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Abstract

A sequence in a separable Banach space X ⟨resp. in the dual space X∗⟩ is said
overcomplete (OC in short) ⟨resp. overtotal (OT in short) on X⟩ whenever the
linear span of each subsequence is dense in X ⟨resp. each subsequence is total on
X⟩. A sequence in a separable Banach space X ⟨resp. in the dual space X∗⟩ is
said almost overcomplete (AOC in short) ⟨resp. almost overtotal (AOT in short)
on X⟩ whenever the closed linear span of each subsequence has finite codimension
in X ⟨resp. the annihilator (in X) of each subsequence has finite dimension⟩. We
provide information about the structure of such sequences. In particular it can
happen that, an AOC ⟨resp. AOT⟩ given sequence admits countably many not
nested subsequences such that the only subspace contained in the closed linear span
of every of such subsequences is the trivial one ⟨resp. the closure of the linear
span of the union of the annihilators in X of such subsequences is the whole X⟩.
Moreover, any AOC sequence {xn}n∈N contains some subsequence {xnj}j∈N that is
OC in [{xnj}j∈N]; any AOT sequence {fn}n∈N contains some subsequence {fnj}j∈N
that is OT on any subspace of X complemented to {fnj}⊤j∈N.

0Research of the first author was supported in part by Israel Science Foundation, Grant # 209/09 and
by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
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1 Introduction

Throughout the paper we use standard Geometry of Banach Spaces terminology and
notation as in [3]. In particular:

- [S] stands for the closure of the linear span of the set S;
- the annihilator in X∗ of a subset Γ of the Banach space X is the subspace Γ⊥ ⊂ X∗

whose members are the bounded linear functionals on X that vanish on Γ;
- the annihilator in X of a subset Γ of the dual space X∗ is the subspace Γ⊤ ⊂ X, Γ⊤ =

∩f∈Γker f ;
- a set Γ ⊂ X∗ is called total over X whenever Γ⊤ = {0}.

Recall that a sequence in a Banach space X is called overcomplete (OC in short) in
X whenever the linear span of each of its subsequences is dense in X. It is a well-known
fact that overcomplete sequences exist in any separable Banach space. On the basis of
this notion, in [1] the first and the fourth authors introduced the following new notions.

- A sequence in a Banach space X is called almost overcomplete (AOC in short)
whenever the closed linear span of each of its subsequences has finite codimension in X.

- A sequence in the dual space X∗ of the Banach space X is called overtotal on X (OT
in short) whenever each of its subsequences is total over X.

- A sequence in the dual space X∗ of the Banach space X is called almost overtotal
(AOT in short) on X whenever the annihilator (in X) of each of its subsequences has
finite dimension.

In [1] some applications have been shown to support the usefulness of these notions.
For instance, the fact that bounded AOC as well as AOT sequences must be strongly rela-
tively compact makes it possible to answer quickly in the positive the following questions.

- Must any infinite-dimensional closed subspace of l∞ contain infinitely many linearly
independent elements with infinitely many zero-coordinates? (R. Aron and V.Gurariy,
2003; see Theorem 3.2 in [1].)

- Let X ⊂ C(K) be an infinite-dimensional subspace of C(K) where K is metric
compact. Must a (infinite) sequence {tk}k∈N exist in K such that x(tk) = 0 for infinitely
many linearly independent x ∈ X? (See Theorem 3.1 in [1].)

This paper is a continuation of [1].
Our first aim is to provide information about the structure ofAOC and AOT sequences.

In particular, for any separable Banach space X the following questions seem to be of
interest.
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- Does an AOC sequence exist in X that admits countably many subsequences such
that the intersection of their closed linear spans is the origin?

- Does an AOT sequence exist on X that admits countably many subsequences such
that the closure of the linear span of the union of their annihilators in X is the whole X?

We answer in the positive both of them, respectively in Section 2 (Proposition 2.3)
and Section 3 (Propositions 3.1). It is a remarkable fact that, in both cases, the involved
subsequences cannot be nested (Propositions 2.5 and 3.3).

Our second aim is to give a possible explanation for the following fact. As a con-
sequence of Theorem 3.3 of [1], by using strong relative compactness of bounded AOT
sequences we get e. g., as a special case, that any infinite-dimensional closed subspace of
lp contains infinitely many elements with infinitely many zero-coordinates not only when
p = ∞, as we mentioned at the beginning, but for any p ≥ 1. However, the case p < ∞
looks much more complicated to be handled than the case p = ∞. In Section 4 we provide
an example to show one possible reason for that.

We refer to [1] for general information about AOC and AOT sequences. Here we point
out only the evident fact that, if {(xn, x

∗
n)} is a countable biorthogonal system, then

neither {xn} can be almost overcomplete in [{xn}], nor {x∗
n} can be almost overtotal on

[{xn}].

2 Almost overcomplete sequences

We start by recalling a simple method, due to Ju. Lyubich, to get an overcomplete
sequence in any separable Banach space X. We will use it in the proof of Proposition 2.3.

Fact 2.1 Let {ek}k∈N be any bounded sequence such that [{ek}k∈N] = X. Then the se-
quence

{ym}∞m=2 = {
∞∑
k=1

ekm
−k}∞m=2

is OC in X.

Proof Let {ymj
}∞j=1 be any subsequence of {ym}∞m=2 = {

∑∞
k=1 ekm

−k}∞m=2, let

f ∈ X∗ ∩ {ymj
}⊥ (1)

4



and let D be the open unit disk in the complex field. Since the complex function ϕ :
D → C defined by ϕ(t) =

∑∞
k=1 f(ek)t

k is holomorphic, from f(ymj
) = ϕ(1/mj) = 0 for

j = 1, 2, ..., it follows ϕ ≡ 0 that forces f(ek) = 0 for every k ∈ N. Since f in (1) was
arbitrarily chosen, it follows [{ymj

}] = X. �

Remark 2.2 A formally different, but substantially equivalent, technique can be used
to prove Fact 2.1: see for example the proof of Theorem 2.1.2 in [2]. We will use such
technique in the second part of the proof of Proposition 2.3.

Proposition 2.3 Any (infinite-dimensional) separable Banach space X contains an AOC
sequence {xn}n∈N with the following property: for each i ∈ N, {xn}n∈N admits a subse-
quence, that we denote by {xi

j}j∈N to lighten notation, such that both the following condi-
tions are satisfied

a) codimX [{xi
j}j∈N] = i;

b)
∩

i∈N[{xi
j}j∈N] = {0}.

Proof Let the biorthogonal system {ek, e∗k}k∈N ⊂ X ×X∗ provide a normalized M-basis
for X. We recall that, by definition, the sequence {e∗k}k∈N must be total on X. Moreover,
it is a well known fact that, at least when A is a finite subset of N, a (topological)
complement in X to the subspace [{ek}k∈A] is the subspace [{ek}k∈N\A]. For i = 1, 2, ...
put

Yi = [{ek}k/∈{i,i+1,i+2,...,2i−1}] (2)

so codimXYi = i. For each integer i ∈ N, Yi is a Banach space itself so, by Fact 2.1, the
sequence {yim}m≥2 ⊂ Yi defined by

yim =
∞∑

k=1,k /∈{i,i+1,i+2,...,2i−1}

m−ikek i = 1, 2, ..., m = 2, 3, ... (3)

provides an OC sequence in Yi.
Order in any way the countable set ∪i∈N,m≥2{yim} as a sequence {xn}n∈N. For each

i, select a subsequence {xi
p}p∈N of {xn}n∈N whose terms belong to {yim}m≥2: this last

sequence being OC in Yi, we have codimX [{xi
p}p∈N] = codimXYi = i. Moreover, since the

sequence {e∗k}k∈N is total on X, it is clear that ∩∞
i=1Yi = {0}, so ∩∞

i=1[{xi
p}p∈N] = {0} too.

It remains to show that the sequence {xn}n∈N is AOC in X. Let {xnj
}j∈N be any of

its subsequences. Two cases are possible.

A) For some i, {xnj
}j∈N contains infinitely many terms from {yim}m≥2: being {yim}m≥2

OC in Yi, we have codimX [{xnj
}j∈N] ≤ codimXYi = i and we are done.
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B) For each i, {xnj
}j∈N contains at most finitely many terms from {yim}m≥2. Take

any
f ∈ {xnj

}⊥j∈N. (4)

We prove that f(ek) = 0 for every k ∈ N: it implies f = 0, that means that {xnj
}j∈N is

complete in X.
Suppose by contradiction that f(ek) ̸= 0 for some index k: without loss of generality

we may assume that k is the first of such indexes. For j ∈ N, let

y
i(j)
m(j) = xnj

;

put
A = {i : i = i(j), j ∈ N, i(j) > k}.

Under our assumption i(j) goes to infinity with j, so A is infinite and we have ek ∈ Yi for
every i ∈ A. For i ∈ A, put

mi = min{m(j) : i(j) = i, y
i(j)
m(j) ∈ {yim}m≥2}.

From (4) it follows that, for each i ∈ A, we have

f(ek) = −mik
i

∞∑
k>k, k/∈{i,i+1,i+2,...,2i−1}

m−ik
i f(ek) (5)

hence

|f(ek)| ≤ mik
i ∥f∥

∞∑
k>k, k/∈{i,i+1,i+2,...,2−1}

m−ik
i ≤ (6)

≤ ∥f∥
∞∑

k=k+1

m
i(k−k)
i ≤ 2∥f∥m−i

i → 0 as i → ∞

that forces f(ek) = 0, so contradicting our assumption. We are done. �

Our construction above can be modified by replacing (2) with

Yi = [{ek}k ̸=i] (7)

and modifying (3), (5) and (6) according to that. In this case it is still true that∩
[{xnj

}j∈N] = {0} as {xnj
}j∈N ranges among all possible subsequences of the AOC se-

quence {xn}n∈N, but actually the codimension of the closure of the linear span of any
subsequence is at most 1. In other words, the following alternative version to Proposition
2.3 holds.
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Proposition 2.4 Any (infinite-dimensional) separable Banach space X contains an AOC
sequence {xn}n∈N with the following property: {xn}n∈N admits countably many subse-
quences {xi

j}j∈N, i = 1, 2, ..., such that both the following conditions are satisfied
a) codimX [{xi

j}j∈N] = 1 for each i;
b)

∩
i∈N[{xi

j}j∈N] = {0}.

By the previous Proposition, it is matter of evidence that actually the conclusion∩
i∈N[{xi

j}j∈N] = {0} is due to the fact that infinitely many pairwise “skew” subsequences
can be found of {xn}n∈N. This consideration is stressed by the following proposition.

Proposition 2.5 Let {xn}n∈N be any AOC sequence in any (infinite-dimensional) sepa-
rable Banach space X and let {x1

j}j∈N ⊃ {x2
j}j∈N ⊃ {x3

j}j∈N ⊃ ... any countable family of
nested subsequences of {xn}n∈N. Then the increasing sequence of integers {codimX [{xi

j}j∈N]}i∈N
is finite (so eventually constant).

Proof. Let {xn}n∈N be an AOC not OC sequence in X and let {x1
j}j∈N be any of its

subsequences whose linear span is not dense in X. Put

X1 = [{x1
j}j∈N], p1 = codimXX1 ≥ 1.

If {x1
j}j∈N is OC in X1 we are done; otherwise, let {x1

jk
}k∈N be any of its subsequences

whose linear span is not dense in X1. Put

{x1
jk
}k∈N = {x2

j}j∈N, X2 = [{x2
j}j∈N], p2 = codimXX2 > p1.

Now we can continue in this way. Let us prove that this process must stop after finitely
many steps. Assume the contrary, i.e. that a nested infinite family

{x1
j}j∈N ⊃ {x2

j}j∈N ⊃ ... ⊃ {xi
j}j∈N ⊃ ...

of subsequences of {xn}n∈N can be found such that pi ↑ ∞ as i ↑ ∞, where pi = codimXXi

with Xi = [{xi
j}j∈N].

Under this assumption, we can construct a linearly independent sequence {fi}∞i=1 ⊂ X∗

such that, for each i, fi ∈ X⊥
i+1 \ X⊥

i . For each i, let yi be an element of the sequence
{xi

j}j∈N not belonging to the sequence {xi+1
j }j∈N such that fi(yi) ̸= 0 (of course such

an element must exist): because of our construction we have fk(yi) = 0 for each k < i.
Without loss of generality we may assume fi(yi) = 1.

Now, following a standard procedure due to Markushevich, put

g1 = f1, g2 = f2 − f2(y1)g1, g3 = f3 − f3(y1)g1 − f3(y2)g2, ...
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..., gk = fk −
k−1∑
i=1

fk(yi)gi, ... .

Clearly we have gk(yi) = δk,i for each k, i ∈ N, so actually {yk, gk}k∈N is a biorthogonal
system with {yk}k∈N ⊂ {xn}n∈N. This is a contradiction since {xn}n∈N was an AOC
sequence. �

As an immediate consequence of Proposition 2.5 we get the following

Corollary 2.6 Any AOC sequence {xn}n∈N in a separable Banach space X contains some
subsequence {xnj

}j∈N that is OC in [{xnj
}j∈N] (with, of course, [{xnj

}j∈N] of finite codi-
mension in X).

3 Almost overtotal sequences

The results shown in the previous section about AOC sequences have a dual restatement
for AOT sequences.

Proposition 3.1 Let X be any (infinite-dimensional) separable Banach space. Then
there is a sequence {fn}n∈N ⊂ X∗ that is AOT on X and, for each i ∈ N, admits a
subsequence {f i

j}j∈N such that both the following conditions are satisfied
a) dim{f i

j}⊤j∈N = i;

b) [
∪

i∈N{f i
j}⊤j∈N] = X.

Proof The idea for the proof is the same as for the proof of Proposition 2.3, so we confine
ourselves to sketch the fundamental steps.

Let the biorthogonal system {ek, e∗k}k∈N ⊂ X × X∗ provide an M-basis for X with
{e∗k}k∈N a norm-one sequence in X∗. For i = 1, 2, ... put

Zi = [{ek}2i−1
k=i ], Yi = [{ek}k/∈{i,i+1,i+2,...,2i−1}],

∗Yi = [{e∗k}k/∈{i,i+1,i+2,...,2i−1}].

Clearly X = Zi⊕Yi and
∗Y ⊤

i = Zi, so dim ∗Y ⊤
i = i for i = 1, 2, ... . For each integer i ∈ N,

the sequence {y∗im}m≥2 ⊂ ∗Yi defined by

y∗im =
∞∑

k=1,k /∈{i,i+1,i+2,...,2i−1}

m−ike∗k i = 1, 2, ..., m = 2, 3, ...
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being overcomplete in the Banach space ∗Yi, is overtotal on Yi.
Order in any way the countable set ∪i∈N,m≥2{y∗im} as a sequence {fn}n∈N. For each i,

select a subsequence {f i
p}p∈N of {fn}n∈N whose terms belong to {y∗im}m≥2: since this last

sequence is overtotal on Yi, we have {f i
p}⊤p∈N = Zi too, so dim{f i

p}⊤p∈N = i. Moreover, since
the sequence {ek}k∈N is complete in X, we have [∪∞

i=1Zi] = X.
It remains to show that the sequence {fn}n∈N is AOT on X. Let {fnj

}j∈N be any of
its subsequences. Two cases are possible.

A) For some i, {fnj
}j∈N contains infinitely many terms from {y∗im}m≥2: being {y∗im}m≥2

OT on Yi, we have {fnj
}⊤j∈N ⊂ Zi, dim{fnj

}⊤j∈N ≤ i and we are done.

B) For each i, {fnj
}j∈N contains at most finitely many terms from {y∗im}m≥2. Take

any x ∈ {fnj
}⊤j∈N: by proceeding exactly as in B) of the proof of Proposition 2.3, just

interchanging the roles of points and functionals, we get e∗k(x) = 0 for every k ∈ N.
{e∗k}k∈N being total on X, it follows x = 0. It means that {fnj

}j∈N too is total on X and
again we are done.

The proof is complete. �

As we did for AOC sequences, with obvious modifications in the previous proof we
can obtain for AOT sequences the following alternative version to Proposition 3.1: it is
the dual version to Proposition 2.4.

Proposition 3.2 Let X be any (infinite-dimensional) separable Banach space. Then
there is a sequence {fn}n∈N ⊂ X∗ that is AOT on X and admits countably many subse-
quences {f i

j}j∈N, i = 1, 2, ..., such that both the following conditions are satisfied
a) dim{f i

j}⊤j∈N = 1 for each i;

b) [
∪

i∈N{f i
j}⊤j∈N] = X.

We point out that, though the existence of an AOT sequence on a Banach space X
does not imply X to be separable (one of the significant applications of this concept we
have shown in [1] was to the space l∞), the results we have shown in Propositions 3.1 and
3.2, as they have been stated, must concern only separable spaces. In fact, the annihilator
of any subsequence of any AOT sequence being finite-dimensional, the closed linear span
of the union of countably many of such annihilators must be separable too.

Finally we notice that also Proposition 2.5 has its dual version that shows that the
countably many subsequences in the statement of Proposition 3.2 cannot be assumed to
be nested. The proof can be carried on exactly like the proof of Proposition 2.5, just
interchanging the roles of points and functionals, so we omit it.
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Proposition 3.3 Let {fn}n∈N be any sequence AOT on any (infinite-dimensional) Ba-
nach space X and let {f1

j }j∈N ⊃ {f 2
j }j∈N ⊃ {f 3

j }j∈N ⊃ ... any countable family of nested
subsequences of {fn}n∈N. Then the increasing sequence of integers {dim{f i

j}⊤j∈N}i∈N is
finite (so eventually constant).

As an immediate consequence of Proposition 3.3 we get the following

Corollary 3.4 Any AOT sequence {fn}n∈N on a Banach space X contains some subse-
quence {fnj

}j∈N that is OT on any subspace of X complemented to {fnj
}⊤j∈N (with, of

course, {fnj
}⊤j∈N of finite dimension).

4 A counterexample on compact operators

This Section is devoted to provide an example that may be of interest in Operator theory.
In [1] it was proved e. g. that any infinite-dimensional closed subspace of lp contain
infinitely many elements with infinitely many zero-coordinates not only when p = ∞,
as we mentioned at the beginning, but for any p ≥ 1. In fact the following much more
general results have been proved there.

Theorem 4.1 ([1], Theorem 3.2) Let X be a separable infinite-dimensional Banach space
and T : X → l∞ be a one-to-one bounded non compact linear operator. Then there exist an
infinite-dimensional subspace Y ⊂ X and a strictly increasing sequence {nk} of integers
such that enk

(Ty) = 0 for any y ∈ Y and for any k (en the “n-coordinate functional” on
l∞).

Theorem 4.2 ([1], Theorem 3.3) Let X, Y be infinite-dimensional Banach spaces. Let
Y have an unconditional basis {ui}∞i=1 with {ei}∞i=1 as the sequence of the associated coor-
dinate functionals. Let T : X → Y be a one-to-one bounded non compact linear operator.
Then there exist an infinite-dimensional subspace Z ⊂ X and a strictly increasing se-
quence {kl} of integers such that ekl(Tz) = 0 for any z ∈ Z and any l ∈ N.

To prove both the Theorems, the fundamental tool was the fact that bounded AOT
sequences are strongly relatively compact ([1], Theorem 2.3). However, despite Theorem
4.1 was then obtained as a quite easy consequence of the Ascoli-Arzelà Theorem, the
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proof of Theorem 4.2 has required some additional delicate tools. One could expect that
Theorem 4.2 should be proved in a simple way by the following argument.

“Under notation as in the statement of Theorem 4.2, assume by contradiction that for
each sequence of integers {ij} we have dim({T ∗eij}⊤) < ∞. Then the sequence {T ∗ei} ⊂
X∗ is almost overtotal on X, so {T ∗ei} is relatively norm-compact in X∗. {ei} being the
sequence of the coordinate functionals associated to the (unconditional) basis {ui} of Y ,
that forces T to be a compact operator, contradicting our assumption.”

In fact this argument does not work since the last conclusion T being forced to be
compact is false, as the following example shows.

Example 4.3 There exist a Banach space Y with an unconditional basis {ui}i∈N, {ei}i∈N
being the sequence of the associated coordinate functionals, and a non-compact operator
T : c0 → Y such that T ∗ei → 0 as i → ∞ (so the sequence {T ∗ei} is relatively norm
compact).

Proof. Let {uk
i }ki=1 be the natural (algebraic) basis of Rk. For k ∈ N, define

Tk : Rk → Rk in the following way

Tk(
k∑

i=1

aiu
k
i ) =

k∑
i=1

aiu
k
i /k, ai ∈ R for i = 1, ..., k.

Let lk∞ ⟨ resp. lk1 ⟩ be the k−dimensional space Rk endowed with the max-norm ⟨resp.
the 1-norm⟩. If we consider Tk : l

k
∞ → lk1 , we easily get ∥Tk∥ = 1 for every k ∈ N.

For a sequence {Xk, ∥·∥Xk
}∞k=1 of Banach spaces, consider the Banach space (⊕∞

k=1Xk)c0
(the linear space, under the usual algebraic operations, whose elements are the sequences
{xk}∞k=1, xk ∈ Xk for each k, such that ∥xk∥Xk

→ 0 as k → ∞, endowed with the norm
∥{xk}∞k=1∥ = maxk ∥xk∥Xk

).

Clearly we have

c0 = (⊕∞
k=1l

k
∞)c0 . (8)

Put
Y = (⊕∞

k=1l
k
1)c0 .

Order the set ∪∞
k=1{uk

i }ki=1 in the natural way and rename it as

{u1
1, u

2
1, u

2
2, ..., u

k
1, ..., u

k
k, ...} = {u1, u2, u3, ...}. (9)
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Of course {ui}∞i=1 is an unconditional basis both for c0 and for Y . Call Pk the natural
norm-one projection of c0 onto lk∞ suggested by (8) and define T : c0 → Y in the following
way

Tx =
∞∑
i=0

TkPkx, x ∈ c0.

T is a (linear) non-compact operator, since ∥T (
∑k

i=1 u
k
i )∥ = 1 and

∑k
i=1 u

k
i is weakly

null as k → ∞. However, if we denote by {ei}∞i=1 the sequence of the coordinate functionals
associated to the basis {ui}∞i=1 of Y , it is true that T ∗ei → 0 in X∗ as i → ∞. In fact, for
x =

∑∞
k=1

∑k
j=1 x

k
ju

k
j ∈ Bc0 the following holds

|xk
j | ≤ 1 1 ≤ j ≤ k, k = 1, 2, ...

so, if we denote by uki
ji

the element ui as identified by (9), we have

|(T ∗ei)(x)| = |ei(Tx)| = |ei(
∞∑
k=1

k∑
j=1

xk
ju

k
j/k)| = |xki

ji
|/ki ≤ 1/ki.

Since ki → ∞ with i, we are done. �
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