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Abstract This paper examines an annotation in Newton’s hand found by H.
W. Turnbull in David Gregory’s papers in the Library of the Royal Society
(London). It will be shown that Gregory asked Newton to explain to him how
the trajectories of a body accelerated by an inverse-cube force are determined
in a corollary in the Principia: an important topic for gravitation theory, since
tidal forces are inverse-cube. This annotation opens a window on the more
hidden mathematical methods which Newton deployed in his magnum opus.
The received view according to which the Principia are written in a geometric
style with no help from calculus techniques must be revised.
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1 A standard view on the birth of rational mechanics

Historians like to disprove received views as much as mathematicians like to
prove long-standing unsolved conjectures. And in this paper I might seem to
be following a pattern that is often adopted by historians in order to arouse
bewilderment and elicit praise. I will open my contribution with a view of
the reception of Isaac Newton’s Principia that enjoys wide currency. But let
me state from the beginning that my aim is not to disprove: rather, my more
modest claim is that the received view needs qualification as it o↵ers too
simplistic a narrative.
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The standard view is this: Newton’s Principia revealed to mankind the
right physics, but did so in an obsolete mathematical language. Indeed, it is
claimed, Newton discovered a true universal law that regulates the motions of
bodies, but instead of using the right mathematical language, the calculus, he
used geometry. So, the story continues, it is the merit of Continental mathe-
maticians, such as Johann Bernoulli, Pierre Varignon and Leonhard Euler, if
the Principia got translated into the right language, the di↵erential and inte-
gral calculus due to his mathematical enemy, Gottfried Wilhelm Leibniz.1 In
this context, it is often claimed that it is Jacob Hermann and Johann Bernoulli
who first applied calculus to central force motion by integrating the equations
of motion for inverse-square central forces.2

This narrative has several features that deserve praise. It demonstrates
once more that in the eighteenth century the notion of “Newtonianism” was
a highly latitudinarian concept, since a mathematized Newtonian planetary
theory could be advanced in Leibniz’s notation and by adopting Leibnizian
physical principles, such as conservation of vis viva, by actors who, most often,
did not endorse the notion of action at a distance implied by gravitation theory.

However, the standard view is too simplistic. It attributes to a monolith-
ically defined Continental school, based in Basel, Paris and the academies of
Berlin and Saint Petersburg, all the advances in the algebraization of mechan-
ics (the supposed translation of Newton’s geometrical style of the Principia

into the language of calculus), forgetting the contributions in this direction
provided by British mathematicians such as David Gregory, Roger Cotes,
Abraham De Moivre, James Stirling, Thomas Simpson and Colin MacLau-
rin. Further, the standard view is based on considering what Newton printed
in the Principia, but ignores what he wrote in his manuscripts and what he
circulated through his correspondence.

The standard view on the reception of the Principia is rooted in the highly
emotional nationalistic terrain of the Newton-Leibniz controversy. At the be-
ginning of the eighteenth century, Leibniz and his supporters, such as Johann
Bernoulli, claimed that the absence of calculus in Newton’s magnum opus was
proof positive that its author did not possess the new analysis by 1687. Indeed:
if Newton had the calculus, why did he not use it in his mathematical theory of
gravitation? This emotional terrain is still fertile nowadays and sometime one

1 Two classic masterpieces in which this view is defended are [3] and [23].
2 “Newton solved what was called afterwards for a short time ‘the direct Kepler problem’

(‘le problème direct’): given a curve (e.g. an ellipse) and the center of attraction (e.g. the
focus), what is the law of this attraction if Kepler’s second law holds? The ‘problème inverse’
(today: the ‘problème direct’) was attacked systematically only later, first by Jacob Her-
mann, then solved completely by Johann Bernoulli in 1710 and following Bernoulli by Pierre
Varignon” ([22], 103). However, as we shall see, in writing his Principia Newton successfully
applied his method of fluxions to the inverse problem for inverse-cube forces. Whether he
could do the same for inverse-square forces is an open question. However, Newton’s proce-
dure expounded in an annotation to Gregory dated 1694, and which I analyse in this paper,
when applied to inverse-square forces leads to a quadrature that Newton could perform. The
quadrature occurs in the second catalogue of curves (ordo octavus) of De methodis ([18], 3,
252), and a similar quadrature is employed in the solution of Corollary 2, Proposition 91,
Book 1: for details see ([13], 282–90).
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has the impression that the flames that fueled the Newton-Leibniz controversy
have not yet been extinguished!

Let me state in boldface letters that it is not my aim to enter into such
controversies, which rather than playing the role of a combative assumption,
should constitute a dispassionate object of study for the historian (so one
might legitimately ask how British nationalism shaped the Newton-Leibniz
controversy, for example). My aim is not to vindicate Newton, but to interpret
his work. My aim is not to answer in the positive to the often-posed question
“Did Newton use his calculus in the Principia?”, since this is a bad historical
question, in my opinion.

The calculus is not an object, like a pebble (which is, indeed, translated
as calculus in Latin), that can be discovered by one lucky researcher alone,
but consists of a combination of concepts, notations, rules and theorems. It
would be di�cult to say exactly which of these elements makes the calculus
what it is, and certainly it would be simplistic to think that one can find it by
inspection, after opening the cover of Newton’s magnum opus.

I am convinced that historians of mathematics should not ask themselves
questions of priority and of attribution of merit. The reasons why credit-
attribution so often polarizes the attention of historians of mathematics are
to be sought in nationalism and school-partisanship that permeate the ethos
of academia (and are sometimes defined as “healthy”). Yet, as Luke Hodgkin
puts it: “Awarding points to individuals or civilizations for their excellence
in mathematics should not be part of the business of history” ([14], 70). The
history of mathematics should try to answer good historical questions, and I
will try to identify a few of them at the end of this paper. But what makes a
question a “good” historical question? This is very di�cult to say, as di�cult
as it is to tell good mathematical conjectures from bad ones.

2 David Gregory’s Notæ to the Principia

An important document that sheds light on the mathematical methods em-
ployed by Newton in the Principia is an annotation written by Newton for
David Gregory, the nephew of Newton’s great contemporary James Gregory.
In 1687, when he was the holder of the Chair of Mathematics in Edinburgh, he
received a complimentary copy of the Principia. He remained quite impressed
and began to carefully annotate the magnum opus in the early autumn of that
year. The result was a 213-page manuscript entitled Notæ in Newtoni Prin-

cipia Mathematica Philosophiæ Naturalis.3 Probably for political reasons, in
1691 Gregory moved to Oxford, where he was appointed to the Savilian Chair
of Astronomy. He soon became a convinced Newtonian, in connection with
a group of compatriots of his, whom Anita Guerrini has labelled the “Tory

3 The original is MS 210 (Royal Society Library, London). There are also three other
copies: in Christ Church (Oxford), in the University Library Edinburgh), and in the Gregory
Collection of the University of Aberdeen.
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Newtonians,” and who included Archibald Pitcairne, John Craig, and John
Keill [11].

The Notæ provide a thorough commentary on the Principia, from begin-
ning to end. They were written in three stages, as is evident from the dating,
as well as from the paper and ink used. The original manuscript in Gregory’s
hand is kept in the Royal Society (London), and shelved as MS 210. The first
33 pages, a commentary on the first nine sections of Book 1, were written in
Edinburgh and are dated from September 1687 to April 1688. The remain-
ing pages were written in Oxford and are dated from December 23, 1692 to
January 29,1694. There are also later additions, sometimes written on slips
of paper a�xed with paste or wax. The last addition was made in 1708, the
year of Gregory’s death. At some point Gregory wished to publish the Notæ

as a running commentary to the Principia. He may have communicated this
project to Newton at the beginning (4-8) of May 1694, when he was admitted
to Newton’s chambers in a first of a series of visits.

The May 1694 visit was very important for Gregory, since it occurred after
a period of tension between him and Newton. The five-day meeting changed
Gregory’s scientific life. During these days, Newton showed him his projects
for a revision of the Principia, and let him study his tracts on fluxions, in-
cluding an early version of Tractatus de quadratura curvarum (the treatise
published as an appendix to the Opticks in 1704), where Newton developed
“quadrature” techniques, that is methods aimed at calculating the area of a
surface subtended under a curve. The two men also discussed the Ancients’
prisca sapientia, religion, astronomy, alchemy, optics, and much more.

We are in a lucky position, since Gregory wrote detailed memoranda of
his encounters with Newton that are still extant. Some of these memoranda
have the character of rather quick working annotations and in some of them
Newton’s handwriting is mixed with Gregory’s: the pupil seems to have taken
as many quick notes as he could with the help and encouragement of his
master. And not a few concern the Principia.

Indeed, in a memorandum (penned in July 1694) we read (in Turnbull’s
English translation):

The second treatise [a draft of De quadratura] will contain his [Newton’s]
Method of Quadratures [. . . ] To this he will subjoin tables [. . . ] on
these [tables] depend certain more abstruse parts in his philosophy as
hitherto published, such as Corollary 3, Proposition 41 and Corollary
2, Proposition 91.4 ([17], 386)

4 The original text in Latin reads: “Secundus Tractatus Methodum suam Quadraturarum
continebit quae rem istam mire augebit et promovebit [. . . ] Huic subjungit tabulas pro
diversis formis et gradibus figurarum usque ad ordinem decimum [. . . ] Item alias tabulas
ad usque classem undecimum ubi spatia non quadrabilia cum coni sectionibus comparantur
[. . . ] innituntur quaedam abstrusiora in Philosophia sua hactenus edita ut Corol: 3 prop.
XLI et Corol: 2 prop. XCI.” [18], 7, p. 197. It is very interesting that Gregory refers to
tables in which “spaces which cannot be squared are compared with conic sections,” since,
as we shall see below, these are the quadrature techniques that allow the most di�cult of
the quadratures implied in Corollary 3.
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Fig. 1: Pasted sheet with commentary on Corollary 3 in Gregory’s Notæ. Source: MS 210:
28 (Royal Society Library). c�The Royal Society

Here Gregory is referring to two corollaries of the Principia and he is clearly
making the observation that Newton’s quadrature techniques expressed in “ta-
bles” (or “catalogues”) inserted in De quadratura are employed in these “more
abstruse parts” of Newton’s work. The first corollary deals with central force
motion in an inverse-cube force field (an important topic for gravitation the-
ory, since tidal forces are inverse-cube), the second with the attraction exerted
by a homogeneous ellipsoid of revolution on an external point situated on the
axis of revolution (a result central for Newton’s determination of the Earth’s
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shape). It would be worth looking at both of them, but in this paper I shall
concentrate on the first one.

When we consult Gregory’s Notæ at the relevant place (written just before
April 1688), we find that Gregory had left a blank space: apparently he was
not able to comment Corollary 3 to Proposition 41. We also find a pasted piece
of paper that must have been added later (see fig. 1). Indeed, a manuscript
page in Newton’s hand dated 8 May 1694 (that is, dated to Gregory’s stay
in Cambridge) is extant amongst Gregory’s papers.5 It is, so it seems highly
probable, this manuscript that Gregory later copied and pasted in his Notæ,
since the two texts correspond almost word for word.6 What was Newton
teaching his pupil in the rooms of Trinity College?

3 Proposition 41, Book 1, and its Third Corollary

3.1 Proposition 41

We have to step back and very briefly consider Proposition 41, Book 1 (Propo-
sition 41, for short) ([19], 529–31). The statement poses a problem:

Supposing a centripetal force of any kind and granting the quadratures
of curvilinear figures, it is required to find the trajectories in which
bodies will move and also the times of their motions in the trajectories
so found. ([19], 529)

This is a problem (in Newton’s times known as the “inverse problem of cen-
tral forces”) that we still teach to our students in the courses on Newtonian
mechanics. We ask that this problem be reduced to determine, given initial
conditions, the motion of a point mass in a central force field. In this paper
we assume that the mass is equal to 1. We ask to reduce this problem to inte-
grations, a choice of polar coordinates being the best for reasons of symmetry.

In a way Newton does the very same thing, to be sure in his peculiar
geometrical language. For the sake of brevity, I will not provide an analysis of

5 This annotation was found by W. H. Turnbull who published it in the third volume
of Newton’s correspondence ([17], 348–54). It was later included by D. T. Whiteside in
([18], 6, 437–8). Bruce Brackenridge provides a thorough analysis of Newton’s annotation
for Gregory in [4]. Herman Erlichson discusses Corollary 3 in [9]. Whiteside’s commentary
in ([18], 6, 352–6) is important. I am deeply indebted to the above works. Another similar,
but just sketched, annotation concerning Corollary 3 is at the top of folio Add. 3960.13: 223r
(Cambridge University Library) and is edited in [18], VI, 435–7. This annotation might have
been written just before the one found in the Library of the Royal Society that I discuss in
this paper.

6 Indeed, in the July 1694 memorandum Gregory wrote: “Most of what in early May of
1694 he [Newton] had corrected or altered in his own copy has been corrected or altered
at the respective places in my own copy or in my notes.” English translation by Turnbull
in [17], 386. In the pasted sheet on p. 28 of the Notæ , Gregory not only copied Newton’s
annotation, but added a few interesting remarks on a method of quadrature he claimed
to have found independently from Newton and that was printed in the second volume of
Wallis’s Opera in 1693. See [12], 183; [24], 378.
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Fig. 2: Diagram for Proposition 41, Book 1, of the Principia (1687). Source: Newton,
Philosophiæ Naturalis Principia Mathematica (1687), p. 128. The diagram was emended
in the third (1726) edition.

Newton’s demonstration of Proposition 41. I will just consider the result on
which its Corollary 3 is based.7

Let us have a look at the diagram accompanying this proposition (see fig.
2). Newton considers a “body” setting out from V with a given velocity under
the action of a centripetal force. The force’s center is C. The trajectory, to be
found, is V IKk.8

As coordinates of the body’s position at I Newton uses the distance CI = A
and the area of the circle sector V CX. This is very nearly what we would do
nowadays by using polar coordinates.

The curve BFG represents the force’s intensity in function of distance from
the force’s center, or in Newton’s words “[the ordinate] DF is proportional to
the centripetal force in that place [CI = CD] tending towards the centre C”
(PM, 525). Thus, the area of the surface subtended to this curve measures
what we would call mechanical work.

It should be noted that Newton avails himself of two properties of central
force motion that he proved in previous pages. In modern terms, we would un-
derstand these two properties as the law of conservation of angular momentum
and the law of conservation of mechanical energy. In Newton’s terms, the first

7 For a careful, step by step, analysis of Proposition 41, I strongly recommend I. B.
Cohen’s commentary in ([19], 334–45) and [16].

8 In the third edition (1726) of the Principia the two curves to the right meet at point a
and one of the two curves has an asymptote. This is not relevant for the present paper. I
prefer to consider the text that was in front of Gregory’s eyes and that was discussed with
Newton in 1694.
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property is that the area law holds if and only if the force is central (Proposi-
tions 1 and 2 in ([19], 444–7)). Thus the motion is planar and the areal velocity
is constant. This first property allows Newton to geometrically represent time
as the area of the surface swept by the radius vector. For example, the area
V CI is proportional to the time taken by the body to traverse the arc V I.
Newton denotes the constant areal velocity with Q/2. The second property
(that a modern reader would immediately recognize as the law of conservation
of mechanical energy) is proved in Propositions 39 and 40 ([19], 524–9).

Starting from these two properties, Newton obtains two curves abz and dcx
(defined below in (1) and (2)) that must be “squared” in order to determine
the dependence of time (measured by the area V CI) from distance, and the
dependence of polar angle (measured by the area of the circular sector V CX)
from distance, respectively. “Squaring” a curvilinear surface meant calculating
its area.

The ordinate of the curve abz is

Db =
Q

2p (ABFD �Q2/A2)
. (1)

The ordinate of the curve dcx is

Dc =
Q⇥ CX2

2A2p (ABFD �Q2/A2)
. (2)

If one squares abz, and thus calculates the functional dependance of the
area V abD from the distance CI = CD, the functional dependence of time
from distance is given.

If one squares dcx, and thus calculates the functional dependance of the
area V dcD from the distance CI = CD, the functional dependence of polar
angle from distance is given.

3.2 A presentist translation of Proposition 41

With some hesitation about the risk always inherent in such translations, when
the purpose is historically sensitive interpretation, I dare to o↵er the reader a
translation into modern notation.

Let A = r be the distance from the force centre. Let Q = h be what we call
the magnitude of specific angular momentum. Let ABFD be v20+2

R r0
r F (⇢)d⇢,

where v0 is the initial speed at CV = CX = r0.9

Newton’s two quadratures are “equivalent” (in a historically problematic
way) to the familiar integrals for the trajectory:

9 Newton imagines that a second body falls from a rest position A so that during the
vertical fall AV it acquires the initial given speed with which the first body is projected at
V . Allowing ourselves the use of modern symbolism, Newton states that v2r = 2ABFD =

2
R CA

CD=r
Fd⇢ = 2

R CV =r0

r
Fd⇢+ 2

R CA

r0
Fd⇢ = 2

R r0

r
Fd⇢+ v20 .
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Fig. 3: Diagram for Corollary 3, Proposition 41, Book 1. Source: Newton, Philosophiæ
Naturalis Principia Mathematica (1687), p. 130. The diagram was modified in the third
(1726) edition.

dt =
dr

p �v20 + 2
R
Fd⇢� h2/r2

� , (3)

and

d✓ =
±hdr

r2p
�
v20 + 2

R
Fd⇢� h2/r2

� . (4)

In order to see the equivalence more clearly, I note that Newton chooses
the area V CI as a measure of time, and the area V CX as a measure of the
polar angle.

Thus: V CI = (h/2)t = (Q/2)
R
dt and V CX = (r20/2)✓ = (CX2/2)

R
d✓.

For the historian there are many important di↵erences between Newton’s
concepts and ours. Yet, we recognize his formulation for the mathematical
treatment of central force motion as very similar to ours — in a way, the two
are “equivalent.” We will discuss these issues of translation in the concluding
section.

3.3 Corollary 3: a brief outline

But let us see what happens in Corollary 3 to Proposition 41 (Corollary 3 for
short). Newton applies what he has obtained in Proposition 41 to the case in
which the force varies with the inverse of the cube of the distance.

One should note that in this case Newton forces a restriction on initial
conditions so that the initial velocity at V is orthogonal to CV (thus, for
example, the logarithmic spiral, which is a possible trajectory for inverse-cube
central force motion, will not be included in the solution of Corollary 3).
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The problem, because of Proposition 41, is reduced to the quadrature of
curves abz and dcx, but — and this is most likely what must have been per-
plexing for Gregory — Newton provides a geometrical construction of the
trajectory without giving any detail about how he performed the quadrature.
He unhelpfully writes:

all this follows from the foregoing proposition by means of the quadra-
ture of a certain curve, the finding of which, as being easy enough, I
omit for the sake of brevity. ([19], 532)

Newton’s construction is as follows (see figure 3). One begins by drawing
two conics V RS, an ellipse (left) and a hyperbola (right), with centre C and
vertex V . A point R slides along the conic starting from V , and we draw the
tangent at R meeting the axis CV at T . We draw the line CR. The trajectory
traced by the body is constructed by drawing a segment CP , whose length is
equal to CT , and making an angle V CP with the axis CV proportional to the
area of the conic sector V CR. The point P traces the sought trajectory ([19],
531–2).10

We should appreciate the visual beauty of this construction. One should
note that as the point R slides along the conics starting from V , the areas of
the conic sectors V CR monotonically increase. In the case of the hyperbola,
the tangent at R tends to an asymptote passing through the center C, while in
the case of the ellipse the tangent tends to a line parallel to the axis CV as the
angle V CR approaches ⇡/2. This allows us to visualize how in the case of the
trajectory constructed via the auxiliary hyperbola (right), the point P spirals
towards the center C, since CT = CP tends to zero as the polar angle V CP
tends to infinity. On the other hand, in the case of the trajectory constructed
via the ellipse (left), CT = CP tends to infinite, as as the polar angle V CP
tends to a finite value, and thus the body ascends in a spiral-like trajectory
escaping to infinity along an asymptote.

4 Motion in an inverse-cube force field: a modern interlude

A short interlude on the modern treatment of inverse-cube trajectories is now
in order. This is done, because after all we look at the past from a present
viewpoint, and we might need to be a little bit refreshed on this topic (often
an exercise for physics undergraduates).11

It is required the determination of the motion (given initial position and
velocity) of a point mass (m = 1) accelerated by a centripetal and isotropic
force

F = �dU

dr

r

r
. (5)

10 In the modified diagram printed in the third edition (1726) of the Principia, the tra-
jectory associated to the auxiliary hyperbola is more clearly drawn as spiraling towards
C.
11 The simplest approach is via the so-called Binet formula and by employing the expo-
nential form of the trigonometric and hyperbolic functions. See [8], 237–43. The approach I
choose here is interesting because of its similarities with Newton’s.
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Since the mechanical energy E and the angular momentum h = r⇥ v are
conserved

E =
1

2
(ṙ2 + r2✓̇2) + U(r) =

ṙ2

2
+

h2

2r2
+ U(r). (6)

We can solve for ṙ:

ṙ =
dr

dt
= ±

p
2(E � U)� h2/r2. (7)

Separating the variables, we obtain the equivalent of equation (3):

dt =
drp

2(E � U)� h2/r2
.12 (8)

Because of conservation of angular momentum,

d✓ = (h/r2)dt, (9)

and we obtain the equivalent of equation (4):

d✓ =
±hdr

r2
p
2(E � U)� h2/r2

. (10)

The integration of (8) is particularly simple for an inverse-cube force. We
set

U = �↵/r2, (11)

for ↵ > 0. Then

t =

Z
rdrp

2Er2 + 2↵� h2
=

1

2E

p
2Er2 + 2↵� h2 + C. (12)

The time is thus given by a finite algebraic equation.13

The integration of (10) is more complicated, and this might well have been
the origin of Gregory’s perplexity. For an inverse-cube force, equation (10) is

d✓ =
±hdr

r
p
2Er2 + 2↵� h2

. (13)

The trick consists in changing variable

w = 1/r, (14)

so that one reduces the problem to the following integral:

✓ =

Z ⌥hdwp
2E + (2↵� h2)w2

. (15)

12 A positive root is chosen. The negative root corresponds to a time reversal t ! �t: if
r(t) is a solution also r(�t) is a solution (depending on initial conditions).
13 This is in contrast with the solution for inverse-square forces, a case in which the inte-
gration of (8) can only be obtained by means of transcendental functions, as underlined in
[4], 327.
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Fig. 4: The trajectories for an attractive inverse-cube force (Cases 1 and 2) constructed in
Corollary 3 as V PQ (see fig. 3) for an initial position ri equal to (1, 0) and an initial velocity
vi orthogonal to ri. In Case 1, the point mass traces an ascending spiral-like trajectory under
the action of an attractive inverse-cube force (NB: since ↵ > 0,

p
h2 � 2↵/h < 1). The point

mass escapes to infinity, since for ✓ ! ✓0 + ⇡/2(h/
p
h2 � 2↵), r tends to infinite. Whenp

h2 � 2↵/h > 1, the force is repulsive (↵ < 0), and the trajectory represents a scattering
state with pericenter at ri. In Case 2 the point mass describes a spiral that tends to the
origin as ✓ ! 1. The fall to the origin occurs in a finite time calculated by eq. (12). The
above plots correspond to r = (cos 0.15 ✓)�1 and r = (cosh 0.5 ✓)�1.

Taking into consideration that

Z �dwp
b2 � w2

= arccos
w

b
,

Z
dwp

w2 � b2
= arccosh

w

b
,

Z
dwp

w2 + b2
= arcsinh

w

b
,

(16)
we distinguish, with a suitable choice of the coordinates, ✓0 and r0, at time
t = 0, the following five cases.14 The form of the solution depends on the sign
of 2↵� h2 and E.

14 We note that in Case 1 and Case 2, ✓ = ✓0 corresponds to r = r0 =
p

(h2 � 2↵)/2E and

r = r0 =
p

(2↵� h2)/2|E|, respectively. In Case 3, ✓ = ✓0 corresponds to the direction of an
asymptote. In Case 4 and Case 5, ✓ = 0 corresponds to r = r0. Asymptotes for Cases 1 and
5 are easily calculated. For example, in Case 5, an asymptote occurs for ✓ = �h/(r0

p
2E).
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1. In the first case, 2↵� h2 < 0 and E > 0:

1

r
= w =

r
2E

h2 � 2↵
cos

"p
h2 � 2↵

h
(✓ � ✓0)

#
.15 (17)

2. In the second case, 2↵� h2 > 0 and E < 0:

1

r
= w =

r
2|E|

2↵� h2
cosh

"p
2↵� h2

h
(✓ � ✓0)

#
. (18)

3. In the third case, 2↵� h2 > 0 and E > 0:

1

r
= w =

r
2E

2↵� h2
sinh

"p
2↵� h2

h
(✓ � ✓0)

#
. (19)

4. In the fourth case, 2↵� h2 > 0 and E = 0:

r = r0 exp±
 p

2↵� h2

h
✓

!
. (20)

5. In the fifth case, 2↵� h2 = 0 and E > 0:

1

r
=

p
2E

h
✓ +

1

r0
.16 (21)

The first three cases are sometimes called “Cotesian” spirals. Case 4 is a
logarithmic spiral. Case 5 is a “hyperbolic” spiral. Only the first two cases
occur (other than circular trajectories) when the initial velocity is orthogonal
to the radius vector, as required in Corollary 3.17 Cases 1 and 2 are discussed
in the caption to Fig. 4. Newton identified Cases 1 and 2 in Corollary 3, and
Case 4 in Proposition 9, Book 1. Johann Bernoulli identified Case 5 in [2],
532–3. Roger Cotes classified all five trajectories in [6].

5 Newton’s geometric construction of inverse-cube trajectories

It is time to go back to the original words of the master. So we can imagine
being, like Gregory, in Newton’s chambers with a page of the Principia in front
of us, but frustratingly with our Notæ with a lacuna to fill.

15 A solution using the sine function is also possible, but this does not generate a new
family of trajectories because the sine function can be converted to a cosine by a shift of
the polar coordinate. This, of course, is not true for the hyperbolic functions occurring in
Cases 2 and 3 below.
16 In Cases 3, 4, and 5, the particle either spirals into the centre of force or out to infinity,
depending on the sign of ṙ0.
17 We note that circular trajectories are possible when 2↵ = h2 and E = 0, but they are
unstable. The reader may consider the e↵ective potential energy for inverse cube forces,
Ueff = h2/(2r2) + U(r) = h2/(2r2) � ↵/r2. When 2↵ = h2, the e↵ective potential energy
Ueff is flat and any r is a possible radius for an unstable circular trajectory (ṙ = 0) with

velocity |v| =
p
2↵/r.
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5.1 Newton’s construction

We recall that Newton’s construction as printed in the Principia (see figure 3
reproduced above) consists of the following.

1. Draw two conics V RS, an ellipse (left) and an hyperbola (right), with
centre C and vertex V .

2. A point R slides along the conic starting from V : draw the tangent at R
meeting the axis CV at T .

3. Draw the line CR.
4. Draw a segment CP whose length is equal to CT and making an angle

V CP with the axis CV proportional to the area of the conic sector V CR.
5. The point P traces the sought trajectory.

Or in Newton’s august words:

If with center C and principal vertex V , any conic V RS is described, and from
any point R of it the tangent RT is drawn so as to meet the axis CV , indefinitely
produced, at point T ; and joining CR there is drawn the straight line CP , which
is equal to the abscissa CT and makes an angle V CP proportional to the sector
V CR; then, if a centripetal force inversely proportional to the cube of the distance
of places from the center tends towards the center C, and the body leaves the place
V with the proper velocity along a line perpendicular to the straight line CV , the
body will move forward in the trajectory V PQ, which point P continually traces
out; and therefore, if the conic V RS is a hyperbola, the body will descend to the
center. But if the conic is an ellipse, the body will ascend continually, and will go
o↵ to infinity.

And, conversely, if the body leaves the place V with any velocity and, depending on
whether the body has begun either to descend obliquely to the center or to ascend
obliquely from it, the figure V RS is either a hyperbola or an ellipse, the trajectory
can be found by increasing or diminishing the angle V CP in some given ratio.
But also if the centripetal force is changed into a centrifugal force, the body will
ascend obliquely in the trajectory V PQ, which is found by taking the angle V CP
proportional to the elliptic sector V CR, and by taking the length CP equal to the
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length CT , as above. All this follows from the foregoing proposition [41], by means
of the quadrature of a certain curve, the finding of which, as being easy enough, I
omit for the sake of brevity. ([19], 531–2)

5.2 An algebraic translation

But we are still fluctuating between past and present, and we might be tempted,
before immersing ourselves in the mathematical culture of the late seventeenth
century, to impart (for the sake of brevity, so to say) to Gregory a crash course
in modern calculus and trigonometry to notice that the above construction de-
livers the solutions we named Cases 1 and 2 above.

Let us use as Cartesian coordinates of the point R(x, v) the abscissa x and
the ordinate v (the origin is in the force centre C and the x-axis is vertical).

As auxiliary conics I introduce:

x2 + v2 = 1, (22)

and
x2 � v2 = 1.18 (23)

By construction, the polar coordinates of the body’s position P (r, ✓) are
r = CP = CT , and ✓ = V CP = (2/k)V CR (for some constant k).19

One readily obtains

r = CT = x� v
dx

dv
=

1

x
.20 (24)

Equation (24) corresponds to the solutions we have classed as Case 1 and Case
2 in section 4.

Indeed, for the circle x = cos(2V CR) = cos k✓ and for the hyperbola
x = cosh(2V CR) = cosh k✓. Thus, for k = 0.15 and k = 0.5 we obtain the
trajectories illustrated in fig. 4.

5.3 An omitted method

If we are to believe Newton, he achieved this construction thanks to “a method
for squaring curvilinear figures” illustrated in the “foregoing Proposition [41].”
By reading Corollary 3, we learn that it is this omitted method that allows him
to square the curves dcx and abz whose abscissa is the distance CD from the
force centre and whose ordinates are Dc and Db (see figure 2, and equations
(1) and (2)). We also learn from figure 3 that Newton is making use of auxiliary
conic sections.

18 The choice of the auxiliary conics is crucial. Conics with di↵erent parameters give rise
to di↵erent trajectories.
19 The trajectory is expressed in polar coordinates. So ✓ is an angle. Instead, we take V CR
as the area of the circle and hyperbolic sectors, respectively.
20 This must have been evident for Newton from Apollonius, Conics, I.37. [1], 65–7.
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In the next section, we look at certain quadrature techniques that Newton
developed in the mid 1660s, systematized in two “catalogues” dating from
1670, and then printed as “tables” in De quadratura. In a few words, we have
to check whether these “more abstruse parts” in the Principia, as Gregory
recorded in his July 1694memorandum, depend upon those tables that aroused
his admiration.21

6 Some of Newton’s quadrature techniques

6.1 A digression into Newton’s quadratures of conic sections

Conic sections, as we shall see, played a prominent role in Newton’s “quadra-
ture techniques.” The object of these techniques was to “square curvilinear
figures,” that is, to calculate the area of the surface bounded by plane curves.

Since his youthful studies in the anni mirabiles (1664–6), Newton knew
how to square conic sections via the binomial theorem and via an application
of what nowadays we would call “term-wise integration.”

6.1.1 Logarithms

So, for example, for the hyperbola, Newton wrote

v = (1 + x)�1 = 1� x+ x2 � x3 + x4 � · · · , (25)

a result that he considered valid when x is small. Newton knew that the area
under the hyperbola and over the interval [0, x] for x > 0 (and the negative
of this area when �1 < x < 0) is a measure for ln(1 + x). Thus, by (to speak
anachronistically) “term-wise integration,” Newton could express ln(1 + x) as
a power series:

x� x2

2
+

x3

3
� x4

4
+

x5

5
� · · · . (26)

He did not, however, write that the above series is equal to “ln(1 + x).” Until
the mid eighteenth century, European mathematicians rarely used a notation
for transcendental functions. They represented them via geometrical construc-
tions, such as the hyperbolic surface in the case of the logarithm. Leibniz and
Johann Bernoullli were pioneers in using symbols for the logarithm and the
exponential function, but with the trigonometric or hyperbolic functions the
general policy, before Euler, was to use geometric constructions [15].

21 This is an innovative element of my paper, since below I will detail the relation-
ships between Corollary 3 and Newton’s quadrature techniques of the De methodis and
De quadratura. These techniques date back to work Newton carried out in the 1660s.
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Fig. 5: Quadrature of the circle from Newton’s De analysi (1669). Source: MS 81.2: 6v (Royal
Society Library). Edited in ([18], 2, 232–33. c�The Royal Society

6.1.2 Transcendental functions and geometrical constructions

We begin to understand why Newton expressed the solutions for Corollary 3
as a geometric construction. These solutions imply a functional dependence of
the radius CP and the conic sector V CR expressed by transcendental rela-
tionships (the cosine and the hyperbolic cosine), and these were constructed
geometrically until at least Euler’s times

The connection between quadratures and “transcendental functions”22 was
profound. Seventeenth-century mathematicians realized that while the slope
of an algebraic curve is algebraic, most often the curvilinear area bounded by
an algebraic curve (or the arc-length) is not: it had to be expressed via an
infinite series, as we have seen above.

6.1.3 The arcsin

Let us consider another example, this time a rectification of an algebraic curve.
Given a unit circle with equation

x2 + v2 = 1, (27)

we have to calculate the arc-length s = LD (see fig. 5). Newton envisaged the
circumference ADLE as being generated by the continuous “flow” of a point
from E to A. The infinitesimal arc DH generated in a “moment” of time o,
he called the “moment of the arc,” and he denoted it as ṡo.23 By geometrical
reasoning, Newton knew that the moment of the arc DH is to the moment of
the abscissa GH, as the radius DC = 1 is to the ordinate DB = v =

p
1� x2.

22 This is Leibniz’s term, as Newton would use the Cartesian terminology “mechanical
curves,” and this (indeed) is a terminological distinction of great significance for the histo-
rian.
23 Actually, Newton introduced the dot notation in the 1690s.
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In symbols:
ṡ

ẋ
=

1p
1� x2

. (28)

Referring to what nowadays we would call the “fundamental theorem of the
calculus,” Newton now stated that the arc s is measured by the area of the
surface bounded by the curve v�1 = 1/

p
1� x2. This area (we would writeR

dx/
p
1� x2) could be calculated via the binomial theorem and term-wise

integration as:

x+
x3

6
+

3x5

40
+

5x7

112
+O(x9). (29)

We would say that this series is equal to “arcsin(x),” but, as we know, this is
not what Newton, Leibniz, or Johann Bernoulli would do. The mathematicians
active in late seventeenth-century Europe would say that the above series
“approximates the arc whose sine is x.” What came first was not the formula,
but a geometrical functional relationship between geometrical magnitudes that
was given by a construction, namely: by drawing a circle, by drawing a point on
its circumference, and by tracing the abscissa x and the arc-length s. Newton
noticed that as x flows (what he called the “correlate quantity”), so does
s (the “relate quantity”) in a functionally related way. Once you have this
geometrical relationship between magnitudes embedded in the given figure (a
unit circle), you can ask yourself how to calculate the arc-length s = LD (or
equivalently the area of the circle sector s/2 = LCD) given the sine x = CB.
Since the functional relationship between the arc-length and the sine is not
algebraic, Newton made recourse to infinite series.

6.1.4 The arccosh

The quadrature of the circle that we have just reviewed is of great importance
for the treatment of inverse-cube orbits, as is apparent if we consider the
integrals (16). Further, Newton could extend the quadrature of the circle to
the unit hyperbola

x2 � v2 = 1. (30)

If we set the hyperbolic sector V CR (figure 3) as equal to s/2, a result analo-
gous to (28) follows:

ṡ

ẋ
=

1p
x2 � 1

. (31)

From this we would derive in modern notation
R
dx/

p
x2 � 1 = arccosh(x).

The integrals (16) follow from (28) and (31) by a simple substitution of vari-
ables.24 To repeat: Newton did not use an integral sign or a notation for hyper-
bolic functions. For him formula (31) expressed a geometrical proportionality
between the infinitesimal increments of the sector V CR and of the abscissa
x. This proportionality allowed him to express the relationship between the

24 In modern notation, we provide the following example:
R

dx/
p
b2 � x2 =

(1/b)
R

dx/
p

1� (x/b)2 =
R

d�/
p
1� �2 = arcsin�, for � = x/b.
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Fig. 6: The incipit of the first catalogue. Source: Add. 3960.14: 77. Reproduced by kind
permission of the the Syndics of the Cambridge University Library.

Fig. 7: First case of ordo quartus in the first catalogue. Source: Add. 3960.14: 77. Reproduced
by kind permission of the Syndics of the Cambridge University Library.

abscissa (what we call the hyperbolic cosine) of point R and the hyperbolic
sector V CR as an infinite series.

6.1.5 A question

Can we provide more evidence that Newton made a connection between his
method of fluxions and an important proposition of the Principia such as
Corollary 3? Indeed we can, by looking attentively to a table of quadratures
(“integrals,” in Leibnzian terms) that he wrote in 1670 and later included in
the draft version of De quadratura that Gregory inspected in 1694.

6.2 Newton’s quadratures “by means of finite equations”

The so-called De methodis serierum et fluxionum, composed in 1670–1 ([18], 3,
32–328), contains two “catalogues of curves” in which one finds tabulated the
equations of several curves, divided into di↵erent “orders,” and the “values
of their areas.” These catalogues were reprinted, with some variants, in De
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quadratura curvarum,which Newton published as an appendix to the Opticks

in 1704.25

6.2.1 The fundamental theorem of calculus

The first catalogue (see fig. 6) is based on Newton’s understanding of what we
call the fundamental theorem of calculus ([18], 3, 236–41). In the mid 1660s
Newton, most probably inspired by Isaac Barrow, proved that, given a plane
curve, the fluxion of the area bounded by this curve, by the abscissa, and by
the ordinate, is to the fluxion of the abscissa as the ordinate is to 1. So, for
example, with reference to Proposition 41, Newton would say that the fluxion
of the area V abD is to the fluxion of the abscissa CD as the ordinate Db is
to 1 (see fig. 2). This insight immediately set him on the project of tabulating
curves and their areas.

The first catalogue of the De methodis summarizes some of Newton’s results
on quadratures (see fig. 6). According to Newton’s conventions, �, e, f , g are
constants, ⌘ can be a “positive or negative integer or fraction.” The curves to
be squared have abscissa z and ordinate y, while the areas of the surfaces they
subtend are denoted by t or ⌧ . Most of the equations of the curves in the first
catalogue involve radicals of the form R =

p
e+ fz⌘ or R =

p
e+ fz⌘ + gz2⌘.

6.2.2 A simple example

Let us consider the first tabulated curve (see fig. 6). Since we know that the
fluxion of ⌧ = (�/⌘)z⌘ is ⌧̇ = �z⌘�1 (assuming ż = 1), Newton concluded
that the “value of the area” of the curve y = �z⌘�1 is ⌧ = (�/⌘)z⌘. A simple
consequence of the fundamental theorem.

6.2.3 A quadrature for Corollary 3

For our purposes, the relevant quadrature occurs as the first in ordo quartus

(see fig. 7). For ⌘ = 2 and � = 1, this translates into the statement that, if a
curve has equation

y =
zp

fz2 + e
, (32)

then its area is

⌧ =
1

f

p
fz2 + e. (33)

This quadrature is what we need in order to square curve abz in Prop. 41 that
determines the time in function of the radius for inverse-cube trajectories (set
yż = ydz = dt, z = r, f = 2E and e = 2↵�h2 and you obtain equation (12)).

25 I will not discuss the variants between the Catalogi divided into ordines of the De
methodis and the Tabulae divided into formae of De quadratura, since they are not relevant
for the thesis defended in this paper. According to an expert judge such as Whiteside: “The
tables of integrals which Gregory saw were in fact [. . . ] those which Newton introduced more
than twenty years earlier into his general 1671 tract on fluxions and infinite series [the De
methodis], rather than their lightly refashioned equivalent which he had much more recently
appended to his revised text ‘De quadratura curvarum’.” [18], 7, 197.
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Fig. 8: Auxiliary conics for the second catalogue of curves. Source: Add. 3960.14: 75. Repro-
duced by kind permission of the Syndics of the Cambridge University Library.

Fig. 9: The incipit of the second catalogue. Source: Add. 3960.14: 79. Reproduced by kind
permission of the Syndics of the Cambridge University Library.

6.3 Newton’s quadratures “by means of conic sections”

A second catalogue of “curves related to conic sections” occurs in the De

methodis a few pages later ([18], 3, 241–55). This catalogue too was repub-
lished, with some variants, in De quadratura, and Gregory must have seen a
draft for the latter work. Basically, by appropriate substitutions of variables,
Newton reduces the quadrature of a series of curves divided into several “or-
ders” to the quadrature of conic sections.

6.3.1 Auxiliary conics

The conics appear at the top of the table ([18], 3, 242), and we immediately
recognize the auxiliary conics that Newton used in Corollary 3 of his Principia
(see fig. 8). The third figure from left is the auxiliary ellipse, the last figure to
the right is the auxiliary hyperbola. The lettering is di↵erent, but we easily
realize that the relevant conic sectors equivalent to V CR in Corollary 3 are
here ↵GDA (ellipse) and PAD (hyperbola). We are on the right track.
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6.3.2 Substitution of variables

We see (fig. 9) that in this second catalogue there are four columns.The first
column lists, as in the first catalogue, the equations of the curves to be squared
divided into orders. As before, their abscissa is z, ordinate y, and area ⌧ . Then
we have a second column where the reader learns how to change variable
(today we would write x = f(z)). The next column lists the equations of conic
sections, with abscissa x, ordinate v, and area s. The sought area ⌧ is expressed
in terms of the conic area s in the fourth column (in Leibniz’s notation, one
would write ⌧ =

R
ydz and s =

R
vdx).

As we know, Newton could square conic sections by means of infinite series
that we would understand as the Taylor series of log, trigonometric and hy-
perbolic functions. Indeed, the whole gist of De quadratura is the calculation
of curvilinear areas (the “quadrature of curves”) by means of infinite series.26

6.3.3 A simple example

This is best explained by an example: the simplest is the first case of the first
order see (fig 9). We have to square

y =
�z⌘�1

e+ fz⌘
. (34)

With a change of variable z⌘ = x, the quadrature of the curve is reduced to
the quadrature of a hyperbola v = �/(e+ fx). Newton would write:

yż =
�

x(e+ fx)

xẋ

⌘
=

1

⌘

�

e+ fx
ẋ =

1

⌘
vẋ, (35)

and from this conclude that

⌧ =
1

⌘
s =

↵GDB

⌘
.27 (36)

Newton, of course, knew that s is the logarithm (�/f) log(fx+e), but he would
express the area as an infinite series:

⌧ =
�

⌘f
(1 +

fx

e
� f2x2

2e2
+

f3x3

3e3
� . . .), (37)

and rather than write a symbol for the logarithm he would represent this
transcendental magnitude geometrically in terms of the area subtended under
an hyperbola ↵GDB (see the hyperbola, second from left, in fig. 8).

6.3.4 A quadrature for Corollary 3

For our purposes, the relevant quadrature occurs as the first in ordo septimus

(see fig. 10).28 For ⌘ = 2, this translates into the statement that, if a curve

26 This might be missed by a superficial reading.
27 In Leibnizian notation: ⌧ =

R
ydz = (1/⌘)

R
vdx = (1/⌘)s.

28 In the second Tabula of De quadratura, this corresponds to the first case of the fourth
Forma.
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Fig. 10: First case of ordo septimus in the second catalogue. Source: Add. 3960.14: 81.Re-
produced by kind permission of the Syndics of the Cambridge University Library.

has equation

y =
�

z
p
fz2 + e

, (38)

then its area is

⌧ =
2�

f
PAD or

2�

f
↵GDA, (39)

where PAD and ↵GDA, are the conic sectors in fig. 8.
This quadrature is what we need in order to square curve dcx in Prop.

41 that determines the polar angle in function of the radius for inverse-cube
trajectories (set yż = ydz = d✓, z = r, � = h, f = 2E, and e = 2↵ � h2, and
you obtain equation (13)).

Note that the change of variable in the second column is very much the
one we employed in the modern interlude in section 4 (equation (14)): Newton
sets x = 1/z (equivalent to our w = 1/r).

In the third column, we find the equation of the auxiliary conics v =p
ex2 + f (e < 0 for the ellipse, e > 0 for the hyperbola).
Via the change of variable indicated in second column the required quadra-

ture is reduced to a simpler form as follows:

yż =
�ż

z
p
fz2 + e

=
��xp
f/x2 + e

ẋ

x2
= � �ẋp

ex2 + f
. (40)

In modern notation, this corresponds to reducing the sought integral, via sub-
stitution of variable, to an integral that we have already encountered in section
4 in our modern solution (see equation (15):

�

Z
dz

z
p
fz2 + e

= ��

Z
dxp

ex2 + f
. (41)

We integrated this in terms of the trigonometric and hyperbolic functions (see
equations (16)). Thus, for example, we would write (for e > 0):

�

Z
dxp

ex2 + f
=

�p
e
arccosh

✓r
e

f
x

◆
+ C. (42)

But Newton, his contemporaries and immediate successors, as we know, did
not express this quadrature in symbolic terms. Rather, they made recourse to
a construction in terms of the auxiliary conics.
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The quadrature is provided in the fourth column as:

⌧ =
2�

f

����
1

2
xv � s

���� =
2�

f
PAD, (43)

where s is the area of the surface subtended under the conic whose abscissa is
x and ordinate is v.29 Indeed, the absolute value of the di↵erence between the
area of the triangle with sides x and v and the area of the region subtended
under the conic is equal to the area of the conic sector PAD, in terms of which
Newton performs the required quadrature. Or, in modern symbols:

⌧ =
2�

f

����
1

2
x
p
ex2 + f �

Z p
ex2 + fdx

���� .
30 (44)

We note that for the conic v2 = ex2+f (when again we take the hyperbola
as our example, e > 0) the sector PAD has area equal to

PAD =
1

2

p
f

r
f

e
arccosh

✓r
e

f
x

◆
, (45)

which makes Newton’s geometric quadrature (43) equivalent to the modern
analytic solution (42).

We find the quadrature as tabulated in ordo septimus of the second cat-
alogue, the very same curve, the very same substitution of variable, and the
solution expressed in terms of the very same auxiliary conics in Newton’s an-
notation for Gregory, written on May 8, 1694, to which we now turn at last.
Newton was using his quadrature techniques in order to explain to his new
friend a di�cult part of the Principia.

7 Newton’s annotation for Gregory

I provide an English translation (slightly adapted from Newton’s Correspon-

dence) and a commentary of Newton’s annotation for Gregory dated 8 May
1694 ([17], 351). It should be recalled that this is a quick note that was taken
at the end of five very busy days. It was not meant for publication, but just

29 Newton did not use the modern symbol for the absolute value | 12xv � s| but rather one
that he found in Barrow’s works. Newton wrote ÷ for “the Di↵erence of two Quantities,
when it is uncertain whether the latter should be subtracted from the former, or the former
from the latter.”
30 To recapitulate. The first case of the seventh order translated into Leibnizian no-

tation is as follows. For ⌘ = 2, Newton evaluates the integral
R

�/(z
p

e+ fz2) dz (�,

e, f constants). By substitution of variables z = x�1, he reduces it to the conic area

s =
R

vdx =
R p

f + ex2 dx. Namely,

⌧ =

Z
�

z
p

fz2 + e
dz =

2�

f

���1
2
xv � s

���+ C =
2�

f

����
1

2
x
p

f + ex2 �
Z p

f + ex2 dx

����+ C.
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Fig. 11: The incipit of Newton’s annotations for Gregory on Corollary 3. Source: Gregory
MS: 163 (Royal Society Library). c�The Royal Society

to give a competent colleague a su�ciently detailed hint on how to proceed in
order to fill the gap in the Notæ. I take the liberty of altering Newton’s words
in a few inconsequential details. Namely, I use the symbol r, instead of x, and
⇣, instead of z. This is done to spare my reader a headache, since the variables
x and z have already appeared in this paper with di↵erent meanings.

7.1 Translation of Proposition 41 into algebra

Newton opens the annotation as follows (see fig. 11):

CP = CT (Fig. p. 130) = CD = CI (p. 128) = r. DF is reciprocally
as the cube of the altitude (by Hypothesis and Prop. 34) or = a4/r3

where any arbitrary a is assumed. Let AC = c; then the area ADFB =
2a4/r2 � 2a4/cc. And on that account the velocity of the falling body
at D, or the revolving one at I (p. 128) or P (p. 130), that is the length
IK (p. 128), is as

p
2a4/r2 � 2a4/c2 by Prop. 39.

Here Newton is referring to two figures: one accompanying Proposition 41
on page 128 (see fig. 2) and the other accompanying Corollary 3 on page 130
(see fig. 3) of his Principia. He is thus associating algebraic symbols with the
lengths of the segments occurring in these two figures. The “altitude,” which is
the distance from the force centre, is denoted by x, but in the translation above
we change it to r. The ordinateDF of the curve BFG, which in fig. 2 represents
the force’s intensity, is set equal to a4/r3 (it is thus an inverse-cube force). By
the fundamental Propositions 39 and 40, Book 1, Newton derives (by a very
elementary quadrature) that the speed is proportional to

p
2a4/r2 � 2a4/c2

(where c = CA is the position from which the body falls from rest in order
to reach the initial speed at CV ). That is, speed is proportional to the area
ABFD (actually the factor 2 should appear in the denominator!).

We note the following. Newton is here “preparing” his Proposition 41 in
algebraic language in order to employ his quadrature techniques (below) in a
more expeditious way. He uses the expression a4/r3 for the ordinate DF (an
inverse-cube force). The constant a is raised to the fourth power, so that the
ratio a4/r3 has the dimension of a length. Thus, Newton’s algebraic language is
attentive to geometrical interpretation. The last statement of this first excerpt
is equivalent to what nowadays we understand as the principle of conservation
of mechanical energy.
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Fig. 12: Newton’s annotations for Gregory on Corollary 3 (detail). Source: Gregory MS: 163
(Royal Society Library). c�The Royal Society

7.2 Algebraic quadrature of curve abz

The annotation continues as follows (see fig. 12):

By the law prescribed on p. 128 let Q be assumed and let Q/r = Z (p.
128): then will (p. 129)

Db =
Q

[2]
p
ABFD � ZZ

that is

=
Qr

2
p
2a4 �Q2 � 2a4rr/cc

.

And by squaring the curve ab[z] of which this is the ordinate, we get

areaV abD =
ccQ

4a4

r
2a4 �Q2 � 2a4rr

cc
± a given

= the sector V CI (p. 128) or V CP (p. 130) proportional to the time
at Therefore from CP or r, the given altitude of the revolving body, is
given the sector V CP of the orbit which is sought, proportional to the
time; and so the time is given in which the body attains that altitude.

Here Newton translates the fundamental “law” for the time in function of the
radius (see equation (1)). The time is given by the quadrature of the curve
abz with ordinate Db (see fig. 2) on page 128 of the Principia.

For an inverse-cube force, this quadrature is particularly simple (in modern
terms it is equivalent to equation (12)). It takes the form:

y = Db =
�rp

fr2 + e
, (46)
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Fig. 13: Newton’s annotations for Gregory on Corollary 3 (detail). Source: Gregory MS: 163
(Royal Society Library). c�The Royal Society

for � = Q/2, f = �2a4/c2, and e = 2a4 �Q2. This quadrature is elementary.
But notice that Newton included it in the ordo quartus of his first catalogue
of curves (see fig. 7). This first catalogue is based on the idea that, as we
would say nowadays, di↵erentiation and integration are inverse operations.
It is interesting to note that Newton does not forget to add a constant of
integration.

7.3 Geometric construction of quadrature of curve dcx

The annotation ends somewhat hurriedly with the following lines (see fig.
13). Gregory, who in his memoranda of the previous days often refers with
admiration to Newton’s higher-quadrature techniques, needed just this hint in
order to connect this “abstruse” part of the Principia to the quadrature that
Newton “omitted” in the printed text of the Principia. We read:

Furthermore from the same premises and assumptions

Dc =
Q⇥ CXquad

2AA
p
ABFD � ZZ

(pag. 129)

that is

=
Q⇥ CXq

2r
p
2a4 �Q2 � 2a4rr/cc

.

And by squaring the curve dc[x] of which this is the ordinate we get
the area V dcD, in this way. Let

✏✏

r
= ⇣ = CR,
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and r
�2a4

cc
+

2a4 �Q2

✏4
⇣2 = ordinateRS,

and V dcD, the area sought, will be equal to the sector V CS multiplied
by the given

Q⇥ CXq ⇥ (2a4 �Q2/✏✏)⇥ cc

a4
.31

Wherefore, since the angle V CX (p. 128) or V CP (p. 130) is propor-
tional to this area, that angle will be proportional to the sector V CS.
And since the altitude CI or r is ✏✏/⇣, and CT (terminated at the
tangent ST ) is CV 2/CR or CV 2/⇣, then, if ✏ is put = CV , CI or
r = CT .

Here Newton translates the second fundamental “law” for the polar angle
in function of the radius (see equation (2)) that occurs on page 128 of the
Principia (see fig. 2). Even at the beginning of the eighteenth century, this
quadrature would have been considered a di�cult one,

For an inverse-cube force, Newton needs to square a curve with abscissa r
and ordinate Dc. Since Q, CX, a and c, are constants, the curve that Newton
has to square (an equivalent of the di↵erential equation (13)) has the form:

y = Dc =
�

r
p
fr2 + e

, (47)

for � = (Q/2)CX2, f = �2a4/c2, e = 2a4�Q2. This form belongs to the ordo
septimus of the second catalogue for ⌘ = 2 (see fig. 10).

Thus, Newton (as in the second column) proceeds with the variable sub-
stitution

⇣ =
✏2

r
, (48)

where ✏ is set equal to the semi-major axis CV . This variable substitution is
equivalent to our w = 1/r in section 4 (equation (14)).

Next, he introduces (as in the third column) the auxiliary conics (drawn
at the bottom of the page (see fig. 13)) with abscissa CR = ⇣ and ordinate

v = RS =

r
�2a4

cc
+

2a4 �Q2

✏4
⇣2. (49)

Newton concludes with the construction (which we would express in terms
of trigonometric and hyperbolic functions) prescribed in the fourth column of
the seventh order of the second catalogue. Namely:

1. the radius r is set equal to CT (and inversely proportional to ⇣ = CR),
2. the polar angle V CP is set proportional to the sector V CS.32

31 Whiteside notes that the given constant should be Qc2/2a4 ([18], 6, 438).
32 In symbolic terms: r = ✏2/⇣ = ✏2(cos k✓)�1 and r = ✏2/⇣ = ✏2(coshk✓)�1.
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Fig. 14: Newton’s annotations for Gregory on Corollary 3 (detail). Gregory adds “Ad Corol:
3 prop XLI Lib 1. pag. 130 propria Newtoni manu 8 May 1694.” Source: Gregory MS: 163
(Royal Society Library). c�The Royal Society

It should be stressed that Newton’s recourse to a geometric construction for
this “mechanical” (“transcendental,” in Leibniz’s terms) quadrature is typical
of the mathematical culture adopted in Europe until Euler. For example, as
Nauenberg has shown, Johann Bernoulli’s solution of the inverse problem for
inverse-square forces ends with a construction in terms of an auxiliary circle
([16], 291–2).

7.4 Desinit

The annotation ends with a line in Gregory’s handwriting (see fig. 14):

To Corollary 3, Proposition 41, Book 1, pag. 130, in Newton’s own hand
8 May 1694.

Gregory made a copy of this annotation that he later pasted in his Notæ,
filling a blank half-page that he had left in correspondence to Corollary 3 (see
fig. 1). The master had taught his disciple a lesson that was to remain hidden
in Gregory’s hands or available to his correspondents. There are reasons to
believe that Gregory shared the content of his mathematical memoranda. For
example, he may have circulated a short manuscript treatise on fluxions he
composed in the autumn of 1694, another e↵ect of his May encounter with
Newton ([13], 334). As late as 1714 the blind Lucasian Professor, Nicholas
Saunderson, was writing about a proposal for publishing the Notae ([20], 1,
264–5).

8 On translating and interpreting

8.1 Two questions

Newton’s annotation for Gregory on Corollary 3 gives us some important in-
formation about the mathematical methods of the Principia. These methods
were not exclusively based on a supposed “Newtonian style” framed in terms
of “geometrical” limiting procedures.33 In some instances, when dealing with

33 The notion of a “Newtonian style” characterizing the Principia was forcefully defended
by François De Gandt in his enjoyable and learned monograph [7].
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central force motion, the attraction of extended bodies, the oscillation of pen-
dulums, resisted motion, the solid of least resistance, and in many astronomical
parts of the third book, Newton deployed techniques that were an integral part
of his algebraic method of fluxions.34 It should be stressed, however, that the
methods employed in Corollary 3, and in the other instances listed above, are
not representative of the whole Principia, a work that is characterized by a
great variety of mathematical methods: some of these, but not all, were part
of the method of series and fluxions.

In the case considered in this paper, we have seen Newton employing
quadrature techniques. These cannot be considered a marginal element of
the method of fluxions. Seventeenth-century mathematicians were in posses-
sion of quadrature techniques based on approximation methods reminiscent of
Archimedean exhaustion proofs. But this is not the case with the quadratures
employed in Corollary 3: in the second half of the seventeenth century these
would have been considered as quite advanced and up-to-date.

Indeed, the quadratures employed in Corollary 3 imply several features that
we associate with “calculus” and “rational mechanics.” These features are: the
understanding of the fundamental theorem of calculus implied in the first cat-
alogue,the algorithm for finding the fluxion of (di↵erentiating) irrational equa-
tions (irrational functions) displayed in the first catalogue, the techniques of
quadrature (integration) by means of substitution of variables displayed in the
second catalogue, the calculation of slopes of tangents to curves and the use of
the so-called characteristic triangle (see fig. 5), the handling of transcendental
magnitudes in terms of infinite series such as the binomial theorem, the repre-
sentation of the variation of physical magnitudes (such as the force’s intensity)
in terms of plane curves (graphs), and the use of infinitesimals “moments” (dif-
ferentials) referred to the continuous variation of physical magnitudes. All the
above elements are necessary ingredients that enabled Newton to write the
annotation for Gregory. One might even claim that Newton knew how to solve
the problem of central forces in terms of integrations!

Two interesting questions remain open.

34 Gregory’s Notæ are a treasure trove of information on the relationships between the
method of fluxions and Newton’s Principia, something that might be missed upon superficial
inspection. In many places Gregory refers to quadrature methods. Further, the Aberdeen
exemplar of the Notæ includes pages on Newton’s celebrated treatment of the solid of least
resistance, an extraordinary application of fluxions to a proposition of the second book of the
Principia that Gregory also included in the manuscript treatise on fluxions he circulated in
the mid 1690s (“Isaaci Newtoni Methodus Fluxionum; ubi Calculus Di↵erentialis Leibnitij, et
Methodus Tangentium Barrovij explicantur, et exemplis plurimis omnis generis illustrantur.
Auctore Davide Gregorio M. D. Astronomiæ Professore Saviliano Oxoniæ.” A fair copy
is in Christ Church (Oxford). The original is in St. Andrews University Library (MS QA
33G8/D12). Other copies are in the Cambridge University Library, Lucasian Papers [Res.
1894]: No. 13 and in the Macclesfield Collection, Add. 9597.9.3 and Add. 9597.9.4). Other
relevant information on Newton’s use of fluxions in the Principia can be gathered, most
notably, from Newton’s manuscripts and his correspondence with Nicolas Fatio de Duillier
and Roger Cotes.
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1. In what sense do Newton’s methods di↵er from those deployed by Leibniz,
Varignon, Johann Bernoulli, and Euler?35

2. Why did Newton omit to explicitly formulate the fluxional techniques he
employed in the Principia?36

8.2 Translations

The first question depends on a defining feature of the history of mathemat-
ics. As historians of mathematics, we are always, as is apparent from this
paper, wrestling with the problem of translation. We are in possession of a
contemporary mathematical language into which we can translate the lan-
guage of the past. Indeed, we cannot forget our mathematics when we look at
the mathematics of the past, or that of other cultures. It is a fact, depending
on the robustness and universality of mathematics, that such translations are
possible. Yet, as historians we are very much interested in those elements of
past actors’ languages that are “lost in translation,” being peculiar to their
idiosyncratic conception of mathematics.

There are many di↵erences between our mathematical language and New-
ton’s. In physics we use equations rather than proportionalities, and this leads
us to deploy dimensional constants which the experimenters have to measure.
We talk in terms of functions defined on number domains, rather than rela-
tions between geometrical magnitudes. We do not reduce problems to geomet-
ric “quadratures of curves,” but to analytic integrations. We relate solutions
of di↵erential equations to initial conditions and ask ourselves questions of
existence and uniqueness that in Newton’s times were left to intuition. One
might even claim that Newton’s notion of “solution” was di↵erent from ours:
in tackling the problem of central forces, he sought a construction of the tra-
jectory, whereas we seek a class of functions (a general integral). We use a
vector notation and algebra for directed magnitudes, while until the begin-
ning of the nineteenth century mathematicians referred to and manipulated
directed magnitudes via geometrical diagrams (for example, we express the
conservation of angular momentum in terms of a vector equation, whereas
Newton demonstrated the conservation of areal velocity and the conservation
of the orbital plane for central force motion in geometric terms). We deal with
central forces in terms of a scalar potential energy U that is not to be found
in Newton.

To some twenty first-century readers the annotation for Gregory we have
analysed cannot but appear as a strange mixture of geometrical practice, phys-

35 The classic works by Michel Blay [3] and Cli↵ord Truesdell [23], for example, are certainly
very helpful for finding an answer. For a recent assessment see [16].
36 As a matter of fact, Newton contemplated ending the Principia with an appendix on
quadratures in the 1690s, when revising the text, and again in the 1710s, when preparing
the second edition of 1713. But in the end he resolved not to do so. It is only in the
posthumous translation of 1729 due to Andrew Motte that we find two quadrature methods
(for the attraction of an ellipsoid of revolution and for the solid of least resistance) printed
as appendices “communicated by a friend,” who may have been David Gregory.
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ical insights, and dangerously ungrounded algebraic manipulations. The prob-
lem of translation, this switching back and forth between present and past
languages, even somewhat frustrates our conviction about the universality of
mathematics.

However — and this makes history of mathematics an even more demand-
ing enterprise — there are also other mathematical languages that soon clut-
ter the historian’s desk: ones such as that of Euler, for example, which di↵er
from, and yet are “equivalent to,” Newton’s. It is a worthy historiographical
enterprise to attempt to understand how Euler and Lagrange improved on
Newton, in what progress was made in passing from the Principia (1687) to
the Mechanica (1736), and then from the Mechanica to the Méchanique Anal-

itique (1788). From this perspective, the robustness of the standard view must
be recognized. Eighteenth-century mathematicians had to abandon Newton’s
quadratures and geometrical representation of transcendental magnitudes. The
problems they tackled required them to do so: they transformed mechanics in
such a way that the Principia became an object of curiosity, rather than a
source of scientific inspiration.

8.3 Comparisons

As a telling example of the controversial issues of interpretation we encounter
in comparing Newton’s fluxional method to the Leibnizian calculus, I might
refer to a passage in our modern treatment of inverse-cube trajectories in
section 4, namely: the separation of variables that we perform in deducing
equation (8) from equation (7). I will rewrite this passage, which is so standard
for a modern reader that it is easy to forget the importance of this algorithm.

Given (equation 7)

ṙ =
dr

dt
= ±

p
2(E � U)� h2/r2,

we wrote (equation 8)

dt =
drp

2(E � U)� h2/r2
.

It is this substitution of the dot-notation with the di↵erential one that allowed
us to separate the variables.

As Blay has taught us in his magisterial works, Leibniz, Johann Bernoulli,
Hermann and Varignon (among others) algebraised time, velocity and acceler-
ation in terms of the Leibnizian calculus [3]. It is this algebrisation (in this case,
the representation of radial speed as dr/dt) that allows the above separation
of variables.

Yet, we should recall the three following points.

1. Newton could “square” the area V abD for an inverse cube force (see fig.
2), and thus obtain the algebraic function that expresses the functional
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dependence of time with radial distance in the inverse-cube case (as we
have seen in section 7). Thus, in his own way, he could tackle the inverse
problem of central forces in algebraic terms.

2. Further, in his method of fluxions, Newton often understood a symbol
such as ẋ to stand not for a finite speed, but rather for an infinitesimal
increment, or “moment,” of the pertinent variable x (an increment Leibniz
would express with dx). This allowed Newton’s immediate British followers,
such as David Gregory, Roger Cotes and Colin Maclaurin, who trod in
Newton’s steps, to write formulas that correspond to the ones employed
by the Leibnizians. So, for example, the early practitioners of the fluxional
method, would represent, in Cartesian coordinates (x, y), the infinitesimal
increment of the arc of a plane curve with ṡ =

p
ẋ2 + ẏ2 (which, of course,

would correspond to ds =
p
dx2 + dy2). In this way, they were able to

reproduce all the results on integration published by mathematicians such
as Johann Bernoulli and Varignon in the Acta Eruditorum. In this context,
it should be noted that very soon those who employed Newton’s notation
learned to translate the Leibnizian di↵erential representation of the velocity
v = dx/dt in Newton’s notation as v = ẋ/ṫ. This notation allowed the
early fluxionists to perform the separation of variables that we have just
seen above.37 The idea that the Newtonian calculus lagged behind the
Continental one because of an adherence to Newton’s notation is a refutable
myth.38

3. Finally, one should not forget that the mathematicians working with Leib-
niz’s notation in the early decades of the eighteenth century, remained
anchored to a geometric interpretation of the di↵erential magnitudes they
manipulated. For example, they understood a symbol such as dy/dx as
representing a ratio between two geometric infinitesimal magnitudes. Their
concern with geometric interpretation is revealed by the fact that, when
writing a di↵erential equation, they paid due attention to the geometric ho-
mogeneity of the left- and right-hand sides. To depict the fluxional method
as “geometrical,” in opposition to an “algebraic” di↵erential calculus is an
over-simplification.39

Let us continue our little exercise of “comparative mathematical litera-
ture,” so to speak. From a modern view-point, one might tackle central force

37 For example in Thomas Simpson’s treatise on the method of fluxions, first printed in
1750, we read that “the Time wherein the Space ẋ would be uniformly described is known
to be as ẋ/v,” (where v is the velocity) and a few pages later this is applied to rectilinear
accelerated motion in order to calculate the time T “by finding the fluent” of “Ṫ = ẋ/v.”
This is, of course, in Leibnzian notation equivalent to dt = dx/v. See [21], pp. 244–6.
38 The absence of a symbol equivalent to Leibniz’s

R
is a well-known weakness of Newton’s

notation. In a few instances, Newton used to draw a square 2, in most cases he used words
such as “the fluent of” or the “area of.” Some eighteenth-century British mathematicians
mixed the two notations by writing, for example,

R
yẋ for

R
ydx. The use of an elongated f

for “fluent of,” rather than Leibniz’s elongated s,
R
, for “summa” is also documented. [5],

2, 244–6.
39 On the “dual” character, algebraic and geometric, of di↵erentiation in the early Leib-
nizian calculus, see [10].
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motion as follows. The integration of equation (8)

t(r) =

Z r

r0

drp
2(E � U)� h2/r2

,

defines t in function of r (where we choose t(r0) = 0). By inversion, the radial
position in function of time, r(t), can be obtained. By using the conservation
of angular momentum (9), the solution for ✓ is obtained as

✓(t) = h

Z t

0

dt

r2(t)
+ ✓0.

This leads to a complete solution of the determination of the trajectories (r(t),
✓(t)) in a central force field.

The above calculation is so familiar that we tend to forget that in the
eighteenth century specific algorithmic tools and new concepts were developed
to facilitate such manipulations. In this case, what makes the above procedure
easy are the concept and notation for functions (such as r(t), ✓(t)), and the
expression of the law of areas (or, conservation of angular momentum) as a
di↵erential equation (9), rather than as a statement concerning the rate of
increase of the area spanned by the radius vector.40 It is a fact, well-known
to historians of eighteenth-century mathematics, that the notion and notation
for functions emerged in the middle of the century, mostly in relation to issues
related to the integration of partial di↵erential equations (such as the vibrating
string equation).

In the absence of a concept of function, Newton achieved the same result,
but in a more cumbersome way. He required the squaring of two curves, cor-
responding to equations (8) and (10). In his characteristic geometrical way of
representing functional relationships, Newton had to refer to two areas V abD
and V dcD, and then state that the quadrature of these areas gives the time
(represented by the area V CI swept by the radius vector) in function of the
distance from the force centre, and the polar angle (represented by the area
of the circle sector V CX) in function of the distance from the force centre.

8.4 Re-enactments

As I said above, the historian wishes to recapture, to re-enact, what has been
lost in the progress so masterfully recounted by Blay and Truesdell. It is unde-
niable that Leibniz, Varignon, Bernoulli and Euler produced an algorithm and
obtained results in the integration of di↵erential equations applied to mechan-
ics that are superior to Newton’s. However, Newton’s mixing of geometrical

40 We note that angular momentum is a vector quantity, so it is also the direction of the
vector (or equivalently the fact that the motion is planar) that must be taken into con-
sideration. Before the advent of vector notation at the beginning of the nineteenth century
(another conceptual shift to which corresponds the introduction of yet another mathematical
language), the constancy in orientation of the angular momentum could only be expressed
in geometric terms.
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intuition and algebra possesses its own beauty and conceptual depth. There
was progress in passing from Newton to, say, Lagrange, but also a loss. In
writing the history of the mathematization of mechanics, as historians we are
interested in recapturing what has been “lost in translation.” This is impor-
tant mostly because what is lost is often what is peculiar and idiosyncratic:
what is revealing of the author’s intent and agenda. In our interpretative work
we have thus to translate and compare the languages of past actors, in an at-
tempt to understand what they wished to achieve, as Newton did, by choosing
an austere Euclidean style when printing a volume on the mathematical prin-
ciples of natural philosophy, when addressing a question posed by a frustrated
visitor, or when omitting a quadrature “for the sake of brevity.”

8.5 Interpretations

As to the second question. It seems as though Newton used a public language
in which he printed hismagnum opus, and a private language with his acolytes,
whenever they asked for clarifications. This bifurcation between esoteric and
exoteric mathematics is a fascinating aspect of Newton’s policy of publica-
tion that cannot be dealt within the limits of this paper. Tentative answers
can be reached only by broadening the field of historical enquiry. One has
to consider what the intended audience of the author of the Principia might
have been, how the choice of a public mathematical style became part of his
self-fashioning in the republic of letters as a staunch anti-Cartesian, how and
why the algebraic method of fluxions became a source of anxiety for a natural
philosopher who regarded himself as an heir to the Ancients, rather than as a
follower of the “men of recent times.”41

8.6 Invitation

One of the aims of this paper is to suggest that the vexed question of Newton’s
use of calculus in the Principia still deserves our attention and might lead to
“good” historical questions, such as the two we have just considered, which
bypass as irrelevant the animosity and partisanship that have muddied the
waters since the Newton-Leibniz controversy giving rise to a “standard view”
that polarizes Newton’s use of “geometry” in the Principia and the Continental
“rational mechanics” in an all too simplistic way.

Questions of priority have often polarized the attention of historians of
mathematics. These questions are, however, ill-chosen since they are based on
the idea that in the development of mathematics there exist objects (such as
theories, theorems, concepts, methods) that can be found by a single discov-
erer. From this point of view, the historian’s task would be to lend credit to
single individuals. But the development of mathematics is a much more com-
plex phenomenon, and the application of calculus to mechanics is no exception.

41 I have discussed this issue in [13].
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It would be a gross exaggeration to say that Newton founded, or anticipated,
the mechanics of Euler and Lagrange. Yet, it would be equally wrong to think
that Newton and his acolytes were extraneous to a treatment of mechanics in
terms of calculus.

If our program is aimed at “rediscovering the rational mechanics of the
Age of Reason,” as Truesdell put it in his seminal paper that initiated the
influential history of this journal [23], then we have to accept a more complex
image of the establishment of rational mechanics, and include Newton and the
Newtonians within a picture that the standard view depicts as a purely Con-
tinental story spanning from Leibniz to Euler. Indeed, Newton and his British
followers often contributed results in analytic mechanics that were shared with
the Continentals, sometimes in a polemic context, as even a fleeting perusal
of the Bernoulli correspondence at the Universität Bibliothek in Basel reveals.
One might cite, without any claim to exhaustiveness: Cotes’s study on the
inverse-cube trajectories, Taylor’s work on the vibrating string, Stirling’s and
Maclaurin’s theorems on the gravitational attraction of ellipsoids. The view-
point I suggest leads to further questions with which it may be apposite to
conclude this paper: What did Newton mean by calculus, or by the method of
series and fluxions? How did he apply it to mechanics? What publication pol-
icy did he follow in printing the Principia? How did he privately communicate
his results to his acolytes? What can we learn about Newton’s mathematical
culture when we consider his views on mathematical method and publication
practices? A serious study of these questions might shed light on an important
chapter of the history of mathematics.
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di Matematica, Università di Milano), Tom Archibald (SFU, Vancouver), Craig Fraser (Uni-
versity of Toronto), Alain Albouy (Observatoire de Paris), and Michael Nauenberg (Santa
Cruz) for their helpful comments.

References

1. Apollonius of Perga, Conics, Books I-III, translation by R. Catesby Taliaferro, diagrams
by William H. Donahue, introduction by Harvey Flaumenhaft, new revised edition, Green
Lion Press, Santa Fe, NM, 2000. (See Coniques: Texte Grec et Arabe, Etabli, Traduit
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