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The potential energy surface of the methane-water dimer is represented as the sum of a new intrinsic two-body potential energy
surface and pre-existing intramolecular potentials for the monomers. Different fits of the CH4-H2O intrinsic two-body energy
are reported. All these fits are based on 30,467 ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ
for C and O, cc-pVTZ for H) level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical repre-
sentation with root-mean-square (rms) fitting error of 3.5 cm−1. Two other computationally more efficient two-body potentials
are also reported, albeit with larger rms fitting errors. Of these a compact permutationally invariant fit is shown to be the best
one in combining precision and speed of evaluation. An intrinsic two-body dipole moment surface is also obtained, based on
MP2/haTZ expectation values, with an rms fitting error of 0.002 au. As with the potential, this dipole moment surface is com-
bined with existing monomer ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy,
D0, are determined by Diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR spectrum
of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials is analyzed by comparing the
energetics and the harmonic frequencies of the global minimum well, and the maximum impact parameter employed in a sample
methane-water scattering calculation.

1 Introduction

The interaction between methane and water is essential for
the study of methane-water clathrates, and to understand hy-
drophobic interactions. It also plays an important role in com-
bustion chemistry and related gas-phase scattering investiga-
tions. Methane clathrates have attracted extensive interest be-
cause they are a potential source of energy,1 and their forma-
tion in gas pipelines may be responsible for flow reduction.
The formation and dissociation of the clathrates have been re-
cently studied by means of molecular dynamics (see, for in-
stance, Ref. 2–7 ). At the same time, methane-water still rep-
resents a widely used model system for the study of hydropho-
bic interactions.8–10 In combustion chemistry, energy transfer
and dissociation of methane CH4 (+M) ⇀↽ CH3+H (+M) is of
interest, with particular focus on the collisional efficiency of
M=H2O.11,12 The CH4-H2O collisional system has been re-
cently investigated by means of direct-dynamics12 to obtain
moments of the energy transfer, that can be well-converged by
means of only a few hundred trajectories. This has contributed
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to validate some energy transfer models and to compare the
efficiencies of different collision partners with methane.13,14

However, finer collisional energy transfer details, such as rare,
but highly efficient energy-transfer events, detailed vibration-
vibration energy transfer, etc. need a much larger number of
trajectories, that are not feasible to do by means of direct dy-
namics. These can be obtained with fitted potential energy
surfaces (PESs). Model analytical potentials have been used
to perform quasi-classical trajectory (QCT) simulations of the
collisional energy transfer for several systems (see, for in-
stance, Refs. 15–17), but a realistic full-dimensional potential
for CH4-H2O is necessary to obtain high accuracy.

The methane-water interaction has been examined with var-
ious ab initio methods, and several analytical forms of the
PES for rigid monomers have been presented. The earli-
est studies (for example see Ref. 18–21) either fail to cor-
rectly identify the minimum structure or do not explore the
full configuration space, due to low-level ab initio methods.
Szczȩsńiak et al. 22 and Rovira et al. 23 successfully identi-
fied two minima in the PES, but the electronic binding en-
ergy of the global minimum was underestimated. The lat-
ter also reported the harmonic vibrational frequencies of the
dimer. Two six-dimensional PESs for rigid monomers have
been reported.24,25 In the more recent work of Akin-Ojo and
Szalewicz 25 the electronic binding energy was given as 361
cm−1 by extrapolating CCSD(T)/aug-cc-pVQZ and aug-cc-
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pV5Z results to the complete basis set (CBS) limit. More
recently, Copeland and Tschumper 26 characterized the ener-
getics of the dimer PES with high-level CCSD(T)-F12b/VTZ-
F12 calculations, and reported the binding energy of 339 cm−1

with counterpoise (CP) correction and 353 cm−1 without the
correction for the global minimum; these authors also reported
the binding energy of 224 and 231 cm−1 with and without CP
correction for the higher energy minimum. However, none
of the analytical PESs mentioned20–22,24,25 is full-dimensional
and so cannot be used to investigate observables that depend
on the monomer vibrational motion. We report such PESs
here. In addition, we present a dipole moment surface; this
has not been reported previously.

Considering our future applications of this potential to en-
ergy transfer studies and properties of CH4(H2O)n clusters,
for example methane clathrates, we employ the many-body
representation for the methane-water dimer, i.e., representing
the full PES as the sum of flexible monomer PESs plus an in-
trinsic two-body interaction. The focus here is on the latter, in
full dimensionality. Specifically, we obtain a new PES for the
intrinsic two-body energy, which is defined as

V2b =Vdimer−VCH4
−VH2O, (1)

where the potentials for the isolated monomers are given us-
ing obvious notation. In principle, the dimer and intrinsic two-
body potentials should be invariant with respect to all permu-
tations of like atoms. However, for the non-covalent interac-
tion relevant here, it is not necessary to consider the permuta-
tions of H atoms of H2O with those of CH4.

A suitable approach to represent this symmetry in a fitting
basis comes from the theory of invariant polynomials. A com-
putationally efficient implementation of this approach consists
in defining a set of primary and secondary invariants,27 while
a second one is based on monomial symmetrization.28 Both
methods can provide essentially equivalent, very precise fits
to a data set of electronic energies. However, while much
faster to evaluate than even low-level direct dynamics calcula-
tions, these representations are generally significantly slower
to evaluate than commonly used model potentials. In applica-
tions involving methane clathrates, we need to evaluate the
intrinsic potential for each CH4-H2O pair, so the computa-
tional cost can be high. Three of us have recently introduced
a compact fitting procedure29,30 that removes polynomials de-
pending on the intramolecular distances in the monomial sym-
metrization approach, and guarantees zero intrinsic two-body
energy at the dissociation limit. This procedure significantly
speeds up the potential evaluation, but at the cost of lower fit-
ting precision. A different family of fitting techniques is repre-
sented by sum-of-pairs methods, based on a limited number of
non-linear parameters.31 Sum-of-pairs methods have the ad-
vantages that they require only a limited number of ab initio
energies for the fit and that qualitatively correct physical be-

havior is ensured in all configurational regions, even where
ab initio energies have not been calculated. However, pair-
wise fits may be not very accurate or appropriate to describe
systems (like methane-water) where orientation dependence
is expected to influence significantly the interaction. Further-
more, they are based on two-body atomic interactions, thus
missing multi-atom contributions which are relevant at short
distances, a region of key importance for energy transfer.

In this article, we present a full-dimensional, permutation-
ally invariant fit to the methane-water intrinsic two-body po-
tential, based on the primary and secondary invariants ap-
proach. Other compact and sum-of-pairs fits are also reported.
By adding existing monomer potentials of CH4 and H2O, a
full PES of the CH4-H2O dimer is obtained. There are numer-
ous choices for these monomer potentials and specific ones
will be dictated by the planned usage of the PES. We discuss
this further in Section 2. A dipole moment surface (DMS)
is presented as well. The different intrinsic two-body PESs
are compared in terms of the root-mean-square (rms) fitting
error, the speed of potential evaluation, the energetics, the har-
monic frequencies as well as the maximum impact parame-
ter for bimolecular scattering simulations. Diffusion Monte
Carlo (DMC) and MULTIMODE calculations are performed
to characterize the zero-point properties and intramolecular vi-
brational fundamentals and IR spectrum of the dimer.

The paper is organized as follows. In Section 2, we pro-
vide the theoretical and computational details of the ab initio
calculation, the fitting methods, the DMC and MULTIMODE
calculations. In Section 3, we report the results of the com-
parisons of the two-body PESs, the vibrational analysis, the
IR spectra, and collision dynamics. The conclusions and final
remarks are given in Section 4.

2 Theoretical and Computational Details

2.1 Ab initio calculations

The database of 30,467 configurations and energies was ob-
tained as follows. Seven C-O distances were picked in the
range from 3.0 to 10.0 Å, and at each distance, 3,200 monomer
geometries were chosen with different orientations. 4,932 ad-
ditional configurations of the dimer were generated using ab
initio molecular dynamics at the DFT (B3LYP) level of theory.
An initial fit then was performed based on the 27,332 points
described above. The remaining 3,135 points were calculated
to provide better coverage of the initial PES, based primarily
on running DMC calculations of the dimer zero-point energy
and also to improve the harmonic frequencies at the two min-
ima.

The CCSD(T)-F12b method32,33 with haTZ (aug-cc-pVTZ
for C and O, and cc-pVTZ for H) basis set was employed
to calculate the energies, using MOLPRO 2010.34 For each
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dimer configuration, the energies of the dimer and the isolated
monomers at that configuration were calculated, and the in-
trinsic two-body energy was obtained according to equation
(1) without counter-poise (CP) correction. (See Section 3.1
for more discussion of the CP correction.) Overall, the com-
putational cost of calculating the 30,467 points in the database
can be converted to roughly 13 days of CPU time on a 16-
processor computer.

The expectation value of the three dipole moment compo-
nents of the dimer were calculated at MP2 level of theory with
haTZ basis set, also using MOLPRO 2010. The dipole mo-
ments of the isolated monomers were also calculated at the
same level of theory in order to obtain the intrinsic two-body
dipole given by:

~µ2b =~µdimer−~µCH4
−~µH2O. (2)

CCSD(T)-F12b/haTZ level of theory is both high and com-
putationally feasible for the large data set of electronic ener-
gies. For the dipole moments, MP2 provides a reasonable, if
not “high-resolution” level of theory that is computationally
efficient.

2.2 PES and DMS fitting

Three least-squares fits of the 30,467 intrinsic two-body ener-
gies were performed. For the two polynomial fits, the max-
imum polynomial order was set to five, and the permutation
group is appropriate for A4B2CD. As noted above, this means
that hydrogen atoms belonging to different monomers do not
permute, so the PES is not invariant to intermolecular hydro-
gen exchange, which is not feasible for the interactions of in-
terest. Thus, the permutation order is 4!2! = 48. The poly-
nomial variables are Morse exponentials yi j = exp(−ri j/α),
where α is a parameter usually between 2.0 and 3.0 au (α =
2.0 au for these PESs), and ri j is the internuclear distance be-
tween atom i and j. The choice of Morse exponentials as vari-
ables instead of the simpler internuclear distances allows the
fitted PESs to describe dissociation without divergence.

The best fitted intrinsic two-body potential, denoted by
PES2b-PI, is based on a rigorous decomposition into primary
and secondary invariant polynomials,27 leading to a total of
10,220 linear coefficients. PES2b-PI provides the benchmark
for our calculations.

A second fitted two-body potential, denoted PES2b-CSM,
is a compact one using symmetrized monomials, where by
“compact” we mean that the fit depends explicitly only on
intermolecular distances.30 The starting point to build PES2b-
CSM is the full (F) expansion of the intrinsic potential in terms
of symmetrized monomials,27

V F
2b =

M

∑
m=0

Db S

[
N

∏
i< j

y
bi j
i j

]
(m = ∑bi j), (3)

where M is the maximum polynomial order, Db are the lin-
ear coefficients and b stands for the ordered collection of the
exponents bi j; S is the formal operator that symmetrizes
monomials, and N is the number of atoms in the system. A
computationally-efficient factorization scheme to obtain these
polynomials iteratively has been reported.28 The scheme is not
as efficient as the invariant polynomial factorization. How-
ever, it is more straightforward to modify this scheme to create
PES2b-CSM, as we describe next.

To extract the desired subset of polynomials for PES2b-
CSM of the methane-water system, the 28 Morse variables are
defined as shown in Fig. 1. The circled variables correspond
to the thirteen intramolecular Morse variables (ten for methane
plus three for water), and they are set equal to zero. Instead,
a different non-zero value is assigned to each one of the re-
maining fifteen intermolecular Morse variables. By calculat-
ing monomial values after these substitutions, all monomials
with intramolecular dependence return a null value and can be
eliminated from the monomial list used for PES2b-CSM. The
ensuing elimination of some polynomials from the full repre-
sentation in equation (3) can result in a substantial compaction
of the number of terms in that representation.

This compact two-body PES results in a substantial speed-
up in the potential evaluation. For this intrinsic two-body
methane-water potential, PES2b-CSM contains only 841 lin-
ear coefficient (and thus polynomial evaluations), compared
to the 10,220 needed by PES2b-PI. Furthermore, PES2b-CSM
fixes by construction the issue of small non-zero intrinsic two-
body energy at large distances, that can occur in PES2b-PI due
to lack of rigorous separation of some terms in that represen-
tation.27

Fig. 1 Table of Morse variables for the CH4-H2O system. Red
circles indicate the ten Morse variables dependent on methane
intramolecular distances, while the blue circles show the three water
intramolecular Morse variables.

The third fitted two-body potential, denoted PES2b-P24, is
a pairwise one based on 24 non-linear parameters, six for each
pair of intermolecular atomic species (C-O; C-HW; HM-O;
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HM-HW. HW indicates a water hydrogen, while HM a hydro-
gen of the methane molecule). The mathematical expression
for this sum-of-pairs fit is the one proposed by Varandas and
Rodrigues 31 and it has been successfully applied to a num-
ber of systems (see, for instance, refs. 35–37). The potential
is expressed as a sum-of-pairs contribution dependent on dis-
tances between the four intermolecular couples of atoms in the
CH4-H2O system (see equations (4)–(5)).

V P24
2b = ∑

i, j
V (ri j) i, j = C,HM,HW,O (4)

V (ri j) = Ai j exp(−bi jri j)−∑
n

χn(ri j;R0,i j)
Cn,i j

rn
i j

n = 6,8,10

(5)
The damping χ functions in equation (5) are defined explic-
itly in equations (8)-(11) of Ref. 31. The parameters were
obtained using a standard least-squares procedure.

The intrinsic two-body dipole moment is represented in the
form

~µ2b(R) = ∑
i

wi(R)~ri, (6)

where R denotes the nuclear configuration and~ri is the set of
Cartesian coordinates of the ith nucleus. wi(R) is the effec-
tive charge on the ith nucleus, which is a scalar quantity that
can be expanded by polynomials of the Morse variables. The
dipole moment should also be invariant under permutations of
like atoms, so the property of the effective charge wi(R) under
permutations of identical atoms is different from that of the
potential, described as follows. For example, if we exchange
identical nuclei i and j, the configuration transforms from R to
R′, and the effective charge on these two nuclei must satisfy

(w j(R′),wi(R′)) = (wi(R),w j(R)). (7)

The effective charges on other atoms must be invariant to this
permutation. The details of the DMS fitting can be found in
Ref. 38.

Finally, the complete PES and DMS are the sum of the in-
trinsic two-body terms, described above, and the methane and
water monomer permutationally-invariant PESs and covariant
DMSs, respectively. The methane monomer PES and DMS
are taken from previous global ab initio ones using the in-
variant polynomial approach by Warmbier et al. 39 . This PES
dissociates to fragments CH3+H and so is suitable for use in
studies of energy transfer involving highly excited methane.
The water monomer PES is the Partridge-Schwenke one,40

which is spectroscopically accurate, while for convenience the
monomer dipole of H2O is extracted from the WHBB wa-
ter dipole moment.38 The full CH4-H2O potentials using the
three intrinsic two-body potentials are denoted, using obvious
notation, PES-PI, PES-CSM and PES-P24. Note, that it is

straightforward to incorporate other monomer potentials and
dipole moment surfaces to improve the accuracy of the full
potential of the dimer for given applications. This is the “plug
and play” aspect of the approach given in the title. For exam-
ple, other accurate PESs exist for methane, e.g., a recent one
due to Tennyson and co-workers41 as well as a highly accurate
DMS for H2O, also due to Tennyson and co-workers.42 Thus,
for certain applications the complete PES could be more accu-
rate than a full PES fit to even higher-level ab initio electronic
energies than considered here.

2.3 Diffusion Monte Carlo and MULTIMODE calcula-
tions

Standard Diffusion Monte Carlo calculations were performed
to obtain the rigorous zero-point energy (ZPE) of the dimer
and the fragments and to characterize the properties of the vi-
brational ground-state wave function. The simplest unbiased
algorithm43–45 was used in our simulations. Ten “trajectories”
were performed for the bound dimer and the fragments; in
each simulation, 20,000 walkers were propagated for 25,000
steps. The walkers were first equilibrated for 5,000 steps and
the energies of the remaining 20,000 steps were collected to
compute the reference energy.

The vibrational ground-state wave function is visualized as
an isosurface. Each walker was optimally aligned into a refer-
ence frame. The space was divided into volume elements and
a statistical analysis was performed for each volume element
to obtain the wave function amplitude in that volume.

Single-reference MULTIMODE46 calculations were done
to calculate the vibrational eigenstates for the high-frequency
intramolecular modes with J=0. Two approaches were taken.
In the first, we performed a standard normal-mode analysis for
the bound dimer and selected the twelve intramolecular modes
in subsequent vibrational self-consistent field/Vibrational con-
figuration interaction (VSCF/VCI) calculations. Specifically,
a twelve-dimensional Schrödinger equation

Ĥ(Q)Ψ(Q) = EΨ(Q) (8)

was solved. Q = [Q1 Q2 · · · Q12] denotes the twelve in-
tramolecular modes. The remaining intermolecular modes
were fixed at their values (zero) at the global minimum. The
potential term in the Hamiltonian was represented by a hier-
archical n-mode representation; in this twelve-mode calcula-
tion, it was truncated at 4-mode representation. The repre-
sentation is adequate to produce well-converged results, as
demonstrated for methane.47 We employed seven harmonic-
oscillator wave functions for each mode as basis to expand the
VSCF states. The VSCF ground and virtual states were then
used to expand the CI states in the virtual state CI calculation
(VCI). In the VCI calculation, simultaneous excitation of up
to four modes were done; the maximum excitation of a single
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mode was seven, six, five and four respectively in one-, two-,
three- and four-mode basis, and the sum of quanta of excita-
tion was seven. In addition, we exploited the Cs symmetry of
the dimer, which allowed to separate the Hamiltonian matrix
into two symmetry blocks of sizes 15,374 and 11,122. This
same approach has been successfully applied to calculate the
intramolecular frequencies and IR spectra of H7

+ and D7
+.48

The second approach is the local monomer method
(LMon).49 In LMon, a normal-mode analysis and VSCF/VCI
are applied to each monomer but using the full potential. This
approach has been adopted in various systems including water
clusters,49,50 ice,51,52 and HCl clusters.53 This strategy results
in a substantial reduction in the computational effort. In the
present case, methane has nine high-frequencies modes and
water has only three. Therefore, in LMon calculations one
nine-mode and one three-mode calculation are done, instead
of a larger twelve-mode calculation. Thus, if the same num-
ber of basis functions and the same restrictions for excitation
of a single mode and sum of quanta had been imposed, the
size of the two symmetry blocks for methane would only have
been 4,350 and 3,820. In practice, we were able to increase
the number of basis functions and the maximum excitation for
a single mode to nine without dealing with a bigger CI ma-
trix. Four-mode representation of the potential was applied
in the LMon calculation of methane, and the sizes of the two
symmetry blocks were 12,995 and 11,315. Three-mode repre-
sentation was applied for water monomer, as it has only three
intramolecular modes. The maximum excitation of a single
mode was set to ten, and the sum of quanta of excitation was
restricted to be ten, fifteen and twenty in one-, two- and three-
mode basis. The VCI matrix size was only 1,066 even without
exploiting symmetry. It is important to assess the accuracy of
this approach for the dimer as it is the only feasible one for
larger complexes such as methane clathrates.

Intensities of vibrational transitions were calculated using
the “dump-restart” procedure in MULTIMODE, as described
in Ref. 54. In brief, the wave functions of different vibrational
eigenstates were extracted and the transition elements calcu-
lated according to

Rαi f =
∫

Ψi(Q)µα(Q)Ψ f (Q)dQ, (9)

where Q is the set of normal coordinates and µα(Q) is the α

component (α = x, y, z) of the dipole moment. Ψi and Ψ f are
the initial and final state of the transition. The intensity is pro-
portional to the wavenumber (ν) of the transition multiplied
by the square of the 2-norm of the three transition element
vector [Rxi f Ryi f Rzi f ]:

Ii f ∝ ν ∑
α

∣∣Rαi f
∣∣2 . (10)

3 Results and Discussion

3.1 Fitting accuracy and binding energy

The energy distribution of the 30,467 points and the cumula-
tive rms error of PES2b-PI are shown in Fig. 2. Many points
were sampled in the attractive region to ensure a good descrip-
tion near the potential minima. In addition, more than 10,000
energies are in the range from -50 to 50 cm−1. Most of the
corresponding geometries have a large C-O distance, so the
interaction is very weak. This set of points forces PES2b-PI
towards the correct zero value of the intrinsic two-body en-
ergy at large monomer separation.
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Fig. 2 Energy distribution of the 30,467 points and cumulative rms
error of PES2b-PI.

Table 1 Parameters for the pairwise fitted two-body potential
(PES2b-P24)

C-O C-HW HM-O HM-HW
C6 1.1875 2.3968 0.7648 8.6842
C8 0.9954 0.8829 0.8904 0.9811
C10 0.9996 0.9879 0.9893 0.9799
A 1.3898 15.5380 5.1553 5.3966
b 1.3135 2.3858 1.8655 1.9730

R0 1.0022 1.6074 1.4605 0.4248

The parameters of PES2b-P24 were determined by non-
linear least squares minimization, as usual, and are given in
Table 1. The computational efficiency of the three two-body
potentials was determined by calculating the time needed for
50,000 potential calls averaged over batches of ten repetitions.
Table 2 reports the number of coefficients, energy-dependent
rms errors, and computational times for the three two-body
potentials. PES2b-PI, as expected, is the most accurate one.
PES2b-CSM removes all the terms containing intramolecular
distances, so the number of coefficients is decreased by an or-
der of magnitude. The effect is that potential calls are much
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faster, and only 8% of the time for PES2b-PI is necessary.
PES2b-CSM is globally less accurate with a higher rms fitting
error but as seen below still quite accurate. Finally, PES2b-P24
is characterized by an even larger rms error, while the very re-
duced number of coefficients yields only a partial reduction
of computational costs. The reason is that the mathematical
expressions to evaluate in the case of PES2b-P24 (Equation
(4)–(5)) are much more computationally expensive than the
Morse variables.

Table 2 Number of coefficients, rms fitting error for different energy
regions (cm-1), and computational times (arbitrary units) for the
three two-body PESs. The computational time for PES2b-PI is
arbitrarily set equal to 100 to facilitate the comparison

PES2b-PI PES2b-CSM PES2b-P24
N. coeff. 10,220 841 24
rms (E<0) 3.4 39.8 135.4
rms (0<E<1,500) 3.5 95.0 265.2
rms (E>1,500) 3.5 162.6 643.1
rms (total) 3.5 64.1 204.1
t 100.0 8.0 5.6

Fig. 3 Structures of the two stationary points on the PES: (a) global
minimum; (b) secondary minimum.

Two minima are located on the PESs. Both PES-PI and
PES-CSM reproduce the correct geometries indicated in Fig.
3. In the lower energy one the water monomer is a hydrogen
bond donor, while it becomes an acceptor in the higher-energy
minimum. Both of the two minima have Cs symmetry. Se-
lected bond lengths and bond angles of the two minima are
listed in Table 3, from direct ab initio optimization and the
PES-PI. The optimized geometries from PES-PI agree very
well with the CCSD(T)-F12b/haTZ ones, which is expected
due to the small fitting error. In addition, our geometries agree
well with previous calculations, as shown in the table. The
energies of the minima on the PESs as well as the ab initio
results with and without CP correction are listed in Table 4.
The CP correction for the global and secondary minima is

about 20 cm −1, which is not large. The binding energy of
the global minimum without CP correction agree very well
with the CCSD(T)/CBS result,25 presumably by cancellation
of errors due to basis set superposition and basis incomplete-
ness. Because of the fortuitously close agreement with the
benchmark, the PES was fit to electronic energies without the
CP correction. Our binding energy for the secondary mini-
mum is slightly larger than the value reported by Copeland
and Tschumper 26 . The agreement between the different PESs
is good, apart from PES-P24, which is not able to accurately
give the energies of the two minima. It also predicts a some-
what different equilibrium geometry.

Table 3 Bond lengths (in Å) and angles (in degree) of the two
minima

ab initio a PES-PI Ref. 25
Global min. rC-O 3.470 3.472 3.51 b, 3.49 c

O–H· · ·C angle 167.6 168.0 165.6 b, 165.3 c

Secondary min. rC-O 3.707 3.705 3.76 b, 3.71 c

a CCSD(T)-F12b/haTZ. b CCSD(T). c SAPT.

Table 4 Interaction energies (cm-1) of the global and secondary
minima

Global Secondary
ab initio with CP 330 223
ab initio without CP 356 243
PES-PI 357 243
PES-CSM 366 243
PES-P24 279 20

In Fig. 4 we show two unrelaxed one-dimensional cuts as
a function of the C-O distance and calculated with PES2b-PI
and PES2b-CSM, as well as ab initio energies along these cuts,
at the global minimum and secondary minimum orientations.
PES2b-PI agrees very well with ab initio points, as anticipated
by the small rms fitting error. Generally, PES2b-CSM is also
in good agreement, except between 3.5 and 5.0 Å at the global
minimum orientation. The energies of both intrinsic two-body
PESs go to zero when the distance becomes large, but due to
different reasons. PES2b-CSM is by construction zero at large
C-O distances, while PES2b-PI is zero because we sampled a
large number of data in that region.

To go a step further from the electronic binding energy
to the measurable dissociation energy, we rigorously calcu-
lated the ZPE of the bound dimer and isolated fragments us-
ing DMC. The ZPE of the dimer is 14,510±5 cm−1, and the
sum of the ZPEs of the isolated fragments (CH4+H2O) is
14,663±4 cm−1 relative to the global minimum. Thus, we
determine the dissociation energy D0 of the dimer is 153±11
cm−1. The statistical error in the ZPE of the dimer (5 cm−1)
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Fig. 4 Two unrelaxed one-dimensional cuts from PES2b-PI,
PES2b-CSM and ab initio calculations: intrinsic two-body energy as
a function of C-O distance at (a) the global minimum orientation,
and at (b) the secondary minimum orientation.

and sum of ZPEs of the isolated fragments (4 cm−1) leads to
a statistical error of 6.4 cm−1 for D0. We give a conservative
estimate of the uncertainty as the sum of the statistical error
(6.4 cm−1) and the systematic error of our De compared to the
CCSD(T)/CBS value (4 cm−1). DMC simulations were also
performed on PES-CSM, and the ZPE of the bound dimer is
14,514±6 cm−1, which agrees very well with the ZPE value
from PES-PI, and remarkably predicts a D0 value (149 cm−1)
within the uncertainty range of PES-PI.

3.2 Vibrational analysis

The vibrational ground state wave function obtained from a
DMC simulation that employs the PES-PI potential is shown
in Fig. 5. As expected, the motion of heavy atoms (C and
O) is more localized, than the H atom motion. When the iso-
value is 50% of the maximum, the hydrogen wave function is
still somewhat localized, while at 25% of the maximum am-
plitude, the wave function is spherical. This indicates that the

Fig. 5 Vibrational ground state wave function of CH4-H2O dimer.
The isovalue is 50% of the maximum wave function amplitude in
(a), and 25% in (b).

monomers are undergoing large-amplitude internal rotation in
the bound dimer, which agrees with the conclusion of experi-
mental findings.55,56 The experimental microwave and far in-
frared spectra obtained in these experiments are reproduced
reasonably well by simulations employing an internal-rotation
model. In the two experiments, the authors reported a average
distance of 3.70 Å bewteen CH4 and H2O centers of mass, R0,
based on an analysis using a model Hamiltonian. This distance
lies between our global minimum (3.44 Å) and the secondary
minimum (3.77 Å). Our estimate of this distance using DMC
walkers is 3.78 Å. Agreement with the result from experimen-
tal modeling is good but not excellent. The weak binding of
the complex and the presence of two minima with very dif-
ferent values Re make a highly accurate determination of the
expectation value R very difficult.

The harmonic frequencies of the complex at the global min-
imum from CCSD(T)-F12b/haTZ calculations, PES-PI and
PES-CSM are listed in Table 5. In addition, intramolecular
harmonic frequencies from the LMon calculations using PES-
PI and the frequencies of the isolated monomers are given.
First, as seen, the results using PES-PI and PES-CSM are in
good agreement with each other and also with the direct ab ini-
tio results. Note, that even with a “perfect” fit of the intrinsic
two-body interaction, perfect agreement with the CCSD(T)-
F12b/haTZ frequencies is not expected because the monomer
potentials used in the PESs are calculated at a different level
of theory. The frequencies from the LMon and full normal
mode analysis using PES-PI are virtually identical, indicating,
as expected, that LMon is a very good approximation for this
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Table 5 Harmonic frequencies (cm−1) of the global minimum from
indicated sources. (I) indicates the intermolecular modes; (M) and
(W) the intramolecular modes of methane and water, respectively.
Frequencies of the fragment monomers are also given.

mode ab initio a PES-PI PES-CSM LMon b Frag. c

1 (I) 49 26 47
2 (I) 74 75 41
3 (I) 80 86 87
4 (I) 87 92 75
5 (I) 111 113 113
6 (I) 170 172 215
7 (M) 1347 1342 1349 1342 1346
8 (M) 1349 1344 1355 1344 1346
9 (M) 1351 1353 1347 1353 1346
10 (M) 1573 1556 1559 1556 1555
11 (M) 1576 1561 1556 1563 1555
12 (W) 1651 1653 1650 1651 1649
13 (M) 3029 3027 3031 3027 3032
14 (M) 3148 3148 3156 3148 3156
15 (M) 3151 3149 3157 3149 3156
16 (M) 3159 3154 3160 3154 3156
17 (W) 3832 3829 3831 3829 3833
18 (W) 3940 3939 3941 3939 3944

a CCSD(T)-F12b/haTZ.
b Performed on PES-PI.
c Frequencies from the monomer PESs in Ref. 39 and 40.

weakly bound dimer. Finally, if we compare the frequencies
of the intramolecular modes in the dimer with those of the iso-
lated monomers, as a consequence of symmetry breaking, the
degeneracy of the frequencies of methane split in the dimer
and the magnitude of the splitting is certainly large enough to
be detected experimentally. We also did the same analysis for
the higher energy minimum and find that the intramolecular
frequencies differ from those of the global minimum by less
than 5 cm−1. This is not surprising given the weak binding of
the monomers and the highly delocalized nature of the ground
vibrational state wave function.

The anharmonic intramolecular fundamental energies at the
global minimum reference configuration with the indicated
approaches are listed in Table 6, and the corresponding IR
spectra are presented in Fig. 6. The spectra in Fig. 6 panel (a)
and (b) are from PES-PI. The LMon frequencies and spectrum
agree well with the calculation using the twelve intramolec-
ular modes, with differences of no more than 10 cm−1. The
good agreement is expected, since the interaction between wa-
ter and methane is weak and the normal modes of the dimer
are localized in the monomer. In addition, the same LMon
calculations were performed using PES-CSM and the spec-
trum, shown in Fig 6-(c), are in very good agreement with
those from the benchmark PES-PI. Finally, there are signifi-
cant shifts in the energies shown in these panels compared to

Table 6 Anharmonic intramolecular fundamental energies (cm−1)
of the global minimum, using the indicated method and PES. (m)
and (w) indicates the intramolecular modes of methane and water

mode 12-mode/PES-PI LMon/PES-PI LMon/PES-CSM
7 (M) 1300 1306 1313
8 (M) 1298 1308 1319
9 (M) 1309 1315 1311
10 (M) 1521 1525 1527
11 (M) 1521 1529 1533
12 (W) 1587 1596 1595
13 (M) 2894 2894 2903
14 (M) 2993 2997 3004
15 (M) 2994 3000 3007
16 (M) 2992 3003 3008
17 (W) 3657 3653 3655
18 (W) 3741 3750 3753
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Fig. 6 IR spectra of global minimum (a) in the twelve-mode
calculation using PES-PI; (b) in LMon calculation using PES-PI; (c)
in LMon calculation using PES-CSM.
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Fig. 7 Evaluation of maximum impact parameter in CH4-H2O scattering simulations for PES-PI, PES-CSM, and PES-P24 potentials.

the harmonic ones. The results in this figure are the ones pre-
dicted to guide experiments. We stress that these spectra are
not intended to be of “line-list” quality. Clearly, such quality
would require a more accurate DMS and exact ro-vibrational
calculations of the transition moment.

3.3 Collisional energy transfer dynamics

In future work, we intend to investigate energy transfer colli-
sions of methane with water using the PESs reported here. To
test the suitability of these PESs for scattering calculations,
we investigated the impact-parameter (b) dependence of the
average trajectory time and average energy transfer, and de-
termined the maximum impact parameter (bmax) in prelimi-
nary simulations of methane-water collisions. In these simu-
lations the collisional energy was set to 1 kcal/mol. The ini-
tial internal energies were set to 10,000 cm-1 and 5,000 cm-1

for methane and water respectively. Starting internal energies
were distributed by means of a microcanonical sampling. For
each PES, small batches of 100 collisional trajectories were
evolved for each chosen value of the impact parameter. As
already pointed out in a previous work,36 the average trajec-
tory time is expected to peak before the bmax value is reached.
After that, the average trajectory time drops steeply while ap-
proaching and finally exceeding bmax. On the other hand, the
b-dependent average energy transfer (〈∆E〉 (b)) is expected
to approach zero at bmax and larger impact parameter values,
since interaction and energy transfer become negligible. We
identified bmax as the smallest impact parameter for which
the two previous conditions are met, considering the condi-
tion 〈∆E〉 (b) ≈ 0 satisfied when |∆E| (b) < 0.2 cm-1. Fig. 7
shows that bmax values for PES-PI (12.5 au), PES-CSM (13.0
au), and PES-P24 (13.0 au) are in very good agreement. Fur-
thermore, all the three average trajectory times peak at about

2.7 ps for impact parameter b=9 au. As expected, collisional
energy transfer simulations are less sensitive to the potential
adopted than energetics and spectroscopy calculations.

4 Summary and Conclusions

We have presented three intrinsic two-body PESs of different
accuracy and complexity for the methane-water interaction en-
ergy, leading to three PESs for the methane-water dimer. The
benchmark PES (PES-PI) is very accurate with an rms error of
3.5 cm−1. It reproduces the ab initio attractive well depth and
harmonic frequencies of the dimer very well. DMC calcula-
tions indicate a weak binding of the dimer, with dissociation
energy of 153±11 cm−1, while the two monomers undergo
near free internal rotation. The anharmonic vibrational fre-
quencies and the intensity of the transitions were predicted by
MULTIMODE calculations. The preliminary simulations of
methane-water collisional energy transfer also show that dy-
namics simulations can be readily performed using our PESs.

Two other fitting procedures were considered to represent
the PES. By comparing the well depth, the harmonic and an-
harmonic frequencies, as well as maximum impact parameter
with our best PES (PES-PI), we conclude that PES-CSM is
also quite accurate. The compact fitting procedure is able to
speed up calculations by a factor of about ten. These results
point out that the compact fit is promising for studies of more
complex systems or even condensed phase clusters, where a
larger number of two-body methane-water interactions neces-
sitate to be considered. In these cases, a substantial reduc-
tion of computational times allows to follow the real dynam-
ics of the system for much longer times. On the other hand,
the sum-of-pairs potential (PES-P24) fails to identify the min-
imum structure of the dimer, and provides an inaccurate bind-
ing energy. However, in the preliminary and less potential-
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sensitive dynamics simulations, PES-P24 provides a good es-
timate of the maximum impact parameter. We conclude that
pairwise intrinsic two-body potentials have a restricted range
of applicability, but can still be useful for dynamics simula-
tions of very complex systems, for which too many ab initio
energies could be required to fit a permutationally-invariant
potential.

Finally, the PESs and DMS are available upon request to
the authors.
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