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Abstract: Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting
biological activities, notably in cardiovascular health. A simple scalable enrichment procedure
of this protein for further nutritional and functional studies is crucial. In this study, a simplified
chromatography-independent protein fractionation procedure has been optimized and described.
The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore,
the molecular features of the purified protein were investigated. The adzuki bean β-vignin was
found to have a native size of 146 kDa, and the molecular weight determined was consistent with
a trimeric structure. These were identified in two main polypeptide chains (masses of 56–54 kDa)
that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain
with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of
digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis
not only for further investigation of the health-promoting properties of the adzuki bean β-vignin
protein, but also for a possible application as nutraceutical molecule.

Keywords: protein vicilin-type; protein fractionation; biological activities; in vitro digestibility;
amino acid sequencing; glycosylated polypeptides; metal binding capacity

1. Introduction

Seed legumes are widely recognized nutritional sources of food that, among other
sources, have gained attention for their high levels of protein. Grain legumes provide an
alternative supply of protein in the diet. In this context, adzuki bean seeds are among the
most common Vigna species used as human food [1]. Although the adzuki bean is native to
the north-eastern part of China, it is cultivated and primarily consumed as a common food
in many countries in east Asia, especially Japan, where it is also known as the red bean.
The adzuki bean was introduced to southern United States, New Zealand, Latin America,
parts of Africa, and European countries, where it is consumed as part of a vegetarian diet
and as an alternative protein source to meat [2].

Adzuki bean, like other legumes, is considered an excellent source of high quality
proteins and several other nutrients. The seeds of the Vigna species have been analysed
and found to contain about 20–30% protein (dry basis). The amount found in the V.
angularis species is approximately 21–28% [3–5]. The vicilin-like (7S) globulin accounts
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for about 80% of the total protein of the adzuki bean, whereas the legumin-like (11S)
globulin makes up only about 10%. The latter consists of two types of subunits, the acidic
and basic subunits with molecular masses of 40 kDa and 20 kDa, respectively [6]. Some
varieties of adzuki bean contain only negligible amounts of the 11S globulin and albumins
(2–8%). The 7S globulins of legume grains are heterogeneous [7], because of the uneven
glycosylation of their subunits. The generally accepted structure of the 7S globulin is a
trimer of polypeptides each with a Mr of 40 kDa to 75 kDa, thereby accounting for the
Mr of 150 to 170 kDa in the native protein. 7S globulins generally do not contain cysteine
amino acids, indicating the absence of disulphide bonds [8]. Indeed, Sakakibara et al. [9]
described that the adzuki bean 7S globulin (β-vignin) consists of three subunits named α-,
β’- and β-subunits with molecular weights of 55 kDa, 28 kDa, and 25 kDa, respectively.
More recent studies, involving also molecular cloning of cDNAs, suggest that the major
band (55 kDa) consists of at least two subunits of similar size [10].

In the last decade, health-promoting biological activities have been associated with
several proteins from legume seeds, primarily soybean [11–13], chickpea [14,15], lupin [16],
cowpea [5,17], adzuki [5], and mung [18] beans. Peptides of different sizes have been
shown to exert various beneficial effects, including anticancer, antimicrobial, antioxidant,
antihypertensive, cholesterol-lowering, immunomodulatory actions as well as obesity and
Type 2 diabetes prevention [19–22].

Despite the rich protein content of the adzuki bean, the full potential of these beans
has yet to be revealed, especially with respect to the nutraceutical properties of its compo-
nents and of the protein fraction. Detailed investigation of the specific characteristics of
legume seed storage proteins could lead to their better utilisation [23]. Thus, improved or
simplified protocols for adzuki β-vignin protein fractionation and purification are actually
required. Furthermore, the nutritional and nutraceutical properties of this protein have not
yet thoroughly investigated. In this work, we describe a simplified enrichment procedure
of the adzuki bean β-vignin protein. Its further molecular characterisation led us to identify
novel molecular features, such as the real molecular weight of the native form, the glyco-
sylation pattern, and the metal binding properties. Finally, functional properties relevant
to nutritional issues, such as the in vitro digestibility and the potential anti-inflammatory
capacity have been also investigated.

2. Results and Discussion

The analysis of chemical composition showed that the adzuki bean seed flour pre-
sented an average protein content of 204 g/kg (Table 1), an amount consistent with other
reports [24]. Thus, adzuki bean seeds have gained popularity as nutritionally impor-
tant sources of protein, similar to other seed legumes such as the soybean, lentil, and
pea [1,17,25]. Approximately 81% of the total proteins present in the adzuki bean flour
were solubilized and recovered by the fractionation technique used. The globulin fraction
was predominant, accounting for 51.3% of total seed protein, followed by albumin (9.9%),
glutelin (6.4%), and prolamin (2.5%) fractions. Only 3.9% of the total protein remained as
an insoluble residue. This study is the first published work regarding the fractionation of
the adzuki bean proteins. Globulins represent the major protein fraction (about 70%) of the
TPE of the adzuki bean flour. Similarly, globulins are also the major protein type in other
species such as cowpea flour (Vigna unguiculata), wherein they represent 42 and 62% of the
TPE [26].

The solubility profile of a protein is an important characteristic, related not only to func-
tional properties that affect the texture, colour, and sensory properties of products in which
it is employed as an ingredient [27] but also for setting up effective purification procedures.
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Table 1. Composition of the protein fraction of adzuki seed flour.

Fraction 1 Protein

mg/g of Seed wt% 2

Wholemeal flour 203.90 ± 2.55 100
TPE 164.50 ± 1.87 80.68 ± 0.43

Albumin 20.22 ± 0.72 9.92 ± 0.26
Globulin 104.56 ± 1.34 51.28 ± 0.38
Prolamin 5.18 ± 0.12 2.54 ± 0.05
Glutelin 13.13 ± 0.32 6.44 ± 0.14

Insoluble protein 7.93 ± 0.42 3.89 ± 0.23
1 Values represent mean ± SD for three determinations. 2 wt% N × 5.70, quantified by the Kjeldahl method. For
the calculation, 20.39% total protein in whole meal flour was used.

The effect of pH on the protein solubility of adzuki bean globulin fraction in the
absence of NaCl is displayed in Figure 1.

Figure 1. Effect of pH on adzuki bean globulins solubility.

The results showed that maximum solubility occurred in very acidic (pH 1–2) or
alkaline (pH 9–12) and a minimum between pH values of 4.0 and 5.0 the (around the
isoelectric point value), which is typical solubility behavior of proteins from leguminous
seeds. Various authors have reported this behavior at a pH below or above 4.0–4.5 and
low ionic strength [8,27]. This value is in perfect agreement with that determined by the
Protparam algorithm (available at www.expasy.org, accessed on 1 February 2021) using
the three β-vignin amino acid sequences available, which calculated a pI of 4.4.

The purification procedures reported in the literature until now are not applicable
for large-scale protein preparation [6,9,10]. Herein, a novel isolation procedure of the
main protein fraction (β-vignin) is described (Figure 2) in which no chromatographic steps
are required. The procedure is based on simple steps of differential solubilization of the
proteins contained in the fraction extracted at pH 7.5 directly from the flour.

www.expasy.org
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Figure 2. Schematic diagram of isolation of adzuki bean β-vignin protein by the preparative method.

Thus, our protocol can be adopted for large-scale protein analyses in nutritional [14,18,22]
and nutraceutical applicative fields [21], which may require animal or human testing [5,28],
or for direct exploitation in specific formulation for human food [23].

Approximately 4 g of β-vignin protein was recovered from 100 g of adzuki bean flour,
the degree of purity of the protein content of the freeze-dried powder was 96%. No yield
optimization of the procedure was performed, since the industrialization of the processes
is beyond the scope of this manuscript.

Figure 3 showed the SDS-PAGE patterns of the isolated adzuki β-vignin and a highly
purified β-vignin obtained chromatographic steps, as detailed in the Methods section, for
purity comparison.

Figure 3. SDS-PAGE profile under reducing conditions of (A) isolated with the procedure detailed
in Figure 2, and (B) chromatografically purified β-vignin. Molecular masses of protein markers are
expressed as kDa. TPE represents the total protein extract from adzuki bean flour.
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Gel images were analysed using the AlphaEase software; the adzuki bean TPE showed
a major band with an estimated Mr of 56.2 ± 2.8 kDa (59.4%). Several minor bands were
observed with Mr of 102.4 ± 2.4 kDa (4.7%), 87.0 ± 1.8 kDa (3.7%), 83.0 ± 2.8 kDa (5.3%),
68.3 ± 1.2 kDa (3.6%), 64.5 ± 2.2 kDa (7.0%), 37.0 kDa ± 2.1 (6.9%), 33.5 ± 1.1 kDa (5.6%),
29.6 ± 1.5 kDa (1.8%), and 20.7 ± 1.8 kDa (2.0%) in the TPE.

The bands corresponding to β-vignin represent the major polypeptide components of
the extracts, accounting for over 70% of the total protein, while other polypeptides, likely
mostly belonging to 11S globulin, represented only minor components.

Thus, the isolated β-vignin exhibited a high degree of homogeneity. Our results are
likely driven by the overwhelming abundance of this protein in the studied seed and
related to intrinsic protein composition, which could be attributed to cultivar differences,
as well as to agronomic conditions related to sulfur availability [19].

Two-dimensional IEF/SDS-PAGE maps of the adzuki bean TPE and purified β-vignin
are shown in Figure 4A,B, respectively. The 2D analysis allowed a higher level of resolution
and, substantially, confirmed the high degree of homogeneity of the purified protein. The
charge heterogeneity of the proteins is visible as a horizontal smear [3]. The experimentally
determined pIs of the major globulin subunit ranged from 5.6 to 5.9.

Figure 4. Two-dimensional IEF/SDS-PAGE of TPE (A) and highly purified β-vignin (B). The 1-D separation is reported to
the right of each gel. Molecular masses of protein markers are expressed as kDa.

By and large, the obtained electrophoretic profiles displayed a lower degree of intrinsic
heterogeneity and post-translational modifications relative to other seed storage globulins
of this family, such as the lupin [7], pea [29], and soybean [30] 7S globulins. This is also
supported by genes deposited in the databases for this protein, although there are only
a limited number of sequences available, compared to other redundant gene families of
homologous seed proteins.

However, charge heterogeneity due to minor sequence differences may be in question.
In fact, ion-exchange chromatography separation clearly showed the presence of well-
separated major and minor peaks, which suggests that preferential assortment of some
subunits in the native trimers, namely the most acidic ones, might have occurred.

In order to confirm the identities of the purified protein, we carried out N-terminal
amino acid sequencing of the adzuki bean β-vignin main spots that had been excised
from the gel. This analysis showed all the same N-terminal residues, namely, isoleucine-
valine-histidine-arginine (IVHR), corresponding to available sequencing of the mature
polypeptides of the adzuki bean [28]. This finding confirmed the identity of the major
subunit and that no N-terminal proteolytic processing event had occurred to the mature
chains of the 7S globulin of the adzuki bean during their handling.

Gel molecular sieving of the β-vignin on a Sephadex® G-200 column under native
condition showed a unique protein peak (Figure 5).
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Figure 5. Gel molecular sieving on a Sephadex G-200 column of β-vignin. In the inset, SDS-PAGE
profile under reducing conditions of purified β-vignin runs under progressive sample dilutions.

The peak had an elution volume corresponding to an apparent molecular size of
146.4 ± 2.8 kDa for the adzuki bean 7S globulin. If the Mr values of the β-vignin principal
constituent subunits determined by SDS-PAGE are considered, the oligomeric assembly of
the adzuki bean β-vignin supports the conclusion that this Vigna seed globulin assembles
into a trimeric structure, a common and widely acknowledged feature of most proteins
of this class [31,32]. In the case of the adzuki bean 7S globulin, the resolved 3D structure
(PDB 2EA7) leaves no doubt on the trimeric nature of these oligomers. This is unlike those
found by Sakakibara et al. [9] in which the 7S protein showed one main band of 55 kDa and
two minor protein bands of 28 kDa and 25 kDa. This was similarly observed by Meng and
Ma [6]. Chen et al. (1984) demonstrated that the major seed protein of the Takara adzuki
bean consists of two subunits with a relative mass Mr of 55 kDa and 35 kDa [3]. However,
other studies suggested that β-vignin consists of three subunits with molecular weights of
55 kDa, 28 kDa, and 25 kDa [6,9].

To determine whether isoforms of similar Mr were present in the 55 kDa band, we
performed SDS-PAGE runs under progressive sample dilutions. The main band consisted
of two closely packed bands, the higher of which was more abundant (Figure 5, inset).

Next, we explored two molecular properties of β-vignin, i.e., the glycosylation pattern
and the metal ion binding capacity. These properties may have relevant roles in protein
structural stabilisation, protein-protein interactions, antibody recognition, metal transport,
and other cellular events such as signalling processes and defence mechanisms [7].

The possible presence of N-acetylglucosamine-linked oligosaccharides in TPE and
β-vignin was estimated by the reaction with lectin ConA (Figure 6B). The two main bands
(56 kDa and 54 kDa) were significantly reactive, but the minor band (37 kDa) did not react
with ConA. Thus, it can be concluded that the two main adzuki bean bands are alike in their
glycosylation status, as both the polypeptides were glycosylated. In detail, the potential
glycosylation site at residues 344–346 (NAT) was shared by all three adzuki sequences,
thus confirming the N-glycosylation (Figure 7).
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Figure 6. SDS-PAGE profile under reducing conditions of TPE and Ni-NTA-bound material (A),
Western blot analysis with the concanavalin A (B). TPE represents the total protein extract from
adzuki bean flour, βAd represents the adzuki bean β-vignin protein.

Figure 7. Adzuki bean β-vignin sequence alignment. The amino acid sequence of the β-vignin of
adzuki (Vigna angularis Willd.), available at UniProt/TrEMBL, was aligned by using Clustal W 1.83
(PHAAN). The sequence of the soybean (SOYBN) homologous protein is also shown. Each complete
line shows 100 amino acid residues. Asterisks: identity; semicolon: conserved substitution; full
stop: semi-conserved substitution. N-glycosylation consensus sequences (NXS, T) are in bold and
underlined. High prediction signal peptide (Signal P 4.0 Server) of adzuki 7S globulin, confirmed by
N-terminal sequencing (see text), is italicized.

The amino acid sequence alignments of the adzuki bean β-vignin were conducted
(Figure 7). The primary sequences of the adzuki bean 7S globulin (β-vignin) were obtained
from NCBI and UniProtKB. The following entries were used: NCBI Blast: AB292246.1,
UniProtKB: A4PI98_PHAAN (7S-1 subunit), A4PI99_PHAAN (7S-2 subunit), and A4PIA0_
PHAAN (7S-3 subunit) for 7S adzuki globulin isoforms. The adzuki bean sequences
showed a high degree of identity that ranged from 95% to 98%. The prediction of N-
glycosylation was carried out by Net-N-Glyc, as available in the server at http://www.cbs.
dtu.dk/services/NetNGlyc/ (accessed on 1 February 2021). Notably, the three adzuki bean
sequences showed at least one N-glycosylation consensus sequence, namely, 344–346NAT,
according to the adzuki bean sequence numbering. One of the three adzuki sequences also

http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/
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showed another potential glycosylation sequence at 89–91NGT. The amino acid sequences
of soybean 7S globulins of the same family were used for comparative studies.

To test the metal interaction capability of the adzuki bean β-vignin protein, its binding
in metal affinity chromatography (Ni-NTA) was monitored. For this purpose, the TPE
of the adzuki bean were subjected to Ni-NTA column. The bound material was eluted
with imidazole, and subjected to SDS-PAGE under reducing conditions. As can be seen in
Figure 6A, the electrophoretic profiles of the Ni-NTA-bound material of the adzuki bean
were a complete match. Therefore, this confirmed the metal binding capacity of the adzuki
bean β-vignin. Similar results were shown with a cowpea bean β-vignin (Vigna unguiculata
L. Walp.) [33].

In addition, the calcium, magnesium, nickel, and zinc contents of the adzuki bean
isolated β-vignin were measured by ICP-MS. The ratios found in purified β-vignin are
mostly negligible, except for the calcium and magnesium ions. Indeed, the molar ratios of
each metal to protein monomer were 0.42, 0.15, 0.06, and 0.06, respectively. It cannot be
excluded that the purification treatments caused the partial loss of the bound ions, which
would give a very weak binding capacity. It is worth noting that the only 7S globulin of
the Vigna species [34] that was found to be able to bind ions is that from the adzuki bean,
which was shown to contain two calcium ion binding sites per subunit (PDB: 2EA7). This
finding confirms the affinity of the protein to this metal ion. The present results confirmed
that the globulin β-vignin is a metal ion binding protein, especially with respect to calcium
ions. This feature is identical to that of the soybean β-conglycinin, in particular, the α’
subunits [11], but not with the lupin 7S canonical globulin [7]. It is possible that minor
sequence differences or steric hindrance in the native globulin conformations give rise to
this peculiar behaviour.

In vitro protein digestibility values of β-vignin, TPE and flour, from adzuki bean seed
were lower than those of casein (Table 2). In particular, the flour displayed low digestibility
(70.5%). However, the values of in vitro digestibility reported by Carbonaro et al. (1997)
for the proteins of legumes such as bean (Phaseolus vulgaris L.), chickpea (Cicer arietinum
L.), lentil (Lens culinaris Medikus), and faba bean (Vicia faba L.) were 74%, 78%, 82%, and
83%, respectively [25]. Han et al. (2007) reported digestibility values for the proteins of
the species lentil (Lens culinaris), chickpea (Cicer arietinum L.), pea (Pisum sativum L.), and
soybean (Glycine max) that were between 72% and 83% [35].

Table 2. In vitro digestibility of β-vignin protein, TPE, and flour from adzuki bean seed.

Sample * Hydrolysis (%) Digestibility (%) ‡

β-vignin 89.25 ± 2.09b 92.18 ± 1.73b

Total protein extract (TPE) 81.94 ± 1.66c 84.63 ± 0.92c

Flour 68.23 ± 2.02d 70.47 ± 1,84d

Casein (standard) 96.82 ± 0.82a 100.00 ± 1.91a

* Values represent means ± standard deviation of tests performed in triplicate. Different superscript letters mean
statistical differences for P < 0.05 (ANOVA) by Turkey’s multiple-range test. ‡ Percentage relative to casein.

The greater digestibility of β-vignin protein (more than 92%) and TPE (84%) relative
to the flour protein (P < 0.05) suggest the presence of other natural components in the seed
that interact with proteins or enzymes and hinder the hydrolysis [23]. This is particularly
applicable for the albumin fraction, which may contain seed protease inhibitors [26]. This
would be expected in raw flours, but not in isolated and purified proteins from which
anti-nutritional factors have been removed during their isolation procedure, as observed in
our results (Table 2).

Finally, the possible anti-inflammatory property of purified β-vignin was investigated
by assessing the modulation of chemokine IL-8 expression in cultivated Caco-2 cells. This
cell line has been exploited for a range of studies aimed to elucidate the molecular mecha-
nisms of food-derived compounds which may be difficult to address in vivo. Applications
include the ability to elicit a reaction in response to pro-inflammatory stimuli [36]. In our
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case, inflammation was elicited using IL-1β, a pro-inflammatory cytokine that induces
the expression of, among others, TNF-α, IL-6, and IL8 by triggering the NF-κB signaling
pathway [33]. Cytokine IL-1 is able to stimulate IL-8 at both the mRNA and protein levels
in Caco-2 cells [37]. It was observed in IL-1 stimulated undifferentiated Caco-2 cells that
the effects of olive oil phenols on IL-8 mRNA mirrored those observed on IL-8 release [38].

Following incubation of β-vignin protein in the absence of IL-1β, NF-Kb activation
was found comparable to that of control cells (Figure 8). Thus, the protein themselves was
not able to stimulate inflammation responses. On the other hand, when the cells were
stimulated by IL-1β, the presence of β-vignin caused a decrease of NF-kB activation of
about 45%.

Figure 8. Inflammatory response of Caco-2 cells, assessed as IL-8 expression, elicited by treatment
with IL-1β alone and incubated with β-vignin, in presence (+) or in absence (-) of IL-1β. Response
to IL-1β alone was set as 100%. Mean value was significantly different: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001. See text for experimental details.

3. Materials and Methods
3.1. Plant Material and Reagents

Adzuki bean (Vigna angularis L.) seeds were kindly provided by the Centro Tecnológico
da Zona da Mata da Empresa de Pesquisa Agropecuária de Minas Gerais (Viçosa, Brazil).
The flour (not defatted) was prepared as previously described (Ferreira et al., 2018). All
chemicals (purity ≥ 95%) were purchased from Sigma Aldrich® (Saint Louis, MO, USA),
unless stated otherwise.

3.2. Chemical Composition

The moisture content (drying at 105 ◦C to constant weight) and protein (total nitrogen,
N × 5.70), lipid, ash (calcination of the sample in an oven at 550 ◦C), and total carbohydrate
(by difference) compositions of the adzuki bean seed flour were determined [39].

3.3. Protein Solubility

The protein solubility of the adzuki bean seed flour was evaluated over a wide pH
range (1.0–12.0). The total protein extract (TPE) was prepared by suspending 1 g of flour
(ratio 1:30 w/v) in distilled water. The 2 M NaOH or HCl solutions were used for adjusting
the pH. The slurry was then stirred for 30 min at room temperature, followed by centrifu-
gation (5800 g for 30 min.). The supernatant was used to determine the concentration
of soluble proteins [26]. The protein concentration was determined using bovine serum
albumin as the reference [40].



Int. J. Mol. Sci. 2021, 22, 3018 10 of 14

3.4. Protein Fractionation and Isolation of Raw β-vignin from Adzuki Seed

The adzuki bean β-vignin protein was isolated according to the novel and simplified
protocol shown in Figure 2. The dehulled adzuki bean seed flour was extracted twice
with 0.5 M NaCl at pH 7.5 in the ratio 1:30 (w/v). The resulting supernatant was diluted
5 fold with distilled water and kept overnight at 4 ◦C after pH adjustment to 5.0 with HCl
solution. Further centrifugation (12,000 g for 30 min) resulted in supernatant (albumins)
and precipitate (globulins). The obtained pellet was washed with distilled water, extracted
with 0.25 M NaCl at pH 5.3, and centrifuged resulting in precipitate (11S globulins) and
supernatant containing 2S and 7S globulins. Dilution of the supernatant 5 fold (v/v) in
distilled water, kept overnight at 4 ◦C after pH adjustment to 4.8 with HCl solution, allowed
the separation of the two classes of protein. The pellet is constituted by isolated β-vignin
(adzuki 7S globulin).

The residue from the first NaCl extraction was extracted three times with ethanol (70%),
and then with NaOH (1.0 M) to isolate the prolamin and glutelin fractions, respectively,
from the final residue. The protein extracted at each step was determined by the Kjeldahl
method using the conversion (N × 5.7) value [39].

3.5. Molecular Exclusion Chromatography

The isolated adzuki bean β-vignin protein was fractionated by molecular exclusion
chromatography as previously established [34], using a column packed with Sepharose®

CL-6B (100 × 2.5 cm) resin at a flow rate of 0.48 mL/min. The elution of the protein was
monitored by measuring UV absorbance at 280 nm.

3.6. Ion-Exchange Chromatography

The adzuki bean β-vignin protein that had been purified by molecular exclusion
chromatography was then further fractionated by ion-exchange chromatography on a
Mono Q™ column (5.0× 0.5 cm/cm), as previously established [34], using a linear gradient
of NaCl (0.01–0.5 M) for 40 min at a flow rate of 1 mL/min, while monitoring at 280 nm.

3.7. Molecular Weight Determination

The apparent molecular mass was estimated by size exclusion chromatography on a
Sephadex® G-200 column (50 cm × 2.5 cm), as previously established [26], at a flow rate of
0.58 mL/min at room temperature. The standard proteins used for column calibration were
ferritin (440 kDa), myosin (240 kDa), galactosidase (116 kDa), BSA (66 kDa), ovalbumin
(45 kDa), and cytochrome C (12.4 kDa) (Sigma-Aldrich®, Saint Louis, MO, USA). The
elution of proteins was monitored by measuring UV absorbance at 280 nm.

3.8. SDS-PAGE and IEF/SDS-PAGE

One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE) was con-
ducted using 12% polyacrylamide gels in the presence of 2% 2-mercaptoethanol [41] and
a Hoefer MiniVE electrophoresis system (Amersham Biosciences®, Hercules, CA, USA).
The following marker proteins of low molecular weight were used: rabbit muscle phos-
phorylase b (94 kDa), bovine serum albumin (66 kDa), hen egg white albumin (45 kDa),
bovine carbonic anhydrase (29 kDa), soybean trypsin inhibitor (21.5 kDa), and hen egg
white lysozyme (14.4 kDa) (GE Healthcare®, Little Chalfont, United Kingdom). Gel images
were analysed using the AlphaEase software (Alpha Innotech®, San Leandro, USA).

Two-dimensional gel electrophoresis (2D IEF/SDS-PAGE) was performed on the TPE
and the adzuki bean β-vignin. Adzuki bean flour (50 mg) was suspended in 1 mL of
solution (7 M urea, containing 5 µg 1,4-dithiothreitol). The suspension was stirred for
30 min at room temperature and then centrifuged at 10,000 g for 10 min. The supernatant
was diluted as follows: 20 µL of sample was added to 180 µL of redry solution (7 M urea,
2 M thiourea, 2% CHAPS, and 65 mM DTT). β-vignin protein was similarly prepared by
adding 125 µL of redry solution to 20 µg of protein. Isoelectric focusing (IEF) was performed
on 7 cm pH 3–10 nonlinear IPG strips, according to the manufacturer’s instructions using
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the Multiphor II electrophoresis unit (Amersham Biosciences®, Milan, Italy); the second
dimension was then performed as described previously for 1D SDS-PAGE.

3.9. In Vitro Digestibility

The in vitro digestibility was assessed using pepsin (P-7012, Sigma-Aldrich®, Saint
Louis, MO, USA) and pancreatin (P-7545, Sigma-Aldrich®, Saint Louis, MO, USA) in
sequence, and incubated at 37 ◦C for 3 h and 24 h, respectively [42]. The reaction was
stopped by adding 10% trichloroacetic acid, and then centrifuged (15,000 g for 15 min.).
The amino-free groups in the supernatant were quantified by the reaction with 2,4,6-
trinitrobenzenesulfonic acid (TNBS method) [43]. The amino acid L-leucine (0–100 nM)
was used for the reference curve. The degree of hydrolysis (%DH) values were calculated
as the percentage of free amino acids, expressed as micromoles of L-leucine, to the total
micromoles of amino acids present in the original sample, using the following formula:
%DH = [AAs − (AAba + AAbe)/AAtm] × 100, where AAs is the concentration of amino
acid in the aliquot; AAba is the concentration of amino acid in the protein blank; AAbe is
the concentration of amino acid in the enzyme black; and AAtc is the total concentration of
amino acid in the aliquot. The in vitro digestibility was calculated by comparing the %DH
of each sample to casein (C-8654, Sigma-Aldrich®, Saint Louis, MO, USA), which was used
as the reference, under the same conditions.

3.10. Detection of N-glycosylated Polypeptides by Concanavalin A (ConA)

Proteins separated by 1D SDS-PAGE were electrophoretically transferred to a nitro-
cellulose membrane using a mini Trans-blot Transfer Cell (Bio-Rad, Hercules, CA, USA).
The blotted membranes were used to detect glycol-polypeptides by the ConA/peroxidase
method [44].

3.11. N-Terminal Amino Acid Sequencing

After the proteins were separated by 1D SDS-PAGE, they were transferred to PVDF
membranes by blotting on a Trans-blot Electrophoretic Transfer Cell (Bio-Rad, Milan,
Italy), and the selected protein bands were excised and submitted for direct N-terminal
amino acid sequencing. Automated Edman degradation was performed on a pulsed-liquid
sequencer equipped with a PTH analyser (Procise model 491, Applied Biosystems®, Foster
City, CA, USA).

3.12. Inductively Coupled Plasma/Mass Spectrometry (ICP-MS) for Globulin Metal Content

ICP-MS analysis (Aurorar® M90 ICP-MS, Bruker, Bremen, Germany) was performed
as previously established [45]. Briefly, the samples (about 0.2 g) were digested by a
microwave digestion system (Multiwave-Eco®, Anton Paar, Rivoli, Italy) in Teflon® tubes
filled with 10 mL of 65% HNO3 by applying a two-step power ramp (Step 1: ramp to 200 W
in 10 min, maintained for 5 min; Step 2: ramp to 650 W in 10 min, maintain for 15 min). In
the mineralised sample, the concentrations of Mg, Ca, Ni, and Zn were measured. Typical
analysis interferences were removed by using the collision-reaction interface at a H2 flow
rate of 65 mL/min through the skimmer cone.

3.13. Immobilised Metal Affinity Chromatography

Immobilised metal affinity chromatography separation was carried out on a Ni-NTA-
agarose (Qiagen®, Milan, Italy) column (1.8 cm × 5.0 cm). The TPE was prepared by
suspending 2 g of flour (ratio 1:20 w/v) in (hydroxymethyl)aminomethane buffer (50 mM
Tris-HCl, pH 7.5) containing NaCl (0.5 M). The slurries were stirred for 30 min at room
temperature, and then centrifuged (12,000 g for 30 min.). Approximately 20 mg of the TPE
was applied to the Ni-NTA-agarose column, which was equilibrated with the same buffer.
The unbound material was removed by washing the column volume with the buffer at
least five times. Thereafter, the bound material was eluted with the same buffer containing
imidazole (0.1 M).
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3.14. IL-8 Expression in Caco-2 Cells

Caco-2 cells were cultivated as previously described [46] and were seeded in 12-
multiwell plates. The experiments were initiated on day 3 after cells reached confluence.
Caco-2 cells were treated with 1 mg/mL of β-vignin for 1 h in the presence or absence of
IL-1β (5 ng/mL) in the complete medium. Effects of the different molecules on inflamma-
tion were expressed as fold change in target genes expression relatively to the untreated
control sample. qPCR was carried out as described in Capraro et al. [46]. Primers for
amplification of IL-8 expressed gene were: 5-ATGACTTCCAAGCTGGCCGTGGCT-3 and
5-TCTCAGCCCTCTTCAAAAACTTCTC-3. The GAPDH reference gene was amplified with
the primer pair: 5-GGAAGGTGAAGGTCGGAGTC-3 and 5-CACAAGCTTCCCGTTCTCAG-
3. Each individual treatment was performed in triplicate.

3.15. Statistical Analysis

The means of the results were evaluated with one-way analysis of variance (ANOVA);
for multiple comparison, Turkey’s test was used (SigmaStat®, v. 3.5, Systat software, CA,
USA). The significance level was P ≤ 0.05. All results were expressed as mean ± standard
deviation of at least three independent analyses.

4. Conclusions

In this study, a simplified enrichment procedure of the adzuki bean β-vignin protein
with purity degree over 90% has been optimized and described. The method allows for
large-scale protein preparation suitable for nutraceutical and other biotech applications.

In addition, data about the molecular features of β-vignin will enhance the information
available for the adzuki bean protein fraction. Our molecular characterization showed
that 81% of the total proteins present in the adzuki bean flour can be solubilized and
recovered, of which the globulins represent the major fraction. The in vitro digestibility
of the raw TPE and β-vignin was over 80% and 92%, respectively. β-vignin displayed a
theoretical molecular size value of 147 kDa, according to densitometric analysis, which was
confirmed by chromatographic techniques. The apparent Mr of the purified β-vignin was
consistent with the widely acknowledged trimeric structure, which consists of two main
bands (approximately 56 kDa and 54 kDa) that are both glycosylated polypeptide chains
and one minor band of 37 kDa, in which this feature is absent. The protein presents a metal
binding capacity. Interestingly, purified β-vignin showed anti-inflammatory properties
when tested in cellular studies.

Finally, the information herein can lead to further investigation of the functional and
nutritional properties of the adzuki bean β-vignin protein.
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Abbreviations

TPE Total protein extract
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel
IEF Isoelectric focusing
DTT Dithiothreitol
TNBS 2,4,6-trinitrobenzenesulfonic acid
DH Degree of hydrolysis
PVDF Polyvinylidene difluoride
Ni-NTA Nickel-charged affinity resin
Net-N-Glyc N-Glycosylation sites
NCBI National Center for Biotechnology Information
ConA Concanavalin A
PDB Protein Data Bank
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