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Absence of resonant decay for metastable vacua in gauge theories of scalar fields
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We prove the impossibility of resonant decay of a metastable vacuum in a theory of a scalar field
coupled to a gauge field. Our result extends to gauge theories of scalar fields a recent no go theorem
for resonant tunneling in a pure scalar field theory.

PACS numbers:

I. INTRODUCTION

Understanding in detail the mobility patterns in the
landscape is a challenging problem. In fact rather little is
known about it and thus even a study of what may seem
non generic paths is of interest. For example Tye [1],[2]
has suggested to apply the phenomena of rapid tunnel-
ing [4],[5],[6],[7],[8] to shed a different light on the issue of
the cosmological constant. Tunneling is generically heav-
ily suppressed. In quantum mechanics it is known that
there are special barrier configurations for which the sup-
pression factor is removed and tunneling proceeds as if
the barrier were transparent, this phenomenon is called

FIG. 1: Double barrier particle decay: In the semiclassical
regime a metastable state with wave function localized around
x = x+ decays to the true vacuum localized around x = x−.
If the length of the classically allowed region x1 < x < x2

contains a half-integer number of de Broglie particle wave-
length then quantum interference leads to resonant tunneling.
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resonant tunneling.
Although resonant tunneling is a well understood and

observed phenomenon in quantum mechanics [9],[10], it
does not easily extend to systems with an infinite num-
ber of degrees of freedom. Indeed a no-go theorem for
resonant tunneling from a metastable vacuum in a scalar
quantum field theory (SQFT) has been recently proved
[4]. The aim of the present paper is to study whether
theories with more structure then SQFT give a different
outcome. Gauge theories had provided exits out of no-go
theorems for pure scalar field theories. One example is
the existence of solitons in D > 2 in theories of a scalar
field coupled to a gauge field, which are forbidden for
a pure scalar field theory in D > 2 by Derrick theorem
[11]. Motivated by that, we will analyze the possibility of
resonant tunneling in theories of scalar fields coupled to
gauge fields with several metastable vacua. We will fol-
low the ideas of the proof of the no-go theorem for SQFT
[4], generalizing it to a gauge theory in any space-time
dimension. The result is that in a theory of a scalar field
coupled to a gauge field a homogenous metastable vac-
uum does not decay in a resonant fashion. This provides
a no go theorem for resonant vacuum decay which gen-
eralizes [4] in allowing the presence of gauge field with
generic coupling to the scalar field.

The organization of the paper is the following: In the
next section we review resonant tunneling in quantum
mechanics, leaving for the appendix the details of the
derivations of the tunneling amplitudes. We then dis-
cuss what it would be required in order to have a similar
phenomenon in quantum field theory, such as the con-
straints imposed by time-analytic continuation. In sec-
tion III we generalize to a generic number of space-time
dimensionsD the proof of the no go theorem of [4] for res-
onant tunneling in SQFT, in order to be able to discuss
resonant tunneling in gauge theories of scalar fields. In
the appendix a derivation of quantum mechanical tunnel-
ing amplitudes and resonance conditions for multi-barrier
potentials is reviewed.

II. RESONANT TUNNELING: FROM QM TO

QFT

Quantum interference is typical in systems with a de-
generate set of classical trajectories. In the double barrier
potential V (x) in figure 1, in the semiclassical regime a
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FIG. 2: In the semiclassical regime, a particle with wave
function localized around a false vacuum x = x+ can decay
to the true vacuum localized around x = x− by quantum
tunneling the barrier x+ < x < x1.

point particle with wave function localized around the
false vacuum x = x+ will decay to the true vacuum lo-
calized around x = x−. The tunneling process involves
an infinite number of decay paths, labeled by the number
of oscillations in the classical allowed region x1 < x < x2.
Different oscillating paths can constructively interfere
and, for specific particle wave lengths the double poten-
tial barrier becomes completely transparent. This phe-
nomenon is called resonant tunneling, and it has been
observed in various experiments [9],[10].
While the amplitude to decay by tunneling through

the single barrier in fig. 2 is at leading order in h̄ expo-
nentially suppressed by a instanton action

T =
1

cosh(SI)
∼ exp

(

−
1

h̄

∫ x1

x+

dx
√

2V (x)

)

, (1)

in the double barrier case, if all the oscillating paths in
region x1 < x < x2 have the same phase at x = x2, they
create a constructive interference for the wave function
entering the second forbidden region x2 < x < x3. Con-
structive interference happens when the distance between
the two inversion points x = x1 and x = x2 contains an
half-integral number of de Broglie wave lengths

SII =
1

h̄

∫ x2

x1

dx
√

−2V (x) =

(

N +
1

2

)

π, (2)

for integers N . Equation (2) denotes a resonance condi-
tion, since in this case the amplitude to decay to x = x−

reaches its maximum modulus

|T+−| =
1

cosh(SI − SIII)
. (3)

FIG. 3: Double barrier decay in QFT. The field in a false
vacuum ϕ = ϕ+ can decay trough quantum tunneling toward
lower energy density local minima of the effective potential.

SI and SIII are the instanton actions that dominate the
amplitude in the two forbidden regions x+ < x < x1, and
x2 < x < x3,

SI =
1

h̄

∫ x1

x+

dx
√

2V (x),

SIII =
1

h̄

∫ x3

x2

dx
√

2V (x). (4)

If SI ∼ SIII the decay amplitude (3) gets close to one
|T+−| <∼ 1, and thus the metastable state x = x+ be-
comes very short living. For this to happen it is required
that SI − SIII ∼ 0, and that SII satisfies eq.(2). In the
semiclassical regime both SI and SIII are large numbers
in h̄ units, thus the condition SI − SIII ∼ 0 requires a
large amount of fine tuning for the shape of the potential
V (x).

In quantum field theory the post-tunneling dynamics
would begin in a localized space-time region, in a way
similar to the one-barrier tunneling field decay discussed
in [12],[13]. The field tunnels in a finite space-time re-
gion by making a quantum jump from its original value
ϕ = ϕ+ to the final vacuum value ϕ = ϕ−, ( see figure 3).
In the thin wall approximation, new and old vacua are
separated by a domain wall, whose positive energy bal-
ances exactly the decrease in energy in the limited new
vacuum region. The domain wall will finally expand by
converting potential energy into wall kinetics energy.

The object that computes the amplitude per unit of
space-time volume for the field to tunnel through a clas-
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sically forbidden region is the Euclidean path integral

I =

∫

Dϕe−SE [ϕ]. (5)

In the semiclassical approximation the dominant con-
tributions to I are Euclidean classical fields (instantons).
These Euclidean fields satisfy a global constraint which
is the Euclidean version of energy conservation

∂

∂tE

∫

d~x

[

1

2

(

∂ϕ

∂tE

)2

−

d
∑

i=1

1

2

(

∂ϕ

∂xi

)2

− V (ϕ)

]

=
∂

∂tE

∫

d~x

[

1

2

(

∂ϕ

∂tE

)2

− U [ϕ]

]

= 0. (6)

In quantum field theory (QFT) in order to have quan-
tum interference a periodic field path ϕ, solution of the
equations of motion with Lorentzian signature, would be
required. Resonant tunneling would then follow if its ac-
tion S[ϕ] satisfied

S[ϕ] =

(

N +
1

2

)

π, (7)

for integer N .
This periodic path should be connected via time ana-

lytic continuation to Euclidean paths, the latter describ-
ing tunneling in classically forbidden regions of the po-
tential. The question is whether in quantum field theory
there are oscillating phenomena that parallel the oscil-
lating particle paths in the region x1 < x < x2 of figure
1.
In the classically allowed regions, where the potential

for constant field configuration is less then the metastable
vacuum energy density, the generalized potential U [ϕ] of
some classical field solution could become negative, (for
example this could happen for the potential in fig. 3 if on
a sufficiently large space region ϕ assumes a value in the
interval ϕ1 < ϕ < ϕ2). If this happens one is forced to
analytic continue the solution to real time tE → itE = t
at the point t̃E where ∂tEϕ(t̃E , ~x) = 0. Analytic contin-
uation in t̃E = t̃ requires ∂tEϕ(t̃E , ~x) = 0 = ∂tϕ(t̃, ~x).
In the following we will assume analytic continuation

of an instanton ϕ(tE , ~x) to Lorentzian time and then back
to Euclidean time

U [ϕ](t1E) = U [ϕ](t2E) = 0, U [ϕ](tE) < 0, t1E < tE < t2E .

The Lorentzian continuation ϕ(t, ~x) is defined on the
interval [t1, t2], where t1 = t1E and t2 = t2E .

Together with this solution there are equally domi-
nant contributions from paths in which the Euclidean
instanton is continued to a Lorentzian classical field
ϕn(t, ~x), which is a periodic extension of ϕ for a time
period (2n + 1)(t2 − t1), for integer n. ϕn(t, ~x) would

contribute to the path integral with action S[ϕn] =
S[ϕ](2n+1)(t1,t2) = (2n+ 1)S[ϕ](t1,t2), where

S[ϕ](t1,t2) =
∫ t2

t1

dt

∫

d~x

[

1

2

(

∂ϕ

∂t

)2

−

d
∑

i=1

1

2

(

∂ϕ

∂xi

)2

− V (ϕ)

]

, (8)

thus creating quantum interference in the path-integral.
A necessary condition for quantum interference in a

multi-vacua potential to affect field decay is therefore the
existence of a finite action classical Lorentzian solution
ϕ defined on a time interval [t1, t2]. ϕ has vanishing time
derivative ∂tϕ(t1, ~x) = ∂tϕ(t2, ~x) = 0 in order to be an-
alytically continued to instanton field solution. In the
following, we will check whether ϕ has non-vanishing ac-
tion. We consider resonant decay in scalar fields theories,
already discussed in [4], and the same issue in gauge the-
ories of scalar fields, which is the focus of this paper.

III. VACUUM DECAY IN A LANDSCAPE

POTENTIAL AND THE QUESTION OF

QUANTUM INTERFERENCE

As discussed at the end of the previous section, in order
to have quantum interference in vacuum decay the exis-
tence of a Lorentzian solution ϕ(t, ~x) defined on a time in-
terval [t1, t2] with non-vanishing action satisfying eq. (7)
is required. Analytic continuation of ϕ to Euclidean sig-
nature in t = t1 = t2 requires ∂tϕ(t1, ~x) = ∂tϕ(t2, ~x) = 0.
Moreover ϕ must respect the total energy constraint.
Since we are studying the decay of the false vacuum, ϕ
has to approach at spacial infinity the original metastable
vacuum ϕ+

lim
|~x|→∞

ϕ(t, ~x) = ϕ+, (9)

and therefore

lim
|~x|→∞

∂µϕ(t, ~x) = 0. (10)

A. No resonant tunneling in a scalar field theory

Let us consider a scalar field theory in D = 1+d space-
time dimensions with Lagrangian

L =
1

2
∂µϕ∂

µϕ− V (ϕ), (11)

where V (ϕ) is a generic potential with various metastable
vacua.
A necessary condition for the field ϕ to have non-

vanishing action in the interval [t1, t2] is the strict posi-
tivity of the following functional
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OL[ϕ] =

∫ t2

t1

dx0

∫

d~x

[

(∂0ϕ)
2 +

1

d

d
∑

i=1

(∂iϕ)
2

]

. (12)

In fact, if OL[ϕ] = 0 , being an integral of a sum of pos-
itive terms, the derivatives of the field vanish identically
and S[ϕ] = S[ϕ+] = 0.
By using

∂µϕ∂νϕ = Tµν + ηµνL (13)

OL[ϕ] can be written in terms of the following combina-
tions of diagonal components of the energy-momentum
tensor Tµν

OL[ϕ] =

∫ t2

t1

dx0

∫

d~x

[

T00 +
1

d

d
∑

i=1

Tii

]

. (14)

Energy-momentum conservation ∂µTµi = 0 for the i-
spacial component gives

∂iTii =
∑

j 6=i

∂jTji − ∂0T0i

=
∑

j 6=i

∂j(∂jϕ∂iϕ)− ∂0(∂0ϕ∂iϕ).

(15)

This implies that

∂i

∫ t2

t1

dx0

∫

∏

j 6=i

dxjTii = ∂iIii = 0, (16)

the Tii density integrated over the space-time domain
orthogonal to the xi-direction and containing the time
interval (t1, t2) is constant along xi. Therefore Iii can be
computed at xi = ∞, where it depends only on V (ϕ+),
since all the field derivatives go to zero at infinity

Iii = lim
xi→∞

∫ t2

t1

dx0

∫

∏

j 6=i

dxj ·

(

1

2
(∂0ϕ)

2 +
1

2
(∂iϕ)

2 −
1

2

d
∑

i=1

(∂iϕ)
2 − V (ϕ)

)

= −

∫ t2

t1

dx0

∫

∏

j 6=i

dxjV (ϕ+). (17)

On the other hand, ∂µTµ0 = 0 gives

∂0T00 =

d
∑

i=1

∂iTi0 =

d
∑

i=1

∂i(∂iϕ∂0ϕ), (18)

that integrated all over the space gives energy conserva-
tion

∂0I00 = ∂0

∫

d~x T00 = 0. (19)

The energy equals the energy of our initial state at t1.
This being the final configuration of the Euclidean tun-
neling, its Euclidean energy is the same as the Euclidean
energy of the original decaying state. Since both configu-
rations have zero time derivatives, there is no distinction
between Euclidean and Lorentzian energy. Assuming a
homogeneous original false vacuum ϕ = ϕ+,

I00 =

∫

d~x V (ϕ+). (20)

By using eq.(17) and eq.(20) in the field functional OL[ϕ]
(12) one obtains

OL[ϕ] =

∫ t2

t1

dx0 I00 +
1

d

d
∑

i=1

∫

dxi Iii

=

∫ t2

t1

dx0

∫

d~x

[

V (ϕ+)−
1

d

d
∑

i=1

V (ϕ+)

]

= 0. (21)

which shows that ∂0ϕ = |~∇ϕ| = 0 in the time interval
[t1, t2], thus implying that the field ϕ has zero action
in the time interval [t1, t2]. Moreover, since the field is
constant in [t1, t2] it must be equal to the false vacuum
ϕ = ϕ+. This shows that an intermediate analytic con-
tinuation to Lorentzian signature is impossible, and the
full tunneling event is described by instanton fields in Eu-
clidean signature. Thus one concludes that for the decay-
ing of a metastable vacuum in a pure scalar field theory
with a multi-vacua potential there is no quantum inter-
ference in the semiclassical approximation. This proves
the no go theorem for resonant tunneling in a pure scalar
field theory in a generic number of space-time dimensions
D. Generalization of this result to an arbitrary number
of interacting scalar fields is straightforward, since also in
this case one can compute each of the terms in the space-
like diagonal components of the energy-momentum ten-
sor appearing in (14) by going at spacial infinity, where
they all equals minus the energy of the metastable vac-
uum.

Recently, [7] have shown that special non-homogenous
field configurations with finite energy with respect to a
metastable vacuum do exhibit resonant decay. These
states circumvent the no-go theorem of [4] in allowing a
non-vanishing r.h.s. for eq.(20), which makes (21) strictly
positive, thus allowing for oscillating in time field solu-
tions.

It is also interesting to observe that instantons describ-
ing motion in forbidden regions are non constant fields
connected by analytic continuation to two real time so-
lutions, the field before and after tunneling, at point
with vanishing Euclidean time derivative. Instantons are
therefore the Euclidean version of the oscillating field for-
bidden by the no-go theorem. The no-go theorem must
fail in Euclidean signature, and it does. The Euclidean
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version of eq.(12) is

OE [ϕ] =

∫ t2
E

t1
E

dx0

∫

d~x

[

(∂0ϕ)
2 +

d
∑

i=1

(∂iϕ)
2

]

. (22)

This functional can be written in terms of the Euclidean
stress tensor TE

µν by summing over the diagonal compo-
nents of

∂µϕ∂νϕ = TE
µν + δµνLE , (23)

where the Euclidean Lagrangian is

LE =
1

2
∂µϕ∂µϕ+ V (ϕ). (24)

By using eq.(23) and the Euclidean conservation law
∂µT

E
µν = 0, one can rewrite (22) as

OE [ϕ] = −2
D

D− 2

∫ t2
E

t1
E

dtE

∫

d~x V (ϕ(tE , ~x)). (25)

The above equation makes sense only when the integral
in the r.h.s. is non-negative. This is achieved when there
is a large enough region of Euclidean space where the
field acquires values in classically allowed regions where
V (ϕ) < 0, such as the regions ϕ1 < ϕ < ϕ2 and ϕ > ϕ3

for the potential in figure (3).

B. No quantum interference in the decay of a

scalar field coupled to a gauge field

We study now whether a theory of a scalar field cou-
pled to a gauge field admits non-constant classical field
solutions of Lorentzian time signature that can be ana-
liticaly continued to Euclidean signature in two separate
occasions.
We consider the Lagrangian

L = −
1

4
F a
µνF

aµν +
1

2
Dµϕ(D

µϕ)† − V (ϕ). (26)

In the semiclassical approximation the Euclidean path
integral is dominated by Euclidean classical fields. These
fields satisfy the global constraint

∂0

∫

d~x

[

1

2

d
∑

i=1

(F a
0i)

2 +
1

2
D0ϕ(D0ϕ)

†

−
1

4

d
∑

i,j=1

(F a
ij)

2 −

d
∑

i=1

Diϕ(Diϕ)
† − V (ϕ)

]

= 0,

which is an Euclidean version of energy conservation. We
choose the original metastable state energy equal to zero

V (ϕ+) = 0 so that the previous equation gives

∫

d~x

[

1

2

d
∑

i=1

(F a
0i)

2 +
1

2
D0ϕ(D0ϕ)

†

]

=

∫

d~x

[

1

4

d
∑

i,j=1

(F a
ij)

2 +

d
∑

i=1

Diϕ(Diϕ)
† + V (ϕ)

]

= : U [ϕ,Aa
µ]. (27)

Given the Euclidean fields ϕ(tE , ~x), Aa
µ(tE , ~x), (27) is

an equation for tE . For values of the Euclidean fields
in regions where V (ϕ) < 0, the r.h.s of eq.(27) might
become negative U [ϕ,Aa

µ] < 0. We assume that this

is the case on an interval t1E < tE < t2E , and check the
possibility of a analytic continuation of the fields ϕ(tE , ~x)
and Aa

µ(tE , ~x) to Lorentzian signature tE → itE = t at

t1E = t1 and back to Euclidean signature t → −it = tE
at t2E = t2. The Lorentzian classical solutions ϕ(t, ~x)
and Aa

µ(t, ~x) are then defined on the interval [t1, t2], they
dominate the path integral and have both vanishing time
derivative at t = t1 and t = t2, as required by analytic
continuation. In order to check if there is a degeneracy of
Lorentzian motions that can produce interference in the
path integral we will check if ϕ(t, ~x) and Aa

µ(t, ~x) have a
non vanishing action in the interval [t1, t2].
To this aim we again use the energy-momentum tensor

Tµν = F ρa
µ F a

ρν +Dµϕ(Dνϕ)
† − ηµνL, (28)

and consider the following sum over the diagonal com-
ponents of Tµν

OL[ϕ,A
a
µ] =

∫ t2

t1

dx0

∫

d~x

[

D0ϕ(D0ϕ)
† +

1

d

d
∑

i=1

Diϕ(Diϕ)
†

]

+

∫ t2

t1

dx0

∫

d~x





d− 1

d

d
∑

i=1

(F a
0i)

2 +
1

d

d
∑

i,j=1

(F a
ij)

2





=

∫ t2

t1

dx0

∫

d~x

[

T00 +
1

d

d
∑

i=1

Tii

]

. (29)

OL[ϕ,A
a
µ] ≥ 0 is a semi-definite positive functional,

and a field solution (ϕ̃, Ãa
µ) with a non-vanishing action

gives OL[ϕ̃, Ã
a
µ] > 0. We use the component equations

of ∂µTµν = 0 integrated over space-time subregions, in
order to show that indeed for every classical solution
OL[ϕ,A

a
µ] = 0. This implies that every solution defined

on a finite time interval [t1, t2] which can be analiticaly
continued to Euclidean signature has to be a constant
field configuration equal to the false vacuum. The con-
clusion will be that field paths describing the full tunnel-
ing event are purely Euclidean and therefore there is no
resonant decay.



6

The overall T00 space integral is set to be equal to
the total false vacuum energy V (ϕ+) = 0 that is our
initial condition in time, therefore the space integral of
T00 vanishes in the r.h.s of (29).
On the other hand, the component equation ∂µTµi = 0

gives

∂iTii = ∂0T0i −
∑

j 6=i

∂jTji

= ∂0(F
ρa
0 F a

ρi +D0ϕ(Diϕ)
†)

−
∑

j 6=i

∂j(F
ρa
i F a

ρj +Diϕ(Djϕ)
†). (30)

By integrating the previous equation over a space-time
volume orthogonal to the xi direction one gets

∂i

∫ t2

t1

dx0

∫

∏

j 6=i

dxjTii =

∫

∏

j 6=i

dxj

∫ t2

t1

dx0∂0



−
∑

j 6=i

F a
0jF

a
ji +D0ϕ(Diϕ)

†





−

∫ t2

t1

dx0

∫

∏

j 6=i

dxj

∑

j 6=i

∂j(F
ρa
i F a

ρj +Diϕ(Djϕ)
†)

= 0. (31)

The previous equation states that the above integral
is constant along xi, therefore it is equal to its value for
xi → ∞, where it easier to see that it vanishes, since
all the field derivatives vanish at spacial infinity, and the
potential goes to the false vacuum V (ϕ+) = 0.
We have shown that the r.h.s of eq. (29) vanishes, from

the same equation one can read that the two Lorentzian
continuations ϕ(t, ~x), Aa

µ(t, ~x) have a vanishing action
(26) in the interval [t1, t2]. We conclude that there is
no quantum interference in vacuum decay in a theory of
a scalar field coupled to a gauge field. Therefore even
in the presence of a gauge field a metastable vacuum
cannot decay in a resonant fashion. Generalization of the
above result to a gauge theory of an arbitrary number of
interacting scalar fields is straightforward, since all the
steps of the proof we gave go through also in this case.

IV. CONCLUSIONS

We studied whether in a theory of a scalar field cou-
pled to a gauge field a homogeneous metastable vacuum
can decay in a resonant fashion. The answer turns out to
be negative and thus our result generalizes the no go the-
orem for resonant tunneling in a pure scalar field theory
[4]. The proof follows the line of [4], appropriately gen-
eralized to arbitrary space-time dimensions and to the
presence of a gauge field. Gauge interaction have exhib-
ited in the past novel non-perturbative phenomena such
as the existence of solitons in D > 2, forbidden for a

pure scalar field theory by Derrick theorem [11]. Yet, in
the present case they did not come to rescue, and res-
onant tunneling from a homogeneous false vacuum and
its interesting implications for the dynamics of the land-
scape mentioned in the introduction are also forbidden
for theories of scalar fields coupled to gauge fields.
The authors of the no go theorem for resonant tun-

neling in a pure scalar field theory [4] have recently pro-
posed a way to circumvent their own no-go theorem [7].
They consider the decay of inhomogenous exited states
of a metastable vacuum, rather then the decay of the
false vacuum itself. These states represent quite ad hoc
non-homogeneous initial configurations of the scalar field,
and whether they can emerge as the outcome of a pre-
vious tunneling event in the landscape it remains to be
explained. Besides the need to supply a natural mecha-
nism that makes the bubbles of [7] to contract, one should
also estimate the occurrence of such events in the land-
scape. This would be an essential ingredient in order
to determine whether the proposal of [7] represents an
actual possibility for rapid vacuum decay. As stressed
in [7], the present no go theorem does not apply to non
homogeneous initial states. Notice that if indeed non
homogeneous initial states can have resonant tunneling,
solitonic solutions present in gauge theories may natu-
rally supply such initial states as ground states in given
topological sectors.

V. APPENDIX: WAVE MECHANICS

METHODS FOR TUNNELING AMPLITUDES

THROUGH MULTIPLE BARRIERS

A. Tunneling through one barrier potential

Let us consider the tunneling problem represented in
figure 4, the semiclassical wave function for a particle of
unit mass with energy E in region I is given by

ΨI(x) = αR
I

eiS0(x)/h̄

(2(E − V (x)))1/4
+ αL

I

e−iS0(x)/h̄

(2(E − V (x)))1/4
,

(32)
where

S0(x) =

∫ x

x+

dx
√

2(E − V (x)) (33)

is the reduced action.
In order to compute the tunneling probability one has

to compare the semiclassical wave functions in region I
with that one in region III, beyond the barrier. Semi-
classical approximation breaks down near the classical
turning point x = x+, and in fact (32) is divergent there.
The two expressions for the semiclassical wave functions
outside the barrier (region I) and inside the barrier (re-
gion II), can be obtained by solving the Schroedinger
equation near x = x+, with the linearized potential
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FIG. 4: A particle in region I with energy E = V+−V− has a
non vanishing probability to tunnel to region III through the
classically forbidden potential barrier of region II

2(E−V (x)) ∼ 2F0(x−x+). Semiclassical approximation
is valid on the region

|x− x+| >>

(

h̄2

2F0

)1/3

, (34)

(see for example [14]), therefore by comparing the two
asymptotic expansion of the solution on the left and on
the right of the turning point x = x+ one can obtain a
relation between the semiclassical wave functions in the
two regions, called connection formula.
It is amusing to see how through a simple method

one can recover the same connection formulae without
the knowledge of the solution of the Schroedinger equa-
tion for the linearized potential near the inversion point.
Starting with the semiclassical wave function (32) in the
allowed region I, one can obtain the correct expression
for the semiclassical wave function beyond the turning
point in region II by circumventing x = x+ in the com-
plex plane along a semicircular path centered in x = x+:
x − x+ → eiϕ(x − x+). There are two ways to circum-
vent the turning point, a clockwise path ϕ = −π and the
anti-clockwise ϕ = π one, each way producing a differ-
ent wave function inside the barrier. It turns out that
the correct wave function inside the barrier is given by
summing the two contributions:

ΨII(x) = e−Θ
(

αR
I e

−iπ/4 + αL
I e

iπ/4
) e−S

′

0(x)/h̄

(2(V (x)− E))1/4

+eΘ
(

αR
I e

iπ/4 + αL
I e

−iπ/4
) eS

′

0(x)/h̄

(2(V (x)− E))1/4
,

(35)

where

S
′

0(x) =

∫ x

x1

dx
√

2(V (x) − E), (36)

and

Θ =
1

h̄

∫ x1

x+

dx
√

2(V (x)− E).

By using ΨII given by eq. (35), one can reach region
III by circumventing on the complex plane the turning
point x = x2 with two semicircular paths centered in
x = x2. The wave function in region III x > x2 outside
the barrier is then given by

ΨIII(x) = αR
III

eiS
′′

0 (x)/h̄

(2(E − V (x)))1/4
+αL

III

e−iS
′′

0 (x)/h̄

(2(E − V (x)))1/4
,

(37)
with

S
′′

0 (x) =
1

h̄

∫ x

x1

dx
√

2(E − V (x)). (38)

The relation between the wave function coefficients in
region I and III can be cast in the following nice formula

(

αR
III

αL
III

)

=

(

coshΘ −i sinhΘ

i sinhΘ coshΘ

)(

αR
I

αL
I

)

= RΘ ·

(

αR
I

αL
I

)

, (39)

which shows that the wave function which enters from
region I into the forbidden region II, it reappears in region
III as ”rotated” by the matrix RΘ

RΘ =

(

coshΘ −i sinhΘ

i sinhΘ coshΘ

)

. (40)

The factor i in the above ”rotation” matrix ensures
that its determinant is one, a necessary condition to pre-
serve the wave function norm.
The probability for transmission through a single bar-

rier is given by

|T |2 =

∣

∣

∣

∣

αR
III

αR
I

∣

∣

∣

∣

2

=
1

(coshΘ)2
, (41)

and in the semiclassical approximation that we are con-
sidering Θ >> 1

|T |2 =
1

(coshΘ)2
∼ 4e−2Θ

= 4 exp

(

−
2

h̄

∫ x2

x1

dx
√

2(V (x) − E)

)

. (42)

This last formula reproduces the tunneling probability
given in eq. (1).
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FIG. 5: Double barrier potential: Due to quantum interfer-
ence there is a finite spectrum of energies such that the prob-
ability to tunnel through the double barrier is higher than
the probability to tunnel through a single barrier. This is due
to the presence of the intermediate classically allowed region
III, where the various oscillating paths between the classical
turning points x = x1, x = x2 can quantum interfere in a
constructive way, giving rise to resonant tunneling.

B. Tunneling through a double barrier potential

For a double barrier tunneling (fig. 5) one can com-
pute the full ”rotation” matrix which rotates the wave
function of region I into the wave function of region V

~αout = RΘ1
RδRΘ2

~αin, (43)

where RΘ1
RδRΘ2

is given by

(

coshΘ1 −i sinhΘ1

i sinhΘ1 coshΘ1

)(

eiδ 0

0 e−iδ

)(

coshΘ2 −i sinhΘ2

i sinhΘ2 coshΘ2

)

= cos δ

(

cosh(Θ1 +Θ2) −i sinh(Θ1 +Θ2)

i sinh(Θ1 +Θ2) cosh(Θ1 +Θ2)

)

+ i sin δ

(

cosh(Θ1 −Θ2) −i sinh(Θ1 −Θ2)

i sinh(Θ1 −Θ2) cosh(Θ1 −Θ2)

)

.

δ =
1

h̄

∫ x2

x1

dx
√

2(E − V (x))

is the interference phase responsible for resonant tunnel-
ing, while

Θ1 =
1

h̄

∫ x1

x+

dx
√

2(E − V (x)),

and

Θ2 =
1

h̄

∫ x3

x2

dx
√

2(E − V (x)),

are the corresponding (hyperbolic) angles in the classi-
cally forbidden regions.
The transmission coefficient for double barrier tunnel-

ing is obtained by T = αR
out/α

R
in, with the condition

αL
out = 0.
Computation gives the tunneling probability

|T |2 =
1

cos2 δ cosh2(Θ1 +Θ2) + sin2 δ cosh2(Θ1 −Θ2)
.

(44)
The term in cos δ corresponds to the product of the

decay probabilities, it is the non-resonant contribution,
dominant in the limit δ = 0, when interference in the
intermediate region plays no role. For δ = 0 the two
hyperbolic angles Θ1 and Θ2 sum together giving the
sum of the rotations. The term in sin δ is the effect of the
quantum interference, and it depends on the difference
between Θ1 and Θ2.
The tunneling probability can be closed to one in the

resonant condition

δ = (n+ 1/2)π, Θ1 ∼ Θ2. (45)

Notice that Θ1 ∼ Θ2 requires a large amount of fine
tuning, since in the semiclassical regime that we are con-
sidering both Θ1 and Θ2 are large numbers in h̄ units.

C. Tunneling through N barriers

GivenN barriers separated by N−1 classically allowed
regions, the matrix which connects the wave functions on
the two regions extending to infinity is given by RN =
∏N

k=1 RΘk
Rδk

RN =

N
∏

k=1

(

coshΘk −i sinhΘk

i sinhΘk coshΘk

)(

eiδK 0

0 e−iδK

)

,

(46)
where

Θk =
1

h̄

∫

dx
√

2V (x), (47)

and

δk =
1

h̄

∫

dx
√

−2V (x). (48)

There may be various resonant tunneling conditions,
the simplest one corresponds to the existence of a energy
bound state common to all the N − 1 classical allowed
regions. If the incoming particle has this bound state
energy the total tunneling probability turns out to be
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|T |2 =
1

cosh2
(

−
∑N

k=1(−)kΘk

) , (49)

and resonant tunneling occurs for

N
∑

k=1

(−)kΘk = 0. (50)

This resonance condition extends to a generic number of
barriers N the resonance condition

Θ1 −Θ2 = 0, (51)

which has been obtained for the double barrier potential
in figure 5.
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