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Abstract

Quasi-classical trajectory studies have been performed for the collision of internally excited

methane with water using an accurate methane-water potential based on a full-dimensional,

permutationally-invariant analytical representation of energies calculated at a high level of

theory. The results suggest that most energy transfer takes place at impact parameters smaller

than about 8 Bohr; collisions at higher impact parameters are mostly elastic. Overall, energy

transfer is fairly facile, with values for 〈∆Edown〉 and 〈∆Eup〉 approaching almost 2% of the

total excitation energy. A classical model previously developed for the collision of internally

excited molecules with atoms (Houston, P. L.; Conte, R.; Bowman, J. M. J. Phys. Chem. A

2015, 119, 4695-4710) has been extended to cover collisions of internally excited molecules

with other molecules. For high initial rotational levels, the agreement with the trajectory re-

sults is quite good (R2 ≈ 0.9), whereas for low initial rotational levels it is only fair (R2 ≈ 0.7).

Both the model and the trajectories can be characterized by a four-dimensional Joint Proba-

bility Distribution, P(J1, f ,∆E1,J2, f ,∆E2), where J1, f and J2, f are the final rotational levels of

molecules 1 and 2 and ∆E1 and ∆E2 are the respective changes in internal energy. A strong

anti-correlation between ∆E1 and ∆E2 is observed in both the model and trajectory results and

can be explained by the model. There is evidence in the trajectory results for a small amount

of V ↔V energy transfer from the water, which has low internal energy, to the methane, which

has substantial internal energy. This observation suggests that V ↔ V energy transfer in the

other direction also occurs.

Keywords: energy transfer, joint probability distribution, turning point analysis, rotational

energy transfer, vibrational energy transfer
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1. Introduction

Many important chemical reactions in combustion chemistry, atmospheric chemistry, and interstel-

lar chemistry take place via the Lindamann mechanism, now nearly a century old:1,2

A + B 
A + B*, (k1/k−1) (R1)

B*→ products, (kuni) (R2)

A is typically an atom or small molecule, B is a molecule, and B* is the molecule with vibrational

and/or rotational excitation.

We have previously summarized some of the important work on this mechanism,3–5 and the

field has been extensively reviewed elsewhere.6–12 Thus, only a brief overview will be provided

here. Experimental techniques have generated a wealth of data on this process. Some of the

more important methods are chemical activation,13 time-resolved spontaneous infrared fluores-

cence,14–16 time-resolved ultraviolet absorption,17–19 kinetically controlled selective ionization,20

high-resolution transient IR absorption spectroscopy,21,22 mass spectroscopy,23 and time-sliced ion

imaging.24 Theoretical and computational studies have also been informative.5,11,25–45 In many of

the previous experimental and computational studies, the species A in R1 and R2 has been taken

as an inert atom. The goal of this work is to investigate a situation in which both A and B are

molecules.

The specific choice of B=methane and A=water is motivated in part by previous work on

the methane-water potential.46 The analytical interaction potential is based on a full-dimensional,

permutationally-invariant analytical representation of energies computed at the CCSD(T)-F12b/haTZ

(aug-cc-pVTZ for C and O, cc-pVTZ for H) level of theory. More details concerning the potential

and the trajectory calculations are given in Section 2. As noted previously,46 an understanding

of the interaction between methane and water is important to the understanding of methane-water
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clathrates and also plays a role in gas-phase scattering and combustion chemistry. A second mo-

tivation for the methane-water choice is that a direct dynamics investigation of methane-water

collisions has recently been reported, albeit with a different level of electronic theory.32 Jasper et

al. investigated energy transfer in the methane as a function of temperature from 300-3000 K for

collisions with water. However, only 500 trajectories at each of four different temperatures were

performed, not enough for a detailed investigation. Moments of the JPD were reported for the

change in methane energy and rotation, though not for similar changes in the water.

A further goal of the current work is to develop a model for energy transfer in collisions be-

tween two molecules. The reasons for wanting such a model are two-fold. First, a successful model

shows what properties and concepts are most important to the energy transfer process. Secondly,

by delineating what is most important in a particular process, a successful model often suggests

computational approximations that can be used make calculation of the desired results more ef-

ficient. The model we develop is based on our previous work for atom-molecule collisions,3 but

here we extend the model to cover molecule-molecule collisions. Details of the model are provided

in Section 3.

Section 4 presents and summarizes results of the trajectory calculations and of the model.

These are discussed in Section 5. A concluding section summarizes our findings and discusses

possibilities for future investigation.

Table 1 provides a list of acronyms used in the manuscript.

Table 1: List of acronyms used in the manuscript.

Acronym meaning
COM center of mass
JPD Joint Probability Distribution
lhs left-hand side

LOC line of centers
QCT Quasi-classical trajectory
rhs right-hand side
TP turning point
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2. Description of Methane-Water Potential and Trajectory Cal-

culations

The potential energy surface (PES) employed to simulate collisions of methane with water has

been obtained as the sum of high-level pre-existing monomer potentials for CH4 and H2O, and a

recently reported permutationally-invariant two-body CH4-H2O interaction surface. The flexible,

global, full-dimensional and permutationally-invariant47 methane PES was obtained by Warm-

bier et al.48 The surface is based on more than 30,000 ab initio RCCSD(T)/aVTZ energies sam-

pled at several CH4 configurations, and it is able to describe dissociation to fragments CH3 +

H and CH2 + H2. The water monomer PES employed in this work is the Partridge–Schwenke

one,49 based on ab initio energies sampled at the CCSD(T)/aV5Z level. Its analytical form is a

modification of Murrell’s many-body representation.50 The PES was empirically adjusted to get

spectroscopical accuracy, and properly describes fragmentation to OH + H. Finally, the two-body

CH4-H2O interaction potential46 was obtained by means of a recently introduced approach,51

able to design permutationally-invariant fitting bases that rigorously describe the zero-interaction

asymptotic limit and substantially decrease computational costs of potential calls. This intrinsic

two-body potential, called PES2b- CSM,46 has been obtained starting from a database of about

30,000 CCSD(T)-F12b/haTZ ab initio energies. In our previous work,46 preliminary calculations

have shown that the many-body CH4-H2O PES thus constructed is suitable to simulate collisions

involving highly excited methane with water, while even DMC and vibrational calculations for the

ground state of the dimer can be accurately undertaken.

Collisional energy transfer has been investigated by running two sets of about 15,000 trajec-

tories starting from highly internally excited CH4. In both cases internal methane excitation was

set to 35,410 cm-1 (101.24 kcal/mol), close to the dissociation threshold. The starting geometry

was chosen to be the equilibrium configuration, while atomic velocities were determined by means

of the following procedure. First, we assigned random velocities to atoms. Then, after making

J=0, velocities were rescaled to get the desired vibrational energy. Finally, angular velocities were
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adjusted to get the chosen initial angular momentum JCH4= 20. Water was started under two dif-

ferent initial conditions. In the first case, the molecule was not rotating and internal excitation was

8,637 cm-1 (24.69 kcal/mol). In the second simulation, the molecule was prepared with JH2O ≈ 10,

and with total internal excitation 18,637 cm-1 (53.29 kcal/mol). Since water is an anysimmetric

rotor, we followed a different approach from the one used for methane in determining initial condi-

tions. We first performed a fully microcanonical sampling by assigning random velocities to water

atoms and then rescaled the velocities to match the desired internal excitation. However, in this

way, a widespread distribution of initial angular momentum values was produced, so we started

a trajectory only when JH2O was included between 9.9 and 10.1, discarding any other generated

initial conditions. In both cases, the initial geometry was the equilibrium one. The two molecules

were set 50 au away and given random relative orientation via Euler angle rotation. The impact

parameter (b) was determined by random and uniform sampling of the variable (b/bmax)
2, and

collisional energy was set to 700 cm-1 (2 kcal/mol). The maximum impact parameter (bmax) was

chosen equal to 13 au upon investigation of average trajectory time and energy transfer at different

impact parameter values in a restricted set of preliminary collisions, as described in our previous

work.33 In evolving the dynamics, we employed a time step of 0.1 fs and each trajectory was

stopped either when an unphysical region of the potential was visited (this happened only in about

0.1% of trajectories) or when the two molecules, after the collision, were separated by a distance

of at least 20 au. The total energy was typically conserved along trajectories with an accuracy of

1 part in 103 or more, while initial water excitation was large enough to prevent zero-point energy

leakage.
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3. Model for Energy Transfer between Two Molecules

Outline of the Model

The model we develop is applicable to the collision of two molecules in initial rotational levels J1,i

and J2,i with initial total (vibrational plus rotational) internal energies E1,i and E2,i, respectively.

It provides an approximation to the four-dimensional joint probability distribution (JPD) given by

P(J1,∆E1,J2,∆E2) , where J1(≡ J1, f ) and J2(≡ J2, f ) are the final rotational levels of molecules 1

and 2, respectively, ∆E1 = E1, f −E1,i, ∆E2 = E2, f −E2,i, and E1, f and E2, f are the final internal

energies of molecules 1 and 2, respectively.

The model is developed in two stages. First, we use classical mechanics to analyze the motions

for two colliding rigid molecules, each in its equilibrium configuration, interacting through a nine-

dimensional intermolecular potential V (R,Θ1,Θ2R,Θ1,Θ2R,Θ1,Θ2), where ΘiΘiΘi = {χi,θi,φi}, [i = 1,2], and where

R = {x,y,z} is the position of the center of mass (COM) of molecule 2 relative that of molecule

1 located at R = {0,0,0}. Turning points (TPs) are then determined for random orientations over

the angles Θ1,Θ2 for molecules 1 and 2 and for initial impact parameters taken between bi = 0 and

bi = bmax upon random and uniform sampling of the variable (b/bmax)
2. The turning points are

calculated using a straight-line approximation and the intermolecular potential.

An arbitrary unit vector is chosen for the direction of each initial rotational angular momentum,

J1,i, of magnitude J1,i and J2,i, of magnitude J2,i. When there is rotational energy transfer only, then

for each turning point the conservation equations for angular momentum and energy can be solved

to find pairs {J1, f ,J2, f } giving the final rotational states of the molecules, as well to determine each

direction relative to the axes of the respective molecule. These directions determine the moments of

inertia that are relevant for calculating the associated rotational energy changes ∆E1 and ∆E2. The

joint probability distribution P
(
J1, f ,∆E1,J2, f ,∆E2

)
is just given by the number of turning points

that give these values of the parameters divided by the total number of turning points considered.

This stage of the model covers both R↔ T and R↔ R energy transfer.

In the second stage, we allow the possibility that vibrational energy can be transferred. The
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model assumes that the probability for the vibrational energy exchange is given by the adiabaticity

principle, but that there are also limitations on the amount of vibrational energy that can be trans-

ferred depending on the turning point. We calculate the amount of vibrational energy transferred

by using Morse potentials to evaluate the degree to which each molecule vibrates. The value of

∆E = ∆E1 +∆E2 is then augmented or diminished by the energy change at the turning point due

to the vibration of each molecule. In the case when only V ↔ T transfer is allowed, all of the

vibrational energy is used to change ∆E, whereas if V ↔ R transfer is also allowed, not all of the

vibrational energy changes ∆E because that fraction of it that is transferred to rotation does not

change the internal energy of the molecule. The current model neglects V ↔V energy transfer.

In summary, the first level of approximation treats the rotational exchange exactly to within

classical mechanics and the straight-line trajectory assumption, and it captures much of the physics

of the energy transfer. With a second or third level of approximation, there is a broadening of the

∆E values or both the ∆E and J f values due to the vibration of the molecule. This broadening

increases the agreement of the model with the results of trajectory calculations. In particular, it

allows modeling of the downward energy transfer for systems with Ji = 0.

Details of the Model

The details of the model for molecule-molecule collisions are an extension of those previously

presented for atom-molecule collisions.3 We calculate the turning point from the intermolecular

potential using a straight-line trajectory approximation, a selected impact parameter, and fixed but

randomly chosen molecular orientations for each molecule. For trajectories that reach the repulsive

region of the potential, the turning point is defined as the point at which the potential is equal to the

collision energy, as evaluated from the velocity component in the direction normal to the potential.

For straight-line trajectories that do not reach the repulsive region, the turning point is taken as the

point on the incoming trajectory which minimizes the distance along the gradient to the point where

V (R,Θ1,Θ2R,Θ1,Θ2R,Θ1,Θ2) = 0. This definition conforms most closely to the definition used in the trajectories

as the distance of closest approach, although the agreement is only approximate.

8



Conservation of angular momentum is summarized by the vector equation

Li +J1,i +J2,i =Lf +J1,f +J2,f, (1)

where the vectors are the initial and final orbital and rotational angular momenta.

Conservation of energy is summarized by the scalar equation

Ei,trans +E1,i,internal +E2,i,internal = E f ,trans +E1, f ,internal +E2, f ,internal, (2)

or

∆E = ∆E1 +∆E2 = E f ,internal−Ei,internal =−∆Etrans, (3)

where ∆E is the net total change in the internal energy of the two molecules. This change must be

equal to the negative of the change in the translational energy of the atom-molecule pair. Let vi and

v f be the initial and final relative velocities between the two molecules. Because Li = µvibi and

L f = µv f b f , equations (1) and (2) can be combined by using the initial and final impact parameters

bi and b f :

∆E = 1/2µ

(
Li

µbi

)2

− 1/2µ

(
L f

µb f

)2

, (4)

where the values in the parentheses are the initial and final relative velocities, respectively. The

first term on the rhs of (4) is simply equal to the initial relative energy Erel . Thus,

∆E = Erel− 1/2µ

(
L f

µb f

)2

. (5)

From (1) we see that L f is the magnitude of Li−∆JLi−∆JLi−∆J, where ∆J =∆J =∆J =
(
J1,f−J1,i

)
+
(
J2,f−J2,i

)
.

Consequently,

∆E = Erel− 1/2µ

(
Li−∆JLi−∆JLi−∆J

µb f

)2

. (6)
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Although equation (6) gives the solution to the conservation laws that relates ∆E to ∆J∆J∆J, it is

difficult to use. Typically, although Li is known from the initial conditions, ∆E depends on ∆J∆J∆J

through both the dependence of rotational energy on ∆J and the dependence of the rotational con-

stant on the direction of ∆J∆J∆J. Additionally, we do not typically know b f . As discussed previously,3

these problems may be overcome in the straight-line trajectory approximation by separating the

incoming and outgoing velocities into judiciously chosen components. Let vrel be the initial veloc-

ity corresponding to Erel. By separating this initial velocity into components normal and tangential

to the equipotential contour of V (R,Θ1,Θ2R,Θ1,Θ2R,Θ1,Θ2) at the turning point, we have vrel = vi,n +vi,t. Let

the energies corresponding to these velocities be En and Et . Furthermore, we decompose vi,t into

components perpendicular and parallel to the line of centers (LOC), defined as the line between the

COM and the turning point. Then, vi,t = vi,t,perp +vi,t,par. Figure 1 of ref. 3 is useful in visualizing

the relevant vectors.

Now consider the motion along each of these three directions. For incoming motion along the

normal, the equipotential contours perpendicular to the motion guarantee that the outgoing motion

is also along the normal, so that the directions of Li,n and Lf,n are along the same line but opposite

to one another; thus ∆Jn∆Jn∆Jn must also be along this line. Similarly, motion in the tangential direction

perpendicular to the LOC encounters a “hill” or “valley” in the potential. The incoming motion

is along a equipotential contour and, to first order, the change in potential is perpendicular to this

direction. Thus, the motion remains along the tangential direction as it encounters the potential,

where it is reflected back on itself. Again, the directions of Li,t,perp and Lf,t,perp are along the same

line but opposite to one another; thus ∆Jt,perp∆Jt,perp∆Jt,perp must also be along the same line. Motion along

the third direction tangential to the normal and parallel to the LOC is unimportant for changes in

rotation because the impact parameter is zero.

As we have just seen, for motion along the normal direction and along the tangential direction

perpendicular to the LOC, the initial and final trajectories are along the same line, and thus the

initial and final impact parameters are equal. As explained above, the vectors Li, ∆J∆J∆J, and Lf are

co-linear, so that their vector addition can be replaced by the scalar addition of their magnitudes.
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For example, along the normal direction, the initial and final impact parameters are equal to the

shortest distance between the COM and a line that passes through the turning point and is parallel

to the normal (or gradient) to the potential. Let this impact parameter be denoted by bn. Then

Li,n = µvi,nbn, and Li,n−∆JnLi,n−∆JnLi,n−∆Jn = Li,n−∆Jn, so that

∆E = En− 1/2µ

(
Li,n−∆Jn

µbn

)2

. (7)

Because ∆Jn = J1, f ,n− J1,i,n + J2, f ,n− J2,i,n there are typically many possible solutions to Eq. 7.

The values of J1,i,n and J2,i,n can be determined by the following procedure. The magnitudes of the

total initial rotational angular momentum, J1,i and J2,i, are given by the problem or selected from a

rotational temperature. Given, for example, J1,i, we choose an arbitrary axis for the initial rotation

and project J1,i onto the direction of ∆Jn∆Jn∆Jn to find J1,i,n; a similar procedure is used to find J2,i,n. We

will then need to average over initial rotational axes as well as over the TPs. The direction for ∆Jn∆Jn∆Jn

is determined from the turning point analysis (see below for the calculation of this direction).

Similar equations hold for motion along vt,perp, where En is replaced by Emin
t,perp and bt,perp is

equal to the distance from the COM to the turning point, and for motion along vt,par, where En is

replaced by Et,par and bt,par = 0. In the former case, the combined conservation equation is thus

∆E = Emin
t,perp− 1/2µ

(
Li,t−∆Jt

µbt,perp

)2

, (8)

In the latter case, as mentioned earlier, the velocity does not contribute to the angular momentum,

i.e., there is an elastic exchange of momenta, and ∆Jt,par is zero. As shown in Fig. 2 of reference

4, Emin
t,perp is given by the smaller of the value of the potential at the turning point and the value of

Et,perp = (1/2)µv2
t,perp.

For motions along vn and along vt,perp, the equations (7) and (8) can be solved for J1, f ,n+J2, f ,n

and for J1, f ,t + J2, f ,t , respectively. There are, in principle, many combinations of J1, f + J2, f for

each equation, but one solution is always the trivial one for which J1, f = J1,i and J2, f = J2,i; i.e.,

for which the collision is elastic.
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The directions of all vectors J1,f,n, J2,f,n, J1,f,t, and J2,f,t are needed to determine the rotational

constants, which, for this classical approach, are simply related to the moments of inertia around

corresponding rotational vectors. For motion along vn, the directions of ∆J1,n∆J1,n∆J1,n and ∆J2,n∆J2,n∆J2,n are given

by vn×bn, where bn is a vector of length bn from the COM to the nearest point on a line through

the turning point and parallel to the normal to the potential surface. For motion along vt,perp, the

directions of ∆J1,t,perp∆J1,t,perp∆J1,t,perp and ∆J2,t,perp∆J2,t,perp∆J2,t,perp are given by vt,perp×bt,perp, where bt,perp is a vector of length

bt,perp from the COM to the turning point. For many initial Ji directions, the projection onto ∆Jn∆Jn∆Jn or

∆Jt,perp∆Jt,perp∆Jt,perp will be negative. Positive projections correspond to cases where Li is in the same direction

as the rotation, so that the collision increases Ji, whereas negative projections correspond to cases

where Li is in the opposite direction as the rotation, so that the collision decreases Ji. Once Jf is

determined for a particular molecule, the rotational constant may be calculated by determining the

moment of inertia of the molecule about its direction and by then converting this moment into

a rotational constant. We calculate J1,f from J1,f = J1,i−
(
J1,i,n +J1,i,t

)
+
(
J1,f,n +J1f,t

)
, with a

similar equation for J2,f. These steps complete the solution of (6), from which we find for each

turning point typically several quartets of values
{

J1, f ,∆E1,J2, f ,∆E2
}

that are consistent with con-

servation of both energy and angular momentum for the situation when only rotational energy

change is considered.

An example is helpful in understanding the arguments above. We consider solution of (7)

for motion normal to the potential surface. Similar results obtain for motion tangential to both the

normal and the LOC. Figure 1 provides an example for the case when J f = J1, f +J2, f is positive. In

this example, J1,i,n = 20, J2,i,n =−10, B1,n = 5 cm-1, and B2,n =1 cm-1, bn = 0.2 Å, and Li = 3.75.

A relatively large value of Li has been chosen for purposes of illustration. The blue curve shows

the locus of points for which ∆E = ∆E1 +∆E2 is equal to the rhs of Eq. 7. The black dots show

two possible solutions for the specific case when J1, f ,n = −2J2, f ,n. In this specific case, since

J f ,n = J1, f ,n + J2, f ,n, we have J f ,n = −J2, f ,n. Thus, the black dot with ∆E = 0 cm-1 corresponds

to J2, f ,n = −10 (with J1, f ,n = 20), whereas the black dot at ∆E = −1243 cm-1corresponds to

J2, f ,n = −20 (with J1, f ,n = 40). Note that the first black dot is the elastic solution, whereas the
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second corresponds to a net change in J f of 10, for which J1,n increased by 20 and J2,n decreased

by 10.

Figure 1: a) The blue curve shows the locus of points for which ∆E = ∆E1 +∆E2 is equal to
the rhs of Eq. 7. The black dots show a specific pair of solutions, one of which represents the
elastic solution. b) Every point on the blue curve between the red dots in a) is also a solution in
combination with the elastic solution. In practice, we perform the calculation for a set of points
equidistant in x-y space along the blue curve, as shown.

There is nothing special about the specific case in (a) for which J1, f ,n =−2J2, f ,n; the factor of

-2 is arbitrary. In fact, every point on the blue curve between the two red dots is also a solution for

some possible pair of
{

J1, f ,n,J2, f ,n
}
, each in combination with the elastic solution. In practice, we

perform the calculation for a set of points equidistant along the blue curve in x-y space, as shown

in Fig. 1 (b).

The model to this point is based on angular momentum and energy conservation for two rigid

rotor molecules colliding under a realistic potential. Although it can reproduce the trajectory re-

sults fairly accurately as we will see later, it cannot account for one important feature. When
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Ji = J1,i + J2,i is small, there is no probability for energy transfer more negative than the rotational

energy corresponding to Ji. Specifically, when Ji is zero, there is no probability for any negative

value of ∆E if the molecule is rigid. Trajectories using realistic potentials and allowing the target

molecule to change its shape do show probability for negative values of ∆E, even for Ji = 0, and it

seems intuitive that the reason is that the target molecule is not rigid – it vibrates. As discussed in

an earlier paper,3 one way to look at this is that the energy at the turning point for the equilibrium

configuration of the rigid molecule changes as the molecule vibrates. We model the amount of

vibrational energy available for the collision as the difference in energy between the turning point

energy of the rigid molecule versus the turning point energy of the molecule in a new configuration

allowed by vibration. For the level of the model reported here, the treatment is a straightforward

extension of that previously considered. Equations (9)-(12) of the previous paper3 are identical

with the exceptions that ∆Evib is now identified as ∆E1,vib +∆E2,vib, and the density of states ratio

in Eq. (12) is replaced by the product of ratios, one for ∆E1,vib and a second for ∆E2,vib. One level

of the model includes only V ↔ T transfer, while a second level also includes V ↔ R transfer. At

this stage, we neglect V ↔V transfer between the two molecules. For each molecule, the variation

in energy at the turning point is calculated as previously described, either from a simple force field

treatment or from trajectories describing the vibrational motion. Computational implementation of

the model is similar to that previously described for atom-molecule collisions.3

Computational Implementation of the Model

The model was implemented using the “PES2b- CSM” potential.46 by first calculating 1000 turn-

ing points based on 100 randomly selected orientations for the methane and water and, for each

orientation set, 10 different impact parameters using the same range of impact parameter as used in

the trajectories (13 Bohr). This part of the calculation can be performed in about 150 minutes using

Mathematica on a single processor Macbook Air computer. In a separate calculation, for each set

of initial conditions (Ji,1,Ji,2,Ei,1,Ei,2) and for each impact parameter/orientation set, we calcu-

lated solutions to the conservation equations for 1-5 randomly chosen orientations for the original
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rotational direction of each molecule. These generated typically 140,000-350,000 solutions to the

conservation equations that were used to calculate the JPD. This second calculation takes about 15

minutes using Mathematica on a single processor Macbook Air computer.
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4. Results

Results of the trajectory calculations

The four-dimensional joint probability distribution P(J1,∆E1,J2,∆E2) , where J1 ≡ J1, f and J2 ≡

J2, f , is difficult to depict graphically, but there are several projections that are particularly useful.

By summing over three of the four variables, we can produce the four one-dimensional projections

P(J1), P(∆E1), P(J2), and P(∆E2). Alternatively, by summing over two of the four variables, we

can produce six two-dimensional projections, of which four are particularly useful: P(J1,∆E1),

P(J2,∆E2), P(J1,J2), and P(∆E1,∆E2). Finally, we can sum J1 + J2 to form J and ∆E1 +∆E2 to

form ∆E, so as to produce a two-dimensional function most like the atom-molecule JPD: P(J,∆E).

Trajectory calculations were performed for methane-water collisions using a collision energy

of 700 cm-1 with initial internal energies of 35410 cm-1 and 8637 cm-1, respectively, and with

initial rotational levels of 20 and 0 for methane (molecule 1) and water (molecule 2), respectively.

One-dimensional projections of the JPD are shown as the red dots in the panels of Fig. 2, while

two-dimensional projections are shown in Fig. 3. The blue curves in Fig. 2 will be discussed later.

In order to see how the results might depend on the initial rotational level of the water, trajectory

calculations were also performed for methane-water collisions using a collision energy of 700 cm-1

with initial internal energies of 35410 cm-1 and 18637 cm-1, respectively, and with initial rotational

levels of 20 for methane (molecule 1) and 10 for water (molecule 2). One-dimensional projections

of the JPD are shown as the red dots in the panels of Fig. 4, while two-dimensional projections are

shown in Fig. 5. The blue curves in Fig. 4 will be discussed later.

In addition to the overall JPD that characterizes the trajectories, we can also gain some insight

into the dynamics by seeing how various properties depend on the impact parameter. Figure 6

shows a trajectory density plot of, in Fig. 6(a), the change in internal energy of the methane and,

in Fig. 6(b), the final rotational level of water. Similar density plots were constructed for J1, f ,

J2, f , and ∆E2 for the initial water rotational level of 10, and for J1, f , ∆E1, and ∆E2 for the initial

water rotational level of 0. Recall that the distribution function from which the impact parameters
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Figure 2: One-dimensional projections of the joint probability distribution for trajectories calcu-
lated for collisions of methane and water under the conditions described in the text. The initial ro-
tational level of methane is 20, while that of water is 0. The red dots show the projected JPD. Panel
a) shows P(J1, f ), panel b) shows P(J2, f ), panel c) shows P(∆E1), and panel d) shows P(∆E2).
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Figure 3: Two-dimensional projections of the joint probability distribution for trajectories calcu-
lated for collisions of methane and water under the conditions described in the text. The initial
rotational level of methane is 20, while that of water is 0. From left to right and top to bottom, the
panels show the projections P(J1, f ,∆E1), P(J2, f ,∆E2), P(J1, f ,J2, f ), P(∆E1,∆E2), and P(J,∆E). In
each panel, the intersection of the dashed vertical and horizontal lines depicts the elastic condition.
The dotted line in the fourth panel shows the condition ∆E1 =−∆E2. Energy axes are in cm-1. The
contours represent a log 10 scale of probability and are separated by 1.0 log units.
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Figure 4: One-dimensional projections of the joint probability distribution for trajectories calcu-
lated for collisions of methane and water under the conditions described in the text. The initial
rotational level of methane is 20, while that of water is 10. The red dots show the projected
JPD. Panel a) shows P(J1, f ), panel b) shows P(J2, f ), panel c) shows P(∆E1), and panel d) shows
P(∆E2).
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Figure 5: Two-dimensional projections of the joint probability distribution for trajectories calcu-
lated for collisions of methane and water under the conditions described in the text. The initial
rotational level of methane is 20, while that of water is 10. From left to right and top to bottom, the
panels show the projections P(J1, f ,∆E1), P(J2, f ,∆E2), P(J1, f ,J2, f ), P(∆E1,∆E2), and P(J,∆E).
In each panel, the intersection of the dashed vertical and horizontal linesdepicts the elastic condi-
tion. The dotted line in the third or fourth panel shows the condition ∆J1 =−∆J2 or ∆E1 =−∆E2,
respectively. Energy axes are in cm-1. The contours represent a log 10 scale of probability and are
separated by 1.0 log units.
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Figure 6: Trajectory density plot results for the collision properties as a function of impact param-
eter. (a) The change in the internal energy of the methane. (b) The final rotational level of water.
Both sets of trajectories were for a collision energy of 700 cm-1 and an initial methane internal
energy of 35410 cm-1. The initial water internal energy was 18637 cm-1 in (a) and 8637 cm-1 in
(b). The initial rotational state of methane was 20, while that for water was 10 in (a) and 0 in (b).

are chosen increases linearly with the impact parameter. Data such as these can be used to gain

insight into how different properties of the methane and water are correlated, as will be explained

in Section 5.

Results of the model calculations

One-dimensional projections of the JPD provided by the model calculations using the same initial

parameters as those used in the trajectories for an initial rotational level of water given by J2,i = 0

are shown as the blue curves in Fig. 2. Two-dimensional model projections are shown in Fig. 7.

For an initial rotational level of water given by J2,i =10, one-dimensional model projections of

the JPD are shown as the blue curves in Fig. 4, whereas two-dimensional projections are shown in

Fig. .

In all model calculations displayed here, a simple force field method was used to determine how

the methane or the water changed internal distances as a result of vibration. This force field method

is described previously.3 We also ran trajectories to see how the molecular distances varied due to
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vibration. In either case, these distance variations were used with the known potential energy

function to see how the energy at the turning point varied with the vibration of each molecule.

This energy is then used to determine the maximum vibrational energy that can be converted to

translation.3 The JPD results using the force field method or the trajectory method were nearly

identical.
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Figure 7: Two-dimensional projections of the joint probability distribution for model calculations
for collisions of methane and water under the conditions described in the text. The initial rotational
level of methane is 20, while that of water is 0. From left to right and top to bottom, the panels
show the projections P(J1, f ,∆E1), P(J2, f ,∆E2), P(J1, f ,J2, f ), P(∆E1,∆E2), and P(J,∆E). In each
panel, the intersection of the dashed vertical and horizontal linesdepicts the elastic condition. The
dotted line in the fourth panel shows the condition ∆E1 = −∆E2. Energy axes are in cm-1. The
contours represent a log 10 scale of probability and are separated by 1.0 log units.
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Comparison of the trajectory and model calculations

Two methods were used in order to compare the trajectory and model calculations. In both cases,

the trajectory data were used to calculate a JPD using the same energy and rotational binning

parameters as used for the model. We used typically 20 bins in the energy range for each of ∆E1

and ∆E2, and 10 bins in the range of final rotational levels for each of J1, f and J2, f . Thus, there are

20×20×10×10 = 40,000 distinct bins in the JPD. The numbers reported below are for inclusion

of R↔ T, R↔ R, and V ↔ T energy transfer, except as otherwise noted.

In the first method we simply compared bin-by-bin the values in the normalized trajectory JPD

to those in the model JPD and calculated how well the model predicted the trajectory data. The

value of R2 for this prediction was 0.73 for an initial water rotational level of J2,i = 0 and 0.93

for an initial water rotational level of J2,i = 10. This observation is consistent with our model

study of atom-molecule collisions,3 where we found better agreement as the initial rotational level

increased.

In the second method, we calculated from each JPD a set of low-order moments: 〈∆E〉 , 〈∆E1〉 ,

〈∆E2〉 , 〈∆Edown〉 ,
〈
∆E1,down

〉
,
〈
∆E2,down

〉
,
〈
∆Eup

〉
,
〈
∆E1,up

〉
,
〈
∆E2,up

〉
, ∆Erms, ∆E1,rms, ∆E2,rms,

and 〈∆J〉 , 〈∆J1〉 , 〈∆J2〉 , 〈∆Jdown〉 ,
〈
∆J1,down

〉
,
〈
∆J2,down

〉
,
〈
∆Jup

〉
,
〈
∆J1,up

〉
,
〈
∆J2,up

〉
, ∆Jrms,

∆J1,rms, ∆J2,rms. These parameters are defined in a similar way as those used previously.3 We then

compared the trajectory values for each set of moments to those predicted by the model. For the

set of data using the initial water rotational level of J2,i = 0, the R2 value for the energy parameters

was 0.69 while that for the rotational parameters was 0.73. For the set of data using the initial

water rotational level of J2,i = 10, the R2 value for the energy parameters was 0.86 while that for

the rotational parameters was 0.94. Values of the moments are listed in Table 2.

We also investigated inclusion of V ↔R energy transfer in the model on the comparison results.

As noted previously,3 the program calculating the JPD with the inclusion of V ↔ R transfer takes

about five times as long as that for consideration of only R ↔ T, R ↔ R, and V ↔ T energy

transfer. In the current case, it contributes only very minor improvement, resulting in R2 for {bin-

by-bin comparison, energy transfer moments, rotational transfer moments} in the J2,i = 0 case of
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Figure 8: Two-dimensional projections of the joint probability distribution for model calculations
for collisions of methane and water under the conditions described in the text. The initial rotational
level of methane is 20, while that of water is 10. From left to right and top to bottom, the panels
show the projections P(J1, f ,∆E1), P(J2, f ,∆E2), P(J1, f ,J2, f ), P(∆E1,∆E2), and P(J,∆E). In each
panel, the intersection of the dashed vertical and horizontal lines depicts the elastic condition.
The dotted line in the third or fourth panel shows the condition ∆J1 = −∆J2 or ∆E1 = −∆E2,
respectively. Energy axes are in cm-1. The contours represent a log 10 scale of probability and are
separated by 1.0 log units.
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Table 2: Moments of the Joint Probability Distribution

Property Model Trajectory Model Trajectory
J2,i 0 0 10 10
〈∆E〉 -471 -63 -236 -30
〈∆E1〉 390 67 132 0
〈∆E2〉 -81 4 -104 -30
〈∆Edown〉 -933 -802 -1016 -1225〈
∆E1,down

〉
-1125 -488 -830 -1102〈

∆E2,down
〉

-556 -377 -726 -417〈
∆Eup

〉
500 681 910 1126〈

∆E1,up
〉

762 567 1068 1085〈
∆E2,up

〉
424 314 930 314

∆Erms 736 433 650 724
∆E1,rms 678 401 716 704
∆E2,rms 419 251 707 287
〈∆J〉 -2.6 -0.3 -1.5 -0.1
〈∆J1〉 3.6 1.3 0.1 0.1
〈∆J2〉 1.0 1.0 -1.4 0
〈∆Jdown〉 -6.6 -5.8 -6.3 -5.9〈
∆J1,down

〉
N/A N/A -3.5 -3.3〈

∆J2,down
〉

-3.1 -2.9 -4.5 -4.5〈
∆Jup

〉
5.0 5.1 5.3 5.3〈

∆J1,up
〉

5,7 3.9 3.6 3.4〈
∆J2,up

〉
3.1 3.7 3.0 4.3

∆Jrms 4.5 1.8 3.6 2.3
∆J1,rms 5.0 2.5 2.0 1.4
∆J2,rms 3.0 2.4 3.2 2.4
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{0.70, 0.71, 0.77} and in the J2,i = 10 case of {0.89, 0.93 0.94}.

For the previously studied case of atom-molecule collisions,3 the general agreement for the

moments was about R2 ≈ 0.9. Thus, the agreement found for the more complicated system of

molecule-molecule collisions is about as good when the initial rotational levels are high, but not as

good when the initial rotational levels are near zero.

5. Discussion

Impact Parameter Dependence of Collisional Changes: E1↔ E2 and J1↔ J2

Correlations

Figure 9: Average collision properties for trajectories as a function of impact parameter. (a) and
(c) The variation with impact parameter of |∆E1| (blue), |∆E2| (red), and ∆E = ∆E1+∆E2 (green).
(b) and (d) The variation with impact parameter of |∆J1| (blue), |∆J2| (red), and ∆J = ∆J1 +∆J2
(green). The data are for an initial water rotational level of J2,i = 10 in (a) and (b) and J2,i = 0 in
(c) and (d).

Trajectory density plots such those shown in Fig. 6 can be used to characterize how different

properties of the collision depend on impact parameter. Fig. 9 shows some examples. The data

are for an initial water rotational level of J2,i = 10 in Fig. 9(a) and (b) and J2,i = 0 in 9(c) and (d).

In Figs. 9(a) and (c) the blue and red points show how the absolute values of the internal energy
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changes for methane and water, respectively, depend on impact parameter. Most of the energy

change occurs for impact parameters smaller than 8 Bohr, and |∆E| is nearly equal for methane

and water, especially for impact parameters higher than 7 Bohr. Furthermore, one can see that

the changes in energy are highly correlated, since the sum of the two, ∆E = ∆E1 +∆E2 shown by

the green points, is close to zero for nearly all impact parameters. Thus, when the internal energy

change of one species goes up, that of the other species goes down. This is also evident in the

P(∆E1,∆E2) plots in Figs. 3 and 5, where the highest probability densities lie along the dotted line

of slope of -1. Note also that the model results of Figs. 7 and 8 show that the highest probability

densities lie along the dotted line of slope -1, although the trend is not quite as strong as for the

trajectories.

The reason for the anti-correlation between ∆E1 and ∆E2 can clearly be seen in the model;

it is a consequence the conservation equations depicted in Fig. 1. Most collisions have a much

flatter parabola than shown in the figure, which means that the total ∆E = ∆Erot +∆Evib is close

to zero. Because the probability falls off very strongly with ∆Evib and less so with ∆Erot , most of

the probability density will be along the ∆Erot = ∆Erot,1 +∆Erot,2 curve, so that ∆E will be close

to zero energy. If ∆E ≈ ∆Erot = ∆Erot,1 +∆Erot,2=0, it must be that ∆Erot,1 ≈−∆Erot,2.

In Figs. 9(b) and (d) we see the averaged change in |∆J| for methane (blue) and water (red) as a

function of impact parameter. The green points give the value of ∆J1+∆J2. In Fig. 9(b), the initial

water rotational level is 10, and ∆J1 +∆J2 is nearly zero, implying that ∆J1 and ∆J2 are nearly

anti-correlated. Indeed, the P(J1,J2) plot of Figs. 5 (trajectories) and 8 (model) show a tendency

for the maximum probability to lie along the dotted line indicating ∆J1 = −∆J2. By contrast, in

Fig. 9(d) the initial water rotational level is 0, and ∆J1 +∆J2 rises commensurately with |∆J1| and

|∆J2| . The value of ∆J2 (for water) can only be positive, and the value of ∆J2 is larger than the

value of ∆J1 (for methane). In this case, the density plots for P(J1,J2), shown in Figs. 3 and 7, are

elongated more along the J2 axis than along the J1 axis.

28



R↔ T and R↔ R vs. V↔ T Energy Transfer

A few general trends can be summarized from the trajectory plots of Figs. 2, 3, 4, and 5. From

the one-dimensional plots we see that the probability of finding a particular final rotational level

has a peak at the initial rotational level and then falls off nearly exponentially for both methane

and water. The probability of the rotational energy falls off rapidly though somewhat less steeply

than exponentially. From the two-dimensional plots of J1 vs. ∆E1 and J2 vs. ∆E2, we see strong

upward curvature in the model plots and somewhat less strong elongation along this direction in

the trajectory plots. In general, pure R↔ T transfer results in a sharp ridge along the upward

rising parabola given for molecule 1 by ∆E1 = Erot,1 = (J2
1, f − J2

1,i)B1, with a similar equation for

molecule 2. Model calculations considering rotation alone give even more sharply peaked ridges

than those shown in Figs. 3 and 5 which include V↔ T energy transfer, so it is clear that vibrational

energy is quite important for methane-water energy transfer. The total energy transfer for J2,i = 0

is characterized by 〈∆Edown〉=−802 and
〈
∆Eup

〉
= 681, and for J2,i = 10 by 〈∆Edown〉=−1225

and
〈
∆Eup

〉
= 1126. These values are almost 2% of the total energy, so it would appear that the

energy transfer is relatively facile.

A direct comparison between our results and those of Jasper et al.32 is not possible because

different initial conditions were employed in the two studies. Although the initial internal energy

of methane was similar, Jasper et al. sampled from temperature distributions at 300, 1000, 2000,

and 3000 K, while we have used a microcanonical distribution at a collision energy of 700 cm-1.

The initial rotational levels for the Jasper et al. work were sampled from the relevant temperature

as well, whereas those we used were fixed. Nonetheless, the averaged results are not strikingly

different. Our collision energy corresponds to something intermediate between their temperatures

of 300 and 1000. For various moments we list the following values (in cm-1), where the four

numbers listed are for {300 K,32 700 cm-1(J2,i = 0)/700 cm-1(J2,i = 10), 1000 K32}:〈
∆E1,down

〉
= {−737, −488/−1102, −1265} ,〈

∆E1,up
〉
= {289, 567/1085, 683} ,

∆E1,rms = {541, 401/704, 813} ,
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〈
∆J1,down

〉
= {−3.36, (N/A)/−3.3, −5.56} ,〈

∆J1,up
〉
= {4.43, 3.9/3.4, 4.29} ,

∆J1,rms = {3.67, 2.5/1.4, 4.33} .

V↔ V Energy Transfer

A somewhat surprising observation is that the trajectory results have probability for ∆E1 > 0 and

∆E2 < 0, as shown in the P(∆E1,∆E2) plots of Figs. 3 and 5. The latter inequality can only

occur when the water gives up vibrational energy to the rotational and/or vibrational excitation of

the methane. This transfer, which is somewhat surprising since the methane has so much more

internal energy than the water, is more pronounced in the trajectories than in the model. Because

V ↔V energy transfer has been neglected in the model, the comparison may indicate that this type

of energy transfer is important. Future work should focus on how to model such V ↔ V energy

transfer.

Bernshtein and Oref,52 in their summary of energy transfer conclude that V-V transfer is the

major channel in polyatomic-polyatomic collisions. It is not clear from this study that V-V transfer

is more or less important than V-T/R transfer, but it is clearly very important. A more extensive

comparison between detailed results for polyatomic-polyatomic trajectory studies and the mecha-

nistic conclusions provided in reviews, for example, by Bernshtein and Oref52 and by Gilbert8 is

not quite warranted from the result of the current study alone, but as more detailed studies of this

kind become available, these conclusions should be revisited.

6. Summary and Conclusions

QCT calculations have been performed for the collision of internally excited methane with water

molecules using an accurate methane-water potential (PES2b-CSM)46 based on a full-dimensional,

permutationally-invariant analytical representation of energies calculated at a high level of theory.

The potential is important both for understand methane-water clathrates and for modeling combus-
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tion. Trajectory calculations were performed for a collision energy of 700 cm-1 and for an initial

methane rotational level of J1,i of 20 with an internal energy of 3540 cm-1, and for initial water ro-

tational levels of J2,i of 0 and 10 with internal energies of 8637 cm-1 and 18637 cm-1, respectively.

Examination of the trajectory results indicates that most energy transfer comes from collisions with

impact parameters smaller than about 8 Bohr (about 4.2 ); collisions with larger impact parameters

are mostly elastic. Energy transfer is fairly facile; the values of 〈∆Edown〉and
〈
∆Eup

〉
are almost

2% of the total excitation energy.

A classical model for energy transfer has been extended from the atom-molecule collision case3

to the case for collisions of two molecules. The model explicitly considers R↔ T, R↔ R, V ↔ T,

and V ↔ R energy transfer. The inclusion of the first three of these produces good agreement

(R2 ≈ 0.9) with the trajectory results for an initial water rotational level of 10 and fair agreement

(R2 ≈ 0.7) for an initial water rotational level of 0. Inclusion of V ↔ R energy transfer results in a

very minor improvement in the prediction of the trajectory results, but takes about five times longer

for the JPD calculation.

Both the model and the trajectory results show a striking anti-correlation between the inter-

nal energy change in methane (∆E1) and the internal energy change in water (∆E2). The anti-

correlation is somewhat stronger in the trajectories than in the model, the latter of which does not

include V ↔ V energy transfer. The anti-correlation in the trajectories is nearly exact for impact

parameters larger than about 5 Bohr. From the model, we see that this anti-correlation is due to

the fact that for most collisions, particularly those of high impact parameter, the conservation of

energy parabola shown in Fig. 1 is very shallow, so that the total change of energy is nearly zero

despite the possibility that rotational angular momentum levels can change.

The model and the trajectory results also show an anti-correlation between the rotational changes

for methane and water when starting in an initial water rotational level of 10, though not when start-

ing in an initial water rotational level of 0. In the latter case, of course, the water rotational level

can only increase. The ∆J1−∆J2 anti-correlation for the initial water level of 10 is much less

strong than the ∆E1−∆E2 anti-correlation.
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The trajectory data show unambiguously that a small amount of V ↔V energy transfer occurs

from the water, which has little internal energy, to the methane, which has a large internal energy.

This suggests as well that V ↔V energy transfer also occurs in the opposite direction. The model

does not include V ↔ V energy transfer, and future efforts should focus on modeling this type of

transfer.
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