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Abstract

The PhysioNet 2020 Challenge focused on the auto-
matic classification of 27 cardiac abnormalities (CAs)
from 12-lead ECG signals. We investigated on a hy-
brid approach, combining average-template-based algo-
rithms with deep neural networks (DNNs), to build an en-
semble classification model. We calibrated the model on
the available 40,000+ ECGs, while organizers tested the
model on a private test set. Standard ECG preprocess-
ing was applied. For ECGs related to CAs altering the
ECG morphology, multi-lead average P, QRS, and T seg-
ments were computed. For signals associated with irregu-
lar rhythms, time dependent features were computed. The
ensemble model comprised of: i) three DNNs to classify
morphology-related CAs. ii) a fully connected neural net-
work to classify irregular rhythm; and iii) a threshold-
based classifier for premature ventricular beat detection.
The organizers designed a score for ranking the models.
The ensemble model proposed by our team “BiSP Lab”
reached the 40th position, and obtained a score of -0.179
on the private test set. Despite the low performance ob-
tained on the private test set, our ensemble model showed
potential for classification of CAs from ECGs.

1. Introduction

The 12-lead clinical ECG is a fundamental diagnostic
tool for detecting many cardiac abnormalities (CAs) [1],
such as cardiac arrhythmias, myocardial infarction, car-
diac axis deviation etc. The reliable and automatic detec-
tion and correct diagnosis of CAs can largely increase the
odds that the treatments become successful [2]. However,
the majority of the algorithms available both commercially
and in the literature tackles the diagnosis of a relatively
small amount of cardiac conditions. Thus, to cover up
for their actual vast amount, many algorithms need to be
implemented and integrated, with the hassle of merging
all their predictions. This complexity might represent one
of the main factor for a reduced performance observed in
computerized ECG analysis [2].

A similar problem already occurred in the Computer Vi-
sion domain where the implementation of dedicated al-

gorithms for the automatic classification of thousands of
classes became unfeasible. In addition, in case the problem
formulation would change, for instance by adding a new
class, all algorithms would require a very delicate time-
consuming phase of re-calibration. In this context, deep
neural networks (DNNs) tackle the problem using a single
mathematical model more flexible to changes and easier
to update in case new data become available. However,
DNNs require a very large amount of data to perform a
proper calibration (a.k.a., training) for achieving a reliable
performance.

In the context ECG classification, only several studies
investigated the use of DNNs obtaining promising results.
Of note, Ribeiro et al. [3] proposed a DNN, trained with
>2,000,000 12-lead ECGs, to classify among 7 different
classes. Hannun et al. [4] created a DNN using >95,000
single lead ECG for detecting 12 different arrhythmias.

The PhysioNet Computing in Cardiology 2020 Chal-
lenge asked to identify 27 different CAs from 12-lead ECG
recordings, by means of an automatic algorithm [5]. Orga-
nizers provided a dataset containing about 40,000 record-
ings of clinical ECGs, collected from multiple sources,
along with their diagnosis. Requested diagnoses could
be categorized as affecting the ECG morphology or the
rhythm or both. The problem formulation fitted well in
the supervised Machine Learning domain, specifically as a
multi-class classification problem.

In this study, considering the limited sample size pro-
vided, we designed a machine learning algorithm based
on an ensemble of four classification models, specifically
trained to detect different subsets of CAs. Then, the pre-
dictions of each model were concatenated to provide the
requested output.

2. Materials and Methods

2.1. Dataset

The dataset provided for the challenge contained 12-
lead clinical ECG signals in WFDB format, labeled with
one or more CAs, among 111 possible ones, in SNOMED-
CT codes [5]. The dataset was obtained merging data
from the following sources: i) Southeast University, in-
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Figure 1: Example of average 12-lead PQRST template for sinus rhythm (blue line) and left bundle branch block (red line).

cluding the data from the China Physiological Signal Chal-
lenge 2018; ii) St. Petersburg Institute of Cardiological
Technics; iii) The Physikalisch Technische Bundesanstalt;
and iv) Georgia 12-Lead ECG Challenge Database. ECG
recordings lasted from 6 seconds to 30 minutes and sam-
pling rates ranged from 257 Hz to 1000 Hz, where the ma-
jority was sampled at 500 Hz. A total number of 43101
ECG signals was available where each was characterized
by 111 possible classes. We only used the dataset provided
for the challenge.

A private test set handled by the challenge organizers
was used for evaluating the algorithms proposed by the
participants.

2.2. Preprocessing and feature extraction

ECG signals were downsampled or upsampled to 500
Hz according to their actual sampling rate and filtered with
a bandpass Butterworth filter (3rd order, zero phase, and
pass-band: 0.67–30 Hz) to reduce powerline interference,
baseline wandering and high frequency noise. Only the
first 1 minute segment (or less, depending on the signal) of
each ECG was further processed.

Beats were detected on the vector magnitude1 (VM) us-
ing the gqrs algorithm [6] and beat positions were refined
using the Woody algorithm applied to the VM [7]. Signal
quality was assessed computing the average crosscorrela-
tion between each QRS complex and an average QRS tem-
plate. ECGs were further considered only when the signal
quality was higher than 0.9 for each lead. After quality
check, 4752 signals were detected as bad quality and dis-
carded from the dataset.

Depending on the CA to detect, we processed the ECG
signals differently. First, given the fact that CAs altering
the ECG morphology were not transient, we created an av-
erage PQRS template, i.e., from R peak -260 ms to R+370

1Square root of the sum of the squared ECG leads

ms, for each lead that were concatenated afterwards. Fig-
ure 1 reports two examples of such concatenated vector.
Second, for the rhythm-related CAs, from the inter-beat
time interval series (RR), we extracted the following fea-
tures: RR median, RR standard deviation, RR minimum
distance, RR maximum distance, and root mean square
of successive differences of RR. Third, for detecting Pre-
mature Ventricular Contractions (PVCs), we computed the
maximum amplitude on the VM signal.

2.3. The ensemble model

We designed an ensemble model comprising of four
neural networks and a threshold-based classifier. Figure
2 reports the complete scheme of the ensemble model.

Three convolutional neural networks (CNNs), i.e.,
P−CNN, QRS−CNN and T−CNN, were designed to clas-
sify CAs altering the morphology of the P, QRS and T
segments, respectively. Each network classified different
classes:
• P−CNN classified I-AVB and LPR;
• QRS−CNN classified CRBBB, IRBBB, LAnFB, LAD,
LBBB, LQRSV, NSIVCB, QAb, RAD and RBBB;
• T−CNN classified LQT, TAb, and TInv.

The input features of the three CNNs were the respec-
tive concatenated P, QRS and T average segments taken
from each lead of the average beat. Specifically, P seg-
ments spanned in the range (R-260 ms, R-150 ms), QRS
complexes were taken in the range (R-50 ms, R+50 ms)
and T segments ranged in (R+100 ms, R+370 ms).

Each CNN comprised of one or more convolutional
layer, a fully connected layer and an output layer whose
dimension depended on the number of classes to classify.
The structure of the three CNNs is shown in Fig. 3.

A feed-forward neural network (FFNN) was designed
to classify the CAs related to irregular rhythms (here-
after, named as Rhythm−NN). The classes were AF, AFL,
Brady, PR, PAC, SA, SB, STach, and SVPB. The input
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Figure 2: Scheme of the ensemble model.

features were those extracted from the RR series (see sec.
2.2). The network had two hidden layers with 64 and 32
neurons, respectively, and an output layer with 9 neurons,
equivalent to the number of rhythm classes.

ECG containing PVCs were classified using a threshold
calibrated by means of a Receiving Operating Curve anal-
ysis performed on the maximum value of the VM signal.
The optimal cut-off was selected as that one balancing the
true positive and negative rates.

For all the networks, the Rectified-Linear unit activation
function was used for the fully connected layers, and the
Sigmoid activation function in the output layer. No ac-
tivation functions were set after the convolutional layers.
Batch Normalization and Dropout (with a rate starting at
0.1 in the first layer and with a 0.1 increase each further
layer) were used in all the layers, except the last one, as

Table 1: Confusion matrices for the four networks com-
posing the ensemble model. Values were normalized by
the row.

P−CNN QRS−CNN
Pred+ Pred− Pred+ Pred−

Act+ 0.71 0.29 0.87 0.13
Act− 0.12 0.88 0.19 0.81

T−CNN Rhythm−NN
Pred+ Pred− Pred+ Pred−

Act+ 0.76 0.24 0.74 0.26
Act− 0.15 0.85 0.15 0.85

regularization techniques. The Adam algorithm was used
as optimizer (ε = 10−8, β1 = 0.9 and β2 = 0.999) and
the average binary cross-entropy across classes was set as
loss function. The batch size was set to 64 samples.

For training the ensemble model, four datasets were
built containing only the input features within to the con-
sidered subset of CAs. Then, each dataset was ran-
domly sampled with stratification using a 70/30 train-
ing/validation split. Models were trained separately for
1000 epochs on their respective training set. Metrics were
computed on the validation set to assess the performance.

The model submitted for the evaluation on the private
test set was trained using all the available data without
splitting and using the same configuration.

Given the fact that the output of the CNNs and FFNN
were sigmoid functions, resembling then the conditional
probability of observing a given class, the final decision
was taken by setting a 0.5 threshold for such probabilities.

The output vector was obtained by concatenating all the
decisions obtained by the CNNs, FFNN and the threshold-
based classifier. In addition, the decision related with the
detection of a “normal” ECG was also concatenated to the
output vector. It is worth mentioning that the ECG were
classified as “normal” only if no other CA was detected.

3. Results

Given the multi-label classification problem, the confu-
sion matrices for the four neural networks composing the
ensemble model were computed in class-wise manner and
results are reported in Table 1. Positive classes contained
CAs specific to the neural network under evaluation, while
the negative classes contained all the others. Confusion
matrices were normalized by row, i.e., dividing by the to-
tal number of samples for each class.

We computed the recall values for all the 27 scored
classes provided with the dataset. The three highest re-
call values were obtained by the QRS−CNN for RBBB
and LBBB (0.93 and 0.85, respectively) and by P−CNN
for I-AVB (0.88). The worst values were achieved by the
Rhythm-CNN for Pacing (0.71) and Flutter (0.74), and for
the normal ECG detection (0.74).

The area under the ROC curve for the PVC detection
was 0.82, obtaining true positive and negative rates of 0.72.
The identified threshold was 1.44 mV.

The challenge scoring system made use of a metric de-
pending on the recognition performance of each class in a
weighted manner. Organizers made available the scoring
system: we obtained a score of 0.241 on the validation set
and a score of -0.179 on the private test set.
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Figure 3: Network architectures for the three CNNs of the ensemble model.

4. Discussion

The ensemble model reached intermediate classifica-
tion performance. The QRS−CNN was the best among
the four NN models and it reached the top highest recall
values (up to 0.93 for RBBB) computed over all the 27
classes. The other three networks and the PVC detector
showed moderate performance, reporting the worst recall
values. We noticed that the worst performance were cor-
related with classes having a low number of samples. For
instance, the P−CNN model was trained using only the
available 340 samples with prolonged PR, achieving one
of the lowest recall (0.74).

Several are the improvements that can be implemented.
First, the Rhythm−NN and PVC detector can be substi-
tuted with more efficient models. In fact, Hannun et al. [4]
and Zhou et al. [8] recently demonstrated that DNNs can
achieve high recall values for both rhythm and PVC detec-
tion. Second, the low recall values of the T−CNN might be
due to the preprocessing step implemented. Indeed, the av-
erage PQRST template did not account for changes in the
heart rate within the considered 1-minute segment, while it
is well known the heart-rate dependency of the T-wave du-
ration. RR-binning can be used to improve this aspect in-
stead of averaging beats within the entire segment. Third,
the recall value for normal ECG detection was among the
lowest ones. The detection by elimination, i.e., when the
final output was the zero vector, was sensitive to misclas-
sification of any of the other classes. For example, if mis-
classifications were statistical independent between the 26
classes and the error rate was just random at 1% (but we
are still far from this value for many classes), the misclas-
sification of normal ECG would be approximately 23%,
leading to an extremely high false positive rate. A possi-
ble solution might be designing and adding another CNN
in the ensemble model, whose input is the average PQRST
template and several rhythm-related features, capable of
recognizing normal ECGs.

Differently from previous studies on DNNs, where ECG
signals were roughly injected in the model, we tested a

hybrid approach, merging average-template-based algo-
rithms, known to be effective, with the state-of-the-art for
classification in deep learning, using an ensemble model.
The approach seemed suitable to deal efficiently with the
challenging multi-class problem of ECG classification and
the limited sample size available.
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