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Abstract

We propose a model for the description and the forecast of the gross
prices of electricity in the liberalized Italian energy market via an additive
two-factor model driven by both a Hawkes and a fractional Brownian
processes. We discuss the seasonality, the identification of spikes and the
estimates of the Hurst coefficient. After the calibration and the validation
of the model, we discuss its forecasting performance via a class of adequate
evaluation metrics.

1 Mathematical modelling of electricity markets

This paper presents a modelling and computational work, related to the de-
scription and forecasting of prices in the Italian wholesale electricity market.
We discuss the choice of the particular model, above all the representation of
the source of randomness, related to the baseline evolution of prices via a frac-
tional Brownian motion and to the spiky behaviour via a Hawkes process. The
computational part of the work regards to problems of parameter estimation
and dataset filtering. These are crucial steps in the pre-processing phase of the
model. We evaluate the performance of the model by means of the production
of forecasts of future electricity prices, at different forecasting horizons with the
aim of evaluating more into details the quality of the forecasts in the distribu-
tional sense, instead of giving a single prediction value. Adequate metrics are
taken into consideration, as the Winkler score and the Pinball loss function.

In the last decades the electricity market has been liberalized in a growing
number of countries, especially in the European Union. Liberalized markets
have been introduced for example in Germany, Italy, Spain, UK, as well as in all
nordic countries. The introduction of competitive markets has been reshaping
the landscape of the power sectors. Electricity price now undergoes to market
rules, but it is very peculiar. Indeed, electricity is a non-storable commodity,
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hence the need of having a particular organization in the market emerged. This
has usually resulted in the creation of a day-ahead market: a market in which
every day there are some auctions regarding the delivery of energy at a fixed
time of the following day. The price of the electricity is determined by crossing
the supply curve and the demand curve, for the hour for which the auction is
taking place (see e.g. [35]). The steepness of supply and demand curve can be
regarded as the cause of one of the main characteristics of the electricity price
market, i.e. shock formation in the prices, which is one of the most important
aspects that distinguish the electricity market from the other similar financial
markets, and also one of the most difficult to model. A shock, or spike is a
sudden large rise in the price followed by a rapid drop to its regular level.

The distinction between spiky and “standard” behavior turns out to be
crucial in the modelling of the electricity price: the need to obtain a good
reproduction of the spikes in the models represents one of the main differences
between other financial markets and the electricity one. Another important
difference with respect to other markets is the seasonality that can be observed.
It is mainly due to a clear weekly periodicity, caused by the fluctuations in
consumptions during different days of the week [35]. There is also a long-term
seasonal effect on the prices, which appears over time lengths of approximately
3-4 months.

There is a widespread mathematical literature about electricity spot mar-
ket, both for the modelling [3H7,Q}[16] 17,24, 26-28| B6H39] and the calibration
problems [23130,B1B87,39]. Two of the first models for electricity price are
due to Schwartz [26,30]. In [36] the authors introduced an Ornstein-Uhlenbeck
model for the spot price dynamics which included a mean-reversion component,
and later on, in [26], a deterministic component describing the seasonality was
added. Since this works, a widespread literature has been proposed in order to
model the basic features of this market, especially about the formation of spikes,
which were not covered by the aforementioned papers [26L36]. An interesting
review of the state of the art has been given by Weron in [39]. The interested
reader may also refer to the huge amount of papers therein. Weron proposes
a classification of the models in five main classes: i) the multi-agent models,
which simulate the operation of a system of heterogeneous agents interacting
with each other, and build the price process by matching the demand and sup-
ply in the market; ii) the fundamental structural methods, which describe the
price dynamics by modelling the impacts of important physical and economic
factors on the price of electricity; iii) the reduced-form stochastic models, which
characterize the statistical properties of electricity prices over time, with the
ultimate objective of derivatives evaluation and risk management; iv) the sta-
tistical models, which are either direct applications of the statistical techniques
of load forecasting or power market implementations of econometric models; v)
the computational intelligence techniques, which combine elements of learning,
evolution and fuzziness to create approaches that are capable of adapting to
complex dynamic systems.



The model we present here mainly belongs to the class of the reduced-form
model: the time evolution of the spot price is described by an additive terms
with a drift described by a deterministic function which models the long-term
seasonality and two additive noises described as solution of two independent
stochastic differential equations. The model has the following form

2

S() = F() + D Xilt), =t €Rs,
i=1

where f is a deterministic function and the X;, for ¢ = 1,2 are two stochastic
processes, responsible of the standard fluctuations which give rise to the standard
behavior, i.e. the so called base component, and the spiky behavior of the price
evolution, respectively. Both of them show a mean reverting property. Different
examples of these kind of models may be found for example in [241[27,28[39].

The novelty here is that we consider a fractional Brownian motion as the
driving noise of the base component instead of the usual standard Brownian
motion. In particular, the process X is a fractional Ornstein-Uhlenbeck process.
The main modelling reason is that among the characteristics of the spot prices,
one the presence of self-correlations in the price increments has to taken into
account. The presence of this feature suggests, when trying to model these
kind of markets, to modify the structure of the existing models to include the
self-correlations. One of the possible choices that have been used in literature
so far is to consider a fractionally integrated ARFIMA model, a generalisation
of the classical ARIMA model, as it has been done in [I7], and in other cases
reported in the review [39]. In particular, in [I7] this has been done for the
Italian electricity market. Here we go further than the pure statistical models.

In literature there have been several attempts of using a fractional Brownian
motion in financial market modelling, even if not in the case of the electricity
one. Its relatively simple nature, combined with its flexibility in modelling data
whose increments are self-correlated, gave rise to a growing number of models
involving fractional Brownian motion. Anyway, it was pointed out quite early
in [34] that a model involving fBm would result in admitting the presence of
some kind of arbitrage in the market. More into details, in [I1] the author
proved that there are strong arbitrage opportunities for the fractional models
of the form

X(t) =v(t) + oBH (t)

" (1)

X(t) =exp(v(t) + oB" (1)),
where v(t) is a measurable bounded deterministic function and B is a fractional
Brownian motion of Hurst parameter H € (0,1). This arbitrage opportunities
can be built provided that we are allowed to use the typical set of admissible
trading strategies (see [I1] for the complete definitions). This set of admissible
strategies in particular allows to buy and sell the stock continuously in time,
which is a questionable assumption in many frameworks. In [II] the author



proved that for the models () the arbitrage opportunities disappear, provided
that we restrict the set of strategies to the ones that impose an arbitrary (but
fixed) waiting time h > 0 between a transaction and the following one. We recall
that in the present work we consider a fractional Ornstein—Uhlenbeck process.
We cannot use directly the results in [I1], but the extension to this family of
processes should be straightforward and may be subject for future work.

A striking empirical feature of electricity spot prices is the presence of spikes,
that can be described by a jump in the price process immediately followed by
a fast reversion towards the mean. It is interesting to notice that in the case
of the Italian electricity market the presence of several jumps is shown, many
of which appearing clustered over short time periods. As a consequence, the
second component X is solution of a mean reverting processes driven by a
self-exciting Hawkes process, which is a jump process whose jumps frequency
depends upon the previous history of the jump times. In particular, right after
a jump has occurred, the probability of observing a subsequent jump is higher
than usual. The interested reader may refer to [2121] fo an excellent survey on
the introduction, the relevant mathematical theory and overview of applications
of Hawkes processes in finance and for more recent financial applications.

We conclude the discussion on the model via some simulation results and
the problem of estimation of the parameters of both the signals.

The second part of our paper is devoted to a complete computational study.
We apply the model to the study case of the time series of the Italian MGP,
the data of the day-ahead market (see [40]) from January 1, 2009 to December
31, 2017. The first two years are the sample considered for the estimation
and validation of the model. We carry out the difficult task of separating the
components of the raw prices into our main components (weekly component,
long-term seasonal component, standard behaviour, spiky behaviour). Then
we deal with the problem of the estimation the parameters of the model and
we test the forecasting performance of our model on forecasting horizons from
one to thirty days. The parameters are estimated in a rolling window fashion,
as summarized in [3I]. We construct prediction intervals (PI) and quantile
forecasts (QF) and evaluate them via a class of adequate evaluation metrics like
the Winkler score and the Pinball loss function.

We conclude that the analysis shows some quantitative evidence that both
the fractional Brownian motion and the Hawkes process are adequate to model
the electricity price markets.

The paper is organized as follows. Section 2 is devoted to a brief presen-
tation of both the fractional Brownian motion and the Hawkes processes with
their main properties. We perform some numerical simulations for some specific
parameters. In Section 3 we discuss the method of estimation of the parameters,
by validating the estimates by calculating the 5% and the 95% quantiles. Sec-
tion 4 is dedicated to the study case. Preliminary analysis and a data filtering
process are implemented. A in sample estimation is carried out and then an out
od sample forecasting is realized. The section ends with our conclusion.



2 A model driven by a Hawkes and a fractional
Brownian processes

The model we propose extends in different ways some relevant models already
available in the literature. In particular, we consider a modification of the model
proposed in [6l28] and then modified for example in [24], by including some self—
exciting features, via Hawkes-type processes and correlation of the increments
via a fractional Brownian motion.

2.1 The equations

We adopt an arithmetic model as in [B6[7,24] in which the power price dynamics
is assumed to be the sum of several factors. We suppose that the spot price
process S = {S(t),t € R4} evolves according to the following dynamics

S(t) = f(t) + X (1) (2)

The function f(t) describes the deterministic trend of the evolution, while the
process X = {X (t),t € R, } describes the stochastic part. The latter is a super-
position of two factors: X7, known in literature as the base component, which
is continuous a.e. and aims to model the standard behavior of the electricity
price, and Xo which is the jump component, describing the spiky behavior of
the electricity prices, overlapped to the base signal. This means that, for any
te RJ”

X(t) = Xa(t) + Xa(t). (3)

The main reason to consider two additive signal driven by the two different
noises is relating of our assumption of mean-reversion: despite the possible noise,
the price tends to fluctuate around a specific level. In particular, our starting
assumption is that both in the base and spiky regimes prices tend to revert
towards their own mean, and we presume that the strength of reversion might
be different. This is because we expect that whether the price strongly deviates
from the mean value, as during a spike, then it returns to the average level with
a stronger force than usual.

Regarding the base component, let us note that in many time series of the
electricity markets, an evidence of correlation among price increments is clear.
For example, see Figure[[Il In order to capture better such a correlation within
different returns, we consider an additive noise driven by a fractional Brownian
motion.

Furthermore, the Italian market is rather peculiar since clearly identifiable
spikes are rare; as a consequence the intensity of the spike process is small
and becomes difficult to be estimated. Moreover, despite the small number of
spikes, a clustering effect seems to be present; so one might better include the
effect of a self-exciting stochastic process. Hence, by following recent literature
12,4110, 1218, 24], we model the jump component X» via a Hawkes marked
process.



To be more precise, let us consider a common filtered probability space
(0, F,{Fi}ter, . P). We suppose that X; follows a stochastic differential equa-
tion driven by a fractional Brownian motion BH = {BH (¢),t € R} with Hurst
parameter H € (0,1) and diffusion coefficient o € R, subject to mean reversion
around a level zero, with strength a; € Ry.

A Fractional Brownian motion (fBm) (Bf)icr, with Hurst parameter H €
(0,1) is a zero mean Gaussian process with covariance function given by

1
cov(BY,Bf') =E [Bf B | = 5 ([t + |s?H — |t — s]?1).

The parameter H is resonsible of the strenght and the sign of the correlations
between the increments. Indeed, for H € (0,1) \ {3}, set H = H — 1, for any
t1 < tg < t3 < t4, one may express the covariance of the increment in an integral
form

_ to ta ~
E[(Bg — BHyBH - Bg)} =20 | /t (u—0) P lqudv,  (4)
1 3

Thus, since the integrand is a positive function, and H > 0, the sign of the
correlation depends only upon H, being positive when H > 0, i.e. H € (%, 1),

and negative when H < 0, i.e. H € (0, ).
For any t € R4, we define X;(t) as the solution of the following equation
dXi(t) = —oqXi(t)dt+odB"(t). (5)
Proposition 1 ( [25]). Given ai,0 € Ry and H € (0,1), Equation (@) admits
the unique solution

¢
Xi(t) = Xi1(0)e ! —qyoe ! / e~ **dBM (s) + o BH (t) (6)
0

t
— Xy (0)e 4o / e—oa(t=2) BH (4)).
0

X4 is called a fractional Ornstein-Uhlenbeck process.

The covariance structure of such a process is rather complex (see Theorem
1.43 in [25]), simplified in the case of the variance of the 1-dimensional marginals.

Proposition 2 ( [25], Theorem 1.43). Given aq,0 € Ry and H € (0,1), the
following properties hold.

i) For anyt € Ry, the variable X1(t) has a Gaussian distribution, i.e.
Xi(t) ~ N (X1 (0)e™", Vo, (1)) (7)

where the variance Vg, (t) is given by

t
Vo, (t) = HO’2/ g1 (670‘15 + 670‘1(%75)) ds. (8)
0



ii) The variance has the following time asymptotic behavior

lim V,,(t) = a7?" Ho?T(2H),

t—+oo

where I' : R — R s the classical I function.

We move now to the X5 component: we wish to define it as the solution of
a mean-reverting SDE driven by a Hawkes marked process 7, i.e. as

t t As o
Xo(t) = X2(0) — / asXo(s)ds +/ / / z m(ds,dn,dz) . 9)
0 o Jo Jo
We introduce its components in detail. Consider a marked point process
{(Ti;Zi)}iENv (10)

where, for any ¢ € N, T; is the random time at which the i-th jump occurs and
Z; is the relative random jump size. So we may express the counting measure
J of the jumps via the marked process (I0) as

T =3 7 e (dt) = /R Q(dt, d2), (11)
=1

where €, is the Dirac measure localized in z and @ is the following marked
counting measure on Ry x R

Q(dt,dz) = > €, 2,)(dt, dz). (12)

=1

The counting process N = {N; };cr, associated to the marked point process
([I0) is such that, for any t € Ry

Ne=3_en([0,]) = Q0. 1] x R). (13)

The process N is characterized by its time dependent conditional intensity A,
t € R4, which is the quantity such that:

At _ hrn ]E[Nt+dt - Nt|‘/—:t]
dt—0 dt

)

and
1 =X\ dt+o(dt), k=0;
pTOb (Nt+dt — Nt = k|]:t) = )\t dt+ O(dt), k= 1,
o(dt), k> 1.



In our case, we suppose that, for any ¢ € Ry, A is a function of past jumps
of the process, i.e.

t
Mo = )\+/ Bt — 5)dAN,, (14)
0

with background intensity A > 0 and excitation function ® : Ry — R;. When-
ever ®(-) # 0, the resulting process is different from a homogeneous Poisson
process, and if

1B, = /OOO B(H)dt < 1, (15)

the existence of a unique process is implied. Condition (3] also implies the
stationarity of the process, that is that its distributions are invariant under
translations [I2l[]. Equation (I4) states that the random times of the jumps are
governed by a constant intensity A and that any time a jump occurs, it excites
the process in the sense that it changes the rate of the arrival of subsequent
jumps, by means of a kernel ®. Usually, the latter decreases to 0, so that the
influence of a jump upon future jumps decreases and tends to 0 for larger time
increments. We say in this case that N is a univariate Hawkes processes [19,20].
Note that we may make explicit the dependence of the intensity process upon
the random jump times {T;};en by the following

)\t—)\—l—/otfl)(t—s)ZeTi(ds)—/\—F Z O(t —1T;).

ieN iEN : Ty<t

As it happens in many examples in modelling (see [IL[2[4]), we consider an
exponential model for the excitation function, that is

B(t) = ye 1, (16)

where 7, 8 € R, represent the instantaneous increase after a jump and the speed
of the reversion to A of the excitation intensity. As a consequence, the intensity

(@) becomes

t
A=A +/ e PUTNAN = Aty Y e PO, (17)
0 ieEN: T;<t

This process may be seen as a solution of the following stochastic differential
equation

d\ = B (A= A) + 7dNs. (18)

Notice that (7)) is the solution of the equation (I8) when the process starts
in Ao infinitely in the past and it is at its stationary regime. Otherwise, in
order to model a process from some time after it is started and setting an initial
condition Ao = A* the conditional intensity, solution of (I8) would be

t
M=e PN =N+ A+ / e BE=9)dNs. (19)
0



As mentioned above, for ¢ large enough the impact of the initial condition
vanishes, since the first term would die out. Note that a new jump of Ny
increases the intensity, which increases the probability of new jump, but the
process does not necessarily blow up because the drift is negative if A\, > A.
Furthermore, while the process {N;};cr, is non Markovian, the bidimensional
process {(N¢, \¢) }ier, is a Markov process [2], such that

dE[N] = E[\]dt, (20)
dE[N] = (BA+ (v = BE[N]) dt. (21)

Since the solution of equation (21 is
t
E[\] = E[\o] 6(7—6)t+37/ e~ (=At=9) g,
0

if v > [, then the intensity would explode in the average, and so it would
happen for the process N;. This is not the case in the stationary regime, since
in the exponential case, assumption (&) becomes

1> =0 = [ e e =2,
0 B

i.e.
v < B. (22)

With this definition of N in mind, we introduce the noise term 7 appearing
in the stochastic differential equation (@) that defines the process Xa. Let 7 be a
Poisson random measure on R xR xR with intensity measure A = v Xvy X p,
where v is a Lebesgue measure on R;. The measure p is the distribution of
the size of the jumps that satisfies condition ([23]). We suppose that the size
distribution is given by a Borel measure p on R, satisfying the condition

/0 " (0 AnP)a(dn) < oo, (23)

If we suppose p(dn) = €1(dn), the jumps are of size one. In [I4], in a more
general setting in which they consider multidimensional non linear Hawkes pro-
cess, the author prove that the Hawkes process (I3) with conditional intensity
given by ([l may be written as

Nt:‘/ot/ol\t /Ooow(ds,dn,dz). (24)

In conclusion, the process X = X; + Xy is given by the solution of the
following system, for ¢t € R,



Xi(t) = Xl(())—/o ale(s)ds—l—J/O dBH (s); (25)

Xo(t) = Xg(O)—/Otang(s)ds—i—/ot/o/\s /Ooozw(ds,dn,dz), (26)

coupled with equation ([I8]), with v, 5, A € R;..
System (25)-(26) admits a unique solution thanks to the mentioned results.

2.2 Path simulations

In the following we consider the simulation results showing the macroscopic
behaviour of the model, by considering some fixed set of parameters in Tables
[[H3l For the jump size distribution p we choose to consider the Generalized
Extreme value distribution, that is a probability measure depending from 3
parameters i, £ € R and & > 0 with density function given by

f(z) = = ta)*He @, (27)

Q| —

where i e
_J(+g(FE) T ifE#£0
te) = {eum/& if € =0,

We considered the following fixed set of parameters

a1 | ag | o A i & | o
0105|6001 |18 ]07] 2

Table 1:  Fixed parameters used in the simulations: mean-reverting parameters
a1 and a2, diffusion coefficient o, basic Poisson point process parameter A and the
parameters fi,€ € R and & > 0 in the Generalized Extreme Value distribution (21)).

On the other hand, we consider a changing set of parameters to evaluate
the impact of some of the important features that we introduce with our model:
the fBm depending from the parameter H and the parameters ~y, 5 of the self-
exciting part of the Hawkes process

Parameter a.l. a.2. a.3.
H 0.2 0.5 0.7

Table 2: Set of simulation parameters: values for the Hurst parameter H in the
diffusion term in (2).

For this set of simulation we consider a fixed deterministic function

f() =130 1jo,00) (1),
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Parameter (a) (b) (c) (d)
ol 0 0.05 0.15 0.3
I} 0 0.08 0.2 0.5

Table 3: Set of simulation parameters for the Hawkes excitation function: + and 3
in ([I8) satisfying stationarity condition (22I).

and the following deterministic initial condition for the processes X; and X5
X1(0) = X»(0)=0.

Stochastic simulation are carried out by generating exact paths of Fractional
Gaussian Noise by using circulant embedding (for 1/2 < H < 1) and Lowen’s
method (for 0 < H < 1/2), while the Hawkes process is generated by a thinning
procedure for inhomogeneous Poisson process as in [32].

Figures [[H8 show some simulations of a single path of X = X; + X for the
different values of the parameters chosen in Tables [IH3]

X, path with H=0.2, a,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=05, A=0.01, 7=0, #=0

=] .,

HH\ | l“l\ L ll I

X, path with H=0.2, @,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=0.5, A=0.01, 7=0.05, $=0.08

a0
20 a0 &0 80 1000 1200 1400 160 1800 2000 20 40 60 #00 1000 1200 1400 1600 1800 2000

Figure 1: Path of the process X = X; + X5 (red) and of X alone (blue), with
the corresponding X in black on the right. Case H = 0.2 and (a) A =0, = 0;
(b) A =0.05,5=0.08

Even if in some cases this meant that some parts of the path are not visible,
we chose to keep the same scale in all figures. This makes us see very clearly
the differences caused in the nature of the process X; by the changes in the
values of H. We see in particular that, keeping a1, o fixed we get a much more
variable process as long as H increases.
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X, path with H=0.2, &, =0.1, 4=6, superposed with X=X, +X,

20 40 &0 800 1000 120 1400 160 1800 2000

X, path with H=0.2, a,=0.1, =6, superposed with X=X, +X,

=l

20 40 &0 80 1000 120 00 le0 1800 2000

Corresponding X, path with ,=0.5, X=0.01, 7=0.15, =02

Corresponding X, path with a,=05, A=0.01, 7=03, #=0.5

M\H | L

20 40 w0 #0010 1200 M0 1600 00 2000

Figure 2: Path of the process X = X7+ X5 (red) and of X; alone (blue), with the
corresponding X5 in black on the right. Case H = 0.2 and (¢) A = 0.15, 8 = 0.2;

(d) A=0.3,8=0.5.

X, path with H=0.3, ,=0.1, 9=6, superposed with X=X, +X,

=i

20 40 60 00 1000 100 140 1600 1800 2000

X, path with H=0.3, a,=0.1, =6, superposed with X=X, +X,

20 a0 &0 0 1000 1200 1400 1600 1800 2000

Corresponding X, path with a,=05, X=0.01, 7=0, =0

MH\ Lot il

20 40 60 #00 1000 1200 140 1600 1800 2000

Corresponding X, path with a,=0.5, A=0.01, 7=0.05, 4=0.08

|

20 400 60 ®00 1000 1200 1400 1600 1800 2000

Figure 3: Path of the process X = X; + X, (red) and of X; alone (blue), with
the corresponding X in black on the right. Case H = 0.3 and (a) A =0, = 0;

(b) A =0.05, 3 = 0.08



X, path with H=0.3, a,=0.1, =6, superposed with X=X, +X,, Corresponding X, path with a,=0.5, A=0.01, 7=0.15, #=0.2

20 40 60 s0 100 1w o0 leo 100 2000 0 0 w0 0 10 10 10 1600 1600 2000
X, path with H=0.3, a,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=05, A=0.01, 7=03, #=0.5
= :
o0 a0
& w0
w o
) ) \ ‘ l l“ l
. \ L
0 20
40 “
20 a0 60 w0 100 1w o0 deo 10 2000 20 0 w0 0 10 0 a0 1600 @00 2000

Figure 4: Path of the process X = X1+ X5 (red) and of X; alone (blue), with the
corresponding X5 in black on the right. Case H = 0.3 and (¢) A = 0.15, 8 = 0.2;
(d) A=0.3,8 = 0.5.

X, path with H=0.5, a,=0.1, #=6, superposed with X=X  +X, Corresponding X, path with ,=05, A=0.01, ¥=0, =0

2 2 ll [ [

. | Lo | L
X, path with H=0.5, a,=0.1, #=6, superposed with X=X  +X, Corresponding X,, path with ,=05, =0.01, ¥=0.05, #=0.08

. . |

. | | L

Figure 5: Path of the process X = X; + X, (red) and of X; alone (blue), with
the corresponding X in black on the right. Case H = 0.5 and (a) A =0, = 0;
(b) A = 0.05, 8 = 0.08
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X, path with H=0.5, a,=0.1, =6, superposed with X=X, +X,, Corresponding X, path with a,=0.5, A=0.01, 7=0.15, #=0.2

o0
&
“ ‘
| I
£ \
I
\ \
3 1 i
20 20
a0 w©
20 40 60 s0 100 1w 10 1e0 100 2000 0 0 w0 0 10 10 10 1600 1600 2000
X, path with H=0.5, a,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=05, A=0.01, 7=03, #=0.5

20 40 &0 80 100 120 00 le0 1800 2000 20 40 w0 #0010 1200 M0 1600 00 2000

Figure 6: Path of the process X = X1+ X5 (red) and of X; alone (blue), with the
corresponding X5 in black on the right. Case H = 0.5 and (¢) A = 0.15, 8 = 0.2;
(d) A=0.3,8 = 0.5.

X, path with H=0.7, a,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=0.5, A=0.01, y=0, =0
. T N T I

X, path with H=0.7, @, =0.1, =6, superposed with X=X, +X,

20 40 &0 0 1000 1200 1400 160 1800 2000 20 400 60 ®00 1000 1200 1400 1600 1800 2000

Figure 7: Path of the process X = X; + X, (red) and of X; alone (blue), with
the corresponding X in black on the right. Case H = 0.7 and (a) A =0, = 0;
(b) A = 0.05, 8 = 0.08
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X, path with H=0.7, a,=0.1, =6, superposed with X=X, +X,, Corresponding X, path with a,=0.5, A=0.01, 7=0.15, #=0.2
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X, path with H=0.7, a,=0.1, =6, superposed with X=X, +X, Corresponding X, path with a,=05, A=0.01, 7=03, #=0.5
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Figure 8: Path of the process X = X7+ X5 (red) and of X; alone (blue), with the
corresponding X5 in black on the right. Case H = 0.7 and (¢) A = 0.15, 8 = 0.2;
(d) A=0.3,8 = 0.5.

Regarding the jump component X5, which is independent from X7, we see
that the cluster effect is clearly visible for the sets of parameters (b)—(d). It
seems that the set of parameters (b) is producing more clusters than the others.
This may seem strange, since in this case the parameter « is lower than in (c)
and (d), but we remark that in all cases the parameter §, which models the
speed of mean reversion of \; towards A, varies consistently with ~.

We make a remark about the relation of this simulations with the real data.
If we compare Figures[[H8 with Figure[d in which we plot the entire dataset that
we will analyse, we can make some qualitative considerations. Our simulations
of X1 + X5 do not include any seasonal component, and this is clearly visible.
Anyway, from the point of view of the appearance of the paths, we see some
similarities between Figure @ the bottom plot of Figure [3] and the top plot of
Figure[d which are relative to H = 0.3 and the set of parameters (b) and (c) for
the Hawkes process, corresponding to v = 0.05, § = 0.08 and v = 0.15, § = 0.2.
In both of these figures the standard volatility seems quite similar to the one of
the real data, and moreover the jump behaviour (both amplitude and clusters)
is quite similar to the one of Figure

These considerations are coherent with the estimates that we will get in
Section .32

15



3 Parameter estimation

This section is devoted to the methods of estimation for the parameters of the
two stochastic components X7 and X5 of our model. We recall that we have
the following set of parameters to be estimated from the dataset Y

| Equation | Parameter |
X1 a1
Xl g
X1 H
Xo Qa2
X2 )\O
Xz Y
Xo 15}
X2 parameters for jump distribution

Table 4: Parameters of the model

3.1 Estimations for X;

For the base component X7, we have to estimate three parameters: «y, which
is the rate of mean-reversion of the process to the zero level, o, which is the
variance parameter of the fractional noise B¥, and the parameter of fractionality
of the noise H itself, which determines whether the contributions of the noise
term are positively correlated (if H > 1/2), negatively correlated (if H < 1/2)
or non-correlated (if H = 1/2, which is the case in which the noise is a classical
Brownian motion).

We discuss first the estimation of the Hurst exponent H. Its estimation is
very important since it determines the magnitude of the self-correlation of the
noise of our model. There are various techniques that can be used to infer the
Hurst coefficient from a discrete signal. In [29] the reader may find a good
reviewon the argument. Anyway, these techniques can be used to estimate the
Hurst coefficient only by assuming that the observed path belongs only to a
fractional Brownian motion { B (w)};, without any drift. So it is not our case.
We use the estimator provided in [25], given the observations of a wide class of
SDEs driven by fractional Brownian motion, including the case of an Ornstein-
Uhlenbeck model.

Given the time interval of observation [0, T, let us consider a partition m,, =

k
{T—} , where k € {0,1,...,n}. Given a stochastic process { X1 }+e[o,17, let us
n

define the two step increment as follows

k+1 k k-1
AP x, =X, (LT) —2X; (—T) + X (—T) .
’ n n n
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By Theorem 3.4 of [25], we have that the statistics

FAPEE S 10g< i"Il(Aéi’le)2>
2
2 2log2 (A X2

n -

is a strongly consistent estimator of H, i.e. it holds

lim Hn—Has

T—o0

In our case, our dataset will be discretized in time steps with minimum length
equal to one, so we will have to stop at a specific step of the discretization,
which is exactly the maximum value of n such that — > 1.

The estimation of the diffusion cpefficient o is based on the use of the p-the
variation. Indeed for any k£ > 2 and for any p > 1, the estimator is defined as
n*HpHVk’prl (T)

28
T : (28)

or(n) =

where V", X1(¢) is the k-th order p-th variation process defined by

[nt] k+1 C1Np
Ve X () = \Ale( —)|

[nt]—k+1 k i . p
ik i+j—1
> | e (N (R
i=0 J "
The constant ¢y, in (28) is given by
p/21 ( pEL
2 F( 2 ) p/2

i=1
Ck,p ‘= 7lpk H>
r(%)

where py g is

& 2%
pni= 30 0 (2 e,

; —J

j=—k
The estimator (28]) has been introduced in [22]. With a discrete dataset of
time lenght N and with minimum discretization length equal to 1, we can only
compute the estimator 6 (n) for n = 1 and T'= N. We choose to use k = 2
and p = 2.

Finally, the mean reverting parameter «; has been estimated with the fol-
lowing ergodic estimator

& (T) == (U2HF /X1 )2dt _%. (29)
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It holds that [22]

lim & (T) = a1, a.s.
T—o0

The estimator (29)) is continuous version, but it can be easily discretized. Sup-
pose that we are observing our process X; in the time points {kh}, for h =
0,...,n. Here h is the amplitude of the time discretization, and we suppose
that h = h(n) is such that hn — oo and h(n) — 0 when n — oco. In [22] the
authors define the discretized estimator as

R 1 - o\~
a1 (n) == (W;Xl(kh) ) . (30)

The only difference with the continuous version is the discretization of the in-
tegral appearing in ([29). The following result holds:

Theorem 3 ( [22], Theorem 5.6). Let X be the solution of an Ornstein-
Uhlenbeck process observed at times {kh,k =0,...,n}, and such that h = h(n)
satisfies hn — oo and h(n) — 0 when n — co. Moreover, if we suppose that

i) if He (0,2), nh? — 0 as n — 0o for some p € (1,?1%5 /\(1—|—2H))

i) if H=3, IOZ(P;}?H)%O as n — oo for some p € (1,2)

iii) if H € (%,1), hPn — 0 as n — oo for some p € (1,%)

. ~ e
Then the estimator & —=25 oy a.s.

We observe that in our case we are not able to extend the total length of
the observation interval, since only a single time series is given. In addition, our
dataset consists in daily observations, so that the minimum time increment h
that we can consider is h = 1. We aim to define a proper function h = h(n)
such that it satisfies the conditions of Theorem Bl for every value of H € (0,1)
(which is in principle unknown).

Let N be the length of our dataset. As a fundamental condition, we want
that h(N) = 1, so that we are able to compute the N-th approximation of
our estimator with our data. We look for our candidate h within the class of

functions N

= ()
for some positive ¢ to be determined. All & in this class satisfy that h(N) = 1.
We need also need to have that nh — co, as n — co, which imposes the condition
0 < 1. Moreover, we have to impose on h conditions i), i), iii) of Theorem [3
We compute

NP
nh(n)? = T

In condition i) and éii) we need nh? — 0 as n — oo, while in i) we need
nh?

tognmy — O- Since log(nh) — oo by hypothesis, the condition nh? — 0 is more
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restrictive and we impose it also in ii). Since we do not need a priori which
is the value of H of our fractional Ornstein-Uhlenbeck process X7, we find a
p = p(H) that is a good choice for any value of H € (0,1). One can easily verify
that p(H) = 1+ H lies in all the admissible intervals for p in 4), ), ii). With
this choice of p, the expression of nh? reads

N(1+H)6

nh(n)” = <.

In order for the right-hand side to converge to zero we must have § > (;

1+H)*
So we are left with the pair of conditions

0<1
7
which are both satisfied if we define
1
0=0H):=——,
(1+H)>

for any H € (0,1). With this choice of h, we are able to calculate the N-th
step of the approximation of «y, regardless of the estimation H of H that we
obtained. Furthermore, in the definition of &;(n) there is a clear dependence on
o, which in our case is unknown. We remark that anyway, since the estimator &
converges a.s. to o as the order of the approximation increases, we have that the
estimator & converges a.s. to a; also if we substitute ¢ to ¢ in its definition.

| Case || a1 [ gsu(@1) | gosw(dn) |
a.l 0.1069 0.0050 0.2523
a.2 0.1030 0.0220 0.2098
a.3 0.1017 0.0445 0.1737
a.4 0.1019 0.0531 0.1641

| Case || a | 45%(0) | 995%(5) |
a.l 6.2334 5.7834 6.7926
a.2 6.2313 5.7705 6.8007
a.3 6.2233 5.7024 6.8636
a.4 6.1976 5.4920 7.0783

Case H q5% (H) Qo5 (H)
a.l 0.1940 0.0885 0.2969
a.2 0.2927 0.1902 0.3931
a.3 0.4909 0.3982 0.5819
a.4 0.6882 0.6024 0.7715

Table 5: Estimated parameters of the component X7, given M = 20000 realiza-
tions of the component X itself for each of the parameters set a.1 — a.4.
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3.2 Estimations for X5

For the jump component X5, there are three separated tasks to carry out in
order to estimate the parameters of the model. First, one has to estimate the
parameters of the self-exciting intensity of the Hawkes process. Second, one has
to choose and fit an adequate distribution for the jump magnitude. Third, one
has to estimate the mean-reverting parameter oo appearing in (20).

We start with the parameters of the jump intensity A; defined in (7). In
[33] the author gives an explicit formula for the log-likelihood of A+, 3, the
parameters of the intensity function \;, given the observed jump times 7;. The
log-likelihood takes the form

( B(Tn—Ty) _ 1)

A+ 7AG))

L(Ty,... To M7, 8) = —AT,+ Z
+Zlog
j=1

where A(1) =0, A(j) = ZJ L e=B(Ti=T) j > 2. In order to have a more efficient
maximization process, one can immediately compute the partial derivatives of
L. One has

QIQ

/N

n

dlo - Al
o = Ll -y )

7j=1
Odlog L - [1 —B(T. —T 1 g g
- Lop _pyesm-ty o L s T»}
_z":[ B(1) }
= A+ vA(7)
Odlog L - 1
= -1, |
) +; [A+7A(z)]
with
0%log L B i i 2.
02 N P )\—i-*yA '
0%log L -
— T T 2 —B(Tn—Tjy) T — T B(Tn—Tj)
O |- 3 + T3

+% G 1)]

VCli) < VB(i) ” ,
A+ YA(i) A+ A(i) ’
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PG f(i)f(i?f xR
a;/%agf B Z /\+7A (A +74(0)°

In the previous equation the functions B and C' are defined as B(1) = 0, B(j) =
STy —T)e BT, > 2 and C(1) = 0,C()) = S (Ty—To)2e 7T ),
J > 2. Since the log-likelihood is non-linear with respect to the parameters, the
maximization if performed by using nonlinear optimazation tecniques [33].

| Case || Ao | g5% (M) | 495% (M) |
b.1 Ao = 0.1 0.0101 0.0061 0.0141
b.2 A\g = 0.1 || 0.0105 0.0059 0.0162
b.3 Ao = 0.1 0.0095 0.0057 0.0139
b.4 Ao = 0.1 0.0088 0.0053 0.0126
Case o 95% (’7) 995% (’7)
b.l1y=0 0.0046 | 3.84.10°° 0.0267
b.2 v=0.05 || 0.0366 0.0146 0.0606
b.3 vy =0.15 || 0.0840 0.0472 0.1217
b.4v=0.3 0.1163 0.0479 0.1850

Case B 95% (ﬂ) 995% (5)
b.1 =0 0.6097 0.0407 0.8025
b.2 5 =0.08 0.0814 0.0318 0.1379
b.3 8 =0.2 0.1414 0.0846 0.2113
b.4 5 =0.5 0.2782 0.1393 0.4421

Table 6: Estimated parameters of the component X5, given M = 20000 realiza-
tions of the component X5 itself for each of the parameters set b.1 —b.4.

We see that the estimated values are below the true values, especially for
big values of v, 3. For the set of parameters (a), the value of § is largely
overestimated, but this is not a problem since the corresponding value of v are
very small, and thus there is no observable self-excitement.

Regarding the jump magnitude distribution, we fit the data via an MLE
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procedure by considering a Generalized Extreme Value (GEV) distribution. Tt
is a continuous distribution which may seen as the approximation of the maxima
of sequences of of independent and identically distributed random variables. It
depends upon three parameters which allow to fit properly the data.

Finally, the estimation of the mean-reverting parameter ao of the jump com-
ponent Xo can be done by using the estimator defined in [27]. Given a dataset
Y5 which we aim to model with our jump process X5, a consistent estimator for
the mean-reversion parameter as is

Yo(j —1)
g = lo ( ma 7) 31
2= LEEN TH0) (3
We will need an approximation of this estimator in our estimation process, which
is very closely related to one made in [27]. The details will be discussed during
the data filtering process in the next section.

4 A study case: Italian electricity spot prices

Here we discuss the more strongly computational part of the work, by starting
from the description of the time series we take into consideration, that is 8 year
of daily recorded Italian electricity spot prices. We first perform an explorative
analysis on the time series, and after that, we discuss the problem of data
filtering that we need to solve in order to obtain from rough data the different
components of our model. In the end, we perform out-of-sample simulationsin
order to predict future prices of electricity, discussing the results with some
evaluation metrics like Winkler score and Pinball loss function.

4.1 The time series

We consider the time series of the Italian Mercato del giorno prima (MGP, the
day-ahead market), available at [40]. Figure [ shows a plot of the daily price
time series {Y (¢)}¢=1,. 3287 from January, 15* 2009 (¢ = 1) to December, 315
2017 (t = 3287).

The MGP market is a day-ahead market, i.e. a market in which the price
is established via an auction for the blocks of electricity to be delivered the
following day. The agents that operate as buyers in the market have to submit
their offers between 8:00 a.m. and 12:00 noon of the previous day. The offers
regard the hourly blocks of electricity which will be delivered the following day.
This means that an agent will submit 24 different offers (with different prices
and quantities) for the electricity of the following day, and he will do it all at
the same time. Also the sellers submit their offers, by telling the quantity of
energy that they are willing to sell and the price at which they want to sell
it. The market price is then established before 12:55 p.m., and it is an hourly
price, determined by finding the intersection of the demand and the offer curve
relative to the specific hour of the day. After the determination of the market
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price, all the electricity bought and sold for that hour is traded at the market
price.

Italian electricity spot price
140 T T T T T T

120 | 1

100 1

40 1

20L 1 1 1 1 1 1 1 1
2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 9: The time series Y () of the the daily electricity prices in the MGP in
the period 2009, January 1- 2017, December 31 (t = 1,...,3287).

We choose to model the daily average of the hourly price. This is a quite
common choice in the literature, especially for reduced-form models [39]. Indeed,
the main scope of reduced—form models is to be able to capture more the medium
term (days/weeks) distribution of prices than the hourly price, and to use these
estimated distributions of prices to pricing electricity future contracts, which
are very useful and used financial instruments in the electricity market.

We are aware that this averaging filters out many extreme behaviours of
the market. Indeed, a single hourly extreme price is unlikely to produce a
significant variation in the average daily price. Anyway, we are also aware
that reduced—form models usually perform poorly on the hourly scale [39]. We
remark that all the analysis that follows has been carried out also using on—peak
(08:00-20:00) and off-peak (20:00-08:00) data separately, without obtaining a
significant difference from the entire day averages.

The data available start from April, 2004, which is the moment in which
the liberalised electricity market started in Italy, but we chose to focus on more
recent data, from 2009 onwards, to make the model more tight to the present
nature of the electricity market. This does not prevent the performance eval-
uation of the model from being sufficiently robust, since the dimension of the
sample is N = 3287.
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Figure 10: The daily electricity prices in the MGP whitin the calibration
window in the period 2009, January 1- 2010, December 31 (¢t = 1,...,730).

We use the data in the following way: the first 730 days have been used for
the study of the dataset and for the validation of the model. Then, we evaluated
the performance on forecasting future prices for time horizons of length h =
1,...,30, using rolling windows: at time ¢, we use the data from ¢ — 730 to ¢
for the calibration of the parameters of the model, and we simulate the future
price at time t 4+ h using those parameters. Then, we move ahead from time ¢
to t + h and we repeat the previous steps, starting from parameter estimation.

The first task that has to be achieved is the separation, or filtering, of the
different signals in the price time series Y. It is clear that this is not an easy
task and it might not be done in a unique way. In literature a lot of effort has
been done for this purpose (see [23127128[B30,BT,B9]). Moreover, we think that
in the present case the relatively small presence of clearly recognisable spikes in
the dataset makes the spike identification task even more difficult than usual.

Note that from now on we consider as the window for the calibration of the
model the one corresponding to the first two years, 2009 and 2010. The reduced
time series Y'(¢),¢ € [1,730] is shown in Figure [I0l

4.2 Data filtering

Weekly seasonal component. The first component that should be identified
and estimated is the one dealing with trends and seasonality in the data. As
stated in [23] and in the literature therein, the estimation routines are usually
quite sensitive to extreme observations, i.e. the electricity price spikes. Hence,
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one should first filter out the spikes, that often are identified by the outliers.
Actually, whether to filter out the spikes before or after the identification of
the deterministic trends is still an open question in general. Furthermore, the
deseasonalizing methods used in literature are very different: some authors
suggest to considered sums of sinusoidal functions with different intensities [9[16]
[27], others consider piecewise constant functions (or dummies) for the month
[15,26], or the day [I3] or remove the weekly periodicity by subtracting the
average week [23]. Tt turns out than an interesting and more robust technique
is the method of wavelet decomposition and smoothing, applied among others
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Figure 11: Autocorrelation function of the daily electricity price returns. (a)
Full series 2009, January 1- 2017, December 31. (b) Prices within the calibration
window 2009, January 1- 2010, December 31.

Figure [[1] shows the autocorrelation function both for the whole series and
within the calibration window. In the first case, for any lag multiple of seven
the correlation is statistically significant, while in the calibration windows only
for the lag=14 there is not a significant correlation at the level 95%. In any
case the presence of weekly periodicity is clear. As a consequence we first filter
the weekly periodicity. As in [I3L[39] we do it by means of dummy variables,
which take constant value for each different weekday. Hence, we subtract the
average week calculated as the sample mean of the sub-samples of the prices
corresponding to each day of the week, as in [23]. Public holidays are treated in
this study as the eighth day of the week. Hence, the total number of dummies
is eight.

More precisely, we define a function D = D(t) which determines which label
the ¢t-th day has, i.e. D(t) =14,i=1,,...,7,8, if day ¢ correspond to Monday
(and not a festivity), ..., Sunday (and not a festivity) and a festivity, respectively.
We define the restricted time series Yp—; as the time series formed only by the
price values labelled with the day j, and with Yp_; its arithmetic mean. Then
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we define the whole dummy variables function Yp as

8
Yp(t) =Y 1pw—i(H)YD=;. (32)
j=1
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Figure 12: (a) Original prices Y (green) and prices after dummies removal Y,
(blue); (b) Autocorrelation of the returns of the prices Y,

The time series obtained after the weeekly deseasonalization is the following
Yu(t) =Y () = fo(t) = Y(t) = (Yp(t) = Y), (33)

where Y is the arithmetic mean of Y (t),t =1,...,730. The arithmetic mean of
the prices Y, corresponding to a specific day of the week coincides with the
mean of all prices within the calibration window. Figure [[2}(a) shows that Y,
after removing the dummy variables is barely distinguishable from the original
time series Y'; it is only a bit more regular. On the other hand, Y,, does not show
weekly correlation, as visible in Figure [2H(b). The function f is the estimate
of the short seasonality in f.

Jump component. Before filtering the long-term seasonal component, we
filter out the jump component. The reason for this order lies in the following
consideration: at a small scale, the presence of a slowly moving seasonal trend
does not affect the recognition of a price spike. On the other hand, if we chose
to filter the long-term seasonal component before filtering out the spikes, the
presence of one of more spikes could affect the form of the seasonal component,
which is something that we intuitively regard as incorrect. Indeed, we tend to
consider the spikes as an ”external event”, and we do not want the seasonal
term to be affected by the presence of a price spike.

As in [27], the idea is to obtain the filtered time series, denoted Yy, as
the series that contains the jumps and their paths of reversion towards their
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mean. We first estimate the mean-reversion speed sy by the estimator &s given
by [BI); by performing the estimate along the entire time series, not only in
the jump times: this is not restrictive, since the strongest rates of reversion
towards the mean happen right after a jump has occurred. Afterwards we
identify the jump times. The idea is to consider as jumps the price increments
that exceed k standard deviations of the price increments time series. This
cannot be implemented to the time series Y,, directly, because, in case two
spikes appear one after the other, the second one would not be considered as a

spike. In order to avoid this effect, we define the modified time series Y,, as
Yo(t) == (1= a2)Yy (1) + G2 Yao(t),

where Y30 (t) is the moving average of the time series Y,, over periods of 30 days.
Then, we defined the times series

{Yw(t)—?w(t—n}—t:2,3,... (34)

of the modified increments, which takes into account a reversion effect towards
the moving average Y3q. It performs very well also when the spikes appear in
clusters. Then, denoted by & the standard deviation of the series [B34), we say
that a spike occurs at time 7 if

Yo (1) = Yo (T — 1)| > 2.55. (35)

If N is the number of detected spikes, i.s. if {r;},_, , are the times

satisfying condition (B3), the corresponding jumps are defined, for j =1,..., N
as
fij = Yu(7;) = Yo(r; — 1).

Once we have the estimates {(7;,/;)},_, 5 of the times and magnitudes

(@) of the jumps, we obtain the estimation Y (¢) of the solution X5 of (28] as
follows

N
Vi) =Y mje e (o0, t)) (36)
j=1

Given Y as in ([Bf), we denote the filtered time series as

Yi(t) = Yu(t) = Ya(0).

Long-term seasonal component. Now we look for an estimator fl of the
long-term seasonality component, so that

f:fs+fl7

where f, is given in (33), is an estimator of the deterministic part f in ). There
is a lot of literature on the subject (see, for example, [7OI3IT6232638]). These
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references try to explain such a component by means of sinusoidal functions or
sums of sinusoidal functions of different frequencies. In our case it seems that
there is no statistically significant dependence upon such periodic function, both
in the case of monthly, half-yearly or yearly periodicity.

We apply the method of wavelet decomposition and smoothing, applied
among others in [23/[B0,B87B8]. The idea is to consider repeatedly the con-
volution of Yy with a family of wavelets, which have the effect of smoothing out
Ys. If we manage to smooth Yy enough to remove the effect of stochastic oscil-
lation, but not too much to remove the long-term trend, then we can subtract
this smoothed version of Y from Y itself, obtaining a centred time series with
almost no long-term oscillation.

Prices before deseasonalizing, together with the estimated long-term seasonal component
T T T T

Figure 13: Price series Y (blue) and estimation function f; (red) via Daubechies
of order 24 wavelets at level 8.

We go more into details: we refer to [30] and the literature therein. We use
wavelets belonging to the Daubechies family, of order 24, denoted by (F—db24).
Wavelets of different families and orders make different trade-offs between how
compactly they are localized in time and their smoothness. Any function or
signal (here, Y5) can be built up as a sequence of projections onto one father (W)
wavelet and a sequence of mother wavelets (D): Yy = Wi+ Dp+ Dj—1+...+ D1,
where 2F is the maximum scale sustainable by the number of observations. At
the coarsest scale the signal can be estimated by Wj. At a higher level of
refinement the signal can be approximated by Wy_1 = Wy + Dj. At each step,
by adding a mother wavelet D; of a lower scale j = k—1,k—2, ..., one obtain a
better estimate of the original signal. Here we use k = 8, which corresponds a
quasi-annual (2% = 256 days) smoothing. Then the estimator fl of the long-term
deterministic part f — fs is given by

fult) = Ws(t), (37)

the Daubechies wavelets of order 24 at level 8.
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The resulting time series Yy given by

Yi(t) = Yi(t) = fuld), (38)
represents a realization of the base component Xj.

Figure [[3] show the price series Yy and the overlapped estimated fl. The
wavelet interpolation is here extended outside the calibration window. This
is not automatic in the case of wavelet decomposition, since the wavelets are
compactly supported and we are convolving only up to the final time of our
dataset. To obtain this prolongation, we prolonged the time series in the fore-
casting window by using the technique of exponential reversion to the median,
thoroughly studied in [30], before applying the wavelet de-noising. In this way
we have been able to obtain a function fl which extends also to times ¢ in the
forecasting windows.

4.3 Out of sample simulations

We will perform and assess here the forecasts of future electricity prices through
our model. We first outline the simulation scheme and make some considerations
about the parameters in the rolling windows. After this, we define the metrics
which we will subsequently use to evaluate our results.

4.3.1 Parameter estimation in the rolling windows

We recall that for each time ¢, when forecasting the price distribution at time
t + h (where h € {1,...,30} is the forecasting horizon), we carry out a new
calibration of all the parameters of the model, including the Hurst coefficient
H. We think that in this way, if there is a change in the data coming as input,
the model is able to change its fine structure coherently with these changes.
For example, if the self—correlations changes, or disappears, at some point, we
expect the parameter H to change consequently, and possibly approach %

We start by analysing H: as long as our rolling window for estimation is
advancing,the values of H are on average increasing. The first estimate is H=
0.2909. The mean value across the whole dataset is 0.3735. In general, the
values are such that

0.2128 < H < 0.6234.

Notice that the maximum value is above the H = 1/2 threshold and this shows
that a positive correlation between the increments may occur. Figure [I4] shows
the pver ten days averaged behaviour of H across all time lengths in.

In general, as we already pointed out, we think that this moving identifi-
cation of the parameter H is useful to update the fractional structure of the
model when the input data are suggesting to do so, giving a better modelling
flexibility, also in case of future changes in the market nature.

Regarding the parameters of the fractional Ornstein—Uhlenbeck process X7,
a1 and o, progressing in our rolling window, we found a change in the estimated
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10-days moving average for the estimated value of H
T T T

Figure 14: 10-day average of the estimated value H of H. We chose the 10-day
average in order to smooth out some irregular behaviour at shorter scale.

values of the parameters; summarizing, we obtained that the range of values for
dl and &

0.0453 < &y < 0.6823
4.2069 < & < 8.8972.

We see that there is a large variation in the parameters, especially for &1, but
we remark that this variation is gradual, since the mean reversion rate decreases
while moving through our forecasting dataset, together with the volatility &.
Looking at Figure [d], this can be observed, at least for the volatility, also by a
macroscopic observation of the data.

Looking at the estimation of the parameters of the jump process Xs, a bit of
variability through the dataset is shown, but there is not an evidence of a par-
ticular pattern. Moreover, the jump observations are relatively rare (20-40), so
based on the available data, it would be even more difficult to draw conclusions
on their long term behaviour. The estimated values of the mean-reversion co-
efficient ai are suche that & € [0.3564,0.6211], with an the mean value 0.4358.
As the Hawkes process parameter estimation regards, 5\0 € [0.0101,0.0284] with
mean value 0.0169, 4 € [1.12-1079,0.1574], with mean their mean 0.0625 and
3 € [0.0012,0.9993] with mean 0.3662. There is a great variation in such esti-
mates. This, in our opinion, is due to the low dimension of the dataset, because
not many spikes are present. Thus, the MLE method is finding sometimes a
good evidence of a self-excitement (when ~ is bigger and relatively close to /)
and sometimes no evidence of self-excitement (when + is very small and/or f is
much bigger than ). To show this fact, we plot in Figure an histogram of
the ration /8, which is a very good indicator of the presence of self-excitement.
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From the histogram, we can see that roughly half of the time the ratio is below
0.25 (showing little or no self-excitement), and half of the time above (showing
a significant self-excitement). We think this is another evidence of the flexibility
of our model, similarly to the estimations of H. If some self-excitement seems
to be present, then the model is including it. Otherwise, the model will simply
produce a classical point process with constant intensity.

Ratio 1/
T

Figure 15: Ratio between 4 and /3 throughout the entire dataset.

As the estimation of the parameters (i,£,c) of the Generalized Extreme
Value distribution we have that i € [11.2506,19.4064] with a mean value
15.6687, f € [-0.4809, 4.2591] with mean 0.4125 and o€ [0.3248, 3.8260] with
mean 2.2331. We only remark that even if there is a great variability in the
parameters, the median value of the jump size is not varying from one estimate
to the other. We recall that the median (the mean is not always defined) of a
GEV distribution is given by

log(2)~¢ -1
—

In Figure [[6] we see that this value is oscillating between 11 and 22, which are
reasonable values for our dataset.

Median =+ o

4.3.2 Forecasting performance

Now we evaluate the performance of the model described in Section [2] for the
forecast of future values of the electricity prices. As pointed out in [39], there
is no universal standard procedures for evaluating the forecasts.

The most widely used technique is to obtain point forecasts, i.e. single fore-
cast values, and evaluate them using some error function. The most common
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Median of the GEV distribution

Figure 16: Median of the GEV distribution throughout the entire dataset.

error function for this type of forecasts is Mean Absolute Percentage Error
(MAPE), together with its refinement Mean Absolute Scaled Error (MASE).
Another frequently used measure is the Root Mean Square Variation (RMSV),
which is simply the estimated standard variation of the forecast error. In our
model, the SDE-type structure is not particularly suitable for giving short-term
point forecasts, as it is also pointed out in [39]. So in the following we will not
concentrate our analysis on point forecasts, as we do not expect our model to be
able to outperform more sophisticated and parameter-rich model in this task.

We focus on the relatively novel concept of Interval Forecast. More recently,
as was already suggested in [39] and as it has been more thoroughly analized in
the very recent review [31], the driving interest in forecast evaluation has been
put in interval forecasts and density forecasts. Interval forecast have also been
used as the official evaluating system in 2014’s Global Energy Forecasting Com-
petition (GEFCom2014). There is a close relation between interval forecasts
and density forecasts.

Interval forecasts (also called Prediction intervals, shortly PI) are a method
for evaluating forecasts which consists in constructing the intervals in which the
actual price is going to lie with estimated probability «, for o € (0,1). There
are many technique for the construction of the intervals and their evaluation
[31]. Here we consider interval forecasts for different time lags h, by means of
different techniques: Unconditional Coverage (UC), Pinball loss function (PLF)
and Winkler Score (WS).

Unconditional Coverage (UC). Establishing the UC just means that we
evaluate nominal rate of coverage of the Prediction intervals; as stated in [31],
one can simply evaluate this quantity, or consider the average deviation from the
expected rate a.. As pointed out in [31], if we call P, the actual price, [L;, U;] the
Prediction interval at level a € (0,1), we are checking the fact that the random
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variable o
. 1, if P € [Lt,Ut],
7o, it P ¢ [L. Uy

has a Bernoulli B(1, «) distribution. This works clearly under the assumption
that the violations are independent, which may not always be the case.

Pinball loss function (PLF). The Pinball loss function is a scoring function
which can be calculated for every quantile ¢. If we denote with P, the actual
price, with @, (Pt) the g-th quantile of the estimated prices P, obtained with
the model, the Pinball loss function is defined as

Pin(Qq(Pt),Pt,q) — (1 Q)(QQ(APt) Pt)7 lf Pt < Qq(l?t)v

a(Pr — Qq(F)), if Py > Qq(F).
Winkler Score (WS). The Winkler score is a scoring rule similar to the Pinball
loss function, with the aim of rewarding both reliability (the property of having
the right share of actual data inside the a-th interval) and sharpness (having
smaller intervals). For a central a-th interval [ﬁt, [jt], 5 = Uy — ﬁt, and for a
true price P, the WS is defined as

6t, if Pt S [I:t,(jt],
WS([Lt,Ut],Pt): 6t+%(Pt—Ut), ifPt>Ut,
5t+%(LAt—Pt), lfPt<LAt

As it can be seen, the WS has a fixed part which depends only on the dimension
of the Prediction intervals.

Comparison of different models. We checked the performance not only of
the model proposed in Section 2] but of two more models, in order to highlight
the peculiarities of the model proposed in this paper. The examined models are
the following.

i) The stochastic differential equations described in Section [ in which the
base component is driven by a fractional Brownian motion.

ii) The same model as in i) in which instead of the fractional Brownian mo-
tion, the standard Brownian motion is considered.

iii) A naive model, built as Naive(t)=D(t)+H, where D is the dummy vari-
ables function and H is randomly sampled historical noise coming from
the relative calibration window [31].

Forecasting horizons. As already mentioned, used as the calibration window
a rolling window with fixed dimension of 730 prices, corresponding to the 730
days of past observations. In this framework, we will consider the following

forecasting horizons h:
h=1{1,2,...,29,30}
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For each forecasting horizon we make a new estimate of the parameters at a
distance h from the previous one, in order to have the sampled prices coming
from disjoint time intervals.

4.3.3 Results

We start by analysing the performance of the models by their observed Uncon-
ditional Coverage. Figure [I7 shows their performance in a plot which spans
across all the forecasting horizons h that we are considering. The dotted black
line represents the relative level of coverage that we should attain. The closer
we are to the dotted line, the more accurate a model is in covering that specific
interval.

In the 50% interval (top plot), the nalve model seems to be more stable, even
if it is almost always under-covering the interval. Among our models, the fBm
model, except for the shorter forecasting horizons, is performing remarkably
well. The sBm model is over-covering the interval, for almost all forecasting
horizons.

UC at 50% - models with fBm and sBm vs. Naive

UC at 90% - models with fBm and sBm vs. Naive

Figure 17: Observed Unconditional Coverage of the model with the fractional Brow-
nian motion (blue), with the standard Brownian motion (red) and the naive one (yel-
low)) for 50%,90% and 98% coverage intervals. On the horizontal axis, we represent
the length h of the forecasting window we are considering, while on the vertical axis
we represent the UC value.

Moving to the 90% (mid plot) and 98% (bottom plot) prediction intervals,
the fBm model performs in general better than the other ones, except for a
slight excess in coverage for the 90% PI with small forecasting windows. In
the 98% prediction intervals, also the sBm model has a very good performance,

34



which will be confirmed by the numerical data for the Unconditional Coverage
reported in Table [

We analysed then the Pinball loss function and Winkler Score of the three
models. In Figure [[§ and in Figure [[9 we reported again the results spanning
along all forecasting horizons. We note that the Pinball loss function is a func-
tion of the quantile we are evaluating, so that in principle we would have to
evaluate it separately for every quantile g = 1,...,99. As it has also been done
in the GEFCom2014 competition, we averaged first over all quantiles, in order
to obtain a single value and make comparisons easier.

In terms of the Winkler scores (Figure [I8)), the fBm and the sBm models
outperform the the naive benchmark. The difference between the fBm model
and the sBm model is very small in general, but the fBm model performs better
than the sBm one in almost every prediction interval. This is true especially if
we consider the 90% interval WS.

Winkler scores for 50% central PI

Figure 18: Winkler scores for 50% and 90% PI. Again, on the horizontal axis, we
represent the length h of the forecasting window we are considering, while on the
vertical axis we represent the Winkler score value.

There seems to be a sort of contradiction in our results: indeed, when it
comes to the UC at level 50%, the naive model seemed to be slightly better
than the fBm model, while in terms of WS for the 50% PI the fBm is clearly
superior to the naive benchmark. This is possible because the WS is a metric
which not only evaluates the share of coverage of a prediction interval, but also
gives a penalty for missed values, and this penalty depends on the magnitude
of the error made. Thus, it is seem reasonable to suppose that the naive model,
while performing quite good in terms of coverage at the 50% PI, makes bigger
errors than the fBm model.

The results about the Pinball loss function are quite similar to the ones of
the Winkler scores. Again, the fBm and the sBm model outperform the naive
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Pinball scores (average) over all forecasting horizons (1-30)

Figure 19: Pinball loss function (average).On the horizontal axis, we represent the
length h of the forecasting window we are considering, while on the vertical axis we
represent the Pinball loss function value.

model, while being very close one to each other. Again, the fBm model performs
slightly better than the sBm model.

Both in terms of WS and Pinball loss function, the naive model is per-
forming better than the fBm and the sBm model when the forecasting horizon
h = 1. This is somewhat consistent with a fact mentioned in [39], which we
already reported: the reduced-form models, like ours, usually have a quite poor
performance in very short-term forecasts.

| Avg. score\Model | fBm [ sBm | Naive |
UCs0% 54.54% 60.37% 46.02%
UC'sgy, error +4.54% | +10.37% | —3.98%
UC'5o9 abs. error 5.95% 10.37% 4.83%
UCgoo% 90.63% 93.65% 86.02%
UCygy, error —-0.93% | —9.10% | +3.79%
UCqoy abs. error 2.81% 3.67% 4.04%
UCosm, 97.02% | 97.58% | 94.13%
UCoygy, error —0.98% | —0.42% 3.87T%
UCyge, abs. error 1.19% 0.99% 3.90%

Table 7: Coverage rate for the estimated PI, averaged over all forecasting horizons
h =1,...,30. The average error, as it can be seen, is just the difference of the average
coverage from the nominal value.

In Table [1 and Table [{ we reported the above discussed values, averaged

over all different forecasting horizons. In terms of the UC, each of the three
models is performing better than the others for a certain PI, while both for the
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| Score \Model || fBm | sBm [ Naive ]

WSs0% 20.87 | 21.30 [ 23.14
WSgo% 38.62 | 40.44 | 46.25
| PLF | 2.3484 | 2.3920 | 2.6164 |

Table 8: Winkler scores and Pinball loss function values, averaged over all forecasting
horizons h =1, ..., 30.

WS and the PLF we see the better performance of the fBm model also from
these numerical data.

4.4 Conclusions

Drawing some conclusions from the results analyzed above, there are some evi-
dences that a fBm-driven model may be more adequate to model the electricity
prices than a sBm-driven model.

Regarding the forecasting performance (QF and PI), the fBm methods have
better performance than the sBm ones in terms of WS and PLF, while both the
sBm and the naive model enjoy some success when evaluating the UC.

To understand this apparent contradiction, we remark (as we already did)
that WS and PLF are scoring rules which give a penalty for missed forecasts
(while UC does not), and these penalties depend also on the magnitude of the
error. The fact that fBm models outperform sBm models in this evaluation may
mean that the QF and the PI given by the fBm models are in some sense more
robust than the sBm ones (and also than the ones of the naive benchmark).

Concerning the model structure, we remark that we found very satisfactory
the fact that the parameter estimation for the Hawkes process gave roughly
half of the times a very significant value, meaning that the clustering effect is
not only visible on a macroscopic scale, but is also captured by the numerical
methods.

This was not assured in principle, since the Italian market is rather peculiar,
having only a small number of real spikes. This gives, as a consequence, that
the intensity of the spike process is small and could become difficult to estimate,
even if this was not the case for our data.

Regarding the role of the fractional Broenian motion in the model, we remark
that we found some very interesting informations from the estimation procedure.
The fact, shown in Figure [4] that the parameter H is tending to 0.5 in more
recent times may mean that the market is finding automatically a way towards
the ”"independence of increments”, which would be implied by the fact that H =
0.5. This is remarkable also for the fact that the independence of increments
is closely related, for these models, with the absence of arbitrage. Even if we
pointed out that arbitrage is usually not possible, for this kind of models, when
trading only once per day, a good question for future developments in this sense
may be: are electricity markets, which are "young” financial markets, finding

37



their own stability with the passing of time, or are our findings specific to the
italian market? In any case, are these changes going to last in the future or we
may see a return of a fractional effect in the next years?
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