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ABSTRACT
The nature of bosonic excitations in disordered materials has remained elusive due to the difficulties in defining key concepts such as quasi-
particles in the presence of disorder. We report on an experimental observation of phonon-polaritons in glasses, including a prominent boson
peak (BP), i.e., excess of THz modes over the Debye law. A theoretical framework based on the concept of diffusons is developed to describe
the broadening linewidth of the polariton due to disorder-induced scattering. It is shown here for the first time that the BP frequency and the
Ioffe–Regel (IR) crossover frequency of the polariton collapse onto the same power-law decay with the diffusivity of the bosonic excitation.
This analysis dismisses the hypothesis of the BP being caused by a relic of the van Hove singularity. The presented framework establishes a
new methodology to analyze bosonic excitations in amorphous media, well beyond the traditional case of acoustic phonons, and establishes
the IR crossover as the fundamental physical mechanism behind the BP.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033371., s

I. INTRODUCTION

The low-energy vibrational spectra of solids provide direct
insights into the complex many-body atomic and molecular dynam-
ics of materials.1 Understanding the vibrational spectra is crucial for
our understanding and the technological design of the optical, ther-
mal, and mechanical properties of solids. Substantial experimental
and theoretical efforts have focused on the case of phonons in amor-
phous materials, where phonons are well-defined quasiparticles only
in the limit of long wavelengths. On shorter length-scales, disorder
dominates vibrational excitations and gives rise to deviations from
Debye’s quadratic law in the vibrational density of states (VDOS),

resulting in the boson peak (BP) in the Debye-normalized VDOS,
detected originally in Raman scattering spectra.2 A line of research
has traditionally supported the identification of the BP with shifted
and smeared van Hove (VH) singularities.3,4 However, recent stud-
ies have pointed out that the boson peak may be largely independent
and in fact even unaffected by the lowered VH singularity. This is
indicated by the co-existence of the BP with the lowest (transverse)
VH singularity in the spectra of simple model systems.5–7

Another line of research points at the close link between the BP
and the Ioffe–Regel (IR) crossover between ballistic phonons and
quasi-localized excitations8–10 as the origin of the BP. Among the
theoretical frameworks, the most popular one is the heterogeneous
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elasticity theory by Schirmacher et al.11–13 based on the assump-
tion of spatial correlations in the shear elastic modulus, in agree-
ment with simulations.13 The original Schirmacher theory, however,
is based on the assumption of gaussian fluctuations of the elastic
modulus within isotropic elasticity and fails to capture the loga-
rithmically enhanced Rayleigh scattering in the THz regime that is
ubiquitously observed in simulations and experiments.14 A more
physical theory based on long-ranged power-law elastic correla-
tions and locally anisotropic elasticity has successfully predicted the
logarithmic Rayleigh scattering, as observed experimentally.15

Although a growing consensus about the crucial role of
randomness in driving the IR crossover from ballistic to quasi-
localized excitations leading to a BP, a picture supported by random
matrix theory, is emerging,16–18 the physical origin of the BP remains
controversial. This is especially true in light of the recent prediction
of the boson peak occurring in perfectly ordered crystals due to a
Ioffe–Regel crossover driven by (Akhiezer) anharmonic damping of
phonons.19 This theoretical prediction has found experimental con-
firmation in different systems.20–22 Furthermore, it remains to be
established whether the BP is a distinctive feature of the acoustic
phonon spectra only or if it is a more general phenomenon common
to all bosonic-like excitations in amorphous solids (e.g., excitons,
plasmons, and polaritons).

Here, we provide an answer to these fundamental questions by
reporting on the experimental observation and analysis of the BP in
infrared absorption spectra of phonon-polaritons in a model glass,
i.e., soda-lime silicate.

We support the analysis with a theory of phonon-polaritons in
amorphous materials. This theoretical framework clarifies the origin
of the BP from the IR crossover between the ballistic quasi-particle
(coherent) propagation and a quasi-localized regime dominated by
disorder-induced scattering. In this regime, the quasiparticle loses
its coherence and undergoes diffusive-like dynamics (diffusons)7,10,23

(see Fig. 1). This claim is supported by showing that the IR frequency

FIG. 1. Visual representation of the destruction of the quasiparticle coherence
induced by disorder-induced scattering events. The salient dynamics of the excita-
tions and the corresponding pattern observed in the scattering intensity I(ω) of the
excitation are schematically depicted in the top and bottom panels, respectively.
For growing disorder in the sample, upon going from left to right, the dynamics
of the system become incoherent. The mean free path (ℓ) of the quasiparticles
becomes eventually shorter than the wavelength, resulting in a diffusive-like prop-
agation, with the diffusion constant D, through the sample. In this regime, the low
frequency dynamics are well described by hydrodynamics.

and the BP frequency of the polariton collapse onto the same power-
law as a function of the phonon (Akhiezer) diffusivity parameter, in
excellent agreement with the theoretical prediction.

These results show that the BP is a truly universal feature for
all bosonic excitations in amorphous materials, not just acoustic
phonons. In addition, the theoretical analysis shows that the BP does
not originate from the flattening of the polariton dispersion rela-
tions, thus ruling out the lowered VH singularity as a possible origin
of the BP.

II. THEORETICAL MODEL
We start by modeling the coupled dynamics of the optical

phonon modes and the EM field. Following the seminal work of
Born and Huang,1,24,25 the first step is to define the relative displace-
ment field u⃗ = u⃗+ − u⃗− that accounts for the relative displacement
of the positive and negative partial charges in the solid. With this
definition, we can study the dynamical equation for this field,

¨⃗u = −ω2
0 u⃗ + f ( ˙⃗u) + b12 E⃗, (1)

where b12 is a parameter describing the effective coupling between
the atomic displacement field and the EM field.1

The relative displacement field characterizes the relative
motion of the partially charged particles and applies to optical
(and not acoustic) vibrational modes. The first term in the rhs of
Eq. (1) defines the characteristic frequency of the harmonic oscil-
lator, which originates from the linear restoring force acting on
the atoms. The second term is the damping contribution, where f
is some function. The last term is a direct dipole coupling to the
external electric field E⃗ due to the partial charge carried by the atoms.

In the absence of damping, f ( ˙⃗u) = 0, and this problem was con-
sidered in Refs. 1 and 25 where Eq. (1) was solved with an equation
for the polarization that contains the effects of the relative displace-
ment of the atoms, as well as with the Maxwell equations for the
EM field. Notice that damping is introduced in Eq. (1) only in the
mechanical part of the equations but not in the EM sector. Assum-
ing a (Langevin-type) damping force linear to the velocity of the
displacement field, as is customary for dissipative dynamics in con-
densed matter,26 and with a coefficient dependent on the wavelength
of the oscillation [ f ( ˙⃗u) = Γ(k) ˙⃗u], we solve the dynamical prob-
lem with damping Eq. (1) and obtained a quartic equation for the
transverse optical (TO) modes ωTO(k), which reads

ω4
TO ε∞ + iω3

TO Γ(k)ε∞ − ω2
TO(ω

2
0 ε0 + k2c2

)

− i Γ(k)k2c2ωTO + ω2
0 k2 c2

= 0. (2)

The label TO, to simplify the notation, will be dropped in the rest of
this article.

In Eq. (2), c is the speed of light, ω0 is the characteristic fre-
quency (the energy gap of the optical mechanical mode), and ε0
and ε∞ are the dielectric constants at zero and infinite frequency,
respectively. Finally, Γ(k) accounts for all the damping effects on the
oscillations. The details of the derivation of Eq. (2) can be found in
Appendix B.

Equation (2) can be viewed in two different ways. First, one
can assume the momentum k to be real and the frequency to be
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complex. In this framework, the modes ω(k) = Reω(k) + i Imω(k)
are usually referred to as quasinormal modes, and the imaginary
part of the frequency determines their exponential decay in time
∼e−Imω(k)t . Alternatively, one could take the frequency as real and
the momentum to be complex. In this case, Eq. (2) can be solved
for k(ω), and the imaginary part of the momentum determines the
exponential decay in space ∼e−Imk(ω)x, i.e., the penetration length.
The two scenarios are interchangeable. In the rest of the article, we
will use the abbreviations Re k ≡ k′ and Im k ≡ k′′.

Let us notice that our formalism is an effective field descrip-
tion, which is agnostic about microscopic physics, and it is valid
only on length scales larger than that. The damping parameter Γ(k)
is a phenomenological coefficient whose fundamental origin is not
(and cannot be) discussed without resorting to complicated many-
body treatments or heavy numerics. In this sense, it includes all
the possible effects related to incoherence, scattering processes, and
attenuation mechanisms, making our description very general.

By using the standard linear relation between P⃗ and E⃗, coupled
with Eq. (1), we can derive the dielectric function (see Appendix B
for details) as

ε(ω, k) = ε∞ −
ω2

0(ε0 − ε∞)
ω2 − ω2

0 + iω Γ(k)
. (3)

Furthermore, by studying the spatial exponential attenuation
(Lambert–Beer) of the wave intensity I,

I/I0 = e−α(ω) x
= e−2 k′′(ω) x, (4)

we can define the absorption coefficient α(ω), which is the inverse
of the penetration length.27 Given a collection of scattering centers,
the mean free path is given by ℓ = (σn)−1, where σ is the scatter-
ing cross-section and n is the number density of scatterers. It can be
shown27 that dI/dx = −Inσ = −I/ℓ, leading to exponential attenua-
tion I ∼ exp(−x/ℓ). Upon comparing this with the above-mentioned
equation, we obtain

ℓ−1
= 2 k′′(ω), (5)

a relation that will be useful also later on.
An expression for the absorption coefficient can be derived

using the complex dielectric function for EM radiation in contin-
uous media,28 εEM(ω) = c2k2/ω2. Solving this expression for k, and
taking the imaginary part [see Eq. (4)], we find

α(ω) =
ω
c

√
2( ∣ε(ω)∣ − Re ε(ω) ). (6)

At this point, it is crucial to specify the nature of the linewidth
Γ(k), which is neglected in standard treatments.24,25 The linewidth
encodes the effects of the disorder on the propagation of the polari-
ton. The basic idea is that disorder can be represented as a large
number of “defects,” each acting on the polariton quasiparticle as
a scattering center. On length-scales larger than the average separa-
tion of defects, the result of a large number of scattering events is the
diffusion of momentum through the system. This effective descrip-
tion is based on the idea of diffusons,23,29 a concept which has proved
useful in explaining the anomalies in thermal transport observed

experimentally in glasses.30 A diffusive linewidth for phonons can
indeed explain the ubiquitous appearance of a boson peak in the
vibrational density of states (VDOS) of glasses7,19 and even the pres-
ence of a linear in the T term in the specific heat at low T, as shown in
Ref. 31. Moreover, the diffusive nature of the linewidth is supported
by random matrix theory.10,18

Following Refs. 7, 9, and 10, we take the linewidth to be of the
diffusive form,

Γ(k) = D k2, (7)

which follows from an effective hydrodynamic treatment32 for
quasiparticle excitations or simply from diffusion of momentum
in the governing dynamic equation for the displacement field.7

This expression is supported by experiments and simulations9,10,33–35

and is valid only at relatively low k, while it is expected to break
down at larger momenta where hydrodynamics is no longer a good
approximation.36

In Fig. 10 of Appendix B, we show the Debye-normalized
absorption coefficient obtained from this model for a wide range
of values of the diffusion coefficient D. The absorption coefficient
is directly proportional, up to a linear growing function of the fre-
quency denoted as37–39 C(ω), to the VDOS. As a consequence, an
excess in α(ω)/ω2 corresponds to a boson peak in the normalized
VDOS, g(ω)/ω2. We observe that the BP moves to lower energies by
increasing the diffusion constant D and it becomes sharper. In the
inset, we show the dispersion relation of the corresponding phonon-
polariton modes obtained from Eq. (2), and we compare it with
the BP frequency ωBP. This dynamics and the underlying physics
mechanism will be discussed in detail later.

III. COMPARISON WITH EXPERIMENTAL DATA
The linewidth ceases to display a hydrodynamic diffusive

behavior as in Eq. (7) at large momenta approaching the molecular
size. We observe (see Fig. 6 in Appendix B) that the high-frequency
part of the experimental spectra is well-fitted by a constant damp-
ing coefficient, Γ(k) = γ = const, which corresponds to a microscopic
Langevin friction term in Eq. (2), as expected in local molecular-level
dynamics in glassy environment. Indeed, on small length-scales, we
cannot coarse-grain the effects of disorder into a hydrodynamic
description, but we have to consider the high-frequency microscopic
dynamics16 producing a k-independent relaxation time τ−1

∼ γ.
In order to have a good description of the experimental data

across the entire range of momenta, we will consider a linewidth,
which interpolates from the diffusive form (7) at low k to the
Langevin-like constant damping γ at large k. More specifically, we
use an interpolating model of the form

Γ(k) =
γD k2

γ + D k2 , (8)

which retrieves the two limits. We test our theoretical model using
experimental measures of the infrared absorption spectra on a soda-
lime glass sample using two different THz time-domain spectrom-
eters that can cover a wide frequency range of 0.3 THz–5 THz (see
Appendix A for details).
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FIG. 2. Comparison between the theoretical model based on the diffusive linewidth
function Eq. (8) (black line) and the experimental data for a soda lime glass
(orange circles). The fit gives D = 13.99 THz−1/c2, γ = 69.67 THz−1, ε0 = 70.99,
ε∞ = 61.11, and ω0 = 29.80 THz.

By implementing Eqs. (2) and (8) into Eq. (3), and the latter
into Eq. (6), we obtain the theoretical predictions shown in com-
parison with experimental data in Fig. 2. The diffuson behavior at
low k is crucial to obtain good agreement at low frequencies, and we
checked that it cannot be described with a simple damped harmonic
oscillator (DHO) model, as shown in Fig. 6 in Appendix B. It is also
to be noted that the decay at large ω is dominated by the constant
damping γ.

IV. THE ORIGIN OF THE BOSON PEAK
Our effective theoretical model gives an accurate qualitative

description of the experimental data, and it is able to reproduce the
boson peak. We should now address the question of the fundamen-
tal physical origin of the BP in the polariton spectra. Let us recall that
the BP frequency is defined as

ωBP :
d

dω
α(ω)
ω2 ∣ωBP

= 0, (9)

and it corresponds to the maximum in the Debye-normalized
absorption spectra.

A possible explanation for the BP could come from the flatten-
ing of the phonon-polariton band,

ωflat :
dω
dk
∣
ωflat

= 0, (10)

which, similar to the van Hove singularities in ordered crystals,
would produce a peak in the VDOS since g(ω) ∼ (dω/dk)−1, see
Ref. 40. As one can readily verify in Fig. 6 of Appendix B, the posi-
tion of the BP does not correspond to the flattening of the lowest

branch. Hence, the flattening of the polaritonic dispersion relations
cannot satisfactorily explain the occurrence of the BP.

From a different perspective, it is well-known that waves
in amorphous and disordered systems stop to propagate ballisti-
cally at a certain frequency known as the Ioffe–Regel frequency,41

ωIR. Moreover, the correlation between the Ioffe–Regel frequency
and the BP frequency has been observed and discussed in recent
studies.8–10

The Ioffe–Regel frequency41 is defined as the energy at which
the mean free path of the wave ℓ becomes comparable to its wave-
length λ,

ℓ(ωIR) = λ(ωIR), (11)

and its quasiparticle nature is lost. Upon combining Eq. (11) with
Eq. (5) and k′ = 2π/λ, we obtain

ωIR : k′(ωIR) = 4π k′′(ωIR), (12)

which provides a new operational quantitative definition of the
Ioffe–Regel frequency for a generic collective excitation.

In Fig. 3, we show the experimental data of k(ω) for the soda
lime glass (see more details in Appendix A). From this, it is evident
that the Ioffe–Regel crossover, defined using Eq. (12), is extremely
close to the BP frequency observed in the absorption (Fig. 2),
ωBP/ωIR ∼ 1.25. This represents a strong experimental confirmation
of the intimate correlation between the BP and the IR frequencies in
the phonon-polariton spectrum of glasses.

In order to emphasize this point, we compare the BP frequency
ωBP and the Ioffe–Regel frequency ωIR for the theoretical model, as

FIG. 3. Experimental data for k(ω) in the soda lime glass (see Fig. 5 in Appendix A).
The units are cm−1 for the momentum k and THz for the frequency ω. The first
dashed line indicates the location of the IR frequency defined from Eq. (12);
the second dashed line indicates the BP position, which can be found from the
absorption data in Fig. 2. We find that ωBP /ωIR ≈ 1.25, confirming the results of
Eq. (13).
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FIG. 4. BP frequency ωBP and the IR frequency ωIR as a function of the diffusion
constant D. The red and blue lines show the fit, which at large D is consistent with
a scaling ω ∼ D−n with n ≈ 0.32.

shown in Fig. 4. This procedure was carried out numerically. Nev-
ertheless, given a (reasonably simple) linewidth function Γ(k), the
correlation can be derived analytically since it depends solely on the
function k(ω), from the inversion of Eq. (2).

We again observe that the two values strongly correlate,

ωBP = CωIR, (13)

where C is an O(1) constant prefactor. From the soda lime glass
experimental data, we consistently find C ≈ 1.25 (see Fig. 3).

Importantly, we also find that both frequencies collapse onto
the same power law scaling ω ∼ D−n with n ≈ 0.32, which is a
new physical scaling never shown before. More broadly, we expect
Eq. (13) to hold in general, up to a non-universal O(1) prefactor C,
that is different for different materials.

This analysis brings a new point in the discussion on the origin
of the BP. As we have already mentioned in this section, the BP is
present even with strong phonon-diffusion processes. Here stands
the major point in dismissing the van Hove singularity hypothesis,

FIG. 5. Dispersion relation of the polariton in the soda-lime glass extracted from
the experimental data used in this work. The yellow dashed line indicates the BP
frequency, ωBP ≈ 1.32 THz.

FIG. 6. Absorption (normalized by the Debye law) in the THz range. The yellow
markers are the experimental data, and the blue line is the fit with the constant
damping model.

i.e., the presence of the peak in a regime for which the dispersion
relations do not display any flattening. What our theoretical analy-
sis shows is that the BP is not only present in any phonon diffusion
regime but also its dynamics through the regimes follow closely a
power law in the diffusion parameter D, thus revealing a connection
between the microscopic phonon diffusion processes (read: long
range disorder) and the BP. This connection is then found in the
dynamics of the IR crossover, a quantity intrinsically connected to
phonon diffusion processes and their interplay with ballistic phonon
propagation.

V. CONCLUSIONS
In summary, we reported on the experimental observation

and theoretical analysis of phonon-polaritons in a model amor-
phous material. The polaritonic nature of the excitation cannot
be reproduced by standard DHO fitting but only using a dif-
fusive ∼k2 linewidth. We can confidently claim that the boson
peak observed experimentally in the phonon-polariton absorption
spectrum is controlled by the Ioffe–Regel crossover from ballistic
quasi-particle propagation to incoherent diffusive-like excitations
(diffusons23). This identification, which is valid with high preci-
sion, suggests that the physical mechanism underlying the BP in the
phonon-polariton spectra of glasses is due to the quasi-localization
of the excitations and to the propagating-to-diffusive crossover, á
la Ioffe–Regel. Working with polaritons has the advantage of us
clearly ruling out the influence of dispersion relation band flatten-
ing on the peak, away from the influence of pseudo-van Hove sin-
gularities, and hence, this analysis provides the first unambiguous
demonstration that the boson peak and Ioffe–Regel crossover fre-
quencies coincide and collapse onto a new power-law scaling with
the excitation diffusivity D, discovered here for the first time. Cru-
cially, our results suggest that this mechanism for the BP may apply
to any bosonic excitation in amorphous materials (such as exci-
tons, magnons, and plasmons),42 which opens up new opportuni-
ties for technological design and control of optical, electrical, and
thermal properties of materials by tailoring the disorder-induced
effects.
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APPENDIX A: EXPERIMENTAL METHODS
As a standard glass system exhibiting the BP in the infrared

spectrum, we selected a soda-lime glass, which is a typical net-
work glass former. The sample is purchased from Central Glass Co.
Ltd. We utilized two different commercial THz time-domain spec-
trometers to cover a wide frequency range between 0.3 THz and
5 THz (0.3 THz–1.2 THz: RT-10000, Tochigi Nikon Co. and 1.2
THz–5 THz: TAS7500SU, Advantest Corp.).39,43–48 The measured
THz waveforms including multiple reflections in the sample sur-
faces were converted to the frequency domain, and the obtained
complex transmission coefficient t was analyzed using the following
equation:

t(ω) = tvs tsv
ei(ns−1) d ω/c

1 − r2
sv(ω) ei 2 ns d ω/c , (A1)

where

tij =
2 ni

ni + nj
, rij =

ni − nj

ni + nj
(A2)

are the complex Fresnel’s transmission and reflection coefficients,
respectively, at the interface between regions i and j. The subscripts i
and j stand for v and s in Eq. (A1), representing the vacuum and sam-
ple, respectively. ni is the complex refractive index of region i, d is the
thickness of sample, and c is the speed of light. The data of ns were
combined with the low-frequency data measured using RT-10000
(Tochigi Nikon Co.) and the high-frequency data measured using
TAS7500SU (Advantest Corp.) at 1.5 THz.48 The absolute values
of ns were obtained based on those observed for the low-frequency
side. The square of ns is the complex permittivity, and the real and
imaginary parts of the permittivity are shown in Fig. 7.

Then, the infrared absorption coefficient α(ω) is obtained from
the relation

α(ω) =
2ωκ(ω)

c
, (A3)

where κ(ω) is the imaginary part of ns, i.e., the extinction coefficient.
From the linear response theory for disordered systems,37 α(ω) and
the vibrational density of states g(ω) are related through the infrared
photon-phonon coupling coefficient CIR(ω) as follows:

α(ω) = CIR(ω) g(ω). (A4)

FIG. 7. Dielectric function (real and imaginary parts) of the soda lime glass in the
THz range. The theoretical model uses the diffusive linewidth model, Eq. (8) in the
main text. The plotted values of ε′ and ε′′ are in arbitrary units.

The BP appears in the spectrum of g(ω)/ω2; therefore, the BP in the
infrared spectrum appears in the plot of α(ω)/ω2.

Some experimental data for the dielectric constant are shown in
Fig. 6 together with the fits from the DHO theoretical model, which
shows the latter’s deficiencies. Moreover, in Fig. 5, we show the dis-
persion relation of the polariton as extracted from the experimental
data.

APPENDIX B: THEORETICAL MODEL CALIBRATION
ON EXPERIMENTAL DATA

As discussed in the main text, the damping mechanism is dif-
ferent depending on the frequency range we are looking at. At high
energy (frequency/momentum), the microscopic details of the disor-
der are relevant, and the disorder-induced scattering is well approx-
imated by a constant damping term Γ(k) = γ as in the Drude model
for electron conduction or in the Langevin equation for molecu-
lar motion in a dense environment. In this regime, the damping
is basically provided by the microscopic collisions in the localized
motion of atoms. In Fig. 6, we show that this damping provides
indeed a good approximation for the experimental data but only at
large frequencies, much above the boson peak frequency ωBP. At low
frequency, the experimental normalized absorption decreases, while
the DHO model with a constant damping cannot reproduce such a
trend.

As explained in the main text, at low frequencies, the nature
of the linewidth can be well approximated by the hydrodynamic
expressions for diffusons,

Γ(k) = D k2. (B1)

This mechanism comes from a coarse-grained description for which,
on sufficiently large length scales, the effects of the microscopic scat-
tering events are encoded in effective “diffusion” dynamics of the
excitations. In order to have control over the full range of frequency,
we build an interpolating model,

Γ(k) =
γD k2

γ + D k2 , (B2)

J. Chem. Phys. 154, 014501 (2021); doi: 10.1063/5.0033371 154, 014501-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

which smoothly crosses over between the two, low-k and high-k,
regimes. Using this model, we are able to accurately fit the experi-
mental data across the whole range of frequencies. This is empha-
sized in Fig. 7 where the full set of experimental data are shown and
compared to our theory.

1. Derivation of the phonon-polariton
dispersion relations

In order to derive our main relation Eq. (2), we start by writ-
ing down the system of coupled dynamical equations for the rela-
tive (partially)charged-particle displacement field u⃗, the polarization
vector P⃗, and the EM fields E⃗, H⃗,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨⃗u = b11u⃗ − Γ(k) ˙⃗u + b12E⃗,

P⃗ = b21u⃗ + b22E⃗,

∇ ⋅ (E⃗ + 4πP⃗) = 0,

∇ ⋅ H⃗ = 0,

∇× E⃗ = − 1
c

˙⃗H,

∇× H⃗ = 1
c (

˙⃗E + 4π ˙⃗P),

(B3)

in which we importantly add an effective damping term Γ(k), which
encodes the effects of disorder and dissipation on the atomic motion.
Going to Fourier space and identifying the coefficient b11 with the
characteristic mechanical oscillation frequency ω0 as in Ref. 1, the
equations can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u⃗ = −
b12

ω2 − ω2
0 + iωΓ(k)

E⃗,

P⃗ = (b22 −
b12b21

ω2 − ω2
0 + iω Γ(k)

)E⃗,

k⃗ ⋅ E⃗(1 + 4π b22 −
4πb12b21

ω2 − ω2
0 + iω Γ(k)

) = 0,

k⃗ ⋅ H⃗ = 0,

k⃗ × E⃗ = ω
c H⃗,

k⃗ × H⃗ = −ω
c (E⃗ + 4πP⃗).

(B4)

Using the known relation D⃗ = E⃗ + 4πP⃗ = ε(ω)E⃗, we can substitute
the unknown parameters b12, b21, and b22 in terms of the dielectric
constant. We denote

ε(ω = 0) ≡ ε0 , ε(ω→∞) ≡ ε∞, (B5)

and using these definitions, the third equation in Eq. (B4) can be
re-written as

k⃗ ⋅ E⃗(ε∞ −
ω2

0(ε0 − ε∞)
ω2 − ω2

0 + iω Γ(k)
) = 0. (B6)

At this point, a comment is in order. The scalar product k⃗ ⋅ E⃗
distinguishes between two different types of modes,

k⃗ ⋅ E⃗ ≠ 0 → LO modes, (B7)

k⃗ ⋅ E⃗ = 0 → TO modes. (B8)

Starting from the LO modes and assuming k⃗ ⋅ E⃗ ≠ 0, Eq. (B6) implies

ε∞ =
ω2

0(ε0 − ε∞)
ω2 − ω2

0 + iω Γ(k)

ω2
LO + iωLO Γ(k) − ω2

0
ε0

ε∞
= 0,

(B9)

where we have indicated the frequency of the mode ω = ωLO.
Moving on to the TO modes and taking k⃗ and E⃗ orthogonal,

we can observe from Eq. (B4) that the magnetic field H⃗ is orthog-
onal to both the vectors k⃗ and E⃗. As a consequence, the fifth and
sixth equations in Eq. (B4) become a coupled relation between the
amplitudes,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

kE =
ωTO

c
H

k H =
ωTO

c
E(ε∞ −

ω2
0(ε0 − ε∞)

ω2
TO − ω

2
0 + iω Γ(k)

),

⇒ k2c2
= ω2

TO(ε∞ −
ω2

0(ε0 − ε∞)
ω2

TO − ω
2
0 + iω Γ(k)

). (B10)

After simple algebraic manipulations, we finally obtain the
quartic equation Eq. (2) presented in the main text,

ω4ε∞ + iω3Γ(k)ε∞ − ω2
(ω2

0ε0 + k2c2
)

− iΓ(k)k2c2ω + ω2
0k2c2

= 0, (B11)

where for simplicity, we have omitted the label TO, which stands for
transverse optical.

APPENDIX C: EFFECTS OF DISORDER AND DAMPING
ON THE PHONON-POLARITON DISPERSION
RELATION

We start with the quartic equation, which we derived in
Appendix B 1,

ω4ε∞ + iω3Γ(k)ε∞ − ω2
(ω2

0ε0 + k2c2
)

− iΓ(k)k2c2ω + ω2
0k2c2

= 0, (C1)

where the disorder and damping effects are effectively encoded in
the momentum dependent parameter Γ(k). Let us start by remind-
ing the reader about the known results in absence of any damping
mechanism, Γ(k) = 0, which was derived in Refs. 24 and 25. In this
simple case, the solution can be written concisely as

ω =

¿
Á
ÁÀ c2k2 ±

√
c4k4 + 2c2k2ω2

0(ε0 − 2ε∞) + ε2
0ω4

0 + ε0ω2
0

2ε∞
. (C2)

The two modes display the repulsion phenomenon, which is typical
of the polariton dynamics and is due to the electromagnetic interac-
tions encoded in the non-trivial dielectric constant (ε∞ ≠ ε0). This
behavior is very similar to the one displayed in panel (a) of Fig. 8 for
a concrete choice of parameters with small damping. Obviously, this
is an idealized situation in which all the effects that originate from
internal scattering events are neglected.
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FIG. 8. Dispersion relation of the excita-
tions in the damped model upon chang-
ing the damping parameter γ = 0.5, 2.5,
6, 7.1, 8.4, 9, and 50 from panels (a)–
(f). Top: the real part Re(ω) as a func-
tion of the momentum k. Bottom: the
imaginary part Im(ω) as a function of the
momentum k for the same conditions.

J. Chem. Phys. 154, 014501 (2021); doi: 10.1063/5.0033371 154, 014501-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Dispersion relation of the excitations in the diffusive
model upon changing the diffusion constant D = 0.01, 0.1,
0.3, 0.5, 10, and 103 from panels (a)–(f). Top: the real part
Re(ω) as a function of the momentum k. Bottom: the imag-
inary part Im(ω) as a function of the momentum k for the
same conditions.
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As a step forward, let us consider the situation in which the
optical phonons have a finite and momentum independent relax-
ation time,

τ−1
= Γ(k = 0) = γ, (C3)

which determines their lifetime and mean free path. Here, we take an
effective field theory perspective, and we do not discuss the micro-
scopic origin of this relaxation time. Several are the physical mecha-
nisms that can contribute to this effect. Theoretically, this relaxation
time implies the non-conservation of momentum, which now dis-
sipates at a rate γ, exactly as in the simple Drude model for electric
conduction40 or in the Langevin equation for Brownian motion in
liquids. This relaxation time approximation can be formally derived
using the Boltzmann equation and kinetic theory,49 and it is valid
only in the regime when τ is large enough. The dynamics of the low
energy modes are displayed in Fig. 8 upon increasing the relaxation
rate γ ∈ [0, 50] from panels (a)–(f). For small γ ≪ ω0, the gap-
less mode acquires a small damping Im(ω)(k = 0) ≠ 0, which grows
with γ. This mode is not a hydrodynamic mode anymore. The other
gapped mode does not acquire a finite damping and remains dif-
fusive at low momentum. When the damping parameter becomes
comparable with the characteristic frequency of the gapped mode
γ ∼ ω0, the two modes attract each other, and they move closer, as
shown in panel (b) of Fig. 8. When γ ≥ 2ω0, the dynamics are not
underdamped anymore, and the modes merge, producing a compli-
cated pattern, as shown in panels (c) and (d) of Fig. 8. Finally, in
the limit γ ≫ ω0 (overdamped regime), the sound mode gets com-
pletely destroyed, and it acquires a very large damping. Its lifetime
becomes very short, and it completely disappears from the dynamics
[see panel (e) in Fig. 8]. As a consequence, the “photon component”
does not feel the presence of the phonon anymore, and the disper-
sion relation of the left mode goes back to the free photon case,
ω = ±ck, in which interactions are absent. This last step is shown
in panel (f) of Fig. 8.

Let us now consider a second and different case that will be
more relevant for our discussion. More precisely, let us assume that
the imaginary part of the vibrational mode is purely diffusive,

Γ(k) = D k2. (C4)

The parameter D is the diffusion constant of the diffusons and
is determined by elastic scattering events due to the disorder.
Importantly, this choice is different from the previous one in sev-
eral aspects. The presence of diffusion does not imply the non-
conservation of momentum,11 nor the explicit breaking of any sym-
metry. The quasiparticle nature of the optical phonons gets lost
across a ballistic to diffusive crossover (Ioffe–Regel crossover).41 The
phenomenon is shown in Fig. 1 in the main text.

The dynamics of the real part of the modes are very similar to
the previous case (compare the top panels of Figs. 8 and 9). The dif-
ference is nevertheless evident in the imaginary part of the modes.
First, as already mentioned, both the modes (real and imaginary
parts) remain hydrodynamic, in the sense that both the imaginary
parts vanish at zero momentum. Second, the difference is evident
even when comparing the situation at large damping γ ≫ 1 with
that at large diffusion D ≫ 1. In the first case, one of the two
modes disappears from the low energy dynamics because it becomes

FIG. 10. Debye normalized absorption coefficient as a function of the frequency
ω assuming a diffusive damping Γ(k) = Dk2. We vary the diffusion constant D as
indicated in the legend. We fix ε∞ = 2.5, ε0 = 7.5, and Ω = 5π. The inset shows
the corresponding dispersion relation of the phonon-polariton modes where the
dashed horizontal lines indicate the position of the maxima in the absorption – the
BP frequency ωBP .

overdamped, with Im(ω) ∼ −γ being very large. In the second case,
at a large diffusion constant, the two modes also stop interacting,
but this second mode now becomes totally diffusive, ω ∼ −iD k2,
and therefore is still present in the low energy dynamics of the
system.7,8,50 This second hydrodynamic mechanism is crucial to our
discussion since the effects of diffusion are essential to provide a
complete theoretical description of the experimental data.

Finally, in Fig. 10, we show the Debye normalized absorption
predicted by theory using the diffusive model. The position of the
BP moves toward lower frequency by increasing the diffusion con-
stant D. These dynamics are consistent with the correlation of the
BP frequency with the Ioffe–Regel crossover that we discovered as
shown in Fig. 4. In the inset, we also show the dispersion relation of
the phonon-polariton to emphasize that the BP frequency and the
frequency of band flattening ωflat defined in the main text do not
coincide.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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