al, 2007).

MeCP2 has recently been reported to be required for the
growth of prostate cancer cells (Bernard et al, 2006). In these cells,
MeCP2 depletion results in inhibition of proliferation, whereas its
overexpression confers a growth advantage that allows these
androgen-dependent tumour cells to proliferate in the absence
of the hormone. Interestingly, we could confirm the reduced
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proliferation rate in our Mecp2-null MEFs that have a mean
doubling time of 39 h compared with 24 h of the wt MEFs (data not
shown). However, the apoptotic effect induced by MeCP2—even
without coexpression of HIPK2—that we report here is in apparent
contrast with the data obtained by using prostate cancer cells.
One of the main differences between our experiments and
those of Bernard and co-workers is that we used only non-
transformed or terminally differentiated cells, whereas they used
only tumour cells. We, therefore, tested whether tumour
transformation might explain our divergent results. Surprisingly,
in tumour cells—HeLa, RKO, U2OS or spontaneously transformed
NIH 3T3 cells—we found neither induction of cell death by
MeCP2 overexpression nor the additive effect caused by its

expression with HIPK2 (data not shown); this indicates that the
divergent response to MeCP2 overexpression might depend on
tumour transformation. However, the molecular basis of this
divergence is unknown at present.

Ser 80 phosphorylation contributes to apoptosis
We next addressed whether phosphorylation at Ser 80 is involved
in the apoptotic function of the two proteins and assessed the
capacity of some MeCP2 non-phosphorylatable mutants to induce
cell death in Mecp2-null MEFs alone or in combination with
HIPK2. As shown in Fig 5A, the alanine substitutions at Ser 164
and Ser 178 did not significantly alter the capacity of MeCP2
to induce cell death either alone or with HIPK2. By contrast, the
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S80A mutant that cannot be phosphorylated (Fig 5A) was not able
to induce a level of cell death significantly above that of the
control cells and, when coexpressed with HIPK2, did not show
any additive effect in MEFs (Fig 5A) or in neuron-differentiated P19
cells (Fig 5B). Thus, we tested whether substitution of Ser 80 with
glutamate (S80E), mimicking phosphorylation, might render
MeCP2 independent from HIPK2 activation in the cell viability
assay. When expressed in Mecp2-null MEFs (Fig 5A) or in neuron-
differentiated P19 cells (Fig 5B), MeCP2-S80E induced a level of
cell death similar to that obtained by coexpressing wt MeCP2 and
HIPK2. Coexpression with wt HIPK2 did not significantly increase
this level, therefore supporting the idea that, under these
conditions, MeCP2-Ser 80 phosphorylation is mediated by HIPK2
and contributes to induction of cell death.

To conclude, here we provide strong evidence of HIPK2 as a
kinase associating with MeCP2 and causing its phosphorylation at
Ser 80 in vitro and in vivo; furthermore, our studies show that the
two proteins cooperate in the HIPK2-mediated apoptotic pathway
in an Ser 80-dependent manner. As described, Ser 80 has
previously been identified as one of several serine residues within
MeCP2 that are phosphorylated in the brain (Zhou et al, 2006; Tao
et al, 2009). Accordingly, our S80P antibody detects this specific
phosphorylation on endogenous MeCP2 in brain extracts as well
as in neuron cultures. Thus, from one viewpoint, it will be
interesting to evaluate whether and which types of HIPK2 function
are related to MeCP2 phosphorylation in non-neuronal cells (e.g.
DNA-damage response). From another viewpoint, given the role
of MeCP2 in the brain, which is best illustrated by the onset of Rett
syndrome in females with MECP2 mutations, it will be interesting
to analyse the function of the HIPK2–MeCP2 interaction in the
nervous system. Importantly, HIPK2 is highly expressed in both

the central and peripheral nervous system, and Hipk2-null mice
show an array of psychomotor abnormalities, underscoring an
important role of this kinase in the nervous system (Wiggins et al,
2004; Isono et al, 2006; Zhang et al, 2007). Interestingly,
locomotor defects were also observed in the recently developed
Mecp2S80A-knock-in mice in which MeCP2 cannot be phospho-
rylated at Ser 80 (Tao et al, 2009). Our unpublished results
indicate a strong overlap between MeCP2 and HIPK2 expression
in the brain, underscoring the possibility that they belong to the
same molecular pathway also in this organ. Therefore, it will be
challenging to analyse whether HIPK2 contributes to MeCP2-
Ser 80 phosphorylation in the brain, and whether it might be
involved in the pathogenesis of the Rett syndrome.

METHODS
Plasmids and reagents. For the yeast two-hybrid screen, the
linkTRD region (amino acids (aa) 163–311) of human MeCP2 fused
with the GAL4 DBD (pGBKT7) was expressed in the yeast strain
AH109 with a mouse embryo day 11 cDNA library (Clontech, Milan,
Italy). The preparation and source of other plasmids, antibodies
and reagents are described in the supplementary information online.
In vitro kinase assay. Recombinant proteins were expressed and
purified as previously described (Bertani et al, 2006). Kinase
assays were performed by incubating immunoprecipitated kinases
with recombinant substrates in the presence of g-[33P]-ATP as
described (Bertani et al, 2006). Labelled proteins were separated
by SDS–PAGE, transferred to membranes, visualized by auto-
radiography or by PhosphorImager analysis (GE Healthcare,
Milan, Italy) and immunoblotted.
siRNA interference. HIPK2-specific (HIPK2i) and universal nega-
tive control (UNC) short interfering RNA (siRNA) were HIPK2i
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stealth RNAi sequences (a mix of three different sequences) and
stealth RNAi Negative, Medium GC Duplexes, respectively
(all from Invitrogen, Milan, Italy). Cells were transfected using
RNAiMAX reagent (Invitrogen) according to the manufacturer’s
instructions.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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