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Abstract We propose an axiomatic approach which economically underpins
the representation of dynamic intertemporal decisions in terms of a utility
function, which randomly reacts to the information available to the decision
maker throughout time. Our construction is iterative and based on time depen-
dent preference connections, whose characterization is inspired by the original
intuition given by Debreu’s State Dependent Utilities (1960).
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1 Introduction

The criterium which leads the decisions of every agent, intervenes in many as-
pects of real life, determining the economical, political and financial dynamics.
For this reason the psychological analysis and the mathematical axiomatiza-
tion of the agents’ behavior has gained a lot of interest, leading to a flourish
stream of research literature (see [18] for an exhaustive review). The first key
element which comes into play in the decision process is the Subjective Prob-
ability, which has been intensively studied since the preliminary contributions
by de Finetti [5]. Von Neumann and Morgenstern [29] initiated a systematic
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work on preferences over lotteries, which admit a representation in terms of
an expected utility. This intuition dates back to a paper published in 1738
[2], where Bernoulli already realized that any decision is heavily linked to the
“particular circumstances of the person making the estimate”, which could vary
significantly depending on the observed evolution of information. For example
a fund manager may start behaving in a risk seeking manner under the stress
provoked by a plunge of the financial markets, which is causing severe losses.
Debreu [4] gave an axiomatic setup (on a finite state space) to model pref-
erence relations which can depend on the future state of nature and can be
represented by the so-called state-dependent utility functions (see Theorem
8, in the Appendix). State dependent preferences are sensitive to the random
outcomes that may occur in the future, and therefore the agent’s subjective
utility may be affected by different future scenarios related to the occurrence
of specific events. Karni [15] developed measures of risk aversion which allow
the partial ordering of state dependend utilities in view of optimal risk sharing
analysis. In [30], Wakker and Zank provided an extension of Debreu’s result
from finite to infinite dimension, for the special case of real-valued outcomes
and monotonic preferences. The development of their extended functional,
additively decomposable on infinite-dimensional spaces, leads to a numerical
representation of the preferences in terms of a state dependent utility u and
a probability P (see Theorem 9, Appendix). The main results in [30] (and [3])
will indeed play a key role in the proof of Theorem 3.
In [16] Kreps and Porteus gave rise to a new axiomatic treatment of the tempo-
ral resolution of uncertainty. They consider a discrete time model t = 0, . . . , T ,
where an individual must choose an action dt constrained to the state xt oc-
curred at time t. As a random event takes place determining an immediate
payoff zt, the action dt will affect the probability distribution of (zt, xt+1)
where xt+1 is the new state of the world. The result is a dynamic choice be-
haviour which cannot be represented by a single cardinal utility.
Epstein Zin [11] and Duffie Epstein [7] (see also [10]) constructed a class of
recursive preferences over intertemporal consumption lotteries, respectively in
discrete and continuous time models. In [11] the recursive utility at time t is
given by an aggregating function i.e. Vt(c) = W (ct,mt(Vt+1)) where ct is the
consuption and mt(Vt+1) the certainty equivalent at time t of Vt+1. Similarly
Duffie and Epstein [7] obtained a representation of the recursive utility on
consumption streams of the form

Vt(c) = EP

[∫ T

t

(
f(cs, Vs(c)) +

1

2
A(Vs(c))|σs|2

)
ds
∣∣Ft] ,

where f is an aggregator, A is the variance multiplier and σ is a volatility
process. In such context the system of conditional preferences between two
consumptions is determined by the recursive utility as

c �ω,t c′ ⇐⇒ Vt(c, ω) ≥ Vt(c′, ω).
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In [8], Epstein and LeBreton showed that the existence of a Bayesian prior
is implied by preferences based on beliefs which admit a dynamically consis-
tent updating in response to new information. The effect of consequences by
the mean of conditional preferences over acts is introduced by Skiadas in [28].
Given an event F , the preference relation x �F y “has the interpretation that,
ex ante, the decision maker regards the consequences of act x on event F no
less desirable than the consequences of act y on the same event ”([28, p.350]).
Wang [31] axiomatized three updating rules for a class of conditional prefer-
ences over consumption-information profiles. A systematic study of conditional
preferences is provided in [6]: a conditional preference order is a binary relation
� which is reflexive, transitive and locally complete. An opportune extension
to the conditional setup of the indipendence and Archimedean axioms, led in
[6, Theorem 5.2] to the representation of conditional preferences over the set
of lotteries in terms of a conditional utility function.
Recursive multiple-priors and dynamic variational preferences (see resp. [9] and
[17]) deals with conditional preference relations �t,ω on consumption streams
h. Here t ∈ {0, 1, 2, . . . , T} is a point in time and ω is the path of the state space
observed up to time t. These two classes of preferences can be represented in
the form of conditional functionals given respectively by

Vt(h) = inf
P∈∆

(
EP
[∑
τ≥t

βτ−tu(hτ ) | Ft
])

(1.1)

Vt(h) = inf
P∈∆

(
EP
[∑
τ≥t

βτ−tu(hτ ) | Ft
]

+ ct(p|Ft)
)
, (1.2)

where ct is the recursive ambiguity index, which gurantees time consistency
of the preferences under some opportune restrictions ([17, p.14, Axiom 4]). In
both papers [9,17] the Dynamic Consistency Axiom plays a fundamental role
and inspired the result contained in Proposition 1, Section 3 of the present
paper.
Finally we observe that in the recent paper [25], Riedel et al. consider dynamic
preferences �t,s on couples (P, f) where P belongs to a set of probabilities and
f is an act (imprecise probabilistic framework). An important feature is that
Dynamic Consistency of the preferences guarantees that the set of conditional
priors is stable under pasting.

From Economics to Finance: the dynamics of decision making. The interplay
between Decion Theory and Financial Mathematics had its outbreak after the
important contribution given by Merton in [19] and is witnessed by the flourish
literature on stochastic optimal control (see [23] for a detailed exposition).
The classical utility maximization problem can be formulated as a stochastic
control problem of the form

v(t,X) = sup
α∈A(t,X)

EP[u(VT (t,X, α)) | Ft],

where the sup is to be intended as a P essential supremum, A(t,X) is the
set of admissible strategies (starting at time t), u is a concave utility function
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and VT (t,X, α) is the FT -measurable final payoff of the strategy α with initial
random endowment X (which is Ft-measurable). A primary question is wether
a utility maximizer is willing to invest in a strategy α from time t to time T ,
provided she owns at t the random amount X. The answer to this question is
deeply related to the intertemporal comparison between X and the final value
of the strategy α given by VT (t,X, α). One rational solution could be that the
agent accepts to invest in the market if she believes to know the optimal solu-
tion to the control problem. Namely we can define an intertemporal relation
�t,T by

X �t,T VT (t,X, α) if and only if v(t,X) ≥ EP[u(VT (t,X, α)) | Ft], (1.3)

where the right hand side insequality is intended P almost surely. The Dynamic
Programming Principle ([23, Theorem 3.3.1]) implies that for any bounded
random variable X, v(t,X) ≥ EP[u(VT (t,X, α))|Ft] and equality holds when-
ever α∗ is the optimal policy. In this case X is equivalent to VT (t,X, α∗) from
an intertemporal perspective and will be baptized in the following section of
this paper Conditional Certainty Equivalent (Definition 1). In this example, v
represents the indirect utility and the preference relation �t,T is not a stan-
dard binary relation, whose properties need to be introduced carefully, as we
shall do in an abstract fashion in Section 3.

This backward approach to utility maximization has recently been ar-
gued in a series of paper by Musiela and Zariphopoulou starting from [20,
21], and a novel forward theory has been proposed: the utility function is
stochastic, time dependent and moves forwardly. In this theory, the forward
performance (which replaces the indirect utility of the classic case) is built
through the underlying financial market and must satisfy some appropriate
martingale conditions. Namely a Forward Performance is an adapted stochas-
tic process U(t, x, ω) on a fixed filtered probability space (Ω,F , {Ft}t≥0,P)
such that: i) U(0, x, ω) = u0(x) for any ω ∈ Ω; ii) for each t and ω, U(t, ·, ω)
is increasing and concave as a function of x; iii) for all T ≥ t and each self-
financing strategy represented by π, the associated discounted wealthXπ satis-
fies EP[U(T,Xπ

T ) | Ft] ≤ U(t,Xπ
t ); iv) for all T ≥ t there exists a self-financing

strategy π∗ such that Xπ∗ satisfies the equality in point iii). The first require-
ment represents the initial datum of the problem which determines (together
with the market parameters) the evolution of U and motivates our Assump-
tion 1. The remaining properties lead to the existence of U as a solution of
a stochastic PDE. A posteriori of this construction we obtain a couple (P, U)
which defines an intertemporal relation �s,t by U(s, ·) ≥ EP[U(t, ·)|Fs]. This
intertemporal relation belongs to the class described by Theorem 3 and along
the optimal policy π∗ the value of the portofolio Xπ∗

s corresponds to the Con-
ditional Certainty Equivalent of Xπ∗

t for any s ≤ t.
Inspired by this idea, Frittelli and Maggis [13] studied the conditional (dy-
namic) version of certainty equivalents (as defined in [24]). The preliminary
object is a stochastic dynamic utility u(t, x, ω) representing the evolution of
the preferences of the agent. The novelty in [13] is that the (backward) condi-
tional certainty equivalent, represents the time-s-value of the time-t-claim X,
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for 0 ≤ s ≤ t < ∞, capturing in this way the intertemporal nature of prefer-
ences. Unfortunately any axiomatization of intertemporal preferences, which
could justify the representation in terms of stochastic dynamic utilities, is still
missing in the literature and our aim is to fill this gap.

The aim of this paper. Any decision maker shows a certain level of impatience
when compares present and future outcomes, as emotion-based and cognitive-
based mechanisms contribute to intertemporal distortions. In [32], Zauberman
and Urminsky provide an overview of the psychological determinants of in-
tertemporal choice such as impulsivity, goal completion and reward timing,
different evaluation of the future in terms of concreteness, time perception
and many other features:

“In sum, these findings establish that the way people perceive future time itself
is an important factor in how they form their intertemporal preferences [...]

What is common across the various factors influencing intertemporal
preferences is that all these mechanisms influence the relative attractiveness

of achieving a present goal compared to a later more distant one. ”1

In this paper we aim at characterizing a family of intertemporal preference
relations which compare random payoffs whose realizations will be known at
different points in time. We will introduce a set of conditional axioms which
will lead to the representation of preference in terms of a Stochastic Dynamic
Utility u(t, x, ω) and a Subjective Probability P on a general state space Ω
(see Theorem 3), which can be rephrased as: conditional to the available in-
formation, g is preferred at time s to f at time t ≥ s if and only if

u(s, g) ≥ EP[u(t, f) | Fs] P− a.s.

The Stochastic Dynamic Utility turns out to be a random field adapted to a
given filtration which represents the information flow. For this reason u(t, x, ω)
randomly reacts whenever the Decision Maker becomes aware of new sensi-
tive data, such as market behavior, news, catastrophic shocks or any other
macro/micro factor which leads to a reconsideration of personal beliefs. Since
different random payoffs are defined on different instants in time, the notion of
preference relation2 will satisfy non-standard axioms and will take the name
of Intertemporal Preferences (ITP).

The main novelty of our approach is that we provide an abstract axiomati-
zation of Intertemporal Preferences which allows to include in our model “the
relative attractiveness of achieving a present goal compared to a later more
distant one”. Indeed our iterative construction leads to an automatic forward
updating of preferences depending on the avaliable information, which satis-
fies a form of dynamic consinstency. As a byproduct we obtain a theoretical

1 [32], p. 139.
2 We point out that the use of the term ‘preference’is slightly improper as the ordering

will not be a binary relation as it is usually intended.
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framework where the theory of Forward Performances [20,21] and the study
of Conditional Certainty Equivalent [13] can be embedded.

The key ingredients of ITP can be summarized by four elements: first the in-
formation at each time is described by the existence of a filtration {Ft}t∈[0,+∞),
i.e. a family of sigma algebras such that Fs ⊆ Ft for s ≤ t. Second, as ITP
compares random payoffs which live at different times, we shall need to in-
troduce a relation �s,t (resp. �s,t) for s < t being two points in time. In
particular g �s,t f will mean that the Ft-measurable payoff f (which will be
fully revealed at time t) is preferred to the Fs-measurable g, conditioned to
the knowledge of the information available at time s (Similar for g �s,t f).
Third the preference relation �s,t is not total if the full information Fs is
not yet disclosed. The notion of conditional preferences, as introduced in [6],
becomes an important tool to understand the nature of ITP. Lastly, we will
assume that the agent observes real information only through a discretisation
of the time line, namely t0 = 0 < t1 < ... < tn < . . .. We observe that in [6] a
probability on the conditional sigma algebra was assumed to exist a priori. In
our approach this requirement is not necessary, but we rather derive step by
step a new probability update which follows directly from the decision theory
structure we are choosing.

Some of the techniques involved in the proof of Theorem 3 are inspired
by the theory of Conditional Risk Measures (see [12, Chapter 11]). The key
element appearing in our construction is indeed the Conditional Certainty
Equivalent (see Definition 1) which can be seen as a Conditional Risk Map
([13,14]). Nevertheless, the general class considered in [14] does not necessarily
satisfy the Sure-Thing Principle, but rather a weaker regularity assumption
([14, Definition 2.6]) as depicted in the corresponding example of Section 5.

The paper is structured as follows: in Section 2 we provide a description
of the notations used in the paper and a toy example to motivate our study;
Section 3 is devoted to the introduction of the set of axioms characterizing
ITP and to the statement of the main representation result. In Section 4 we
prove the result in the unconditioned case (i.e. for trivial initial information).
The aim of Section 4 is twofold: on the one hand it will serve as initial step of
the induction argument we present in Section 6 to obtain the complete proof
of our main Theorem 3. On the other hand, it is written in a self-contained
manner, so that it can be read and understood independently from the general
conditional setting. Finally in Section 5 we describe applications of our results
to cases which go beyond the models described in references [13,20,21].

2 Preliminaries on Intertemporal preferences.

2.1 Notations

Throughout the paper we shall make use of the notations described in this
short section. We fix a measure space (Ω,F) where Ω is the set of all possible
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events (state space) and F is a sigma algebra. We shall model information over
time by the existence of an arbitrary filtration {Ft}t∈[0,+∞), with Fs ⊆ Ft ⊆ F
for every s ≤ t. For any given sigma algebra G ⊆ F we denote by L (G)
the space of G-measurable functions taking values in R (outcome space). We
shall usually refer to elements f ∈ L (G) as random variables (or acts) and
denote by L∞(G) its subspace collecting bounded elements i.e. f ∈ L (G)
such that |f(ω)| ≤ k for any ω ∈ Ω and some k ≥ 0. On L (G) and L∞(G)
we shall consider the usual pointwise order f ≤ g if and only if f(ω) ≤ g(ω)
for every ω ∈ Ω and similarly f < g if and only if f(ω) < g(ω) for every
ω ∈ Ω. Given two elements f, g ∈ L∞(G) we use the notation f ∨ g, f ∧ g to
indicate respectively the minimum and the maximum between f and g. For a
countable family of acts {fn}n∈N ⊆ L∞(G) we consider the infn fn, supn fn
the pointwise infimum/supremum of the family and recall that if the family
is uniformly bounded then infn fn, supn fn are elements of L∞(G). L∞(G)
endowed with the sup norm ‖ · ‖∞ becomes a Banach lattice, where ‖f‖∞ =
supω∈Ω |f(ω)|. By 1A, A ∈ G we indicate the element of L∞(G) such that
1A(ω) = 1 if ω ∈ A and 0 otherwise. For f ∈ L∞(G) and A ∈ G, f1A
denotes the restriction of f to A; for any couple f, g ∈ L (G) and event A ∈ G,
f1A+g1Ac denotes the random variable that agrees with f on A and with g on
Ac. Fix two sigma algebras G1 ⊂ G2: for any finite partition {A1, ..., An} ⊂ G2
of Ω and {gj}nj=1 ⊂ L∞(G1),

∑n
j=1 gj1Aj

denotes the element assigning gj on
Aj , ∀j = 1, ..., n. This type of random variables can be interpreted as simple
acts conditional to G1 and SG1

(G2) denotes the space of conditional simple
acts. The standard notion of simple acts can be obtained when G1 = {∅, Ω}
and the corresponding space will be denoted by S(G2).

Whenever a probability P is given (Ω,F ,P) becomes a measure space and,
as usual, we shall say that a probability P̃ is dominated by P (P̃ � P) if
P(A) = 0 implies P̃(A) = 0 for A ∈ F . Similarly a probability P̃ is equivalent
to P (P̃ ∼ P) if P� P̃ and P̃� P. A property holds P almost surely (P-a.s.),
if the set where it fails has 0 probability.
For any given sigma algebra G ⊆ F we shall denote with L0(Ω,G,P) the space
of equivalence classes of G measurable random variables that are P almost
surely equal and by L∞(Ω,G,P) the subspace of (P a.s.) bounded random
variables. Formally any f ∈ L (G) will be a representative of the class X :=
[f ]P ∈ L0(Ω,G,P). Moreover the essential (P a.s.) supremum of an arbitrary
family of random variables {Xλ}λ∈Λ ⊆ L0(Ω,G,P) will be simply denoted by
P− sup{Xλ | λ ∈ Λ}, and similarly for the essential infimum (see [12] Section
A.5 for reference).
Let us fix (Ω,G,P): given a random field φ : Ω × R → R such that for every
f ∈ L∞(G) the map ω 7→ φ(ω, f(ω)) is G-measurable (see [26] for further
details) we introduce the notation

L(G;φ) = {[φ(·, f(·))]P | f ∈ L∞(G)}. (2.4)

Indeed L(G;φ) represents the range of the random field φ in the space L0(Ω,G,P).
In order to tackle the issue of continuty of the conditional representation of
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preferences, we need to introduce an ad hoc definition of continuity for stochas-
tic fields. Consider (Ω,G,P) and φ : Ω × R → R as for (2.4), we say that φ
is ?-continuous if ∀f ∈ L∞(G) it holds that f(ω) belongs to the points of
continuity of φ(·, ω) for P-a.e. ω ∈ Ω (see Definition 3 in Appendix A for the
formal statement).
Finally the space of P integrable random variables will be denoted by L1(Ω,G,P).
We use the standard notation and indicate by EP[X] the Lebesgue integral
of X ∈ L1(Ω,G,P). Moreover if H is a sigma algebra contained in G then
EP[X | H] denotes the conditional expectation of X given H and P|H the
restriction of the probability P on the smaller sigma algebra H.

2.2 State dependent utility and the role of information: a toy example

In this section we propose a toy example to highlight some meaningful as-
pects arising in our study. We consider a situation where the agent’s system
of preferences is defined by one-step updates over three times t ∈ {0, 1, 2}.
Every step corresponds to the disclosure of new information, and therefore
the generated filtration becomes a structural underlying foundation. The pref-
erences of the agent are represented by a subjective probability P and a utility
u(t, x, ω) which reacts to any new input. The agent compares decisions whose
consequences are known at different times. Thus the optimal decision between
0 and 2 with respect to the agent’s subjective perception of risk and/or gain
needs to be resolved by sequential one-step optimizations so that the final
output diverges from the classical backward approach.

Two brothers E, Y are inheriting from their old and rich grandmother.
The elder brother E is asked to choose between receiving 1 million Euros
immediately (at time t = 0), or waiting two years (time t = 2) when his
grandmother will move to the rest home in Sardinia and earn her wonderful
villa near the Como Lake. Alternatively E could wait until the intermediate
time t = 1 to make up his decision, but in any case the younger brother Y will
have to accept what is left from E after his decision is taken.
The value of the villa at time 0 is equal to 1 million, but of course it makes
little sense to compare the two values today since the villa will be available
only at t = 2.
Now assume that at time t = 1 election for the new Italian Government will
take place and the catastrophic event of Italy leaving the European Union
(with a consequent default of its economic system) may occur. Call this event
A and set F1 = {∅, Ω,A,Ac}. Brother E knows that if Ac will occur the value
of the villa will increase to 1.11 · 106, but in case of default it will fall down
to 2 · 105. The probability of the default event A is low but not negligible, say
P(A) = 0.01. Finally the probability of defaulting at time 2 (call this event D)
knowing that Ac occurred is almost negligible, for instance P(D | Ac) = 10−6

(in which case the villa would be worth again 2 · 105). In case that a default
did not occur neither at time 1 nor at time 2 then the value of the villa at 2



Stochastic Dynamic Utilities and Intertemporal Preferences 9

would jump up to 1.8 · 106. Information at time 2 is therefore described by F2

the sigma algebra generated by {A,D}.
Agent E is assumed to be risk neutral as far as Italy is not defaulting i.e.

u(x) = x. In case of a default (either at time 1 or 2) his utility function would
be ũ(x) = 1

2x if x ≥ 0 or ũ(x) = 2x if x < 0 . The naive idea is that once
the default has occurred the agent gives more importance in avoiding losses,
rather than gaining money. We can synthesize this reasoning by introducing
the stochastic dynamic utility as follows

u(t, x, ω) =

 u(x) if t = 0
ũ(x)1A(ω) + u(x)1Ac(ω) if t = 1

ũ(x)1A∪D(ω) + u(x)1Ac∩Dc(ω) if t = 2

We make the following considerations.

– If agent E compares the choice between getting 106 today or the villa at
time t = 2, then he is comparing the utility u0(106) = 106 with respect to
the expected utility of the payoff at time t = 2 given by

Expected payoff = 1.8 · 106 · (1− 10−2− 10−6) +
1

2
· 2 · 105 · (10−2 + 10−6).

This Expected payoff is strictly greater than 106 and indeed if E neglects
the intermediate time t = 1 then he will choose for the villa instead of
immediate money. But this impulsive strategy would not lead to an optimal
solution.

– Assume now that the agent first compare 106 with the value of the villa at
time t = 1. Then

Expected payoff = 1.11 · 106 · 0.9 +
1

2
· 2 · 105 · 0.01 = 106.

The expected value of the villa at time 1 equals the cash amount of money
that brother E could receive at time 0. Therefore E is indifferent between
taking the decision today (t = 0) or tomorrow (t = 1) and he can take
advantage by gaining more information about elections. In the former case
E will choose 106 which is in fact better than the value of the villa. In the
second case he will prefer obtaining the villa at time t = 2 rather than
106 at time t = 1. Clearly this second strategy provides an optimal final
profile, since it exploits the additional intermediate information.

Remark 1 Notice that the reasoning would change if the elder brother reckons
P(A) = 0. In such a case the additional intermediate information would play
no role in the decision process.

3 An axiomatization of intertemporal preferences.

We consider a time interval [0,+∞), together with a fixed (countable) family
of updating times t0 = 0 < t1 < . . . < tn < . . . ,. At each ti the agent shall
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reconsider her preference relations depending on the observed information.
In particular at time t0 = 0 no information is available, i.e. F0 = {∅, Ω}.
Information at each time t is represented by a sigma algebra Ft and since
information increases in time we shall have Fs ⊆ Ft for every s ≤ t.
In the entire paper acts are intended as real valued random variables, matching
the framework used in [30]3.

Assumption 1 We shall always assume throughout the paper that the agent
initial preferences are described by the utility function u0 : R→ R. In addition
u0 is supposed to be strictly increasing, continuous and u0(0) = 0.

The paper could be developed without fixing u0 as in Assumption 1. The
advantage of this choice is twofold: on the one hand fixing a single u0 gives
a sharper uniqueness result in Theorem 3 (see also Remark 7). On the other
hand u0 plays the role of “initial datum”, which follows from the idea that
u0 is inherited from the attitude towards decisions shown by the agent in the
past (as assumed in [20,21]). The shape of u0 is effective: for instance it allows
to understand if at the initial time the agent is risk averse or risk seeking
and in general how she evaluates variation in the amount of money she owns
(quoting [2] “Thus there is no doubt that a gain of one thousand ducats is
more significant to a pauper than to a rich man though both gain the same
amount.”).

The time t1 represents the first instant when the Decion Maker observes
available information which will potentially influence her decision. Random
payoffs at time t1 are described by random variables in L∞(Ft1) and the
agent compares these random payoffs with initial sure positions represented
by elements in R. In Section 4 we shall provide the representation of an in-
tertemporal preference �0,1 connecting the initial time t0 = 0 to t1. In Propo-
sition 3 we will show the following: if �0,1 is complete, transitive, monotone,
continuous and satisfies the Sure-Thing Priciple then for any f ∈ L∞(Ft1)
and a ∈ R we have a �0,1 f is and only if u0(a) ≥

∫
Ω
u1(f(ω), ω)dP1(ω).

This representation is based on Theorem 9 by Wakker and Zank and shows
how new inputs will affect the attitude of an agent towards decisions, gener-
ating a new utility u1 which will depend on the state of nature realized. Once
time t1 is reached the Decison Maker will start considering a new aim in the
next future, say t2, and will compare random payoffs, known at time t1, with
those depending on events occurring at t2. From the t0 perspective the new
intertemporal preference �1,2 will be a conditional preference relation which
incorporates the further knowledge reached at time t1. Therefore we shall fol-
low the idea proposed by [6] and make use of similar techniques developed in
the conditional setting. This procedure will repeat iteratively at every interval
from ti to ti+1 and for this reason our main result will be proved by induction
over updating times. Each updating step from ti to ti+1 will be characterized

3 Indeed this choice is not ‘without loss of generality’. Nevertheless, as explained in the
Introduction this research is inspired by potential financial applications, and therefore we
prefer to choose a more financial friendly setup.
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by a preference interconnection �i,i+1 (or �i,i+1) satisfying conditional tran-
sition axioms. Of course since the proof proceeds by induction we will assume
that we reached the desired representation up to step ti and show the repre-
sentation at the succeeding time ti+1. This will guarantee the existence of a
probability Pi only on the sigma algebra Fti , which we will need to update to
the larger sigma algebra Fti+1

, following the Bayesian paradigm.

For the statement of Theorem 3, we fix an arbitrary N and a family of
intertemporal preference relations �i,i+1 for i = 0, . . . , N−1 with the following
meaning: for any g ∈ L∞(Fti) and f ∈ L∞(Fti+1

) we say that g �i,i+1 f if
the agent prefers to hold the gamble g at time ti than the gamble f at time
ti+1, knowing all the information provided at time ti (similarly for g �i,i+1 f).
As usual we say that g ∈ L∞(Fti) is equivalent to f ∈ L∞(Fti+1), namely
g ∼i,i+1 f , if both g �i,i+1 f and g �i,i+1 f , and define the family of null
events for every i = 1, . . . , N as N (Fti) given by

{A ∈ Fti : g ∼i−1,i f ⇒ g ∼i−1,i g̃1A+f1Ac ,∀f,∈ L∞(Fti), g, g̃ ∈ L∞(Fti−1
)}.

(3.5)
An event A ∈ Fti is called essential at time ti if A ∈ Fti \ N (Fti)

The Transition Axiom. We are now ready to introduce the first axiom charac-
terizing the Intertemporal Preferences. In this context the preference ordering
�i,i+1 is not anymore a binary relation as it is generally understood. For this
reason we shall need a reformulation of the axioms which shall be compared to
more classical ones. Moreover we work in a conditional setting, which means
that the relation �i,i+1 is assessed taking into account information available
at time ti. Information are modelled by measurable sets A ∈ Fti and in ad-
dition the Decision Maker has a subjective belief concerning sets which are
relevant (A ∈ Fti \ N (Fti)) and those which are irrelevant (A ∈ N (Fti)). To
understand the central role of null sets we refer to the example contained in
Section 2.2 (see in particular Remark 1).

(T.i) Transition Axiom for �i,i+1.
Let A,B ∈ Fti , g ∈ L∞(Fti) and f ∈ L∞(Fti+1) then we require for
�i,i+1 to be
1. locally complete: there existsA ∈ Fti\N (Fti) such that either g1A �i,i+1

f1A or g1A �i,i+1 f1A.
2. transitive: if g �i,i+1 f and h �i,i+1 f then {g < h} ∈ N (Fti);
3. normalized: if A,B ∈ N (Fti) then 1A ∼i,i+1 1B .
4. non-degenerate: for any f ∈ L∞(Fti+1

) there exist g1, g2 ∈ L∞(Fti)
such that g1 �i,i+1 f and g2 �i,i+1 f .

5. consistent: if g1A �i,i+1 f1A (resp. �i,i+1) and B ⊆ A then g1B �i,i+1

f1B (resp. �i,i+1);
6. stable: if g1A �i,i+1 f1A (resp. �i,i+1) and g1B �i,i+1 f1B (resp.
�i,i+1) then g1A∪B �i,i+1 f1A∪B (resp. �i,i+1);

Before giving an explanation of (T.i) in its full generality, we specialize it to
the unconditioned case (i = 0).



12 Marco Maggis, Andrea Maran

(T.0) Transition preference relation �0,1.
1. complete: for a ∈ R and f ∈ L∞(Ft1) either a �0,1 f or a �0,1 f ;
2. transitive: a �0,1 f and b �0,1 f implies a ≤ b;
3. normalized: 0 ∼0,1 0 (i.e. 0 �0,1 0 and 0 �0,1 0).
4. non-degenerate: for any f ∈ L∞(Ft1) there exist y, z ∈ R such that
y �0,1 f and x �0,1 f .

The Axiom (T.0) is composed by four requirements only and the reason
of this significant simplification is due to the assumption F0 = {∅, Ω}. To
understand why completeness and transitivity are the natural counterpart
suggested by the classical definition of weak order, we observe that Proposition
2 guarantees that under (T.0) for any f ∈ L∞(Ft1) there exists a unique
C0,1(f) ∈ R such that both C0,1(f) �0,1 f or C0,1(f) �0,1 f hold. We can
therefore consider the following induced ordering �1: for any f, g ∈ L∞(Ft1),
f �1 g if and only if C0,1(f) ≤ C0,1(g). Indeed �1 is reflexive and inherits
completeness and transitivity from �0,1.

We now move to the interpretation of Axiom (T.i): properties 1, 5 and 6
are deeply related and inspired to the notion of conditional preference in [6].
The first property of (T.i) points out that the updating procedure necessarily
leads to preferences which are complete in a conditional sense. In particular
we shall see in Lemma 2 (which is the counterpart of Lemma 3.2 in [6]) that
local completeness allows to compare two acts on three disjoint Fti measurable
events. Consistency and stability can be understood in terms of information
achieved: for example consistency states that if the agent prefer g ∈ L∞(Fti)
at time ti rather than f ∈ L∞(Fti+1

) at time ti+1 knowing that event A ∈ Fti
has occurred, than she shall prefer g for any condition B ∈ Fti , B ⊆ A.
The property 2 in (T.i) is the conditional generalization of its counterpart in
(T.0). Normalization (property 3) says that Fti null events are preserved in
the one step updating. In particular the agent is indifferent between random
payoffs which differ from 0 by a negligible Fti measurable set (loosely speak-
ing “Holding nothing is indifferent throughout time”, up to null events). Non
degeneracy (property 4) is the more technical one and guarantees some simpli-
fications in our arguments, since it implies that any random payoff f at time
ti+1 admits an Fti-measurable g which is more/less preferred (it is nevertheless
a very weak requirement which is satisfied in all the cases of interest).

The definition of Conditional Certainty Equivalent is the basis of our rep-
resentation results and follows from the idea in [13]. In Section 6 we shall
show by induction the existence (and uniqueness) of the Conditional Certainty
Equivalent at each time step.

Definition 1 We say g ∼i,i+1 f if and only if g �i,i+1 f and g �i,i+1 f . If
g ∼i,i+1 f then we shall call g the Conditional Certainty Equivalent (CCE) of
f and denote the family of all CCEs as Ci,i+1(f).

Notation 2 In what follows we shall use these notations for any g ∈ L∞(Fti)
and f ∈ L∞(Fti+1

):
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– g ∼i,i+1 f if both g �i,i+1 f and g �i,i+1 f hold;
– g �i,i+1 f if g �i,i+1 f but g1A 6∼i,i+1 f1A ∀A ∈ Fti \ N (Fti) (similarly
g ≺i,i+1 f );

– g �Ai,i+1 f if g1A �i,i+1 f1A but g1B 6∼i,i+1 f1B ∀B ∈ Fti \ N (Fti) with
B ⊆ A (similarly g ≺Ai,i+1 f );

Remark 2 We observe that consistency jointly to stability of �i,i+1 imply the
following pasting properties:

– for anyA,B ∈ Fti , g1, g2 ∈ L∞(Fti) and f1, f2 ∈ L∞(Fti+1). If g11A �i,i+1

f11A and g21B �i,i+1 f21B then (g1 + g2)1A∩B �i,i+1 (f1 + f2)1A∩B ,
g11A\B �i,i+1 f11A\B and g21B\A �i,i+1 f21B\A.

– for a family {An}n∈N ⊆ Fti of disjoint events and A = ∪nAn we have

g1A �i,i+1 f1A ⇔ g1An
�i,i+1 f1An

for every n.

Axiom (T.i) is the key ingredient to obtain the updating construction we
are aiming at. In particular assume that at time ti the agent is characterized by
a couple (Pi, ui) where Pi is the subjective probability on measurable events
Fti and ui is a state dependent utility such that ui(x, ·) is Fti-measurable.
We shall prove in Proposition 5 that if �i,i+1 satisfies (T.i) then for any
f ∈ L∞(Fti+1) there exists a unique Conditional Certainty Equivalent given
by Ci,i+1(f) = u−1i Vi+1(f), where Vi+1(f) = Pi − inf{ui(g) | g �i,i+1 f}.
Moreover Vi+1 represents the transition order i.e.

g �i,i+1 f ⇔ ui(g) ≤ Vi+1(f) Pi-a.s.
g �i,i+1 f ⇔ ui(g) ≥ Vi+1(f) Pi-a.s.

Integral representation of Inter Temporal Preferences. We will take into con-
sideration the following axioms: monotonicity, the Sure Thing Principle and a
technical continuity, adapted to this conditional setting, which will lead to a
representation of the ITP in the desired integral form.

(M.i) Strict Monotonicity.
Given arbitrary g1, g2, g3,∈ L∞(Fti), f ∈ L∞(Fti+1

),A ∈ Fti+1
\N (Fti+1

)
and g1 < g2:

g3 ∼i,i+1 g11A+f1Ac implies g3 ≺Bi,i+1 g21A+f1Ac for a B ∈ Fti\N (Fti),

g3 ∼i,i+1 g21A+f1Ac implies g3 �Bi,i+1 g11A+f1Ac for a B ∈ Fti\N (Fti).

(ST.i) Sure-Thing Principle.
Given arbitrary f1, f2, h ∈ SFti

(Fti+1
), A ∈ Fti+1

\ N (Fti+1
) and g1 ∈

L∞(Fti), such that g1 �i,i+1 f11A + h1Ac and g1 �i,i+1 f21A + h1Ac :
for any k ∈ SFti

(Fti+1
) there exists g2 ∈ L∞(Fti) such that g2 �i,i+1

f11A + k1Ac and g2 �i,i+1 f21A + k1Ac .
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(C.i) Pointwise continuity.
Consider any uniformly bounded sequence {fn} ⊆ L∞(Fti+1), such that
fn(ω) → f(ω) for any ω ∈ Ω, then for any g ≺i,i+1 f (resp. g �i,i+1 f
) there exists a partition {Ak}∞k=1 ⊂ Fti such that for any k we have
g1Ak

�i,i+1 fn1Ak
(resp. g1Ak

�i,i+1 fn1Ak
) for all n ≥ nk.

We are now ready to state the main contribution of this paper: Theorem
3 provides the representation of ITP in terms of a unique probability P and
a stochastic field u(t, x, ω), which describes the random fluctuations of pref-
erences. These were exactly the elements exploited in [13] to determine the
dynamics of the Conditional Certainty Equivalent.

Theorem 3 (Representation) Let Assumption 1 holds and any Fti con-
tains three essential disjoint events for every i = 1, 2, . . . . The intertemporal
preference �i,i+1 satisfies (T.i), (M.i), (ST.i) and (C.i) for any i = 0, . . . , N
if and only if there exist a probability P on FtN and a Stochastic Dynamic
Utility

u(t, x, ω) =

N−1∑
i=0

ui(x, ω)1[ti,ti+1)(t) + uN (x, ω)1tN (t) (3.6)

satisfying

(a) u(ti, x, ·) is Fti-measurable and EP[|u(ti, x, ·)|] <∞, for all x ∈ R;
(b) u(ti, ·, ω) is strictly increasing in x and u(ti, 0, ω) = 04, for all ω ∈ Ω;
(c) u(ti, ·, ·) is ?-continuous
(d) EP[ui+1(f)|Fti ] ∈ L(Fti ;ui)5 for any f ∈ L∞(Fti+1

), g ∈ L∞(Fti) and

g �i,i+1 f ⇐⇒ u(ti, g) ≥ EP[u(ti+1, f)|Fti ] P-a.s.
g �i,i+1 f ⇐⇒ u(ti, g) ≤ EP[u(ti+1, f)|Fti ] P-a.s.

Relative uniqueness: the couple (P, u) can be replaced by (P∗, u∗) if and only if
P is equivalent to P∗ on FtN and for any i = 1, . . . , N we have P(u∗(ti, ·, ·) =
δiui) = 1, where δi is the Radon-Nikodym derivative of P|Fti

with respect to
P∗|Fti

.

Remark 3 At first sight it might seem unexpected that no discount factor
appears in the Representation Theorem 3, whereas (1.1) and (1.2) show an
explicit dependence on β. However, in the latter examples the presence of a
discount factor is motivated by the fact that u is homogeneous in time. Instead,
in our framework u(t, x, ω) varies stochastically in time, and therefore it is in
general not possible to disentagle the contribution of discounting from the
utility in a unique way. Moreover, the uniqueness of the representation is up
to equivalent change of measures, and thus the discount factor would be in
any case sensitive to probabilistic measure changes.

4 This additional requirement is in fact without loss of generality, and allows a useful
simplification in the main body of the proof.

5 Recall the definition in equation (2.4)
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Time consistency of intertemporal preferences. The family {�i,i+1} of in-
tertemporal preferences is meant to create a link between two successive times
ti and ti+1 in order to compare random payoffs whose effects will be known
and exploitable at different times. The procedure is a step by step updating
and simple inspections show that the following semigroup property holds true
for the Conditional Certainty Equivalent

Cs,v(f) = Cs,t(Ct,v(f))6 ∀ 0 ≤ s < t < v and f ∈ L∞(Ω,Fv) (3.7)

where for any s < t the operator Cs,t(·) is the (P-a.s. unique) solution of
the equation u(s, Cs,t(·)) = EP[u(t, ·) | Fs] and u is the Stochastic Dynamic
Utility obtained in Theorem 3. As an immediate consequence we can extend
the intertemporal preferences to any s < t as follows

g �s,t f ⇐⇒ u(s, g) ≥ EP[u(t, f)|Fs] P-a.s.
g �s,t f ⇐⇒ u(s, g) ≤ EP[u(t, f)|Fs] P-a.s.

where g ∈ L∞(Ω,Fs) and f ∈ L∞(Ω,Ft). In virtue of the semigroup prop-
erty (3.7) we obtain the following time consistency of preferences

Proposition 1 Let 0 ≤ s < t < v and let g ∈ L∞(Ω,Fs) and f ∈ L∞(Ω,Fv)
such that g �s,v f (resp. g �s,v f). Then g �s,t h (resp. g �s,t h) for any
h ∈ L∞(Ω,Ft) such that h ∼t,v f .

Since the proof of Theorem 3 will proceed inductively we choose to present
the theory in the simpler unconditioned case �0,1 (see Section 4). The results
in the next section will be therefore necessary to prove the initial step in the
induction argument of Theorem 3.
Moreover we stress that the relative uniqueness is sharper than in representa-
tion results like those contained in [3,30]. This follows from the fact that the
u0 is fixed a priori (together with the normalization condition u(ti, 0, ω) = 0)
and plays the role of an initial (constraining) condition (see also Proposition
3 for further details).

4 Unconditioned intertemporal preference

We consider a Decision Maker who compares an initial amount of some good,
whose value is surely determined (and its benefit is immediate) with respect
to bounded random payoffs (e.g. bets, assets, future value of goods) at a fixed
time t1 represented by elements in the space L∞(Ft1). We say that the agent
is initially naive, as the initial information are represented by the trivial F0 =
{∅, Ω}, and therefore the space L∞(F0) is isometric to the real line R.

Consider the transition preference �0,1 (or �0,1) which connects L∞(Ft1)
to L∞(F0). As already observed in the case i = 0 the first Axiom (T.0) is

6 Abuse of notation: the precise formulation should be Cs,v(f) = Cs,t(g) where g ∈ L (Ft)
is a version of Ct,v(f).
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composed only by four requirements: completeness, transitivity, normalization
and non degeneracy (which is the more technical requirement we shall use in
Lemma 1).

Remark 4 From Notation 2 we can easily deduce the meaning of the symbols
∼0,1, �0,1, ≺0,1. We also recall that the set of null events induced by �0,1 is
given by

N (Ft1) = {A ∈ Ft1 : a ∼0,1 f ⇒ a ∼0,1 b1A+f1Ac ,∀f ∈ L∞(Ft1), a, b ∈ R}.

Definition 2 If a ∼0,1 f then we shall call a the (Conditional) Certainty
Equivalent of f and denote the family of all CCEs as C0,1(f).

We now show that under (T.0) the CCE exists and is unique. Notice that
this notion of certainty equivalent matches the dynamic generalization in-
troduced by [13]. The CCE will also provide a natural representation of the
intertemporal preference �0,1 (see the following Proposition 2).
Consider the maps

V −1 (f) = sup{u0(a) | a �0,1 f} and V +
1 (f) = inf{u0(a) | a �0,1 f},

where u0 will be always supposed to fullfill Assumption 1.
We note that in the definition of V ±1 (f), u0 needs not to be fixed. Indeed if

we consider the total ordering on L∞(Ft1) induced by the functionals V ±1 (·)
(i.e. f1 �1 f2 if and only if V ±1 (f1) ≤ V ±1 (f2)) this would not be affected
by the choice of u0. Nevertheless, as previously explained we prefer to think
u0 as an initial data characterizing the decision maker, with the advantage of
obtaining a sharper notion of uniqueness.

Lemma 1 Under (T.0) and Assumption 1 the maps V +
1 , V

−
1 are well defined

from L∞(Ft1) to R. Moreover V +
1 (f) = V −1 (f) for any f ∈ L∞(Ft1).

Proof From completeness V ±1 are well defined and taking values in R∪{±∞}.
The fact that V ±1 (f) are finite for any f ∈ L∞(Ft1) follows from non degen-
eracy in Axiom (T.0).
For any a, b ∈ R such that a �0,1 f and b �0,1 f we have u0(a) ≤ u0(b), and
therefore V −1 (f) ≤ V +

1 (f). Now assume by contradiction V −1 (f) < V +
1 (f):

since u0 is strictly increasing and continuous there exists c such that u0(c) ∈
(V −1 (f), V +

1 (f)). From completeness either c �0,1 f or c �0,1 f getting in both
cases a contradiction since

sup{u0(a) | a �0,1 f} < u0(c) < inf{u0(a) | a �0,1 f}.

Notation 4 From now on, whenever (T.0) and Assumption 1 are in force we
shall denote V1 := V +

1 ≡ V
−
1 .

Proposition 2 Let (T.0) and Assumption 1 hold. Then for any f ∈ L∞(Ft1)
there exists a unique Conditional Certainty Equivalent given by C0,1(f) =
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u−10 V1(f). Moreover V1 takes values in the range of u0 and represents the
transition order i.e.

a �0,1 f ⇔ u0(a) ≤ V1(f) (4.8)
a �0,1 f ⇔ u0(a) ≥ V1(f) (4.9)

Proof Existence and uniqueness follow from the previous Lemma 1 and As-
sumption 1. Notice that a �0,1 f (resp. a �0,1 f) obviously implies u0(a) ≤
V1(f) (resp. u0(a) ≥ V1(f)). For the reverse implication we can observe that
u0(a) = V1(f) implies a ∼0,1 f . If instead u0(a) < V1(f) (resp. u0(a) > V1(f)),
then necessary a ≺0,1 f (resp. a �0,1 f) as V1(f) = inf{u0(a) | a �0,1 f} (resp.
V1(f) = sup{u0(a) | a �0,1 f}).

We will take into consideration the following axioms: monotonicity, the
Sure Thing Principle and a technical continuity, which we recall here to clarify
their meaning in this simplified unconditioned case.

(M.0) Strict Monotonicity: for all a, b, c ∈ R, f ∈ L∞(Ft1) A ∈ Ft1 \ N (Ft1)
and a < b we have c ∼0,1 a1A + f1Ac implies c ≺0,1 b1A + f1Ac (resp.
c ∼0,1 b1A + f1Ac implies c �0,1 a1A + f1Ac).

(ST.0) Sure-Thing Principle: consider arbitrary f, g, h ∈ S(Ft1), A ∈ Ft1 \
N (Ft1) and a ∈ R such that a �0,1 f1A + h1Ac and a �0,1 g1A + h1Ac

then for any k ∈ S(Ft1) there exists b ∈ R such that b �0,1 f1A + k1Ac

and b �0,1 g1A + k1Ac .
(C.0) Pointwise continuity: consider any uniformly bounded sequence {fn} ⊆

L∞(Ft1), such that fn(ω) → f(ω) for any ω ∈ Ω, then for all a ≺0,1 f
(resp. a �0,1 f ) there exists N such that a �0,1 fn (resp. a �0,1 fn ) for
n > N .

Remark 5 In the classical Decision Theory (see [22]) the Sure-Thing Principle
is a sort of independence principle: it says that the preference between two
acts, f and g, should only depend on the values of f and g when they differ.
If f and g differ only on an event A, if A does not occur f and g result in the
same outcome exactly. In our intertemporal framework the interpretation is
exactly the same, even though we need to deal with the comparison at time 0.

Remark 6 In the present context the Sure-Thing Principle (ST.0) easily im-
plies for arbitrary f, g ∈ L∞(Ft1) and A ∈ Ft1 : V1(f1A) ≤ V1(g1A) and
V1(f1Ac) ≤ V1(g1Ac) then V1(f) ≤ V1(g).

We can now state the main representation result of this section which will be
proved in Section 6.

Proposition 3 Assume that Ft1 contains at least three disjoint essential events
and Assumption 1 is in force. Axioms (T.0), (M.0), (ST.0) and (C.0) hold if
and only if there exists a probability P1 on Ω and a function u1(·, ω) : R→ R,
strictly increasing ∀ω ∈ Ω and ?-continuous such that the functional V1

V1(f) =

∫
Ω

u1(f(ω), ω)dP1 (4.10)
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represents the preference 40,1 (in the sense of (4.8) and (4.9)) and takes values
in the range of u0.
The following uniqueness holds for (4.10) : (P1, u1) can be replaced by (P∗, u∗)
if and only if P1 is equivalent to P∗ and P1 (u∗ = δu1 + τ) = 1, where δ is
the Radon-Nikodym derivative of P1 with respect to P∗ and τ ∈ L (Ft1) with
EP∗ [τ ] = 0.

Remark 7 Even though Proposition 3 shows many similarities with Theorem
9, some work needs to be done to show that Axioms (T.0), (M.0), (ST.0) and
(C.0) are sufficient to apply the results in [3,30]. Moreover as V1 is defined via
a fixed u0, we shall show that the coefficient σ > 0 appearing in Theorem 9 is
necessarily equal to 1.

Remark 8 We observe that even if not mentioned explicitly, necessarily the
random variable u1(x, ·) is integrable with respect to P1 for any x ∈ R.
Moreover if we impose the normalization requirement u1(0, ω) = 0 for every
ω ∈ Ω then τ is equal to 0 P-a.s..

5 Applications to Financial Economics.

Dynamic updating of state dependent utilities. In the previous Section 4 we
proposed the simplified situation in which the Decion Maker is considering
only two points in time (present and future). From the one hand Proposition
3 leads to a representation in terms of a state dependend utility as in [30]. On
the other the main message of our approach differs significantly also in the
unconditioned case. Indeed in the framework of [30] the certainty equivalent
of f ∈ L∞(Ft1) is the value x ∈ R such that EP1 [u1(f)] = EP1 [u1(x)] i.e.
the monetary sure amount that will be equivalent to the random payoff f at
the future time t1. From our perspective instead C0,1(f) is the value that is
equivalent today to the future random payoff f .
We illustrate here how intertemporal preferences can act as a dynamic updat-
ing of state dependent utilities in a simplified case to avoid issues of measur-
ability related to the stochastic nature of our approach.
On (Ω,F) consider an information process {Iti}Ni=0 such that Iti : Ω → Ai ⊂
Rd is F measurable, I0 = x ∈ Rd and Ai is at most countable for simplicity.
Let Fti be the σ-algebra generated by It1 , . . . , Iti . We can notice that Fti is
generated by atoms of the form

Σx
ti = {ω ∈ Ω | Itk = xk, ∀ k = 1, . . . , i},

where x = (x1, . . . , xi) ∈ A1 × . . . × Ai. We denote by �
Σx

ti
i,i+1 (in agreement

with Notation 2) the ITP �i,i+1 conditioned to the occurence of the event

Σx
ti for some observed information x ∈ A1 × . . . × Ai. Then �

Σx
ti

i,i+1 falls into
the class described in the previous Section 4. In particular this means that
�i,i+1 generates a standard state dependent utility when it is localized to
the atom Σx

ti . The power of Theorem 3 is that it allows to “paste”together
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in a measurable way all this local systems of preferences to obtain a global
structure which can be automatically updated forwardly in time. This result
is reached for general measurable spaces without any restriction on cardinality
of Ω.

Conditional Risk Maps. We refer to [12] for an extensive introduction to the
theory of Risk Measures and here only recall few notions from the general
setup in [14]. For a fixed filtered probability space (Ω,F , {Fti},P) we con-
sider for i = 0, . . . , N − 1 a class of conditional maps Φi : L∞(Ω,Fti+1

,P) →
L∞(Ω,Fti ,P) such that Φi(0) = 0. We say that the maps are regular (REG) if:
for every X,Y ∈ L∞(Ω,Fti+1 ,P) and A ∈ Fti Φi(X1A+Y 1AC ) = Φi(X)1A+
Φi(Y )1AC . The class {Φi} naturally induces a family of ITP as follows: for
any g ∈ L∞(Ω,Fti ,P) and f ∈ L∞(Ω,Fti+1

,P)

g �i,i+1 f if and only if [g]P ≤ Φi([f ]P) Pi-a.s..

Notice that by (REG) �i,i+1 satisfies Axiom (T.i). Clearly any additional as-
sumption on the maps Φi reflects on properties of �i,i+1.
In particular if the maps are monotone (MON) i.e. for every i = 0, . . . , N ,
X,Y ∈ L∞(Ω,Fti+1

,P), X ≤ Y implies Φi(X) ≤ Φi(Y ), then �i,i+1 satisfies
(M.i).
Similarly if for every X,Y ∈ L∞(Ω,Fti+1 ,P) and A ∈ Fti+1 , Φi(X1A +
Y 1AC ) = Φi(X1A) + Φi(Y 1AC ) (we refer at this property as (LIN)), then
�i,i+1 satisfies (ST.i)7. Finally we can notice that the continuity Axiom (C.i)
follows immediately from the usual “Lebesgue property”of Risk Measures (see
[12, Section 4.3]), namely: for any sequence {Xn}, bounded in L∞(Ω,Fti+1 ,P),
such that Xn → X P-a.s. we have Φi(Xn)→ Φi(X) P-a.s..

Therefore any class of conditional maps {Φi} which satisfies the aforemen-
tioned properties can be represented as a Conditional Certainty Equivalent by
Theorem 3 (See also [13, Section 2.3] and [14, Section 1.1]).

Stochastic control. In the Introduction (pp. 3-4) we proposed the classical
framework of utility maximization, which can help understanding the mean-
ing of Axiom (T.i) 1,5,6. In this paragraph we eleborate on the class of in-
tertemporal preferences which arises in discrete time stochastic optimization
problems for conditional maps in the spirit of recursive preferences [11,16].
In this example we consider an agent who is asked to choose between two
random endowments whose outcome will be revealed at two different times.
To this aim she adopts the criterium of the best expected value where the
conditional “expectation”operator Φi is not necessarily linear.
For a fixed (Ω,F , {Fti}) we consider a set of controlled processes {Xti(a)}Ni=0

with Xti(a) ∈ L∞(Ω,Fti ,P) for every control a. The control a = {αti}Ni=0 is
also a stochastic process which is often assumed to be predictable (i.e. αti+1

is Fti-measurable). This is for example the case of Xti(a) being the discrete
time stochastic integral representing the payoff of a self-financing strategy (see

7 This property in general holds only for few classes of Risk Measures.
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[12, Chapter 5]). Indeed the controlled process Xti(a) will be a function of a
only up to time ti i.e. Xti(a) = Xti(α0, . . . , αti). Set tN = T and fix a random
endowment f ∈ L∞(Ω,Fti ,P) then the backward stochastic control problem
assume the following form

Uti(f) := P− sup
(αti

,...,αT )

Φi
(
[f +XT (αti , . . . , αT )]P

)
where P− sup represents the essential supremum and Φi : L∞(Ω,Fti+1 ,P)→
L∞(Ω,Fti ,P) is a conditional map such that Φi(0) = 0. A standard example
that can be considered is Φi(·) = EP[φ(·) | Fti ] so that we obtain the usual
Merton problem.
Similarly to the previous paragraph the stochastic control problem induces a
family of ITP as follows: for any g ∈ L∞(Ω,Fti ,P) and f ∈ L∞(Ω,Fti+1 ,P)

g �i,i+1 f if and only if Uti(g) ≤ Uti+1
(f) P-a.s..

Moreover if Φi satisfies (REG) (MON) and (LIN) then �i,i+1 satisfies Axiom
(T.i), (M.i) and (ST.i).

Dynamic Variational Preferencs. In the theory of Dynamic Variational Prefer-
ences two consumption streams can be compared by the mean of the functional
Vt(h) defined in (1.2). Given two consumption plans which start from two dif-
ferent times h = (hti , . . . , htN ), k = (kti+1

, . . . , ktN ), we can define the family
of ITP by

h �i,i+1 k if and only if Vti(h) ≥ Vti+1(k) P-a.s..

If we set the notation h1A = (hti1A, . . . , htN1A), k1A = (kti+11A, . . . , ktN1A)
then Axiom (T.i) is automatically satisfied. Simple inspections show that Ax-
iom (M.i) can be also adapted to this context but indeed the Sure-Thing Prin-
ciple fails to hold unless the ambiguity index ct weights only a single model (i.e.
there exists p ∈ ∆ such that for every t, ct(p̄ | Ft) = 0 and ct(p | Ft) = +∞
for any p ∈ ∆, p 6= p̄).

6 Inductive proof of Theorem 3

This section is entirely devoted to the proof of the main Theorem of this paper.
The first step is the proof of Proposition 3 which also plays the role of “first
step ”in the inductive argument.

6.1 Proof of Proposition 3

Observe that the hypothesis of Proposition 2 are satisfied. Hence, the repre-
sentation a <0,1 f ⇐⇒ u0(a) ≥ V1(f) holds where V1 is defined as in Lemma
1. Furthermore, for any f ∈ L∞(Ft1) the CCE C0,1(f) exists and is uniquely
given by u−10 (V1(f)). The existence of the CCE for every act f directly implies
that the range of the function V1 is contained in the range of u0.
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Proof of (⇒) We define a weak order on L∞(Ft1) as f � g if and only
if V1(f) ≤ V1(g). (T.0) implies � is complete, reflexive and transitive (i.e.
satisfies (A1) in the Appendix).
Let f ∈ L∞(Ft1) and outcomes x > y: indeed (M.0) implies V1(x1A+f1Ac) >
V1(y1A+f1Ac), for all nonnull events A ∈ Ft1 and thus � is strictly monotone
in the sense of (A2). Similarly (ST.0) implies that � satisfies (A3).
Let now {fn} ⊆ L∞(Ft1), such that fn(ω) → f(ω) for any ω ∈ Ω and
‖fn‖∞ < k for all n ∈ N. Let now g ∈ L∞(Ft1) such that g � f and
consider a = C0,1(g) (which exists by Proposition 2). Then a �0,1 f and by
(C.0) we can find n̄ such that for all n ≥ n̄ we have a �0,1 fn. Therefore
V1(g) = u0(a) > V1(fn) (similarly for the opposite inequality) showing that
(A4) holds for � .

We can therefore apply Theorem 9 and find the desired representation
(4.10) namely V1(f) =

∫
Ω
u1(f(ω), ω)dP1 = EP1

[u1(f)] and its uniqueness.
Let therefore P∗ and u∗(·, ·) = τ + σδu1(·, ·) obtained by Theorem 9. Observe
that V1(0) = u0(0) = 0 implies EP∗ [τ ] = 0. Moreover as u0(C0,1(f)) = V1(f) =
EP∗ [u

∗(f)] = EP1
[σu1(f)], we have necessarily σ = 1.

We now show that the utility u1 is ?-continuous on (Ω,Ft1 ,P1). To this end
consider any f ∈ L∞(Ft1). It is sufficient to show that P1(LDf ) = 0 where
LDf is the set defined in Appendix A replacing φ with u1. Indeed, with an
analogous argument one obtains P1(RDf ) = 0. Ultimately, the thesis follows
from the observation that P1(Df ) = P1(LDf ∪RDf ) = 0 and the arbitrariness
of f .
As consequence of Lemma 4, LDf ∈ Ft1 , so either P1(LDf ) = 0 or P1(LDf ) >
0. Suppose, by contradiction, that there exists f∗ ∈ L∞(Ft1) such that
P1(LDf∗) > 0. Set B := LDf∗ and let f = f∗1B and fn = (f− 1

n )1B . By con-
struction f, fn ∈ L∞(Ft1) for each n ∈ N, fn(ω)→ f(ω) for each ω ∈ Ω and
supn ‖fn‖∞ ≤ ‖f‖∞ + 1. Furthermore, by the definition of B, u1(f(ω), ω) >
supn u1(fn(ω), ω) for each ω ∈ B while u1(f(ω), ω) = u1(fn(ω), ω) for each
ω ∈ BC . Since P1(B) > 0 and x 7→ u1(x, ω) is increasing, by Monotone Con-
vergence Theorem we have:

lim
n
EP1

[u1(fn, ·)] = EP1
[sup
n
u1(fn, ·)] < EP1

[u1(f, ·)]

By continuity and strict monotonicity of u0, there exists a ∈ R such that

sup
n
EP1

[u1(fn, ·)] < u0(a) < EP1
[u1(f, ·)]

that is a �0,1 fn ∀n while a ≺0,1 f . This contradicts Axiom (C.0); hence we
conclude that P1(B) equals zero.

Proof of (⇐) Viceversa, we assume that the preference <0,1 is given by:

a <0,1 f ⇐⇒ u0(a) ≥ V1(f)
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for a ∈ R, f ∈ L∞(Ft1), with V1(f) = EP1 [u1(f, ·)], where u1 and P1 are
given as in Proposition 3. We want to show that that <0,1 satisfies Axioms
(T.0), (M.0), (ST.0) and (C.0).

Let a ∈ R and f ∈ L∞(Ft1). Clearly either u0(a) ≤ V1(f) or u0(a) ≥
V1(f), and therefore <0,1 is complete. Consider a, b ∈ R and f ∈ L∞(Ft1)
satisfying a 40,1 f and b <0,1 f . This means that u0(a) ≤ V1(f) ≤ u0(b).
From the fact that u0 is strictly increasing it follows that b ≥ a, that is that
<0,1 is transitive. Clearly 0 ∼0,1 0 since u0(0) = 0 = EP1

[u1(0, ·)]. Finally,
let f ∈ L∞(Ft1). By assumption the range of V1 is contained in the range
of u0 so that there exists b ∈ R such that u0(b) ≥ V1(f) and (equivalently)
b <0,1 f . For the same reason there exists a ∈ R such that u0(a) ≤ V1(f), that
is a 40,1 f . This means that <0,1 is non-degenerate concluding the proof that
Axiom (T.0) holds.

Let a, b, c ∈ R with a < b, f ∈ L∞(Ft1) and A ∈ Ft1 being non-null.
Suppose that c ∼0,1 a1A + f1AC , that is u0(c) = EP1

[u1(a1A + f1AC , ·)] =
EP1

[u1(a, ·)1A + u1(f, ·)1AC )].
Now, since u1(·, ω) is strictly increasing for each ω, then EP1 [u1(a, ·)1A] <
EP1 [u1(b, ·)1A]. Then u0(c) < EP1 [u1(b, ·)1A + u1(f, ·)1AC )] = EP1 [u1(b1A +
f1AC , ·)] which means c ≺0,1 b1A+f1AC . The same argument can be used for
c ∼0,1 b1A + f1AC leading to c �0,1 a1A + f1AC . Thus, <0,1 satisfies (M.0).

(ST.0) follows from the simple fact that EP1
[u1(f1A+h1Ac , ·)] ≤ EP1

[u1(g1A+
h1Ac , ·)] if and only if EP1 [u1(f1A+k1Ac , ·)] ≤ EP1 [u1(g1A+k1Ac , ·)] whatever
the choice of A ∈ Ft1 \ N (Ft1) and f, g, h, k ∈ L (Ft1).

Finally, let (fn)n∈N ⊆ L∞(Ft1) be uniformly bounded and converging
pointwise to f for each ω ∈ Ω. Let K := supn ‖fn‖∞ ∈ R+. Since the integral
representation is pointwise continuous (on uniformly bounded sequences) we
have:

EP1 [u1(fn, ·)]→ EP1 [u1(f, ·)] (6.11)

Now let a ∈ R such that a ≺0,1 f and call ε := EP1
[u1(f, ·)] − u0(a) > 0.

Then by (6.11) there exists N ∈ N such that |EP1
[u1(f, ·)]−EP1

[u1(fn, ·)]| < ε
∀n > N . The triangular inequality implies that u0(a) < EP1 [u1(fn, ·)] ∀n > N ,
that is a ≺0,1 fn. The same argument applies to a �0,1 f . Hence, (C.0) holds,
concluding the proof.

On the direct implication (⇒). We shall proceed by induction. In fact if N = 1
Theorem 3 reduces to Proposition 3, which is proved in the first paragraph of
this section.

Assumption 5 [Induction] We assume that the statement is true up to i. In
particular it means that we can guarantee the existence of a probability Pi on
Fti and state-dependent utilities {uk}ik=1, where uk(x, ·) is Ftk -measurable,
integrable, strictly increasing in x, ?-continuous, uk(0, ·) = 0 and

g �k−1,k f ⇐⇒ uk−1(g) ≥ EPi [uk(f)|Ftk−1
] Pi-a.s.

g �k−1,k f ⇐⇒ uk−1(g) ≤ EPi [uk(f)|Ftk−1
] Pi-a.s.

for any k = 1, . . . , i, f ∈ L∞(Ω,Ftk−1
), g ∈ L∞(Ω,Ftk).
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Under this assumption we shall now prove that the representation can be
forwardly updated to time ti+1.

Remark 9 We point out that N (Fti) = {A | ∃B ∈ Fti , Pi(B) = 0 and A ⊆
B}, where N (Fti) are the null sets induced by the relations �i−1,i, �i−1,i as
in (3.5).

Although a conditional preference is not total, the following lemma, which
is inspired by Lemma 3.2 in [6], shows that local completeness allows to derive
for every two acts an Fti-measurable partition on which a comparison can be
achieved.

Lemma 2 Consider any g ∈ L∞(Fti), f ∈ L∞(Fti+1
). If Assumption 5

holds and �i,i+1 satisfies (T.i) then there exists a pairwise disjoint family of
events A,B,C ∈ Fti such that Pi(A ∪B ∪ C) = 1 and

g1A ∼i,i+1 f1A,

g �Bi,i+1 f

g ≺Ci,i+1 f.

Proof Fix g ∈ L∞(Fti), f ∈ L∞(Fti+1), and define E := {Ã ∈ Fti :

g1Ã ∼i,i+1 f1Ã}, S := supÃ∈E Pi(Ã). We can find {An}n ⊆ E such that
Pi(An)→ S: we have Pi(∪nAn) ≥ Pi(An) for every n which implies Pi(∪nAn) =
S (from (T.i) and Remark 2 we have ∪nAn ∈ E). We finally show that up
to null events ∪nAn represents the largest event on which g is conditionally
equivalent to f : let Ã ∈ E and B = Ã \ (∪nAn). Then B ∪ (∪nAn) ∈ E and
Pi(B ∪ (∪nAn)) = Pi(B) + S. Necessarily Pi(B) = 0.
We therefore set A := ∪nAn and consider U := {B̃ ∈ Fti , B̃ ⊆ Ac : g1B̃ �i,i+1

f1B̃}. Notice that from the construction of A if we find B̃ ∈ U such that
g1B̃ ∼i,i+1 f1B̃ then Pi(B̃) = 0. Following the same argument as in the pre-
vious step we construct a maximal B ∈ U such that Pi(B) ≥ Pi(B̃) for all
B̃ ∈ U : indeed it is not possible the finding of B′ ⊂ B with Pi(B′) > 0 such
that g1B′ �i,i+1 f1B′ , and therefore g �Bi,i+1 f .
Finally we can consider D := {C̃ ∈ Fti , C̃ ⊆ (A ∪B)c : g1C̃ �i,i+1 f1C̃} and
following the same reasoning we can find C ∈ D such that Pi(C) ≥ Pi(C̃) for
all C̃ ∈ D and g ≺Ci,i+1 f .
By construction Pi(A ∪B ∪ C) = 1 and the probability of the intersections is
always 0.

Consider for any g ∈ L∞(Fti) the upper and lower level sets Cug = {f ∈
L∞(Fti+1

) | g �i,i+1 f} and Clg = {f ∈ L∞(Fti+1
) | g �i,i+1 f} and the

maps

V −i+1(f) = Pi − sup{ui(g) | f ∈ Cug } = Pi − sup{ui(g) | g �i,i+1 f}
V +
i+1(f) = Pi − inf{ui(g) | f ∈ Clg} = Pi − inf{ui(g) | g �i,i+1 f}
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Lemma 3 Let Assumption 5 holds and �i,i+1 satisfies (T.i). The maps V +
i+1(f) :

L∞(Fti+1
) → L0(Ω,Fti ,Pi), V −i+1(f) : L∞(Fti+1

) → L0(Ω,Fti ,Pi) are well
defined. Moreover, as ui(ω, ·) is strictly increasing and ?-continuous (Assump-
tion 5), then V +

i+1(f) = V −i+1(f) for any f ∈ L∞(Fti+1
).

Notation 6 We shall often use the notation u−1i Vi+1(f) to indicate the func-
tion mapping ω → u−1i (Vi+1(f)(ω), ω) 8.

Proof Let g1, g2 ∈ L∞(Fti) such that Pi(g1 = g2) = 1. We have from Remark
2 that Cug1

= Cug2
and Clg1

= Clg2
, and therefore V +

i+1, V
−
i+1 are well defined.

From now on we fix f ∈ L∞(Fti+1
): for any g1, g2 ∈ L∞(Fti) such that

g1 �i,i+1 f and g2 �i,i+1 f then the set {g1 > g2} ∈ N (Fti). From the
monotonicity of ui we have Pi(ui(g1) ≤ ui(g2)) = 1, and therefore V −i+1(f) ≤
V +
i+1(f), Pi almost surely.

To prove that V −i+1(f) = V +
i+1(f) we need to find g−, g+ ∈ L∞(Fti) such

that ui(g±) = V ±i+1(f) Pi − a.s.. We prove the existence of g+, then the same
argument works also for g−. Take a sequence (gn)n∈N ⊆ L (Fti) satisfying
gn �i,i+1 f , gn+1(ω) ≤ gn(ω) ∀n ∈ N, ω ∈ Ω and ui(gn(ω), ω) ↓ (V +

i+1(f))(ω)
for each ω ∈ A for some event A ∈ Fti with Pi(A) = 1. The existence of
such sequence is guaranteed by the definition of Pi− inf and the fact that the
set {g ∈ L∞(Fti) : g �i,i+1 f} is downward directed 9. Since the prefererence
relation �i,i+1 is non degenerate, there exists an act h ∈ L∞(Fti) such that
h �i,i+1 f implying that the event {ω ∈ Ω : h(ω) > gn(ω)} ∈ Fti is null
for each n ∈ N. This means that the sequence (gn)n is decreasing and has a
Pi − a.s. finite lower bound, so there exists an event B ∈ Fti with Pi(B) = 1
and an act g+ ∈ L∞(Fti) such that gn(ω) ↓ g+(ω) ∈ R for all ω ∈ B. The
?-contintuity of ui ensures that gn(ω) and g+(ω) belong to the points of (right)
continuity of ui(·, ω) for each ω ∈ C for some C ∈ Fti with Pi(C) = 1. This
leads to:

(V +
i+1(f))(ω) = lim

n
ui(gn(ω), ω) = ui(g+(ω), ω)

for each ω ∈ A ∩B ∩ C and Pi(A ∩B ∩ C) = 1.
Consider now Ā ∈ Fti defined by Ā := {g− < g+}. For λ ∈ (0, 1) define the
convex combination gλ := λg++(1−λ)g−. Indeed Ā = {gλ < g+} = {ui(gλ) <
ui(g+)} = {gλ > g−} = {ui(gλ) > ui(g−)}.
Observe that if Pi(Ā) = 0 we have the thesis. Otherwise we claim that for any
B ⊆ Ā, B ∈ Fti , Pi(B) > 0 neither gλ1B �i,i+1 f1B nor gλ1B �i,i+1 f1B
occur. This claim indeed contradicts local completeness in (T.i).
To show the claim we consider first the case gλ1B �i,i+1 f1B for some B ⊆ Ā,
B ∈ Fti and Pi(B) > 0, since the other follows in a similar way. As a conse-
quence of Remark 2 we have gλ1B + g−1Bc �i,i+1 f . From the construction
B\{ui(gλ1B+g−1Bc) > V −(f)} is null, but from the definition Pi−sup we nec-
essarily have {ui(gλ1B+g−1Bc) > V −(f)} ∈ N (Fti). Hence, gλ1B �i,i+1 f1B

8 This function is well defined and measurable as ui(·, ω) is strictly increasing for any
ω ∈ Ω.

9 A set A is downward directed if for any f, g ∈ A the minimum f ∧ g ∈ A. The existence
of a minimizing sequence is proved in Appendix A.5 of [12]
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cannot occur for any for B ⊆ Ā, B ∈ Fti and Pi(B) > 0. Similarly we can
obtain that gλ1B �i,i+1 f1B cannot occur for any for B ⊆ Ā, B ∈ Fti and
Pi(B) > 0, concluding the proof of the claim.

Notation 7 From now on we shall denote Vi+1 := V +
i+1 = V −i+1.

Proposition 4 Let Assumption 5 holds and �i,i+1 satisfies (T.i). Then for
any f ∈ L∞(Fti+1

) there exists a unique Conditional Certainty Equivalent
given by Ci,i+1(f) = u−1i Vi+1(f) ∈ L∞(Ω,Fti ,Pi). Moreover Vi+1 represents
the transition order i.e.

g �i,i+1 f ⇔ ui(g) ≤ Vi+1(f) Pi-a.s. (6.12)
g �i,i+1 f ⇔ ui(g) ≥ Vi+1(f) Pi-a.s. (6.13)

and necessarily Vi+1(f) ∈ L1(Ω,Fti ,Pi).

Proof In this proof we denote (with a slight abuse of notation) by Vi+1(f)
any of its Fti-measurable version. Existence and uniqueness follow from the
previous Lemma 3. We only need to show that Ci,i+1(f) = u−1i Vi+1(f) ∈
L∞(Ω,Fti ,Pi). For any couple g1, g2 ∈ L∞(Fti) such that g1 �i,i+1 f and
g2 �i,i+1 f we can observe that ui(g1) ≤ Vi+1(f) ≤ ui(g2), Pi almost surely,
which automatically implies Vi+1(f) ∈ L1(Ω,Fti ,Pi) (we are assuming ui(·, x)
is integrable for any x). At the same time from ui strictly increasing in x we
can deduce g1 ≤ Ci,i+1(f) ≤ g2, Pi almost surely.

To show the representation property (6.12) and (6.13), we consider the
case g �i,i+1 f as g �i,i+1 f follows in a similar fashion. Obviously g �i,i+1 f
implies Pi(ui(g) ≤ Vi+1(f)) = 1 (from the definition of V +

i+1 = Vi+1).
For the reverse implication notice that on the set A = {ui(g) = Vi+1(f)} we
necessarily have g1A ∼i,i+1 f1A. If instead we consider A = {ui(g) < Vi+1(f)}
then either Pi(A) = 0 or necessary g1A �i,i+1 f1A and g1B �i,i+1 f1B for
any B ⊂ A, B ∈ Fti as Vi+1(f) is by definition Pi − inf{ui(g) | g �i,i+1 f}
(This can be easily verified applying (T.i)).

Corollary 1 Let Assumption 5 holds and �i,i+1 satisfies (T.i). For any f ∈
L∞(Fti+1) and A ∈ Fti we have Vi+1(f1A) = Vi+1(f)1A, Pi almost surely.

Proof From the previous construction we have u−1i Vi+1(f1A) ∼i,i+1 f1A.
Moreover from (T.i) we also have that u−1i Vi+1(f) ∼i,i+1 f implies

u−1i Vi+1(f)1A ∼i,i+1 f1A.

Hence, from transitivity we deduce u−1i Vi+1(f)1A = u−1i Vi+1(f1A), Pi almost
surely, and thus the thesis.

Remark 10 Let Assumption 5 holds and �i,i+1 satisfies (T.i). For any f ∈
L∞(Fti+1), g ∈ L∞(Fti) and A ∈ Fti we have g ≺Ai,i+1 f (resp. g �Ai,i+1 f)
implies {ui(g) ≥ Vi+1(f)}∩A ∈ N (Fti) (resp. {ui(g) ≤ Vi+1(f)}∩A ∈ N (Fti))
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Last step of the proof for (⇒): Let Assumption 5 holds and �i,i+1 satisfies
all the Axioms (T.i), (M.i), (ST.i) and (C.i). In order to conclude the proof
we show that there exist a probability Pi+1 on (Ω,Fti+1

) which agrees with
Pi on Fti and a state-dependent utility ui+1(ω, ·) : R → R strictly increasing
∀ω ∈ Ω, such that

Vi+1(f) = EPi+1
[ui+1(·, f) | Fti ] Pi-a.s.. (6.14)

We define an intertemporal preference relation between time 0 and ti+1

as a �0,i+1 f (resp. a �0,i+1 f) if and only if u0(a) ≤ EPi [Vi+1(f)] (resp.
u0(a) ≥ EPi

[Vi+1(f)]) for any a ∈ R and f ∈ L∞(Fti+1
).

Simple inspections show that �0,i+1 satisfies (T.0), (M.0) and (ST.0).
We now prove the continuity (C.0) of �0,i+1: consider any uniformly bounded
sequence {fn} ⊆ L∞(Fti+1), such that fn(ω)→ f(ω) for any ω ∈ Ω. Consider
a ≺0,i+1 f (the case a �0,i+1 f follows in a similar way) so that we necessarily
have u0(a) < EPi

[Vi+1(f)]. It is possible to find g ∈ L∞(Fti) such that
ui(g) < Vi+1(f) and u0(a) < EPi

[ui(g)] 10.
Since g ≺i,i+1 f we apply (C.i) and find a sequence of indexes {nk}∞k=1 and a
partition {Ak}∞k=1 ⊂ Fti such that for any k we have g1Ak

�i,i+1 fn1Ak
for

all n ≥ nk.
For BN = ∪Ni=1Ai and d = supn ‖fn‖∞ consider the CCE Ci,i+1(−d). The

sequence {ui(g1BN
+Ci,i+1(−d)1Bc

N
}N∈N is dominated by the integrable func-

tion |ui(g)| + |ui(Ci,i+1(−d))| and pointwise converges to ui(g). From Domi-
nated Convergence Theorem we can find N̄ such that

EPi
[ui(g1BN̄

+ Ci,i+1(−d)1Bc
N̄

)] > u0(a),

so that from (T.i) we can deduce ui(g1BN̄
+Ci,i+1(−d)1Bc

N̄
) ≤ Vi+1(fn1BN̄

−
d1Bc

N̄
) for n > N̄ and

EPi
[Vi+1(fn)] ≥ EPi

[Vi+1(fn1BN̄
− d1Bc

N̄
)] > u0(a), ∀n > N̄,

which shows (C.0) of �0,i+1.

Given that �0,i+1 satisfies (T.0), (M.0), (ST.0) and (C.0) premise we can
apply Proposition 3 and find a probability P̃ on Fti+1

and a state-dependent
utility ũ such that EPi [Vi+1(f)] = EP̃[ũ(f)] for any f ∈ L∞(Fti+1).
Notice from (T.i) point 3 that P̃ is equivalent to Pi on Fti . For P̃|Fti

being the
restriction of P̃ on Fti define Z = dPi

dP̃|Fti

, which is an Fti-measurable random

variable. For any A ∈ Fti+1
set Pi+1(A) := EP̃[Z1A], ui+1(ω, x) = dP̃

dPi+1
ũ(ω, x)

and notice that Pi+1(A) = Pi(A) for any A ∈ Fti . We have

10 To show the existence of such g we need to consider for any ε > 0, Ci,i+1(f) − ε
so that ui(Ci,i+1(f) − ε) < ui(Ci,i+1(f)) = Vi+1(f); observing that ui(Ci,i+1(f) − ε)
increases monotonically to ui(Ci,i+1(f)) (for any ω ∈ Ω) we can find an ε̄ such that u0(a) <
EPi [ui(Ci,i+1(f)− ε̄)] < EPi [ui(Ci,i+1(f))] = EPi [Vi+1(f)].
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EPi
[Vi+1(f)] = EP̃[ũ(f)] = EPi+1

[ui+1(f)] = EPi
[EPi+1

[ui+1(f) | Fti ]],

so that we can obtain for every A ∈ Fti that

EPi
[Vi+1(f)1A] = EPi

[Vi+1(f1A)] = EPi
[EPi+1

[ui+1(f1A) | Fti ]]
= EPi

[EPi+1
[ui+1(f) | Fti ]1A],

which implies the representation (6.14).
We finally show the ?-continuity of ui+1. As for the unconditional case, it

is enough to show that for each f ∈ L (Fti+1) it holds that Pi+1(LDf ) = 0
where LDf is defined in Appendix A with respect to the stochastic field ui+1.
Notice that, as consequence of Lemma 4, ∀f ∈ L (Fti+1

) then LDf ∈ Fti+1
,

so either Pi+1(LDf ) = 0 or Pi+1(LDf ) > 0. By contradiction, we assume that
there exists an act f∗ ∈ L∞(Fti+1) for which Pi+1(LDf∗) > 0. In order to
simplify the notation we set B := LDf and, since the probability Pi+1 is fixed,
we denote Pi+1 − sup(A) simply with sup(A) for any family A ⊆ L∞(Fti+1

).
Define f := f∗1B and fn :=

(
f − 1

n

)
1B for each n ∈ N. Clearly fn → f in

L∞(Fti+1
), ‖fn‖ ≤ ‖f‖ + 1 < +∞ ∀n and fn(ω) = f(ω) = 0 ∀ω ∈ BC . By

definition of B, it hods that ui+1(f(ω), ω) > supn ui+1(fn(ω), ω) for Pi+1-a.e.
ω ∈ B and, so, we have:

Pi
(
EPi+1

[ui+1(f, ·)|Fti ] > supn EPi+1
[ui+1(fn, ·)|Fti ]

)
> 0 (6.15)

EPi+1
[ui+1(f, ·)|Fti ] ≥ supn EPi+1

[ui+1(fn, ·)|Fti ] Pi+1 − a.s.

Define now gn := Ci,i+1(fn) and g := Ci,i+1(f). Observe that {gn}n is an
increasing sequence as {fn}n increases and ui(·, ω) is strictly increasing for
each ω by Assumption 5 and has g as upper bound. If gn(ω) → g(ω) for Pi-
a.e. ω ∈ Ω then, by the ?-continuity of ui, it would happen that ui(gn(ω), ω)→
ui(g(ω), ω) for Pi-a.e. ω ∈ Ω in contradiction with (6.15). Hence, there exists
A ∈ Fti with Pi(A) > 0 such that supn gn(ω) < g(ω) for each ω ∈ A. Take
now λ ∈ (0, 1) and consider gλ := λg + (1− λ) supn gn. It holds that:

sup
n
gn(ω) ≤ gλ ≤ g(ω) for Pi − a.e. ω ∈ Ω

sup
n
gn(ω) < gλ < g(ω) for each ω ∈ A

Therefore, it follows that gλ �i,i+1 fn and gλ �Ai,i+1 fn ∀n, while gλ �i,i+1 f

and gλ ≺Ai,i+1 f which is in contradiction with axiom (C.i).

On the reverse implication (⇐). We now assume that there exist a probability
P on FtN and a Stochastic Dynamic Utility u(t, x, ω) in the form of (3.6) with
properties (a) (b) (c) and (d). Then, for any i = 1, . . . , N−1, it is easy to show
that the intertemporal preferences �i,i+1,�i,i+1 satisfy Axioms (T.i), (M.i),
(ST.i), from the properties of the conditional expectation and the monotonic-
ity of the Stochastic Dynamic Utility.
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The only critical point is showing property (C.i). To this aim let {fn} ⊆
L∞(Fti+1) be a uniformly bounded sequence, such that fn(ω)→ f(ω) for any
ω ∈ Ω. Choose any g ≺i,i+1 f then necessarily P(u(ti, g) ≥ EP[u(ti+1, f)|Fti ]) =
0.
As supn ‖fn‖∞ < d for some d > 0 we build the increasing sequence ln :=
infk≥n fk ∈ L∞(Fti+1

) and notice ln ≤ fn and ln(ω) → f(ω) for any ω ∈ Ω.
Moreover ‖ln‖∞ < d for all n ∈ N and consequently |u(ti+1, ln)| ≤ |u(ti+1, d)|
which is integrable. We can apply the Dominated Convergence Theorem for
conditional expectation and obtain EP[u(ti+1, ln)|Fti ](ω)→ EP[u(ti+1, f)|Fti ](ω)
for any ω ∈ Ω (by choosing an opportune version of the conditional expecta-
tion). Consider the sequence of sets {Bn}n∈N ⊂ Fti defined by

Bk := {u(ti, g) < EP[u(ti+1, lk)|Fti ]}.

Indeed ∪kBk = Ω from the pointwise convergence and we deduce that the pair-
wise disjoint family A1 := B1, . . . , Ak := Bk \ (∪k−1i=1Ai) satisfies again ∪kAk =
Ω, and therefore forms a partition of Ω. We conclude by observing that for
any n ≥ k we have fn ≥ lk, and therefore u(ti, g)(ω) < EP[u(ti+1, fn)|Fti ](ω)
for any ω ∈ Ak. Finally for every n ≥ k we deduce g1Ak

�i,i+1 fn1Ak
, as

the follwoing identies u(ti, g)1Bk
= u(ti, g1Bk

) and EP[u(ti+1, fn)|Fti ]1Bk
=

EP[u(ti+1, fn1Bk
)|Fti ] hold P-a.s.. The argument repeats in the same way when

g �i,i+1 f .

On the uniqueness. To conclude the proof we need to show the relative unique-
ness. Consider the new couple (P∗, u∗) such that P is equivalent to P∗ on FtN
and for any i = 1, . . . , N we have P(u∗(ti, ·, ·) = δiui) = 1, where δi is the
Radon-Nikodym derivative of P|Fti

with respect to P∗|Fti
. We show for any

arbitrary i = 1, . . . , N − 1, g ∈ L∞(Fti), f ∈ L∞(Fti+1
) the first of the

following equivalences

u∗(ti, g) ≥ EP∗ [u
∗(ti+1, f)|Fti ] P∗-a.s. ⇐⇒ u(ti, g) ≥ EP[u(ti+1, f)|Fti ] P-a.s.

u∗(ti, g) ≤ EP∗ [u
∗(ti+1, f)|Fti ] P∗-a.s. ⇐⇒ u(ti, g) ≤ EP[u(ti+1, f)|Fti ] P-a.s.,

as the second one is similar. To this aim we recall the martingality property

δi = EP∗

[
dP
dP∗
| Fti

]
= EP∗|Fti+1

[δi+1 | Fti ] P∗-a.s..

and the conditional change of measure

EP∗ [δi+1ui+1(f) | Fti ]
EP∗ [δi+1 | Fti ]

= EP [ui+1(f) | Fti ] P-a.s.. (6.16)

Moreover the equivalence between P and P∗ allows to write the following in-
equalities indifferently in the P/P∗ almost sure sense so that we obtain

u∗(ti, g) ≥ EP∗ [u
∗(ti+1, f)|Fti ] ⇐⇒ δiui(g) ≥ EP∗ [δi+1ui+1(f)|Fti ]

⇐⇒ δiui(g) ≥ EP[ui+1(f)|Fti ] · EP∗ [δi+1 | Fti ]
⇐⇒ u(ti, g) ≥ EP[u(ti+1, f)|Fti ].
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On the contrary suppose that (P∗, u∗) are given in a way such that for i =
1, . . . , N : EP∗ [|u∗(ti, x, ·)|] <∞, for all x ∈ R, u∗(ti, ·, ω) is strictly increasing
in x, u∗(ti, 0, ω) = 0 for all ω ∈ Ω and

u∗(ti−1, g) ≥ EP∗ [u
∗(ti, f)|Fti−1

]P∗-a.s.⇔ u(ti−1, g) ≥ EP[u(ti, f)|Fti−1
]P-a.s.

u∗(ti−1, g) ≤ EP∗ [u
∗(ti, f)|Fti−1

]P∗-a.s.⇔ u(ti−1, g) ≤ EP[u(ti, f)|Fti−1
]P-a.s.,

for any arbitrary g ∈ L∞(Fti), f ∈ L∞(Fti+1). The equivalence of P and P∗
follows immediately. Moreover it is important to observe that the preferences
�i−1,i induced by (P, u) and (P∗, u∗) are the same and satisfy all the axioms
(in virtue of the previous point of the proof), which in particular implies that
the CCE always exists. Moreover for any ω ∈ Ω we imposed u(ti, 0, ω) =
u∗(ti, 0, ω) = 0. For i = 1 we already know P(u∗(t1, ·, ·) = δ1u1) = 1 from
Proposition 3. Let δi = EP∗

[
dP
dP∗ | Fti

]
as before and consider the first i =

2, . . . , N such that either the set A = {ω ∈ Ω | u∗(ti, ·, ω) > δiui(·, ω)} or
A = {ω ∈ Ω | u∗(ti, ·, ω) < δiui(·, ω)} have positive probability. Let Ci−1,i(1A)
be the CCE of 1A, which is the equal under (P, u) or (P∗, u∗). Hence,

u∗(ti−1, Ci−1,i(1A)) = EP∗ [u
∗(ti,1A)|Fti−1

] P∗-a.s. and (6.17)
u(ti−1, Ci−1,i(1A)) = EP[u(ti,1A)|Fti−1

] P-a.s.

By performing a conditional change of measure as in (6.16), the second equa-
tion can be rewritten as

δi−1u(ti−1, Ci−1,i(1A)) = EP∗ [δiu(ti,1A)|Fti−1
] P∗-a.s..

Subtracting this last equation and (6.17), would lead to a contradiction since
the left hand side is always equal to 0 (P-a.s.) whereas the right hand side is
not. Therefore P(A) is necessarily 0.

A On ?-continuity

Throughout this section we fix a probability space (Ω,G,P) and a random field φ : R×Ω → R
such that for each f ∈ L∞(G) the map ω 7→ φ(f(ω), ω) is G-measurable and for any ω,
x 7→ φ(x, ω) is non decreasing. For any f ∈ L∞(G) we set

φ(f(ω)+, ω) = inf
n∈N

φ(f(ω) + 1/n, ω) and φ(f(ω)−, ω) = sup
n∈N

φ(f(ω)− 1/n, ω)

and define the following sets:

RDf = {ω ∈ Ω :
(
φ(f(ω)+, ω)− φ(f(ω), ω)

)
> 0}

LDf = {ω ∈ Ω :
(
φ(f(ω), ω)− φ(f(ω)−, ω)

)
> 0}

Df = {ω ∈ Ω :
(
φ(f(ω)+, ω)− φ(f(ω)−, ω)

)
> 0}

We now prove a useful lemma which allows to give a well-posed definition of continuity for
random fields.

Lemma 4 For each f ∈ L∞(G) the sets RDf , LDf , Df , defined above, are G-measurable.
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Proof Observe that the set RDf can be written as:

RDf =
⋂
n∈N

⋃
m∈N

{
ω ∈ Ω :

(
φ

(
f(ω) +

1

n
, ω

)
− φ(f(ω), ω)

)
>

1

m

}

=
⋂
n∈N

⋃
m∈N

[
φ

(
f(·) +

1

n
, ·
)
− φ (f(·), ·)

]−1 ( 1

m
,+∞

)

which is G-measurable by measurability of the function

ω → φn(ω) = φ

(
f(ω) +

1

n
, ω

)
− φ(f(ω), ω).

Clearly a similar argument shows that LDf ∈ G. Finally, Df = LDf ∪RDf ∈ G.

Definition 3 The random fields φ is ?-continuous if P(Df ) = 0 for every f ∈ L∞(G).

Remark 11 Observe that the set Df defined in Lemma 4 can be interpreted as:

Df = {ω ∈ Ω : f(ω) is a point of discontinuity of the function φ(·, ω)}

In particular for any sequence {fn}n∈N ⊂ L∞(G) such that fn(ω) → f(ω) we have
φ(fn(ω), ω) → φ(f(ω), ω) for any ω ∈ Df . Moreover it follows that the definition of ?-
continuity is well posed as the set Df is measurable by Lemma 4.
Notice also that taking f ≡ x ∈ R then Dx = {ω ∈ Ω : φ(·, ω) is discontinuous in x}.
Therefore, the condition P(Dx) = 0 means that for P-a.e. ω ∈ Ω the map φ(·, ω) is continuous
in x . On the other hand, if φ is P−a.s. continuous and satisfies the measurability condition
of Lemma 4 then it is also ?-continuous. Hence, the ?-continuity is a notion of continuity
which is deeply related to the probability space (in particular, to the σ-algebra) and is
weaker than the P-a.s. continuity of the trajectories but stronger than the P-a.s. continuity
at fixed points.

B State dependent utilities

As in the rest of the paper (Ω,F) denotes a measurable space and L∞(F) is the space of all
acts, represented by real valued F-measurable and bounded random variables. We here use
the term “act ”in order to match the terminology adopted in [30] on which this Appendix is
based. This term must be used with care in order to avoid confusion with the general notion
of Anscombe-Aumann acts. Indeed in [1] acts are functions from the state space (Ω,F) to
a convex set of lotteries over a consequence set.

In this appendix the preference relation is a binary relation � on L∞(F) : for f , g
∈ L∞(F), if f is preferred to g, write f � g. The preference relation satisfies the following
axiom:

(A1) Preference order: if it is reflexive (∀f ∈ L∞(F), f ∼ f), complete (∀f, g ∈ L∞(F),
f � g or f � g) and transitive (∀f, g, h ∈ L∞(F) such that f � g and g � h then
f � h)

Definition 4 A representing function of the preference relation is a function V : L∞(F)→
R which is order-preserving, i.e.,

f � g ⇐⇒ V (f) ≥ V (g).

We use the standard conventions: f � g if g � f ; f ∼ f if both g � f and f � g; g � f
if either g � f or f � g; g � f if g � f but f � g.
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Definition 5 An event A ∈ F is null if f1A + g1Ac ∼ g ∀f, g ∈ L∞(F).We shall denote
by N (F) be the set of null events.
As a consequence a �-atom is an element A ∈ F such that for every B ∈ F with ∅ 6= B ⊂ A
either B or A \B is null.
An event is essential if it belongs to F \ N (F).

We can consider the following additional Axioms:

(A2) Strictly monotone if x1A + f1Ac � y1A + f1Ac , for all nonnull events A ∈ F , for all
f ∈ L∞(F) and outcomes x > y.

(A3) Sure-thing principle: consider arbitrary f, g, h ∈ L∞(F) and A ∈ F such that f1A +
h1Ac � g1A + h1Ac then for every c ∈ L∞(F) we have f1A + c1Ac � g1A + c1Ac .
(A3) holds on S(F) if we substitute in the previous statement L∞(F) with S(F) (as
defined in the paragraph Notations).

(A4’) Norm continuity if ∀f ∈ L∞(F) the sets {g ∈ L∞(F) : g � f} and {g ∈ L∞(F) :
f � g} are ‖ · ‖∞-closed.

Theorem 8 (Debreu 1960, state-dependent expected utility for finite state space)
Let L∞(F) the set of acts and � a preference relation on it. Let the state space Ω =
{ω1, ..., ωn}, where at least three states are nonnull. Then the following two statements are
equivalent:

(i) There exist n continuous functions Vj : R→ R, j = 1, ..., n, that are strictly increasing
for all nonnull states and constant for all null states, and such that � is represented by

V (f) =
n∑
j=1

Vj(f(ωj)). (B.18)

(ii) � is a norm continuous, strictly monotonic preference order that satisfies the sure thing
principle.

The following uniqueness holds for (1) : W (f) =
∑n
j=1Wj(f(ωj)) represent � if and only

if there exist τ1, ..., τn ∈ R and σ > 0 such that Wj = τj+σVj ∀j, implying that W = τ+σV
for τ = τ1 + ...+ τn.

In [30] the previous Theorem is generalized to an infinite state spaces Ω when Ω contains
no atoms. We here recall the integral reformulation of the Debreu representation given in
[3] under pointwise continuity.

Definition 6 A preference order is

(A4) Pointwise continuous if for any uniformly bounded sequence {fn} ⊆ L∞(F), such
that fn(ω) → f(ω) for any ω ∈ Ω then ∀g ∈ L∞(F) such that g � f (resp. g ≺ f)
∃J ∈ N such that g � fj (resp. g ≺ fj) ∀j > J .

Theorem 9 ([30], Theorem 12 and [3], Theorem 5) Let L∞(F) be the set of acts
and � the preference relation on it. Assume that F contains at least three disjoint essential
events. Then the following two statements are equivalent:

(i) There exists a countably additive measure P on Ω and a function (the state-dependent
utility) u(ω, ·) : R → R strictly increasing ∀ω ∈ Ω, such that � is represented by the
pointwise continuous integral

f →
∫
Ω
u(ω, f(ω))dP.

(ii) � satisfies: (A1), (A2), (A3) on S(F), (A4).

The following uniqueness holds: the couple (P, u) can be replaced by (P∗, u∗) if and only if
P and P∗ are equivalent and P(u∗ = τ +σδu) = 1, where τ : Ω → R is F-measurable, σ > 0
and δ is the Radon-Nikodym density function of P with respect to P∗.
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