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Abstract

A modified, computationally efficient method to provide permutationally-invariant

polynomial bases for molecular energy surface fitting via monomial symmetrization

(Xie Z., Bowman J. M. J. Chem. Theory Comput. 2010, 6, 26-34) is reported for

applications to complex systems characterized by many-body, non-covalent interactions.

Two approaches, each able to ensure the asymptotic zero-interaction limit of intrinsic

potentials, are presented. They are both based on the tailored selection of a subset

of the polynomials of the original basis. A computationally-efficient approach exploits

reduced permutational invariance and provides a compact fitting basis dependent only

on intermolecular distances. We apply the original and new techniques to obtain a

number of full-dimensional potentials for the intrinsic three-body methane-water-water

interaction by fitting a database made of 22,592 ab initio energies calculated at the MP2-

F12 level of theory with haTZ basis set. An investigation of the effects of permutational
∗To whom correspondence should be addressed
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symmetry on fitting accuracy and computational costs is reported. Several of the fitted

potentials are then employed to evaluate with high accuracy the three-body contribution

to the CH4−H2O−H2O binding energy and the three-body energy of three conformers

of the CH4@(H2O)20 cluster.
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Introduction

Calculations of molecular properties and molecular dynamics simulations rely on the avail-

ability of realistic potential energy surfaces (PESs). In the case of simple systems, like

diatomic molecules, model potentials, e.g., harmonic, Morse or Lennard-Jones, have been

successfully employed in many applications. For triatomic systems, numerical fitting tech-

niques, e.g., 3-d splines, are suitable and often adopted to obtain a precise analytical potential

from calculated ab initio energies.1

However, the task becomes very challenging as the dimensionality of the problem in-

creases, since simple functions are unable to provide accurate fits. One possibility to tackle

this issue is to calculate the electronic energy at the nuclear geometries of interest whenever

needed during the simulation. This approach is at the heart of ab initio molecular dynamics

and related techniques. They are all based on the calculation of electronic energies “on-the-

fly”, i.e. step-by-step along the trajectory evolution (see, for instance, refs. 2–9). However, to

be practically feasible, these techniques are usually limited to computationally cheap levels of

electronic theory associated with small basis sets. Furthermore, every time a new simulation

is performed, the electronic energies must be re-calculated, and the computational overhead

often becomes too expensive for long-time dynamics or rare-event investigations. A different

and alternative type of approach consists in the fitting of a large number of ab initio energies
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to analytical expressions. These energies are calculated once even at high level of theory and

with large basis sets. The outcome is represented by accurate full-dimensional analytical

PESs which allows for fast potential calls.

Several approaches have been undertaken to precisely represent multi-dimensional PESs

in an analytical, fast-to-compute way. A viable route to fit ab initio energies is provided by

neural networks.10 They have been applied to high-dimensional PESs of isolated molecules

and molecule-surface systems.11–17 For instance, a recent application of neural networks has

provided a high-level PES for the HOCO radical and its dissociation channels.18 Another

way to treat the fitting of multidimensional PESs lies in the n-mode representation of the

potential.19–21 The potential is written as a series of intrinsic potentials that depend on nor-

mal coordinates. A variation of it, the so-called potfit potential,22 which has been developed

for applications of the Multi-configuration Time-dependent Hartree technique, is a product

of one-mode potentials. A final representation worth mentioning is the modified Shepard

approach.23,24 It is based on force fields centered at several reference geometries. These force

fields are low-order series representations of the potential, dependent on the inverse of the

internuclear distances, weighted and combined to represent the PES.

A drawback of all these methods (at least in their original versions) is that they do

not account for permutational invariance. Invariance of the PES under permutations of

identical atoms is needed to undertake successfully some dynamical applications. For in-

stance, isomerization studies25 or investigations of unimolecular dissociations26–28 necessi-

tate a permutationally-invariant surface. Early work achieved this numerically by replicating

data, see e.g. ref. 25. Ideally, the mathematical description of the PES should have permuta-

tional invariance built-in, then ab initio energies do not have to be replicated for equivalent

configurations, and the analytical potential is based on a smaller number of functions.

There has been substantial progress in fitting approaches that exploit the invariance of

an electronically adiabatic PES with respect to permutation of like atoms, to obtain precise

mathematical fits to ca 104 to 105 electronic energies for molecular potentials with as many
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as 10 atoms and numerous minima, saddle points and fragments channels.29–35 Examples

where this has been done are nitromethane (CH3NO2),30 acetaldehyde (CH3CHO),36 and

the allyl radical (C3H5).27 The two approaches that have been developed by our group are

based on using a fitting basis of invariant polynomials. In the more sophisticated and ef-

ficient approach the polynomials are represented as products of so-called invariant primary

and secondary polynomials.37 The generation of these polynomials is not a trivial task, and

it is accomplished with the MAGMA software.38 An extensive library of such polynomials

for as many as 10 atoms has been generated by Braams and one of the authors.37 The sec-

ond approach is a straightforward monomial symmetrization one, in which monomials are

made invariant by application of all permutations of all like atoms to generate multi-term

polynomials.39,40 Software to perform this symmetrization using an efficient iterative method

to obtain higher-order symmetrized monomials from lower-order ones was developed by Xie

and one of the authors.41 This software is general and user “transparent”. It requires as

input the permutational symmetry of the molecular system and the maximum order of the

polynomials to generate. The resulting representation is equivalent to the more sophisticated

and efficient one based on factored primary and secondary invariants. The monomial sym-

metrization approach has been combined by Guo and co-workers with the multi-level neural

network approach to create a hybrid method to fit electronic energies with application to a

number of 4 and 5 atom systems.42,43

Roughly 50 PESs have been generated using the primary and secondary invariant ap-

proach. Several variants of this approach have also been applied. These include using a

single polynomial representation as well as a “many-body” one. In the most recent applica-

tions, mainly to reactive systems, the single polynomial representation has been used. As

pointed out in a review of this method,37 the single polymonial representation does not rig-

orously separate into non-interacting fragments. However, by incorporating non-interacting

fragment data into the data set for fitting (an essential component of the procedure) the fits

do numerically incorporate this separation, with of course a (small) fitting error. The lack of
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rigorous separation is more easily seen in the monomial symmetrization method as will be

shown in detail below. This was pointed out and then remedied by Truhlar and co-workers,

following a suggestion of Xie and Bowman, in their application of monomial symmetrization

using the Xie-Bowman software for N4.44 The remedy was to remove the small number of

basis functions that do not rigorously separate and then to perform the fit with what we will

refer to as a “purified” basis.

The need to describe correctly the interaction energy of separated species becomes crucial

when dealing with non-covalent systems made of several molecular monomers. The potential

energy of such systems can often be expressed by means of a rapidly convergent many-body

representation. Thereby, the challenging problem of fitting a global full-dimensional energy

surface of a high-dimensional system with a single-polynomial representation is reduced to

the easier problem of fitting a number of lower-dimensional potentials. The two and higher-

body terms in the representation are so-called intrinsic potentials, and have the property

that a generic intrinsic p-body potential vanishes when a single monomer is separated from

the other p-1 ones. This property can be built-in as in the case of two-body sum-of-pairs

potentials,45 while the issue of describing three-body (or higher) interactions in a general

and easy way remains open. Analytical expressions based on a limited number of parameters

are available for two-body interactions. Among them are Lennard-Jones, Buckingham exp-6,

Varandas,46,47 and Tang-Toennies48 potentials, to name a few. Three-body potentials are

more difficult to model. Analytical expressions for atomic long-range three-body interactions

based on atomic multipoles have been reported.49 Recently, the E3B model that involves

explicit three-body interactions has been applied to study the water hexamer,50 and a force

field method has been employed to fit the three-body water interaction, even if on the basis of

non-linear parameters and rigid monomers.51 A many-body force field for CO2 with explicit

three-body interactions has also been reported.52

There have been numerous applications of permutationally-invariant fitting to non-covalent

interactions, e.g., the water dimer53 and trimer,54 (HCl)2,
55 (HCl)3,

56 and mixed HCl−H2O
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clusters.57 In these applications the full permutational symmetry was used, even though

some of the permutations are unfeasible. This paper is focused on permutationally fitting

non-covalent interactions without using the full permutational invariance, with emphasis on

three-body interactions in general and considering the 11-atom complex CH4−H2O−H2O

as a specific and challenging application. Two approaches will be employed and both are

based on what we term “purified" fitting bases. By that we mean eliminating symmetrized

monomials that do not rigorously separate as fragments separate. The first approach does

this by starting from the output of the monomial symmetrization software, and retaining

only those polynomials with the correct fragment limit. In the second approach, encouraged

by our results in previous studies of two-body Ar−HOCO58 and CH4−H2O59 interactions,

the purified basis is further reduced by keeping only polynomials that depend exclusively on

inter-monomer distances.

The rest of the paper is organized as follows. The next section presents the methods to

obtain the permutationally invariant fitting of many-body interactions with purified bases

and a discussion of the role of permutational symmetry. Several new, fully-flexible intrinsic

three-body CH4−H2O−H2O potentials are then obtained based on fitting roughly 23,000

ab initio electronic energies. Section 3 reports an analysis of accuracy and efficiency of

the potentials depending on the permutational symmetry and maximum polynomial order

employed, with applications of the intrinsic three-body CH4−H2O−H2O potentials to the

trimer and to the CH4@(H2O)20 cluster. This CH4@(H2O)20 cluster can be used as a model

system for methane hydrates. Methane hydrates are crystalline water-based solids similar to

ice, in which methane molecules are trapped inside cages formed by hydrogen-bonded water

molecules.60 Conclusions and summarizing remarks are in Section 4.
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Theoretical Details

Derivation of purified invariant polynomial bases

The many-body representation of the total potential energy of a molecular cluster charac-

terized by non-covalent interactions and made of N monomers can be expressed in a general

way as

V (I,J,K,...,N)(r) =
N∑
I

V (I)(rI) +
N∑

I<J

V
(I,J)
2b (rI , rJ) +

N∑
I<J<K

V
(I,J,K)
3b (rI , rJ , rK) + . . .+

+ V
(I,J,K,...,N)
Nb (rI , rJ , rK , . . . , rN),

(1)

where I, J, K etc. are shorthand notations for labeling the monomers, r is the collection

of all nuclear coordinates of the cluster, and rI , rJ etc. are the sets of nuclear coordinates

respectively of monomer I, J , etc. Eq. (1) applies to both homogenous clusters, where all

the monomers are of the same kind, and to heterogeneous systems, made of monomers of

different species. The one-body terms (V (I)) are the potential(s) of the isolated monomers.

The other higher-order terms in the representation are the so-called intrinsic potentials. The

p-body intrinsic energy (V (I,...,P )
pb ) for a given cluster geometry is equal to the difference

between the total energy of the same p-body system (V (I,...,P )) and the sum of all terms in

the representation up to the intrinsic (p-1)-body potentials, calculated at same geometry.

Clearly, as complexes separate to monomers these intrinsic potentials go to zero.

Standard generation of permutationally-invariant fitting bases via monomial symmetriza-

tion needs the permutational group symmetry and the maximum order of polynomials as

inputs. Software41 is available for this purpose. We will refer in the following to these poly-

nomial bases as full (F) bases, in contrast to the purified ones we describe below. F bases

are used to represent the intrinsic p-body potentials, via least-squares fitting to databases of
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corresponding ab initio energies. That is, in generic notation

V
F(I,...,P )
pb =

M∑
m=0

DF
b S

[
Nat∏
i<j

y
bij
ij

]
(m =

∑
bij). (2)

DF
b is a set of linear coefficients which are determined by means of a least-square fit. b

stands for the ordered collection of exponents bij. Nat is the number of atoms in the system,

and yij = exp(−rij/α) are Morse functions of the inter-nuclear distances rij between atoms

i and j. The α parameter is usually in the range between 2 and 3 au (α = 2 au for the

potentials presented in this work). S is the formal operator that symmetrizes the monomials

according to the chosen permutational group. Eq. (2) is invariant for translation, rotation,

and the allowed permutations of like atoms. Hereafter, we will denote permutational groups

by means of a short-hand notation based on their indexes. For instance, 422111 indicates an

11-atom system with a permutational group made of a subgroup of four identical atoms, two

subgroups of two identical atoms, and three single atoms. Permutation is allowed between

atoms belonging to the same subgroup, but not between atoms of different subgroups. The

three single atoms cannot permute at all. CH4−H2O−H2O is a relevant example of such a

system.

Several permutational groups of different order can be employed to describe the potential

surface of molecular clusters characterized by non-covalent interactions and for which inter-

monomer atom-exchange does not occur. In calculations where permutationally-invariant

potentials are adopted, input atomic coordinates are rigorously ordered according to the

symmetry, and atoms belonging to different monomers can be easily identified. However,

when two or more monomers are of the same kind, we require an additional permutational

invariance with respect to this monomer interchange. This particular symmetry is of course

included in full permutational groups, but it must be added to low-order groups. In the

case where this is done, our notation is to label the group with an additional ∗ symbol. For

instance, in this paper we will present fitted intrinsic three-body CH4−H2O−H2O poten-

tials with full (821) or partial (4421 or 422111∗) permutational symmetry. Operationally,
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since a modification of the existing software to include the star symmetry into low-order

symmetry groups is not straightforward, we incorporate it by duplicating the database of

energies upon collective permutation of atoms of like monomers. For the intrinsic three-body

CH4−H2O−H2O potential the database needs only to be doubled. In general, for a system

with n monomers of same type, the database must be replicated n! times. The effect of

the replication of the database is that part of the linear coefficients on which the potential

is based have identical values and can be factored. This replication of data harkens back

to earlier work where this was done, e.g., the PES of C2H2.25 Progress is being made to

incorporate this additional symmetry and will be reported later. Figure 1 clarifies the case

of the CH4−H2O−H2O system and 422111∗ symmetry.

Figure 1: Input coordinates for the CH4−H2O−H2O system with 422111∗ symmetry, as
explained in the text. Atomic order follows the permutational group and atoms can be
grouped according to the monomer they belong to. HM indicates the hydrogen atoms of the
methane monomer, while HW labels the hydrogen atoms of the two water monomers. The
two inputs differ for the collective order of the two water monomers (blue and green). To
point out this aspect only water coordinates have been explicitly reported. For both inputs
the potential must return the same value.

One fundamental property of intrinsic p-body potentials, as noted already, is that they

approach zero as one of the p monomers is separated at large distance from the other p -1

ones. A fitted potential must be able to reproduce this feature. As noted previously in the

literature,37 this is not strictly enforced by F potentials since not all the polynomials in the
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F basis separate to vanishing interactions in this limit. A simple way to tackle the issue is to

purify the full basis as noted. This is practically accomplished by generating a set of cluster

configurations where each monomer (one at a time) is set far away from the others which

are kept close together. For each configuration, inter-monomer Morse variables involving

atoms of the isolated monomer are set equal to zero, while the remaining Morse variables are

given different, non-zero values with the care to avoid (unlikely) accidental cancellation. All

monomials and polynomials of the F basis are then evaluated and those returning a value

different from zero are discarded. The final outcome is a smaller polynomial basis able to

ensure the correct zero-interaction limit. This procedure can be undertaken independently

from the permutational symmetry employed. We will label the fitting bases and potentials

obtained in this way as purified (P) bases and potentials.

The purification technique, which reduces the size of the fitting basis, can be further

advanced by restricting the P basis to polynomials dependent exclusively on inter-monomer

variables. Since this further reduces the size of the fitting basis, it is expected to speed

up substantially potential calls. In practice, we set equal to zero only intra-monomer Morse

variables and then calculate all monomials and polynomials in the P basis. Only polynomials

returning a value different from zero are maintained. The final outcome of the technique is

a very compact fitting basis, that we term a pruned purified (PP) basis. A generic intrinsic

p-body PP potential is analytically expressed as

V
PP(I,...,P )
pb =

M∑
m=p−1

DPP
b S ′

[
Nat∏
i<j

(
yPPij

)bij]
(m =

∑
bij), (3)

where DPP
b are the coefficients to fit, S ′ is the formal operator that symmetrizes the monomi-

als and returns polynomials able to reproduce correctly the zero-interaction limit, and {yPPij }

is the set of Morse variables dependent on inter-monomer distances. We note that the sum

in Eq. (3) starts from m = p-1. The reason is that polynomials of order p-2 or less are not

suitable to describe the zero asymptotic limit.

Next, we apply these various fitting approaches to the demanding, eleven-atom intrinsic
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three-body CH4−H2O−H2O (MWW) potential.

Ab initio calculations

For the applications reported in this paper, each intrinsic three-body energy was calculated

from ab initio data as

V MWW
3b = V MWW − V M-W1 − V M-W2 − VW-W + V M + VW1 + VW2 , (4)

where the two water monomers are labeled as W1 and W2 in terms where only one of the two

is involved. Eq. (4) is a rearrangement of Eq. (1) to express the ab initio intrinsic three-body

MWW energy. All electronic energies were obtained using MP2-F12/haTZ (aug-cc-pVTZ

for C and O, cc-pVTZ for H)61,62 theory computed with MOLPRO 2010.63 In total,

22,592 CH4−H2O−H2O configurations were obtained as follows. A first set of 3,226 points

was obtained. 2,000 points were chosen to cover various O-C-O angles and C-O distances;

380 points were selected from molecular dynamics simulations of CH4−H2O−H2O employing

preliminary PES fits; 846 points were sampled from CH4@(H2O)20 and CH4@(H2O)24 geome-

tries for future application of this intrinsic potential to methane clathrates. The monomers

were kept almost rigid in these 3,226 points. Finally, the remaining 19,366 points were

randomly sampled around the 3,226 points to cover the distortion of monomers.

Figure 2 reports the distribution of energies in the database. Most of them are in the

range -100 cm−1 to 100 cm−1. This small range in energies is mainly a consequence of

the weak three-body interaction, but a reasonable fraction of energies is sampled at short

monomer distances.

Results and Discussion

This database of intrinsic three-body energies was fit by 9 PESs. These are given along with

a variety of performance metrics in Table 1. The notation is best explained by a couple of
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Figure 2: Distribution of the 22,592 MP2-F12/haTZ energies in the database. Bin width is
10 cm−1. The most populated bin is truncated to better appreciate the population in the
high-energy bins. Bins labeled as 200 and -200 contain also all populations from energies
above and below those values.

examples. “821/4” indicates a full permutationally invariant basis of maximum polynomial

order 4 and “4221111*/3” indicates a partial permutationally invariant basis, as described

already, with maximum polynomial order,M , of 3. In addition, we label the fitted potentials

according to their basis set (F, P, or PP) followed by the permutational group and maximum

polynomial order.

As seen, and as expected, the number of coefficients (i.e., polynomials) increases with M

for given basis type. Furthermore, and also as expected, there are fewer coefficients for PESs

of higher permutational order. The purified potentials have a substantially lower number of

polynomials than the corresponding full ones. The impact of this reduction increases with

the maximum polynomial order within a group. Root mean square errors (rmse) are small,

partially due to the fact that three-body interactions are themselves small. However, the

variation of the rmse is significant. Within a given permutational group, the fit precision

increases with the number of polynomials, as expected. A more complicated dependence con-

cerns computational time. We have averaged over batches of ten repetitions the time needed

by the different potentials in evaluating 50,000 potential calls. For comparison purposes, we

have set equal to 100.0 the time required by PP-422111*/4. We note that within the same

permutational group the computational effort grows with the number of polynomials to eval-
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uate, of course. However, this is no longer true when comparing between different groups.

For instance, PP-422111*/4 with 5809 terms is more than 9 times faster than F-4421/4 with

4698 terms. The reason is that monomial symmetrization requires evaluation of a much

larger number of monomials for groups of higher permutational order. In other words, the

fewer polynomials in the F basis with high symmetry are more expensive to evaluate because

they contain more monomials. For example, F-4421/4 with 4698 terms requires calculation

of about 121 K monomials against the 16 K required by PP-422111*/4 with 5809 terms.

The two potentials that fit more accurately the database are P-422111*/4 (2.2

cm−1) and PP-422111*/4 (4.6 cm−1). The former maintains some dependence on

intramolecular variables, thus providing a better rms but at the price of around

three-time slower potential calls. Both potentials keep the permutational sym-

metry of their group (422111*) and describe correctly the asymptotic interaction

limit.

Rmse results do not necessarily translate into accuracy of the potentials in energy cal-

culations. To investigate this, we have employed our potentials to evaluate the intrinsic

three-body contribution to the energy of the CH4−H2O−H2O trimer. The trimer equilib-

rium configuration has been optimized at the high CCSD(T)-F12a/haDZ (aug-cc-pVDZ

for C and O, cc-pVDZ for H)64,65 level of theory to best evaluate the ab initio trimer

binding energy (see below). The last row of Table 1 reports the ab initio intrinsic three-body

energy calculated with MP2-F12/haTZ, the same level of theory employed for the database,

thus allowing for a direct comparison to the results of our potentials. The last column of Ta-

ble 1 presents the intrinsic three-body contribution of the potentials to the CH4−H2O−H2O

trimer energy, with the exception of F-821/4 due to the huge computational overhead of this

potential which makes it not suitable for more complex calculations. F-821/3 and F-4421/3

are far off the ab initio value and will not be further considered. As for the remaining six

potentials, those with maximum polynomial order M=4 provide excellent approximations,

while F-422111*/3 is less accurate but still acceptable. Remarkably, the two very fast puri-
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fied potentials with M=3 (P-422111*/3 and PP-422111*/3) yield much better energies than

the corresponding F potential even if based on a lower number of polynomials. We will

employ all six potentials in the final and more complex energy calculations before drawing

our conclusions about the accuracy of the fitted potentials.

Table 1: Number of coefficients, fitting root mean square error, computational times, and
intrinsic three-body energy of the trimer for different analytical CH4−H2O−H2O potentials.
M is the maximum polynomial order. The type of polynomial basis is full (F), purified (P),
or pruned purified (PP). Time is arbitrarily set equal to 100 for PP-422111*/4. The ab initio
value has been calculated with MP2-F12/haTZ.

Group Symmetry/ M Basis No. Coeff. rmse (cm−1) time (arb. units) V MWW
3b (cm−1)

821/4 F 716 15.9 1944.6 -
821/3 F 153 23.0 83.1 -11.3
4421/4 F 4,698 5.1 927.8 -134.8
4421/3 F 654 13.8 49.5 -102.8

422111∗/4 P 15,551 2.2 301.0 -131.7
422111∗/4 PP 5,809 4.6 100.0 -133.5
422111∗/3 F 2,553 7.9 33.4 -137.1
422111∗/3 P 1,245 8.8 27.8 -130.9
422111∗/3 PP 729 10.5 13.6 -135.1
ab initio -130.7

By summing up the pre-existing WHBB water potential66 (which includes the water

intramolecular potential, intrinsic two-body H2O−H2O and three-body (H2O)3 potentials),

the methane intramolecular potential,67 and a new intrinsic two-body CH4−H2O59 and the

present three-body CH4−H2O−H2O potentials, we are able to approximate precisely the PES

for a methane molecule surrounded by an arbitrary number of water monomers (CH4(H2O)n).

The approximation is at the three-body level of the many-body representation. Besides accu-

racy, computational costs of potential calls made with the fitted three-body CH4−H2O−H2O

potentials (see Table 1 ) need to be estimated when building such a complex PES.

The methane surface we have employed in our calculations is by Warmbier et al. However,

the “plug-and-play” feature of the methane-hydrate surface allows us to associate our high-

level three-body potential with different fitted surfaces for the monomers, to improve the

accuracy for given applications. For example, other accurate PESs exist for methane, e.g., a
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recent one due to Tennyson and co-workers.68

For the CH4−H2O−H2O trimer, three-body is the highest order term in the many-body

representation. If all the terms in the analytical PES for CH4(H2O)n (n=2) were with no

error, then the PES would be able to reproduce the exact dissociation energy (De). In a

previous work,59 we have presented two analytical intrinsic two-body CH4−H2O potentials

and applied them to the dimer system. One fitted potential (called in our previous work

PES2b-PI) was obtained by means of the primary and secondary invariant technique, while

the second one (PES2b-CSM) is a pruned purified potential. By employing the same opti-

mized geometry for the CH4−H2O−H2O trimer as before, high-level CCSD(T)-F12b/haTZ

ab initio calculations were performed to evaluate each term of one-, two- and three-body

interactions. For comparison, the same calculations were performed with the analytical PES

using P-422111*/3, the potential that better approximates the intrinsic three-body ab initio

value for the trimer geometry. The zero of energy was set for the three isolated monomers

in their equilibrium configurations. The two-body energy from PES2b-PI is almost exact if

compared to the ab initio value, and the estimate of PES2b-CSM is also very accurate. Our

most reliable estimate of De for the trimer is 2371.3 cm−1. It is obtained by using PES2b-PI

for the intrinsic two-body CH4−H2O interactions. Our value agrees well with the ab initio

result of 2403.3 cm−1. The difference is mainly due to the intrinsic two-body H2O−H2O

term, the error of which is partially compensated by the overestimation of the three-body

contribution. The main reason for these discrepancies lies in the different levels of electronic

theory adopted. In fact, the two-body H2O−H2O PES is fitted to CCSD(T)/aVTZ ener-

gies, P-422111*/3 to MP2-F12/haTZ energies, while ab initio calculations were performed

with CCSD(T)-F12b/haTZ. The three-body interaction is shown to have a non-negligible

impact, accounting for about 5% of the dissociation energy. The energy of each term in the

many-body representation is listed in Table 2.

To further point out the accuracy of our three-body potentials, we present in Figure 3

three 1-d cuts for the three potentials with lowest fitting rmse. The cuts are not included
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Table 2: Energy of each term in the many-body representation of the CH4−H2O−H2O
trimer. Energies are in cm−1. Ab initio calculations employ CCSD(T)-F12b/haTZ.

ab initio PES
CH4 1-body 16.4 12.3
H2O(1) 1-body 16.8 18.4
H2O(2) 1-body 5.1 5.8
CH4−H2O(1) 2-body -232.9 -233.9a,-252.6b

CH4−H2O(2) 2-body -330.0 -330.5a,-331.7b

H2O−H2O 2-body -1756.3 -1712.5
CH4−H2O−H2O 3-body -122.4 -130.9c

CH4−H2O−H2O De -2403.3 -2371.3a,c
a PES2b-PI, b PES2b-CSM, c P-422111*/3.

in the database of fitted energies. Starting from the optimized equilibrium geometry of the

trimer, the cuts describe the change in three-body interaction energy against variation of the

distance between the methane carbon atom and the oxygen atom of one of the two water

monomers. In the cuts reported, all monomer internal geometries are frozen along the cut and

the C-O distance is modified in one case moving the methane (upper panel) and in the other

case shifting the water monomer (lower panel). The second water monomer is held at its

initial position. The three potentials show excellent accuracy down to C-O distances of about

3 Angstroms, a short distance where two-body repulsive interactions start to be increasingly

predominant.59 The upper panel clearly points out that purified potentials rigorously ensure

the zero-interaction asymptotic limit.

A final and more challenging application of our intrinsic three-body CH4−H2O−H2O

potentials has been performed. It concerns the calculation of the dissociation energy of a

methane molecule in a dodecahedral water cage. Three different conformers of the empty

(H2O)20 dodecahedral cage have been optimized by employing the WHBB water poten-

tial, and the corresponding energies were calculated. Geometries of CH4 in these three

(H2O)20 cages have been optimized by means of the analytical PES for CH4(H2O)n (n=20),

but with methane-water interactions limited to the CH4−H2O two-body level. The ener-

gies of these CH4@(H2O)20 systems were also calculated. De excluding the three-body
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Figure 3: 1-d cuts for the intrinsic CH4−H2O−H2O three-body potential (V MWW
3b ). On

the top panel, the C-O distance is varied by moving the methane monomer. In the lower
panel, motion concerns the water monomer. The second water monomer is held at its initial
position and geometry.
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CH4−H2O−H2O interaction was obtained as the difference between the calcu-

lated energies of the empty water cages and the corresponding CH4@(H2O)20. To

assess the impact of the intrinsic MWW interaction on De, geometries were not further opti-

mized. The 190 three-body CH4−H2O−H2O terms were directly evaluated using the analyt-

ical three-body potentials and then added together. For comparison, ab initio calculations of

the three-body interactions for the three conformers were performed at the MP2-F12/haTZ

level of theory, the same of our database. Finally, De with three-body interaction was

estimated as the difference between De without three-body CH4−H2O−H2O in-

teraction and the repulsive three-body MWW interaction.

Table 3 reports the results. Ab initio calculations demonstrate that the three conformers

have similar three-body CH4−H2O−H2O interactions, with conformer 2 and 3 slightly higher

in energy. This feature is best reproduced by P-422111*/4 and PP-422111*/4. Looking at

the single conformer energies, P-422111*/4 and PP-422111*/4 give the best estimate for

conformer 2 and conformer 3, while conformer 1 is best approximated by F-4421/4. The

best potentials provide energies that are within 0.1-0.15 kcal/mol (or less) of the ab initio

value. This is a small error (about 40-50 cm−1) if one considers that there is a total of 190

terms that sum up to yield the three-body energy. A combination of previous results for

the trimer and results for cluster systems shows that potentials with maximum polynomial

order M=4 are in general more accurate than those with M=3. However, the latter are

much faster and have good accuracy, so in some applications they could be the preferred

choice. Cluster calculations point out once more that three-body contributions to the total

energy are not negligible.

As a final comparison, we note that recently, Deible et al. 69 performed ab initio and

quantum Monte Carlo calculations to determine the De of CH4@(H2O)20. The structure

they employed is labeled as conformer 3 in this article, and the authors reported a De of 5.3

kcal/mol. However, they froze the geometry of (H2O)20 when methane is enclathrated, thus

underestimating De. They have also calculated the 20 terms in the two-body CH4−H2O inter-
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action and the 190 terms of the three-body CH4−H2O−H2O interaction for their geometry,

employing the high-level CCSD(T)-F12b method with VTZ-F12 basis set and counterpoise

correction. The sum of two-body energies and the sum of three-body energies are -5.85

kcal/mol and 1.01 kcal/mol. The difference with our estimates is mainly due to the different

geometries (which impact to the two-body energy for about 0.2 kcal/mol), level of electronic

theory and counterpoise correction employed.

Table 3: Dissociation energies and three-body energies for three conformers of
CH4@(H2O)20. Ab initio calculations are at the MP2-F12/haTZ level. Energies are in
kcal/mol.

Conformer 1a Conformer 2b Conformer 3c

De without 3-body 6.77 6.81 6.79
F-4421/4 0.72 0.54 0.54

P-422111*/4 0.59 0.63 0.66
PP-422111*/4 0.61 0.63 0.65
F-422111*/3 0.66 0.53 0.53
P-422111*/3 0.67 0.59 0.57
PP-422111*/3 0.63 0.60 0.56

ab initio 0.75 0.77 0.77
De(PP-422111*/4) 6.16 6.18 6.14

a Structure extracted from crystal structure in Appendix of Ref. 70
b Structure from WHBB66

c Structure from the supplementary material of Ref. 69

Summary and Conclusions

We have presented two approaches to fit many-body, non-covalent interactions via monomial

symmetrization. In one, the fitting polynomial basis, obtained with the standard monomial

symmetrization procedure, is purified from polynomials not able to reproduce the long-range

zero-interaction limit. In the second approach, pruned purified fitting bases were obtained

by employing partially permutationally invariant symmetry and by further reducing the pre-

viously purified bases to the subset of polynomials that depend exclusively on inter-monomer

distances. The two procedures led to potentials that reproduce the correct asymptotic limit,
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and that are at the same time accurate and faster to evaluate. This last aspect is important

for applications to complex systems, where the number of many-body interactions can be

huge and their evaluation by means of full-basis potentials too demanding.

The fitted potentials have been employed for calculations involving the CH4(H2O)2 trimer

and the CH4@(H2O)20 cluster. Results are excellent from the point of view of both accuracy

and reduction of computational overheads. For instance, PP-422111*/4 can evaluate all 190

three-body CH4−H2O−H2O interactions in the CH4@(H2O)20 cluster with a computational

effort which is less than 6 times that needed by the evaluation of just 20 two-body CH4−H2O

interactions with a potential obtained with the very efficient invariant polynomial technique.

This relative factor of 6 even drops to 1 if PP-422111*/3 is employed. As for accuracy, the

three-body contribution to the binding energy of the trimer is reproduced with errors of

just a handful of wavenumbers, and the sum of 190 three-body terms for the CH4@(H2O)20

cluster is underestimated by no more than 40-50 cm−1. Three-body interactions have been

demonstrated to be not negligible if compared to two-body ones. The possibility to construct

efficient purified potentials based on monomial symmetrization was crucial for application to

a 11-atom system. In fact, the alternative technique based on primary invariant polynomials

is currently available only for systems up to 10 atoms.

The purified potentials here presented combine high accuracy and speed, thus opening

up the possibility to undertake future high-level applications regarding spectroscopy and

dynamics of methane hydrates. All the methane-water-water interaction potentials

reported are available upon request to the authors.
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