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Preface 

 

This PhD project was undertaken in collaboration with the Cystic Fibrosis Regional Reference Centre 

of Milan (Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico), directed by Professor 

Carla Colombo. 

The main focus of this exploratory analysis is to evaluate the relationship of one marker of lung 

disease in Cystic Fibrosis (CF), namely lung clearance index (LCI2.5), with some of the variables 

currently used in clinic use to assess CF disease, including well known prognostic factors. 

Understanding if LCI2.5 is associated or not to these routinely measures used in CF centres worldwide, 

would allow the CF team to better evaluate the disease stage, especially in young patients, who cannot 

perform spirometry or show normal/above-normal forced expiratory volume in the first second 

(FEV1), the gold standard outcome used to assess severity of lung disease in older CF patients. The 

second part of this analysis evaluates the possibility to generate phenotypes based on the same clinical 

characteristics and prognostic factors collected for the current project, and to evaluate how CF lung 

disease evolves in different phenotypes in terms of LCI2.5 variation. Eventually, association of LCI2.5 

with time to pulmonary exacerbation is investigated as well. 

 

The emerging role of LCI2.5 in the assessment of CF lung disease and its potential as an earlier marker 

forced the CF team to understand its behaviour under multiple clinical perspectives. Within this 

project, new information about LCI2.5 is collected, contributing to the decision whether including 

LCI2.5 as an outcome measure into regular follow-up at the CF centre of Milano. 
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Abstract 

 

BACKGROUND. Especially in children, spirometry may not capture the underlying lung disease, 

which has been described in small airways since young ages in cystic fibrosis (CF). Lung Clearance 

Index (LCI2.5) is one of the derivatives obtained by the multiple breath washout (MBWN2) test, 

recognized as a sensitive alternative for the assessment of lung function. The potential of this outcome 

in clinical setting has not been fully explored yet. 

METHODS. Data were collected for each patient’s visit from 2014 up to September 2019 from the 

CF Centre of Milano and analyzed according to different perspectives. The association between lung 

function measures and selected prognostic variables was investigated by means of ordinary least-

square regression models; disease phenotypes were obtained according to children’s clinical 

characteristics by means of agglomerative nesting hierarchical clustering; longitudinal association 

between lung function and selected variables, and phenotypes, was assayed fitting linear-mixed effect 

models; recurrence of pulmonary exacerbations (PE) was evaluated by extensions of the Cox 

proportional hazard models. 

RESULTS. A total of 433 MBWN2 measurements from 245 children with CF were analyzed. Cross-

sectionally, both LCI2.5 and FEV1 %predicted showed significant association with CF clinical 

prognostic variables, i.e., Pseudomonas aeruginosa infection, pancreatic function, BMI Z-score and 

age, whereas only LCI2.5 was associated with genotype.  

Two different phenotypes of children around 11 years old emerged, differentiating one from another 

also by a mean LCI2.5 difference of 3.37 (95%CI: 2.57 to 4.16) and by a mean FEV1 difference of 1.2 

(95%CI:0.7 to 1.6) Z-score. Children with the best phenotype were mainly characterized by absence 

of F508del mutation and by a normal pancreatic function.  
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Longitudinally, LCI2.5 and FEV1 % predicted remained stable over time and showed meaningful 

differences between phenotypes at each follow-up visit. However, infection by Pseudomonas 

aeruginosa was associated with longitudinal variation of LCI2.5 only, showing that being free from 

Pseudomonas aeruginosa lowers LCI2.5 by 0.82 (95%CI: -1.36 to -0.27). 

Eventually, mean number of PE in the present cohort was 1.8, varying from 0 to 4. Children with 

higher LCI2.5 are expected to experience a 6% higher risk of PE recurrence during their follow-up 

(HR 1.06, 95%CI 1.01 to 1.10), whereas FEV1 % predicted did not show any evidence of association. 

An association with PE recurrence was also detected between phenotypes in favour of children with 

better clinical status (HR 0.46, 95%CI 0.34 to 0.60). 

CONCLUSIONS 

LCI2.5 shows interesting associations with clinical characteristics not shared with FEV1, %predicted, 

both in cross-sectional and longitudinal analyses. Clustering has shown a disease profile of children 

who share negative clinical prognostic factors, also in terms of ventilation inhomogeneity, and are at 

higher risk of recurrent pulmonary exacerbations. Altogether these findings add to the available 

literature in confirming the clinical utility of MBWN2. 
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Background 

 

Cystic fibrosis is a classic Mendelian autosomal recessive disorder that mostly affects the respiratory 

and gastrointestinal system. It is the most common genetic life shortening disorder in the Caucasian 

population and it is caused by a mutation in the gene encoding for Cystic Fibrosis Transmembrane 

conductance Regulator (CFTR). The CFTR protein transports chloride ions across the membrane of 

epithelial cells and regulates the transport of other ions. [1] CF has been known for centuries: 

European literature from the XVIII century warns that the child whose forehead tastes salty will die 

soon. However, the full clinical spectrum of the disease was only described in 1938 by Dorothy H. 

Andersen, who described cystic fibrosis of the pancreas in 49 patients and the disorder was 

subsequently associated with lung infection and salt loss during a heat wave in New York. [2] By 

1958, Paul di Sant’Agnese discovered abnormalities in sweat electrolytes and a sweat test was 

designed soon after. Lap-Chee Tsui and colleagues identified the gene responsible for the disease in 

1989; designing a gene therapy followed as a consequence.  

The U.S. Cystic Fibrosis Foundation’s projected life expectancy for patients has increased from 31 

years to 37 years over the past decade, and a UK model predicting that a child born with cystic fibrosis 

today will typically live to be 50 years of age or more seems to be realistic.[2] 

Epidemiology  

Cystic fibrosis has a prevalence of approximately 1 in 3000 live births in the northern European 

descent, but the number decreases in African Americans and reaches very low values in the Asian 

population. In Western countries cystic fibrosis is usually diagnosed within a few weeks from birth 

in the context of newborn screening; despite this, 10% of patients, often those with a milder disease 

are still identified as adults. [3] The absence of phenylalanine at position 508, known as F508del, 
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which is class II mutation, accounts for about two-thirds of mutated alleles in northern European and 

North American populations. Patients who carry two F508del mutations are often described as having 

classic CF, but other combinations of mutations may cause the same degree of disease. In Europe the 

allele frequency still varies from 24.27% in Israel to 82.24% in Denmark.[4] 

Aetiology  

Cystic fibrosis is caused by mutations in the CFTR gene (located on chromosome 7), which produces 

a glycoprotein, part of the ATP-binding cassette superfamily. Over 2000 variants in the CFTR gene 

have been discovered and grouped into six classes according to the functional defect. [5] Class I (i.e., 

G542X), II (i.e., F508del), and III mutations (i.e., G551D) are associated with no residual CFTR 

function and patients with these mutations have a severe phenotype. Class II mutations such as 

F508del lead to misfolding, premature degradation by the endoplasmic reticulum quality-control 

system, and impaired protein biogenesis, severely reducing the number of CFTR molecules that reach 

the cell surface.[6] By contrary, individuals with class IV (i.e., R117H), V (i.e., 3849+10kbCàT) 

and VI (i.e., 4326delTC) mutations conserve some residual function on CFTR protein. On average, 

they show a mild lung phenotype and pancreatic sufficiency, [1, 7] since CFTR variants are actually 

expressed at the apical membrane of secretory epithelia. Generally, some mutations seem to be of 

little clinical relevance yet.  

The CFTR protein is a cAMP-regulated ion channel expressed on epithelial cells, composed of 12 

alpha helices spanning the cell membrane and two ATP hydrolysing domains. Its main activity is 

transporting chloride ions, but it has also other regulatory functions, such as down-regulation of the 

amiloride-sensitive epithelial Na+ channel (ENaC) and bicarbonate-chloride exchange. [1] 

Polymorphisms in modifiers genes (i.e. growth factor β1 and mannose-binding lectin 2) could explain 

the variability in the presentation and severity of the disease, as could environmental and 

socioeconomic factors. [1] 
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Pathophysiology  

There are several hypotheses regarding how CFTR dysfunction leads to the phenotypic disease known 

as cystic fibrosis. 

The low-volume hypothesis postulates that the loss of inhibition of epithelial sodium channels, 

because of CFTR dysfunction, leads to excess sodium and water reabsorption, resulting in 

dehydration of airway surface liquid. Concomitant loss of chloride efflux prevents the epithelium 

from correcting the low airway surface water volume. The subsequent decrease in periciliary water 

volume results in a reduction in the lubricating layer between epithelium and mucus, with 

compression of cilia by mucus causing inhibition of normal ciliary and cough clearance of mucus 

(Figure 1). According to this hypothesis, mucus on the epithelium forms plaques with hypoxic niches 

that can harbour bacteria, particularly Pseudomonas aeruginosa. This mechanism applies both in the 

airways and in the gastrointestinal and reproductive tracts.  

 

Figure 1. CFTR and ENaC channels influence water volume in ductal lumen. [8] 

The high-salt hypothesis argues that in the absence of functional CFTR, excess sodium and chloride 

are retained in airway surface liquid. The increased concentration of chloride in the periciliary layer 

disrupts the function of important innate antibiotic molecules (i.e. human β-defensin 1, whose 

encoding gene is expressed at high levels in most surface epithelial cells throughout the lung [9]), 

allowing bacteria that are cleared by normal airways to persist in lungs. However, this hypothesis has 
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been already challenged by several reports showing no difference in Na+ hyperabsorption. [10]  

Dysregulation of the host inflammatory response has been postulated as the putative basic defect in 

cystic fibrosis. Support for this hypothesis lies in the fact that abnormally high concentrations of 

inflammatory mediators are seen in cystic fibrosis cell cultures and uninfected ex-vivo tissue samples. 

Furthermore, findings from lung lavage studies show that inflammation is present in children as 

young as 4 weeks of age who are apparently free of infection. Levels of pro-inflammatory molecules 

such as interleukin 8, interleukin 6, tumour necrosis factor α, and arachidonic acid metabolites have 

been found increased in patients with cystic fibrosis. [11, 12] Apoptosis and activation of the nuclear 

factor-κB pathway also contribute to the self-perpetuating inflammatory cycle. [13] At the same time, 

concentrations of native anti-inflammatory substances such as interleukin 10, lipoxin, and 

docosahexaenoic acid are reduced, leading to an imbalance between pro-inflammatory and anti-

inflammatory mediators, that favours unabated inflammation.  

Another hypothesis suggests that primary pre-disposition to infection is a mechanism by which CFTR 

dysfunction leads to cystic fibrosis. In normal hosts, P. aeruginosa binds to functional CFTR and 

initiates an innate immune response, which is rapid and self-limiting. In patients with cystic fibrosis, 

an increase in asialo-GM1 in apical cell membranes allows increased binding of P. aeruginosa and 

Staphylococcus aureus to airway epithelium, without initiation of the CFTR-mediated immune 

response. The result is that in cystic fibrosis, the self-limiting response that quickly eliminates P. 

aeruginosa from the respiratory tract is lost at the same time as there is enhanced attachment of 

bacteria to the epithelial surface. [14] 

Airway surface dehydration, due to an imbalance between CFTR-dependent Cl- secretion and ENaC-

mediated Na+ absorption, and reduced ASL pH, due to impaired HCO3- secretion caused by CFTR 

dysfunction, are key pathogenetic mechanisms that trigger mucus plugging, chronic inflammation 

and impaired anti-bacterial host defence in CF airways. Intrinsic pH difference may exist between 
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CF and non CF-cells, and several reports give support to the hypothesis that a low extracellular pH 

might be a key factor in the susceptibility to infection in CF, although different and contradictory 

results were obtained so far. [10] 

Signs and symptoms  

CF manifestations are already apparent in utero and appear throughout life, encompassing many 

organ systems with great variability among patients. [1] The first problem encountered after birth is 

meconium ileus, which can present in as many as 20% of affected newborns. It is an obstructive 

condition secondary to inspissated material in the small and large bowels. 

The lungs are normal in appearance at birth, but they shortly become infected and inflamed. Lung 

disease is in fact the most relevant in terms of symptoms, with recurrent cough, wheeze and 

pneumonia starting in infancy and continuing into adulthood, finally leading to pulmonary 

insufficiency, that is responsible for death in more than 80% of cases. Other respiratory symptoms, 

like nasal polyps and chronic sinusitis involve the upper airways.  

In the past the main cause of death, occurring within months after birth, was malnutrition and failure 

to thrive. [1] Gastrointestinal disorders, in fact, were the first to be reported in conjunction with the 

cystic lesions of the pancreas that gave the disease its name. Despite improvements in disease 

management and the fact that airways disease is now the main focus of attention, gastrointestinal 

disorders continue to have a high impact on a patient’s life. The spectrum and presentation of 

gastrointestinal disorders is very wide, even in patients with the same mutations. Distal intestinal 

obstructive syndrome, a condition analogous to meconium ileus, can present at any age, but it is 

especially common in adults. Impacted mucus and undigested food adhere to the small intestine 

mucosa and lead to acute abdominal distension and pain that must be differentiated with constipation, 

which can be a chronic condition.  
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Pancreatic insufficiency affects approximately 80% of patients, requiring pancreatic enzyme 

replacement therapy to avoid malnutrition, growth delay, vitamins and minerals deficiency and 

abdominal symptoms such as diarrhoea and bloating. Those patients who avoid pancreatic 

insufficiency still have a higher risk of developing acute pancreatitis.  

Cystic fibrosis-related diabetes (CFRD) affects 2% of children, 19% of adolescents and 50% of 

adults. [15] Other gastrointestinal problems include gastroesophageal reflux, dysmotility, small 

intestine bacterial overgrowth and hepatobiliary disorders. [16] 

Osteopenia can be detected in childhood as a consequence of vitamin D deficiency, poor nutritional 

status, physical inactivity, chronic inflammation and corticosteroid therapy. More than 50% of adults 

suffer from fragility fractures and kyphosis.  

In the genitourinary system, sensitivity to CFTR alterations means that males are sterile due to 

azoospermia and congenital bilateral absence of vasa deferentia (CBAVD). Even carrier males can 

have CBAVD. Females are fertile, but often suffer from stress incontinence.  

Diagnosis  

Newborn screening for cystic fibrosis is offered in many European countries using the Guthrie heel 

prick test; diagnosis is then confirmed by the sweat test, the current gold standard procedure, [1] 

which measures the concentration of electrolytes in the sweat. Localised sweating is obtained by 

iontophoresis of the drug pilocarpine nitrate. In cystic fibrosis, sodium and chloride concentration 

will be above 59 mmol/L; normality is below 30 mmol/L. An intermediate concentration, between 

30 and 59 mmol/L is often found in patients with milder CFTR-related diseases, but the diagnosis of 

classic cystic fibrosis is confirmed if two CF causing CFTR mutations are found. In infants, an 

intermediate concentration is less likely to be a true normal than in adults, and a borderline or normal 

sweat test with classic signs and symptoms is found only in 1–2% of patients.  
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Treatment  

People with cystic fibrosis have complex care needs that demand specialist care delivered by a 

multidisciplinary team (including physicians, physiotherapists, psychologists, dieticians and social 

workers) adopting a global approach in specialised Centre. The life expectancy has increased 

significantly in successive patient birth cohorts as a result of more effective treatments and crucially 

because most patients attend CF Centres in line with the demonstration that patients who attend CF 

Centres for their care have better well-being and lung function than those who do not. Thus, the CF 

Centre has become the model of care for people with CF; patients should receive full care from the 

Centre or have local directed care supervised by the Centre. Therefore, standard care for cystic 

fibrosis requires multi-disciplinary teams and multi-professional approach.  

The following professionals are reported as core staff for a CF Centre: respiratory 

paediatrician/pulmonologist, gastroenterologist, clinical microbiologist, medical support from 

trainee(s), clinical nurse specialist, specialist physiotherapist, specialist dietician, clinical 

psychologist, social worker, pharmacist, clinical geneticist, secretarial support and database 

coordinator. [17] 

While there is no cure for cystic fibrosis, current treatment delays organ function decay, but it poses 

a high burden on the patient. Therapy includes respiratory care and infection prophylaxis, 

physiotherapy, nutritional and gastroenterologic care, management of diabetes, liver disease, low 

bone mineral density and arthropathy, male infertility, incontinence, psychological and psychiatric 

comorbidities. Among the new therapies available, there are currently four FDA-approved 

medications under the name of CFTR modulators, which basically restore and optimize the function 

of mutant CFTR, thus treating directly the underlying defect in CF: ivacaftor (Kalydeco® ≥4 months 

old), lumacaftor/ivacaftor (Orkambi®, ≥2 years old), tezacaftor/ivacaftor (Symdeko®, ≥12 years or 

older) and elexacaftor/tezacaftor/ivacaftor (TrikaftaTM, ≥12 years or older). Being mutation-specific, 
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these therapies are now available for patients who either carry a single copy of the F508del allele, 

two copies of F508del allele or for patients with some gating and conduction mutations.[18] The 

clinical trial of ivacaftor showed a reduction of sweat chloride concentration under the CF diagnostic 

range and an increase in lung function of 10%. [19, 20] The combination of ivacaftor with lumacaftor 

showed a modest clinical improvement as well, defined by a 40% reduction of the rate of pulmonary 

exacerbations, by an increase of body mass index (BMI) and, eventually, by a 4 to 7% increment of 

predicted FEV1. [21] Symdeko® was associated with lower occurrence of pulmonary exacerbations 

and improvement of FEV1 %pred, [22] however this combination did not affect BMI, which is usually 

correlated with better survival. So far, the triple combination therapy has demonstrated statistically 

and clinically meaningful results (i.e. +10-14% FEV1 % pred), considering above all that this effect 

was achieved on patients who have at least one copy of the F508del CFTR mutation. [23] Whether 

these highly effective therapies will change the course of the disease and its burden remains an open 

question.  

 

Prognosis  

The median life expectancy for cystic fibrosis patients born in 2018 is 47.4 years, according to the 

North American CF patient registry, representing a huge improvement over the infantile death of the 

past that can be attributed to newborn screening and early and better therapy. [24] There is, however, 

great variability in the clinical course that translates into variability in prognosis.  

Negative contributing factors include pancreatic insufficiency, female gender, Pseudomonas 

aeruginosa, Staphylococcus aureus and Burkholderia cepacia colonisation, predominance of 

respiratory symptoms and passive smoke exposure. Sex, genotype, newborn screening, meconium 

ileus and pancreatic status are defined as non-modifiable risk factors. The influence of these factors 

generally does not change over time, therefore they are considered time independent. Infection, 
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nutritional status, pulmonary exacerbation and respiratory illnesses vary over time and are the most 

commonly reported modifiable risk factors that influence CF lung function decline. Episodes of 

cough, fatigue, physical findings and other signs including rapid drop in lung function and weight 

loss define indeed pulmonary exacerbations (PE), which are associated with mortality [25], reduced 

quality of life, [26] unrecoverable loss of lung function [25, 27] and increased health costs.[28] 

Despite the lack of a globally accepted definition of PE, [29] any episode of clinical deterioration 

requiring antibiotic treatment seems to best characterizes such episodes.  

As shown in Figure 2, lung disease decline varies according to different risk factors. FEV1 is usually 

expressed as a percentage of predicted normal values, obtained from healthy populations of similar 

age, race and sex (for further details, see p. 20).  Generally, FEV1 % predicted observations are the 

highest and most stable between 5-10 years of age, afterwards the steepest decline is noted from 11 

to 15 years of age followed by a reduced decline up to 30 years of age; after the age of 30 FEV1 

%predicted appears relatively stable. 

 

Figure 2. Lung disease progression in patients with CF. Weighted mean of FEV1 %predicted over age for each risk factor is displayed in black. From 

reference [30] 
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Despite the change in FEV1 %predicted is currently primarily described as a linear decline over a 

patient’s lifetime, it is noteworthy that the relationship between FEV1 %predicted decline and age is 

not static or directly proportional, but dynamic and time-varying, more specifically a nonlinear lung 

function progression over a patient’s lifetime is frequently described in literature. [30] 

As the median age of these patients increases - a UK model predicts that a child born with cystic 

fibrosis today will be 50 years of age or more [31] - an associated rise in gastrointestinal cancer is 

expected to occur as a consequence of both the primary disease and the use of immunosuppressive 

treatment following lung transplantation. [3] 

Pulmonary Function Tests 

Spirometry is conventionally used in the assessment of CF lung disease. FEV1 reflects air flow 

obstruction in large airways only, whereas distal heterogeneous changes in airways structure may be 

masked, potentially with FEV1 remaining within normal limits throughout childhood. Early changes 

in small airways are known to characterize cystic fibrosis pathophysiology [32] and early infection 

and inflammation, which occur soon after the diagnosis, have an impact on future health; therefore it 

becomes mandatory being able to recognize these alterations early in life. Nevertheless, spirometry 

requires collaboration, and it is pretty much under practised before 6 years of age, when relevant 

changes in small airways have already occurred.  

The Multiple Breath Washout (MBW) is a gas washout technique, introduced in the ’50, mainly used 

to quantify the inhomogeneity of gas distribution during tidal breathing, by examining inert gas 

clearance over a series of breaths. [33] Each MBW test consists of a washin and washout phase. In 

the case of exogenous inert gases (i.e., Sulfur hexafluoride: SF6, helium: He, and methane), the gas 

is released at a known concentration during the washin phase and the washin phase is complete when 

the expired concentration reaches the concentration of the gas supplied. On the contrary, no formal 

washin phase is needed for endogenous gases (i.e., Nitrogen: N2, and argon), and few tidal breaths 
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are performed to ensure that the concentration of N2, for example, is stable. During the washout phase, 

the subjects inhale gases that do not contain the tracer gas, and the test is interrupted once the tracer 

gas concentration reaches a given fraction of its starting level.  

Using MBW technique, distal lung units with slower time constants will contribute to the overall 

result obtained, by contributing to the expired nitrogen concentration at a later stage than faster 

emptying lung units. [34] In this way MBW is more reflective of peripheral airway function than 

FEV1. Particularly, the lung clearance index (LCI) is the most commonly reported MBW index in 

current CF literature, and it is defined as the number of functional residual capacity (FRC) lung 

turnovers required to reduce alveolar tracer-gas concentration to a given fraction of its starting 

concentration, historically 1/40 (2.5%, LCI2.5). It is calculated as the ratio of the cumulative expired 

volume (CEV) (total expired air volume to reduce the tracer gas at 1/40th of the starting 

concentration) to FRC; the latter is used as a denominator to correct for lung size, and leads to a 

standardized unitless index, [35] and may indicate some degree of lung hyperinflation. Thus, as lung 

ventilation worsens, the number of tidal breaths and expired volumes required to wash out the inert 

gas results in an increasing LCI2.5 value. Healthy control LCI2.5 values are between 5 and 7.5 in 

children age 6 and upwards into adulthood, [35] usually below 8.5 lung turnovers in healthy subjects. 

[36] Recently, normative values and upper limits of normal were generated for LCI2.5 performed 

using an ultrasonic flowmeter (Exhalyzer® D). This limit was 7.91 for LCI2.5 in Caucasian patients 

aged from 6 to 18 years old. [37]  

Lung Clearance Index 

LCI2.5 derived from MBW, as a measure of ventilation inhomogeneity, has been shown to be a more 

sensitive measure of change in heterogeneous lung disease than FEV1. There are only two prediction 

equations available in CF for LCI2.5 so far. One is based on a small numbers of subjects (n=272) and 

explained the 44% of the variability of the response variable, under the linear model Ŷ= 
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6.25+0.66*age, [38] while the other only predicts LCI2.5 for children under 6 years old of age. [39]. 

Recently, a multicentre 12-month longitudinal observational study in children aged 2.5-6 yrs was run 

at three North American CF Centres [40] with the main objective of defining the course of LCI2.5 

over time in health and disease. LCI2.5 significantly deteriorated with a slope of 0.40 LCI2.5 units/yr 

(95% CI, 0.14 to 0.66; P = 0.003) whereas in healthy children LCI2.5 remained stable with age, with 

a slope of -0.04 LCI2.5 units/yr (95%CI -0.12 to 0.04; P = 0.338).   

When assessed longitudinally from 1978 to 1998 in 142 children, LCI2.5 was shown to be the earliest 

and most predictive measure of disease progression. [41] High-resolution computed tomography 

(CT) allows visualization of structural changes along CF disease progression, carrying a radiation 

burden though. When compared to spirometry, LCI2.5 proved to have better ability to detect structural 

lung abnormalities correlating with CT and reflected the extent of bronchiectasis and air trapping 

within CT scores. [35]  

LCI2.5 is sensitive to alterations in airway physiology throughout the airway tree, including very 

peripheral airway effects, and this probably accounts for its particular sensitivity in early CF. In adults 

with CF, abnormalities in LCI2.5 appear to be caused by both increased dead space and increased 

specific ventilation heterogeneity. [42] LCI2.5 as an outcome measure is still not fully used in clinical 

practice. However, LCI2.5 has been shown to be superior to FEV1 in detecting early disease, and it is 

now used as surrogate endpoint in clinical trials. However, the advantages may prove to be fewer in 

adults.  

Patients with advanced CF lung disease have profound heterogeneity of ventilation, and both washin 

and washout are prolonged excessively. Testing in adults takes longer than in children, and a single 

washin/washout may take 10 minutes, which is then usually repeated in triplicate to derive an 

averaged value. From a purely practical point of view, it is therefore not appropriate to try assessing 

LCI2.5 in those with severe CF. In subjects with the best-preserved spirometry, LCI2.5 measurement 
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is easiest to perform, most reproducible and offers the most additional information. It thus seems 

sensible to restrict the measurement to those with FEV1 impairment in the mild-moderate category 

(i.e., FEV1 >40%). [20] 

Changes in LCI2.5 >25% can be considered physiologically relevant and greater than the biological 

variability of the test in cystic fibrosis. [43] LCI2.5 has been shown to be a reproducible tool with low 

coefficients of variation within test occasions, between tests and between sites, the majority of which 

are between 3-7%. It is also shown to be highly discriminative in distinguishing between health and 

disease when comparing CF patients with healthy controls. [35] 

Phenotyping CF 

Generating clinical phenotypes facilitates assessment of disease prognosis, response to therapy, and 

provides insights into airway biology and disease pathophysiology. There are some studies available 

in CF that identify classes of patients (i.e. clusters), and the majority of these aimed to characterise 

the extent to which various CFTR alleles contribute to clinical variation in CF. These studies 

demonstrated that the degree of correlation between CFTR genotype and CF phenotype varies 

between its clinical components and is highest for the pancreatic status and lowest for pulmonary 

disease. The poor correlation between CFTR genotype and severity of lung disease strongly suggests 

an influence of environmental and secondary genetic factors (CF modifiers), which makes difficult 

clustering patients in well-defined clinical boundaries.  

Recently, three distinct phenotypes of rapid decline were suggested, corresponding to early, middle, 

and late timing of maximal FEV1 loss, in a large cohort 18.387  patients with CF.  [44] The majority 

of variation among patient profiles was characterized by differences in mean longitudinal FEV1 

trajectories. Average degree of rapid decline was similar among phenotypes (roughly 23% 

predicted/yr); however, average timing differed, with early, middle, and late phenotypes experiencing 

rapid decline at 12.9, 16.3, and 18.5 years of age, respectively. Adult (n=211) clinical phenotypes 
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were identified using a clustering strategy that generated four and five phenotypes in another recent 

publication [45]. Each strategy identified 1) a low lung health scores phenotype, 2) a younger, well-

nourished, male-dominated class, 3) various high lung health score phenotypes that varied in terms 

of age, sex and nutritional status. This multidimensional clinical phenotyping strategy identified 

classes with expected microbiology results and low risk clinical phenotypes with pancreatic 

sufficiency. Eventually, in a younger cohort of patients with CF (n=212) used by other authors [46] 

to generate a scoring system in CF, it was shown that variables that contribute to predicting severity 

did not vary with gender. To the best of my knowledge, only one study used LCI2.5 to define 

physiological phenotypes in 80 school children with different lung diseases, including CF. [47] Three 

main phenotypes were identified, and the third one was characterized by increased global and 

diffusion- and convection-dependent ventilation inhomogeneity as well by the highest proportion and 

frequency of exacerbations and hospitalization.  
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Hypothesis and Objective 

 
There are several underlying hypotheses contributing to the development of this project. Given the 

ascending role of LCI2.5 as early marker of lung disease, it is expected that the association of LCI2.5 

with the variables currently used in clinic to assess CF disease, including well known prognostic 

factors, could be different from that of FEV1, thus characterizing clinical phenotypes based on early 

signs of lung disease. It is therefore expected that different phenotypes will describe different 

trajectories of lung function over time. Eventually, if LCI2.5 tracks lung disease better than FEV1 

alone, association of LCI2.5 with time to pulmonary exacerbation should be present as well. 

 
Considering the experience collected from 2014 by the Regional CF Centre on MBW and the 

empirical-driven use of LCI2.5 in the clinical decision making, the main objective of this work is to 

ascertain if LCI2.5 could be worth to be implemented in a pediatric CF clinic, as a routine respiratory 

assessment complementary to FEV1. Understanding the clinical behaviour of LCI2.5 under multiple 

clinical perspectives will add to the current literature novel information about the clinical utility of 

MBW for children with CF.  
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Methods 

According to the current clinical practice, patients attending the CF Center of Milan perform LCI2.5 

as part of their clinical review mostly during outpatient follow-up visits since 2014. Spirometry and 

LCI2.5 were performed according to the available guideline [48, 49] and standard operating procedure. 

[33, 50] Written, informed consent was obtained from patients prior to each annual review. Data were 

collected between October 2014 and September 2019. For the present analyses, only spirometry and 

MBWN2 test results from children in clinical stable condition where considered, as defined by 

absence of change in treatment (i.e., antibiotics treatment, systemic corticosteroids), hospital 

admissions and/or signs and symptoms of pulmonary exacerbation. 

Spirometry 

Spirometry requires a full inspiration followed by a forced expiration and it measures among other 

indices the FEV1, which is an indicator of airways obstruction. Performing spirometry requires the 

patient’s cooperation, meaning that it cannot be easily accomplished below 3-6 years of age. 

Forced expiration manoeuvre and vital capacity manoeuvre were measured in this study using a 

standardized method: the absolute values of FVC and FEV1 were measured and expressed as a 

percentage values for age, height and sex, and as Z-score, according to Quanjer’s equation developed 

under the Global Lung Function (GLI) initiative. [51] Lung volumes were measured by a 830 litres 

plethysmograph (Master Screen Body 4.2, E. Jaeger GmbH) in the sitting position, according to 

ATS/ERS guidelines. [48] Flow and volume were measured by a pneumotachograph with a 0.036kPa 

L/-1s resistance and 160ml dead volume. Calibration with three litres syringe cycled three times was 

performed every day before testing. Patients with CF are well trained in performing spirometry as it 

is a routine assessment during their follow-up visits. However, operators conducting the test always 

met the minimum technical standards, as recently updated. [49] 
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Multiple breath washout 

The MBW test measures the distribution homogeneity of an inert gas, i.e. nitrogen (N2). Each test 

consists of a washin and a washout phase. During washin, the tracer gas is administered at a known 

concentration until the expired concentration equals the delivered one. During washout the subject 

breathes a gas mixture that does not contain the tracer gas. The tracer gas concentration decreases 

exponentially due to the differences in lung branches generations, and the washout phase ends when 

the concentration reaches the historical value of 1/40th of the initial concentration. [52] Several MBW 

devices are currently available on the market and most system have a sidestream gas analyzer, which 

can be a respiratory mass spectrometer, an N2 analyzer or an infrared gas analyzer. When nitrogen is 

used as tracer gas (MBWN2), no formal washin phase is required, since N2 is an intrinsic gas, and it 

is sufficient to ensure that its concentration in the lungs is stable; for washout, 100% oxygen is usually 

used. The MBW test requires only a tight facemask or mouthpiece and quiet tidal breathing for 2 to 

10 minutes per test, and it is usually performed in triplicate in a sitting position. MBWN2 performed 

via Exhalyzer® D (Ecomedics AG, CH) is the modality chosen by the European Cystic Fibrosis 

Society and the one most frequently used in Italy. [53] 

Lung clearance index 

An open-circuit MBW hard- and software package with nitrogen as tracer gas (MBWN2) was used 

(Exhalyzer® D and Spiroware 3.2.2 Ecomedics AG, CH) and calibration and measurement procedures 

were performed as suggested. [33, 50] Only results from three reproducible runs were considered, 

defined as a variation of FRC and LCI2.5 values within 10%. LCI2.5 together with Scond*VT and 

Sacin*VT, believed to reflect convective gas mixing in the conducting airways and considered to best 

represent diffusion–convection interaction within the acinus respectively, were therefore recorded, 

before patients performed spirometry.  
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In children under 6 years old, ULN was calculated based on the equation reported by Lum et al. [39] 

For the paediatric age, the cut-off of normality equals of 7.91 was adopted, as recently published. 

[37] An adequate environment with adequate distraction for younger children was assured during 

each test. [54]  Data from earlier software versions were re-run in the version of Spiroware 3.2.2.  

Statistical Analysis 

Data were collected for each patient’s visit from 2014 up to September 2019. Four main objectives 

were considered during the analysis, adopting either a cross-sectional or a longitudinal design. 

Particularly, the aims were: investigating the association between lung function measures and 

selected variables; profiling paediatric patients according to their clinical characteristics in order to 

generate plausible phenotypes, and subsequently evaluating the longitudinal association between lung 

function measures and selected variables between phenotypes. The last objective is investigating the 

association between selected variables and the risk of pulmonary exacerbation recurrence over the 

whole follow-up period. 

To comply with the first objective, data from paediatric subjects with at least one MBWN2 test 

performed during an outpatient visit were used, whereas the subset of paediatric patients who 

performed at least two MBWN2 tests during regular outpatient visits was considered for the 

subsequent objectives. Specifically, data collected on the first evaluation were used to define clusters 

while follow-up data were used to fit longitudinal models to catch variation of LCI2.5 and FEV1 over 

time and to model pulmonary exacerbation as recurrent time-to-event data. 

Before any analysis, the whole database was reviewed for errors, incomplete or missing information. 

Variables were categorized mainly for descriptive purposes according to the commonly accepted 

criteria reported in CF literature. To adjust for differences in growth and development (age, sex and 

height), lung function results evaluating airflow obstruction (FEV1) were expressed also as Z-scores. 

LCI2.5 as well was reported descriptively as Z-score, using the newly normative data published by 
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Anagnostopoulou et al.  [37] Descriptive analysis was reported according to the number of MBWN2 

tests performed for each individual. Continuous variables were reported as mean and standard 

deviation, and as median together with first and third quartile; categorical variables were summarized 

as counts and percentage.  

Association between lung function measures and selected variables.  

Ordinary least-square (OLS) regression models were used to fit the relationship between FEV1 

%predicted, the dependent variable, and age, sex, pancreatic status, presence of diabetes, genotype, 

Pseudomonas aeruginosa infection and nutritional status as independent variables; a distinct linear 

regression model was used to assess the association of the same independent variables with LCI2.5. 

In order to identify the best age-specific relationship, several models with a different number of spline 

knots were fitted on the dataset before imputation, using 3 to 6 knots, under the hypothesis that lung 

function and age were best summarized by a non-linear relationship indeed. All the models with a 

different number of spline knots were compared using Akaike information criterion (AIC), as a mean 

for model selection. Among the candidate models, the preferred model was the one with the minimum 

AIC value. Once identified the best probabilistic model, since LCI2.5 (right skewed) and FEV1 

%predicted (left skewed) departed from normality, the Box-Cox method was implemented to suggest 

a transformation of these dependent variables when regressed as a combination of the independent 

variables (sex, pancreatic status, presence of diabetes, genotype, Pseudomonas aeruginosa infection 

and BMI).  

Final models were therefore generated after multiple imputation (MI), since some data regarding 

Pseudomonas aeruginosa infection, airflow obstruction (FEV1 %predicted) and indices of ventilation 

inhomogeneity were missing. Some missing indices derived from MBWN2 were undetectable by the 

software machine, namely Sacin*VT and Scond*VT, however, these were not considered predictors in 
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regression analyses. The distribution of the variables of interest according to whether FEV1 or PSA 

were missing or not was explored by visual inspection of histograms. 

Multiple Imputation (MI) was performed through the MICE algorithm available in the mice package 

(version 3.7.0). It allows for the specification of a separate imputation model for each variable in the 

dataset and it is implemented as a series of univariate equations. Variables values were imputed using 

the following built-in imputation models: predictive mean matching (a semi-parametric method 

which limits imputations to observed values only) for FEV1 and proportional odds model for 

Pseudomonas aeruginosa, considered as an ordinal variable (free, intermittent and chronic). The 

wrapper function with.mids() from the mice package was used to obtain pool estimates of imputed 

datasets in one step.  

The variability of the multiple imputation (MI) estimates consists of two components: variability 

within imputations and variability between imputations. The precision of the MI estimates depends 

not only on the number of observations in the sample, but also by the number of imputations (m). 

Therefore, several imputations were created, adopting the rule of thumb to use whatever the average 

percentage rate of missingness is, considering however that substantive conclusions are unlikely to 

change as a result of raising m beyond m=5, from an accuracy point of view [55].  

The pool() function uses Rubin’s combination rules to obtain the estimates from multiply imputed 

data. [56] It is assumed that complete data inferences about the population parameter of interest (Q) 

are based on the normal approximation	Q − Q% ∼ N(0, U), where Q% is a complete data estimate of Q 

and U is the associated variance for Q%. With missing data, estimates of the parameters of interest are 

calculated on each of the m imputed datasets to give Q%!,…,Q%$ with associated variances U1, …, Um. 

For a single regression coefficient, the MI overall point of estimate is the average of the m estimates 

of Q from the imputed datasets, 𝑄. = !
%
∑ 	Q%!%
&'! . The associated total variance for his overall MI 
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estimate is T = 𝑈3 + 51 + !
%
7B, where 𝑈3 = !

%
∑ 	U%!%
&'!  is the estimated within imputation variance 

and B = !
%(!

∑ 9Q%! − 𝑄.:
)%

&'!  is the between imputation variance. When B dominates 𝑈3 greater 

efficiency, and then more accurate estimates, can be obtained by increasing m; on the contrary, 

when 𝑈3 dominates B, little is gained from increasing m. [56]  

Diagnostic checks were run to ensure that imputed values were plausible, describing the relative 

increase  in the variance (RIV) due to multiple imputations as well. Relative efficiency, 

defined as 𝑅𝐸 = !

!*!"#$

 , was also calculated in order to give information about the precision of the 

parameter estimate. Fraction of missing information (FMI) was derived as the ratio between 𝑅𝐼𝑉 +

	 )
+,*-

 and 1 + 𝑅𝐼𝑉,where df is the degree of freedom of pooled results. 

Finally, the function mi.anova() from miceadds package (version 3.8-9) in R was used to obtain 

results of the Wald test.  

Goodness of fit and model assumptions were judged from inspection of normal Q-Q plots, the 

distribution of residuals and from density plots of residuals; Shapiro-Francia test for normality and 

Breusch–Pagan test were used as well to check for heteroskedasticity. 

Profiling paediatric patients according to their clinical characteristics.  

Clustering was the approach selected to generate phenotypes based on the variables collected 

throughout the study. In adjunct to age, sex and CFTR genotype, clustering was based also on 

nutritional status, i.e. BMI Z-score and pancreatic exocrine function, on the presence of CFRD, and 

on colonization by Pseudomonas aeruginosa. To characterize lung disease, indices derived by 

MBWN2 test were used, namely LCI, Sacin*VT and Scond*VT. The number of pulmonary 

exacerbations in the twelve months preceding LCI together with the number of hospitalizations in the 

r = (1+m
−1)B
U
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previous year were also used in order to define clusters not only based just on classic markers of the 

disease. Clustering tendency of the data was assessed by measuring the probability that a given dataset 

is generated by a uniform data distribution (Hopkins statistic).  

Given the mixed-data type defining the current dataset, distance between pairs of observations was 

obtained using Gower’s metric, available with the function daisy(), which use the general dissimilarity 

coefficient of Gower [57]. Indeed, presence of CFRD, CFTR genotype grouped according their alleles 

distribution, pancreatic exocrine function, and presence of Pseudomonas aeruginosa infection are 

categorical variables while lung function, age, nutritional status and pulmonary exacerbations or 

hospitalizations are continuous. By the means of Gower’s index, two individuals i and j can be 

compared on a character k and assigned a score , zero when i and j are considered different and 

a positive fraction, or unity, when they have some degree of similarity. In case of dichotomous 

variables, a character can be non-existent in both i and j. Therefore, the possibility of making 

comparison can be represented by a quantity , equal to 1 when character k can be compared for i 

and j, zero otherwise. When , is set to zero. The similarity between i and j is defined as 

the average score taken over all possible comparisons: . When  for all 

characters, is undefined. When all comparisons are possible, , the total number of 

characters; otherwise it is the number of characters over which the comparison is made. For 

dichotomous characters the presence of the character is denoted by + and its absence by -. When there 

are no unknown values of character k, four different combinations of its values may occur for two 

individuals. For qualitative characters, if the two individuals i and j agree in the kth character 

and  if they differ. For quantitative characters with values x1 ,x2 , . , xn of character k for the 

sij ,k

δi j ,k
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total sample of n individuals, . Here Rk is the range of character k and may be the 

total range in the population or the range in the sample. When xi = xj then ,and when xi and xj 

are at opposite ends of their range,  is a minimum (0 when Rk is determined from the sample). 

With intermediate values,  is a positive fraction. 

The use of Gower’s distance limited the possible algorithms to be explored in order to identify clusters 

within this CF cohort, and therefore the final choice was made between two bottom-up hierarchical 

methods, i.e. AGglomerative NESting (agnes) and Hierarchical CLUSTering (hclust), and one 

partitioning method, i.e. Partitioning Around Medoids (PAM), an approach which is based on 

medoids, a robust alternative to k-means. 

The first two methods mentioned above are used to group objects based on their similarity. The 

algorithm starts by treating each object as a single-element cluster, and pairs of clusters are 

successively merged until all clusters have been grouped into one big cluster containing all objects. 

In this sense, this approach defines this method as bottom-up. Finally, objects and/or clusters in close 

proximity are linked together via the linkage function, which takes the distance information and 

groups pairs of objects into clusters to create bigger ones. For hierarchical methods, the best linkage 

function was selected comparing correlation coefficients between cophenetic and the original 

distance, resulting from different clustering methods: average, single, complete and Ward. 

PAM classifies observations into multiple groups based on their similarity as well, but it is defined 

as a partitioning method, given that it ends with a division of the set of data objects into non-

overlapping subsets (clusters). Each cluster, whose number must be specified a priori, is represented 

by one of the objects in the cluster. This object is called medoid and it is the most centrally located 

point in the cluster and can be considered representative of the members of that cluster; in this sense, 

sij ,k =
1− xi − x j

Rk

sij ,k =1

sij ,k

sij ,k
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PAM is considered to be a more robust approach in the presence of outliers. In practice, after finding 

a set of k medoids, clusters are constructed by assigning each observation to the nearest medoid. 

To determine the optimal number of clusters, elbow, silhouette and gap statistics were taken into 

consideration, together with Frey and C-index [58] and the visual inspection of cluster plots, whereas 

to select the best clustering algorithm, several methods for clustering validations were implemented 

and compared.  

As internal cluster validation measures, whose purpose is to describe the goodness of clustering 

structure without reference to external information, silhouette coefficient and Dunn index were used. 

The silhouette analysis measures how well an observation is clustered and it estimates the average 

distance between clusters. [59] For this study, the overall average silhouette width, which is the 

average of the silhouettes for all objects i in the whole dataset, was used as a means to compare 

clustering solutions. Larger values suggest stronger clustering structure. The Dunn index computes 

the distance between the objects in the same cluster as measure of intra-cluster compactness. 

Therefore, Dunn index is expected to be maximized if data contains compact and well-separated 

clusters.  

Furthermore, few other indices were evaluated through the function cluster.stats() available in the 

fpc package. These were the average between and within distance between clusters. 

Eventually, consistency measures of clustering results were obtained by adopting the clValid package, 

which reports the average proportion of non-overlap (APN), the average distance (AD), the average 

distance between means (ADM) and the figure of merit (FOM). Smaller values correspond to highly 

consistent clustering results. Overall, these are considered stability measures and guided the choice 

towards the best clustering algorithm. 
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Longitudinal association between lung function measures and selected variables between 

phenotypes.  

The clustering approach allowed me to generate distinct phenotypes, on which longitudinal variation 

of LCI2.5 was further explored. A mixed effects modelling was used taking into consideration the 

correlation between subjects as the only random effect, whereas cluster and time were considered 

fixed effects. Being interested in the difference between phenotypes, interaction between cluster and 

time was also considered. Linear mixed-effects models were fitted using the R package nlme (version 

3.1) using lme() function. 

As regards to LCI2.5, to account for the variance heterogeneity found between the clusters, two models 

were evaluated, one with a general correlation structure and another one with varIdent(. ) variance 

function. A REstricted Maximum Likelihood (REML)-based Likelihood Ratio (LR) test was used to 

guide the selecting process towards the best fitting model. Models with constant variance and model 

with different variance in each cluster were therefore compared with the use of the anova () function. 

Goodness of fit was evaluated by the means of separate scatterplots of Pearson residuals and Q-Q 

plots per cluster, in order to remove the influence of any residual correlation. The same approach was 

considered for modelling FEV1 %predicted longitudinally. For both outcome measures, 

autocorrelation was checked by the means of ACF() by the same nlme package.  

Risk factor for pulmonary exacerbation as recurrent time-to-event data. In order to take into 

account the portion of the pulmonary exacerbations information collected in paediatric patients, 

extensions of the Cox proportional hazards model were investigated to model recurrent event data.  

The standard Cox proportional hazard model specifies the hazard of ith individual as: 

		𝜆(𝑡) = 	 𝜆.(𝑡)	exp(𝛽𝑥&) 
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where 𝜆.(𝑡) is an unspecified baseline hazard function and 𝛽 is the vector of regression coefficients, 

𝑥& is the vector of covariates of the ith individual. Due to the independence assumption, this model is 

only appropriate for modelling the time to first event, therefore causing a loss of many information 

available on the cohort when recurrent events are there.  

The conditional model of Prentice, Williams and Peterson offers a viable solution to handle multiple 

and ordered events [60], such as pulmonary exacerbations in cystic fibrosis. Under this model, an 

individual is not at risk for the kth event until he/she has experienced event k-1st. Time intervals are 

defined as: (entry time, first event], (first event, second event],…,(mth event, last follow-up], but each 

event is assigned to a separate stratum (i.e. pulmonary exacerbation). The use of time-depending 

strata means that the underlying hazard function may vary from event to event, being specified for 

the jth event for ith individual as: 

		𝜆(𝑡) = 	𝑌&/(𝑡)𝜆./(𝑡)𝑒𝑥𝑝9𝑋&(𝑡)𝛽/: 

where the at-risk indicator, 𝑌&/(𝑡), is defined as zero until the j-1st event and only then becomes one. 

Once the jth event occurs, 𝑌&/(𝑡) becomes 0 again. Overall, this model takes into account the within-

subject correlation due to event dependency (i.e. baseline risk for a second PE may be higher in CF 

than baseline risk of first PE) and within-subject correlation due to heterogeneity, being suitable for 

analysing this type of recurrent events. Risk group interactions was assessed by the means of LR-test. 

All paediatric patients who performed at least one MBWN2 test during regular follow-up visits were 

considered for this final analysis. An event (pulmonary exacerbation, PE) was defined as children 

requiring hospitalization or antibiotic administration. Individuals were censored when they were still 

in follow-up at the time of the present data collection; when patients experienced PE, the event was 

coded as recurrence and follow-up was ended from that moment onwards. Besides LCI2.5, other 

covariates included in the model are children’s BMI Z-score, sex, age, pancreatic status, CFTR 

genotype and Pseudomonas aeruginosa colonization at the first MBWN2 test. Pseudomonas 
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aeruginosa was categorized into two groups (chronic versus intermittent-free), as well as CFTR 

genotype (F508del homozygotes versus F508del heterozygotes or other mutations). Because of 

collinearity, FEV1 could not be included into the same model with LCI2.5, and two adjusted models 

were fitted, one with LCI2.5 and another one with FEV1. 

Prentice, Williams and Peterson-gap time risk intervals were used, since this allows for predictions 

from the time of the previous PE, thus allowing to explore the overall association between pulmonary 

exacerbation episodes and each covariate. Analyses were performed using packages survival, 

survminer and rms available in R. [61] 
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Results 

Study population 

Between October 2014 and September 2019, 939 MBWN2 tests were performed on 412 patients with 

cystic fibrosis. One hundred thirty-one patients performed the MBWN2 once, 121 two tests in separate 

occasions, 96 patients performed three tests, 46 patients were followed up four-times and 16 patients 

had the MBWN2 performed 5 times; 76.8% of MBWN2 tests were done during outpatient visits. In 

line with the purposes of the present discussion, 218 MBWN2 tests performed during hospital 

admissions have been excluded from the analysis, and only results from children in clinically stable 

conditions while attending outpatient clinic have been considered.  

Table 1 shows the characteristics at baseline of paediatric patients who performed at least one 

MBWN2 test during regular follow-up visits only (n=245). 

 

Table 1. Sample characteristics   
Subjects, nr 245 
Male/Female, nr(%) 136 (55.5) /109 (44.5) 
Age, yrs 11.9 (3.4) 
Age, min-max 5 – 17.9 
BMI, Z-score -0.5 (0.9) 
F508del/F508del, nr (%) 50 (20.4) 
F508del/ other, nr (%)  105 (42.9) 
other/other, nr (%)  90 (36.7) 
CFRD, nr (%) 4 (2) 
Pancreatic Insufficiency, nr (%) 141 (57.6) 
Pseudomonas aeurginosa chronic infection*, nr (%) 48 (19.6) 
Values are expressed as absolute number(percentage); *17 microbiological data are missing 

 

CFTR genotype, diabetes, pancreatic insufficiency and infection by Pseudomonas aeruginosa (PSA) 

are the considered prognostic negative factors. Overall, few children show unfavourable prognostic 
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factors in large percentages. Considering the young age of the present cohort, as expected few 

children have diabetes and in a very small percentage chronic infection by Pseudomonas aeruginosa 

was detected; this percentage is slightly above the national mean percentage (≈15%). [62] 

Table 2 reports the anthropometric and pulmonary functions of this subsample. The high mean FEV1 

%predicted reflects the young age of patients attending this mostly paediatric CF centre: lung function 

interquartile range (IQR) for these children is 87.9-110.7%. Particularly, just 2 patients (1%) express 

a severe lung disease; the majority (89.8%) has a normal/mild lung disease, defined as FEV1 

%predicted equal or above 70%. By adopting the lower limit of normal (LLN) based on the 5th centile 

of FEV1 (-1.64 Z-score) [51], the percentage of patients considered normal drops slightly (83.1%).  

 

Table 2. Pulmonary characteristics 
Subjects, nr 245 
FEV1, % predicted 98.4 (19.2) 
FEV1, Z-score -0.1 (1.6) 
FVC, % predicted 105.9 (16.1) 
FVC, Z-score 0.5 (1.4) 
LCI2.5 9.9 (3.3) 
LCI2.5, CV% 4.2 (2.3) 

LCI2.5, Z-score¶ 4.3 (8.58) 

Scond*VT 0.062 (0.033) 

Scond, CV% 31.7 (28.5) 

Sacin*VT 0.141 (0.111) 
Sacin, CV% 31.0 (26.0) 
Spirometry data belong to 225 patients. Sacin was not calculated in 
7 children. All displayed values are expressed as mean (standard 
deviation). ¶ median with interquartile range (IQR).  

 

 

The clinical evaluation of lung health changes dramatically if one implements the information derived 

by the MBWN2 test. First MBWN2 was performed on a 5 years old child. Fifty percent of paediatric 
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subjects performed this lung function test between 9 and 15 years of age, with 25% of the highest 

values ranging from 11.2 and 23.4. Compared to information derived by the analysis of FEV1 

%predicted alone, percentage of children considered with normal lung disease drops down to 35.1%, 

that is when LCI2.5 values are below ULN, according to patients’ age (see pg. 22). 

The clinical advantage of having the MBWN2 test available in the clinic is that it can be used 

complementary to classical spirometry results. Indeed, information derived by the intersection of the 

identified cut-offs (see pg. 22) as shown in Figure 3 is interesting. If patients in quadrant 1 (Q1) and 

quadrant 2 (Q2) can be generally identified as those with a normal/mildly abnormal pulmonary 

function as detected by FEV1 alone (FEV1 ≥ 70% predicted), the MBWN2 test adds the information 

that only patients in Q1 can be considered really healthy, from a lung perspective. As far as quadrant 

3 (Q3) is concerned, the clinical meaning of the two lung function variables is here in agreement, 

showing a moderate-severe lung function (FEV1) and a very inhomogeneous ventilation of the lungs 

(LCI2.5). Despite it is unusual that subjects with an impaired airflow passage could have a 

homogenous gas mixing, one patient is represented in Quadrant 4 (Q4) when adopting FEV1% 

predicted and two when adopting FEV1 Z-score.  

 

Figure 3. Patients are grouped (Q, Quadrant) according to their LLN FEV1 and LCI2.5 values. Black arrows identify extreme observations. 
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Table 3 reports the clinical characteristics of children according to the first three quadrants, taking as 

reference the plot B in Figure 3, which adopts Z-score of FEV1, and thus takes into account the 

differences in growth and development (age, sex and height). The two patients with poor measures of 

airflow obstruction but normal LCI2.5 are not reported in table 3. However, these patients were not 

diabetic, one was chronically infected by Pseudomonas aeruginosa and both were pancreatic 

insufficient. 

 

Table 3. Sample characteristics stratified by air flow obstruction (FEV1 LLN) and ventilation 
inhomogeneity (LCI2.5) severity 

  
Quadrant 1 

(n=79) 
Quadrant 2 

(n=108) Quadrant 3 (n=36) 
Age, yrs - mean(SD) 11.6 (3.4) 11.8 (3.3) 12.6 (3.6) 
Age, yrs - median(Q1;Q3) 11.4 (8.8; 14.2) 11.6 (9.1; 14.6) 12.4 (9.5; 15.7) 
Male/Female, nr 39/40 63/45 21/15 
F508del/F508del, nr(%) 6 (7.6) 32 (29.6) 6 (16.7) 
F508del/ other, nr(%)  30 (38.0) 50 (46.3) 17 (47.2) 
other/other, nr(%)  43 (54.4) 26 (24.1) 13 (36.1) 
CFRD, nr(%) 1 (2) 2 (2) 1 (3) 
Pancreatic Insufficiency, nr(%) 19 (24.1) 82 (75.2) 29 (80.6) 
Pseudomonas aeurginosa chronic 
infection*, nr(%) 6 (7.6) 22 (20.4) 17 (47.2) 
BMI, Z-score - mean(SD) -0.3 (1.0) -0.6 (0.8) -1.0 (0.8) 
BMI, Z-score - median(Q1;Q3) -0.2 (-0.8; 0.3) -0.5 (-1.1; -0.1) -1.2 (-1.6; -0.5) 
FEV1, % predicted - mean(SD) 108.6 (11.2) 102.7 (12.1) 64.9 (12.3) 

FEV1, % predicted - median(Q1;Q3) 
108.8 (101.6; 

116.8) 
104.0 (93.4; 

110.5) 68.1 (59.2; 74.1) 
FEV1, Z-score - mean(SD) 0.7 (1.0) 0.2 (1.0) -2.9 (1.0) 

FEV1, Z-score - median(Q1;Q3) 0.7 (0.1; 1.4) 0.3 (-0.6; 0.9) -2.7 (-3.4; -2.1) 
FVC, % predicted - mean(SD) 111.9 (11.6) 109.3 (13.0) 83.4 (14.1) 

FVC, % predicted - median(Q1;Q3) 
111.4 (103.3; 

120.2) 
111.0 (99.9; 

118.9) 85.2 (72.5; 91.8) 
FVC, Z-score - mean(SD) 1.0 (1.0) 0.8 (1.1) -1.4 (1.2) 
FVC, Z-score - median(Q1;Q3) 1.0 (0.3; 1.7) 0.9 (0.0; 1.6) -1.3 (-2.4; -0.7) 
LCI2.5 - mean(SD) 7.08 (0.44) 10.62 (2.37) 14.30 (3.78) 

LCI2.5- median(Q1;Q3) 
7.10 (6.85; 

7.39) 
9.96 (8.85; 

11.44) 13.35 (11.38; 16.15) 
LCI2.5 CV% - mean(SD) 3.9 (2.1) 4.3 (2.4) 4.5 (2.4) 
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LCI2.5 CV% - median(Q1;Q3) 3.4 (2.2; 5.5) 4.0 (2.5; 5.7) 4.2 (2.4; 6.5) 

Scond*VT - mean(SD) 0.036 (0.032) 0.073 (0.025) 0.080 (0.022) 

Scond*VT- median(Q1;Q3) 
0.03 (0.022; 

0.041) 
0.071 (0.056; 

0.091) 0.079 (0.070; 0.090) 

Scond*VT CV% - mean(SD) 47.1 (32.7) 24.6 (23.1) 15.2 (9.8) 

Scond*VT CV% - median(Q1;Q3) 
40.0 (25.1; 

59.6) 16.4 (9.1; 29.1) 13.5 (6.8; 21.8) 

Sacin*VT - mean(SD) 0.088 (0.066) 0.144 (0.100) 0.246 (0.153) 

Sacin*VT- median(Q1;Q3) 
0.07 (0.046; 

0.106) 
0.119 (0.082; 

0.181) 0.231 (0.122; 0.293) 

Sacin*VT CV% - mean(SD) 39.0 (27.5) 28.1 (24.9) 21.4 (23.2) 

Sacin*VT CV% - median(Q1;Q3) 
32.6 (18.4; 

54.3) 
18.4 (10.7; 

40.7) 11.1 (6.4; 26.2) 
 If not specified, displayed values are expressed as absolute number(percentage). Q1 and Q3 denote first and third 
quartiles. Data in Quadrant 1 for Sacin belong to 78 patients; data in Quadrant 2  for Sacin belong to 105 patients 
and to 35 patients in Quadrant 3.  

 

It is of clinical interest that low prevalence of Pseudomonas aeruginosa, a low degree of ventilation 

inhomogeneity (LCI2.5, Sacin*VT and Scond*VT), a low percentage of patients with pancreatic 

insufficiency and with a genotype mainly represented by one variant only, i.e., F508del, are the main 

clinical features which define at best children in the first quadrant. As far as FEV1 %predicted is 

concerned, it poorly discriminates subjects between quadrant 1 and quadrant 2 whereas LCI2.5 does.  

The relationship between LCI2.5 and FEV1 is represented in Figure 3. FEV1 is inversely correlated 

with LCI2.5, whether expressed as FEV1% predicted (r=-0.64 P<0.0001) or FEV1 Z-score (r=-0.63 

P<0.0001). When the two most extreme observations are removed, the strength of such relationship 

is slightly reduced (r=-0.58 P<0.0001). These two observations belong to two males of 17.4 and of 

14.4 years old with FEV1 below 30 %predicted.  

As far as the relationships of lung function with age are concerned (Figure 4), LCI2.5 and age are well 

represented by a linear function with a correlation equal to r=0.16 (P=0.011). By the contrary, the 

relationship between age and indices of airflow obstruction, either FEV1% predicted (r=-0.15, 

P=0.029) or FEV1 Z-score (r=-0.14, P=0.03), is better represented by non-linear function. Restricted 
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cubic splines were used indeed to explore the decrease/increase of lung function over age, although 

GLI equations already demonstrated a near-linear decline in the FEV1 throughout childhood without 

acceleration or deceleration during adolescence. [63] It is reported that LCI2.5 has an inverse 

relationship with height until adolescence, [54] here not detectable. Interestingly, taking the 

derivative of the restricted cubic splines, the function changes and becomes negative after 10 years 

of age when describing the relationship between FEV1 and age, while it remains always positive for 

LCI2.5. 

 

Figure 4. Red lines represent restricted cubic spline smoothing used to describe the relationship between A) LCI2.5with age and between B) FEV1% 

predicted and age. Restricted cubic splines used 3 knots, based on AIC. Blue lines represent linear regression line.  
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Missingness and imputation plausibility 

Generally, nearly 86% of the sample present complete information in the data regarding spirometry 

and Pseudomonas infection, collected during outpatient evaluation of paediatric subjects with at least 

one MBWN2 test. Spirometry-derived indices are missing in 20 subjects (≈8%), while data about 

microbial status are missing in 17 individuals (7%). In 3 individuals, both these variables were 

missing. Once these variables were plotted against age, a potential determinant in the mechanism of 

missingness, no observable relation was detected.   

Figure 5 shows the distribution of FEV1 % predicted and PSA as individual points and the 

distributions obtained after eight multiple imputations with 70 iterations for each imputation. 

Distributions of original and imputed variables look plausible, from a quantitative and clinical point 

of view, and do not show worrisome behaviours, as shown as well by FEV1 %predicted density of 

the different imputed datasets used (Figure 6).  

As far as the imputation of PSA missing data is concerned, chronic infection by Pseudomonas 

aeruginosa varies between imputed dataset, ranging from a minimum prevalence of 19.6% to 

maximum 21.6%. 

 

Figure 5. Scatterplot of FEV1 (left) and Pseudomonas aeruginosa (right) against 8 imputations (1 to 8; 0 is the source dataset). Blue are observed and 

magenta are imputed data. 
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 Figure 6. Kernel density estimates for the marginal distributions of the observed data (blue) and the m = 5 densities per variable calculated from the 

imputed data (thin red lines) 
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Association between lung function measures and selected variables 

LCI2.5 and FEV1 %predicted are distributed as shown in Figure 7. Signs of departures from a normal 

distribution are evident, as also assessed by visual inspection of Q-Q plots. Shapiro-Francia test 

statistics denote these variables as not normally distributed (P<0.0001). 

 

Figure 7. Graphs illustrate histograms of LCI2.5 (left) and FEV1 %predicted (right). Shadowed curves represent kernel density curves  

Two distinct OLS multiple regression models were fitted using lung function as dependent variables 

and using age, sex, pancreatic status, CFTR genotype, Pseudomonas aeruginosa infection and BMI 

Z-score as covariates. Presence of diabetes was omitted as a covariate from the two models given that 

only four children presented this comorbidity and considering also well-known its impact on the 

course of the disease. Lung function, namely FEV1 % predicted and LCI2.5, was poorer in children 

with diabetes (n=4), 13.41 (4.9) and 87.7 (15.5)% respectively, compared to children without 

diabetes, 9.84 (3.25) and 98.6 (19.3)%. Figure 8 shows the distribution of the dependent variables in 

patients with and without diabetes. 
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Figure 8. Box-plots of FEV1 %predicted (A) and LCI2.5 (B). Black dots define outliers. 

 

Considering age as linear, OLS models were built as follows: 

1) 𝐹𝐸𝑉!%𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑏" +	𝑏!(𝑎𝑔𝑒) +	𝑏#(𝑠𝑒𝑥) + 𝑏$(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) + 𝑏%(𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 𝑏&(𝑃𝑆	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) + 𝑏'(𝑏𝑚𝑖) 

 

2) 𝐿𝐶𝐼#.& = 𝑏" +	𝑏!(𝑎𝑔𝑒) +	𝑏#(𝑠𝑒𝑥) + 𝑏$(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) + 𝑏%(𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 𝑏&(𝑃𝑆	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) + 𝑏'(𝑏𝑚𝑖) 

Residuals analysis revealed a non-constant variance (Figure 9) and lack of normality, assessed by 

normal plot of residuals, particularly with the distribution of LCI2.5. Moreover, Breusch–Pagan test 

for heteroskedasticity was significant only for LCI2.5 (P=0.005) and not for FEV1 %predicted 

(P=0.3641).  
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Figure 9. Graphs illustrate standardised residual plots of LCI2.5 (left) and FEV1 %predicted (right) versus fitted values.  

Taking into consideration the relationship between the dependent variables and age, several attempts 

were made trying to summarize this relationship as non-linear in OLS models, introducing age-

restricted cubic splines with 3 up to 6 knots. Table 4 reports the specific age modelling under the 

following regression equations: 

3) 𝐹𝐸𝑉!%𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑏" + 𝑠𝑝𝑙𝑖𝑛𝑒(𝑎𝑔𝑒, 𝑑𝑓) +	𝑏#(𝑠𝑒𝑥) + 𝑏$(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) + 𝑏%(𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 𝑏&(𝑃𝑆	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) + 𝑏'(𝑏𝑚𝑖) 

 

4) 𝐿𝐶𝐼#.& = 𝑏" + 	𝑠𝑝𝑙𝑖𝑛𝑒(𝑎𝑔𝑒, 𝑑𝑓) +	𝑏#(𝑠𝑒𝑥) + 𝑏$(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) + 𝑏%(𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 𝑏&(𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) + 𝑏&(𝑃𝑆	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) +

𝑏'(𝑏𝑚𝑖) 

 
 
 

Table 4. Model selection statistics (AIC)       

  FEV1 %predicted LCI2.5 

 df obs AIC obs AIC 
Age 10 211 1805.197 228 1124.466 
Age-spline, 3 knots 11 211 1800.684 228 1124.600 
Age-spline, 4 knots 12 211 1802.008 228 1126.449 
Age-spline, 5 knots 13 211 1802.530 228 1128.163 
Age-spline, 6 knots  14 211 1804.546 228 1130.114 
df= degree of freedom; obs= number of observation; AIC = Akaike's information criterion  
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Based on the lowest AIC obtained, age modelled with a spline with 3 knots turned to be the preferred 

regression equations for FEV1 %predicted while LCI2.5 with age as linear had the lowest AIC.  

The optimal Box-Cox estimated parameter for transforming the % predicted value of FEV1 was 2, 

while -1.31 was the best Box-Cox estimated parameter to transform LCI2.5. For subsequent analysis, 

FEV1 %pred and LCI2.5 were transformed to the square (𝐹𝐸𝑉!%𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	))	and to the inverse 

( !
012%.'

) transform, respectively. These transformations were deemed necessary in order to meet 

assumptions behind linear model.  

Indeed, after transforming these dependent variables and fitting the models 3) and 4) again, the scatter 

of residuals improved, showing constant variance (Figure 10), and approximately normal distribution 

of residuals as well. Breusch–Pagan test for heteroskedasticity was no longer significant for !
012%.'

  

(P=0.7495); residuals of FEV1 %predicted and LCI2.5 met a normal distribution under the Shapiro-

Francia test statistics, P=0.3896 and P=0.2061 respectively.  

 

Figure 10. Graphs illustrate residual plots of transformed LCI2.5 (left) and FEV1 %predicted (right) versus predicted values.  
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Afterwards, the models 3) and 4) were run after multiple imputations (MI). The model with FEV1 

expressed as a square transform resulted in an increase in total variance due to missing information. 

For example, the relative increase in variance (RIV) for free Pseudomonas aeruginosa was 0.085, 

that is 8.5% larger than its sampling variance would have been had the data been complete. 

Particularly, estimated FMI for free and intermittent Pseudomonas aeruginosa colonization were 

8.8% and 9.6%, respectively. Precision for all the estimates was above 98.7%.  

As regards the model with !
012%.'

	as dependent variable, the RIV for the same microbial categories 

were 15.9% and 9.9% due to missingness. Precision for all the estimates was above 98.2%.  

Residuals versus transformed dependent variables after MI are reported in Figure 11. 

 

Figure 11. Graphs illustrate residual plots of transform LCI (left) and FEV1 %predicted (right) versus predicted values, averaged over eight multiple 

imputations. 
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Generally, the imputed model with FEV1 %predicted expressed as square function explains 22.8% of 

the variance of the dependent variable (Table 5). Concerning the covariates, there is no evidence of 

association between CFTR genotype and FEV1 (P=0.084), whereas there is a significant association 

between Pseudomonas aeruginosa infection and airflow obstruction in the considered sample 

(P<0.001). This association is significant for patients with chronic infection compared to those free 

(b = -2099.12, P<0.001) or intermittent (b = -2004.43, P<0.001) (Figure 12). 

 

Table 5. Association of prognostic factors with FEV1: model-based coefficients standard errors  
in not imputed (top) and imputed dataset (bottom)  

n=211 b-Coefficients Standard Error P value Pr(>F)   

Age-spline, 3 knots    0.003  

Male vs Female -70.44 427.78 0.869  
 

CFTR Genotype    0.076  

F508del/other vs F508del/F508del -1116.67 587.47 0.059  
 

Other/other vs F508del/F508del -1435.35 646.16 0.027  
 

Pancreas Insufficiency  -1777.40 505.35 <0.001  
 

Pseudomonas aeruginosa infection    <0.001  

intermittent vs chronic 1847.27 685.45 <0.001  
 

free vs chronic 2136.94 557.40 <0.001  
 

BMI, Z-score 841.16 242.43 <0.001  
 

Intercept 9084.38 1719.69   
 

n=245 b-Coefficients Standard Error P value Pr(>F)   

Age-spline, 3 knots    0.005  

Male vs Female 97.98 412.85 0.81  
 

CFTR Genotype    0.084  

F508del/other vs F508del/F508del -1039.66 580.96 0.246  
 

Other/other vs F508del/F508del -1433.18 634.65 0.563  
 

Pancreas Insufficiency  -1987.32 483.56 <0.001  
 

Pseudomonas aeruginosa infection    <0.001  

intermittent vs chronic 2004.43 674.58 <0.001  
 

free vs chronic 2099.12 550.69 <0.001  
 

BMI, Z-score 800.43 229.98 <0.001  
 

Intercept 8942.30 1677.84      
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As well pancreatic function has a negative association with the response variable, while a better 

nutritional status (BMI) is positively associated with lung function (b = 800.43, P<0.001). The 

association of age with FEV1 %predicted is slightly increasing until 12, decreasing afterwards, as 

described in Figure 12, with children chronically infected by Pseudomonas aeruginosa showing the 

worst trend. 

 

Figure 12. Solid lines represent fitted values obtained from the model with transform FEV1% predicted after multiple imputation on each dataset, 

according to PSA status; dot lines represent 95% confidence intervals of model estimates. Here it is represented the marginal model estimated on 

imputed dataset #2, for a female subject, carrying two F508del variants and with BMI equals to -0.5. 

 

The other model with !
012%.'

	as dependent variable explains a larger amount of variance compared to 

the previous one (37.6% of the total variation of !
012%.'

). As reported by the estimated coefficients in 

table 6, this model as well revealed a significant association between pancreatic status and the 

dependent variable.  
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Table 6. Association of prognostic factors with LCI2.5: model-based coefficients standard errors  
in not imputed (top) and imputed dataset (bottom)  

n=228 b-Coefficients Standard Error P value Pr(>F)   

Age -0.002 0.000 <0.001  
 

Male vs Female -0.001 0.003 0.685  
 

CFTR Genotype    0.004  

F508del/other vs F508del/F508del 0.005 0.004 0.236  
 

Other/other vs F508del/F508del 0.014 0.005 0.002  
 

Pancreas Insufficiency  -0.019 0.004 <0.001  
 

Pseudomonas aeruginosa infection    <0.001  

Intermittent vs chronic 0.009 0.005 0.072  
 

free vs chronic 0.020 0.004 <0.001  
 

BMI,Z-score 0.004 0.002 0.011  
 

Intercept 0.121 0.008      

n=245 b-Coefficients Standard Error P value Pr(>F)   

Age 0.195 0.000 0.003  
 

Male vs Female -0.001 0.000 0.801  
 

CFTR Genotype    0.013  

F508del/other vs F508del/F508del 0.006 0.004 0.170  
 

Other/other vs F508del/F508del 0.013 0.005 0.005  
 

Pancreas Insufficiency  -0.022 0.004 <0.001  
 

Pseudomonas aeruginosa infection    <0.001  

Intermittent vs chronic 0.010 0.005 0.056  
 

free vs chronic 0.019 0.004 <0.001  
 

BMI,Z-score 0.004 0.002 0.015  
 

Intercept 0.121 0.008      

 

A positive association between Pseudomonas aeruginosa and the lung clearance index is also 

detectable under this model, being chronically infected worse than having an intermittent colonisation 

(Figure 13). The model did not account for a difference in mean !
012

 among those children with an 

intermittent versus chronic colonization. The association of age with transform LCI2.5 was significant 

(P=0.003), as it was the association between genotype.  
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Figure 13. Solid lines represent fitted values obtained from the model with transform LCI2.5 after multiple imputation on each dataset, according to 

PSA status; dot lines represent 95% confidence intervals of model estimates. Here it is represented the marginal model estimated on imputed dataset 

#2,, for a female subject, carrying two F508del variants and with BMI equals to -0.5. 
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Profiling paediatric patients according to their clinical characteristics 

Characteristics of the 125 paediatric subjects evaluated at least twice during outpatient follow-up are 

shown in Table 7.  

 

Table 7. Sample characteristics         
Visits I II III IV 
Subjects, nr 125 125 47 15 
Age, yrs 11.4 (2.8) 12.9 (2.8) 14.3 (2.1) 14.7 (1.8) 
BMI, Z-score -0.6 (0.9) -0.5 (0.9) -0.6 (1.0) -0.9 (0.7) 
Male/Female, nr 64 / 61 64 / 61 23 / 24 11 / 4 
F508del/F508del, nr(%) 31 (24.8) 31 (24.8) 12 (25.5) 6 (40) 
F508del/ other, nr(%)  50 (40.0) 50 (40.0) 18 (38.3) 6  (40) 
other/other, nr(%)  44 (35.2) 44 (35.2) 17 (36.2) 3 (20) 
CFRD, nr(%) 1 (0.8) 1 (0.8) 1 (2.1) - 
Pancreatic Insufficiency, nr(%) 74 (59.2) 74 (59.2) 30 (63.8) 10 (66.7) 
Pseudomonas aeurginosa chronic infection*, nr(%) 25 (20) 18 (14.4) 8 (17.0) 4 (26.7) 
Values are expressed as absolute number(percentage); * 8 microbiological data are missing 

 

Children show good respiratory conditions, as these were evaluated during the first outpatient visit 

(Table 8). Despite a little decrease in airflow obstruction, as shown by mean Z-score of FEV1, mean 

FEV1 %predicted has remained above 90% throughout test occasions. During the first evaluation, no 

children expressed severe lung disease (FEV1% < 40% predicted), nevertheless 15 children (12.7%) 

were considered below their lower limit of normal (LLN). The percentage of children with FEV1 

below LLN did not vary a lot through follow-up: 13 (11.7%) at second evaluation, 6 (13.3%) at third 

and 4 (26.7%) at fourth evaluation. Two patients evaluated four times were all below their LLN.  
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Table 8. Pulmonary characteristics 
Visits I II III IV 
Subjects, nr 125 125 47 15 
FEV1, % predicted 100.4 (17.4) 97.8 (16.7) 97.4 (20.1) 93.5 (17.8) 
FEV1, Z-score 0.1 (1.5) -0.2 (1.4) -0.2 (1.7) -0.5 (1.5) 
FVC, % predicted 107.4 (14.7) 105.5 (14.2) 103.3 (16.5) 104.1 (13.5) 
FVC, Z-score 0.6 (1.2) 0.4 (1.2) 0.3 (1.4) 0.3 (1.1) 

LCI2.5 10.07 (2.98) 9.92 (3.32) 9.50 (2.75) 10.05 (2.06) 
LCI2.5, CV% 4.4 (2.4) 4.0 (2.3) 4.4 (2.2) 3.8  (2.7) 
LCI2.5, Z-score¶ 5.22 (1.78 – 6.67) 4.16 (1.47 – 9.98) 3.62 (1.07 – 8.31) 5.49 (2.9 – 9.39) 

Scond*VT 0.066 (0.030) 0.141 (0.799) 0.061 (0.027) 0.066 (0.019) 
Scond, CV% 26.9 (25.2) 27.9 (25.8) 26.5 (24.3) 21.2 (15.8) 

Sacin*VT 0.138 (0.109) 0.134 (0.104) 0.123 (0.096) 0.139 (0.117) 
Sacin, CV% 31.9 (26.5) 34.1 (27.9) 30.8 (24.3) 35.3 (29.9) 
Spirometry data belong to 118 patients at first evaluation, 111 to second follow-up and to 45 patients at third 
evaluation. Sacin was not detected on 1 and 5 patients during first, third and second evaluation, respectively. All 
displayed values are expressed as mean(standard deviation). ¶median and interquartile range. One patient was 
evaluated five times (not reported).  

 

Average LCI2.5 did not show large changes over time, considering that patients were followed-up 

after a period of time comprised between 469 and 636 days, first and third quartiles respectively.  

If compared to those children who performed at least one MBWN2 (Table 1 and Table 2, pg. 10 and 

11), no substantial clinical difference can be reported. 

Agglomerative nesting was the adopted clustering algorithm used to generate CF phenotypes. Table 

9 displays the several indices taken into consideration. First, the number of clusters was 2 according 

the majority of indices evaluated. Despite the best performance among all the indices shown by 

hclust, the analysis of dendrogram revealed a severe imbalance in the number of subjects within each 

cluster, 2 patients in the first and 123 in the second cluster, therefore this approach was discarded as 

clinically useless. AGNES showed a slightly better performance in the validity of its clustering 

structure against poorer stability, compared to PAM. 
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Table 9. Validity and stability indices and other descriptive clusters 
properties   

 AGNES (k=2) PAM (k=2) Hclust (k=2) Reference 
Linkage Ward - Average  
Metric Gower Gower Gower  
Correlation coefficient 0.59 - 0.60 >0.80 
Agglomerative coefficient 0.96 - -  
Silhouette Index 0.33 0.31 0.35 >0.50 
Dunn Index 0.20 0.10 0.27 Highest 
Average within 0.22 0.25 0.29 Lowest 
Average between 0.35 0.35 0.44 Largest 
APN 0.0961 0.0113 0.0961 Lowest 
AD 15.115 12.415 15.115 Lowest 
ADM 0.1501 0.0168 0.1501 Lowest 
FOM 0.0987 0.0840 0.0987 Lowest 

APN = Average proportion of non-overlap; AD = Average Distance; ADM = Average distance between means; 
FOM = Figure of merit.  

 

The clustering hierarchy as a tree diagram obtained by applying AGNES algorithm on patients with 

at least two MBWN2 tests, at their first evaluation, is shown in figure 14.   
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Figure 14. Dendrogram. Vertical axis represents the dissimilarity between clusters. The horizontal axis represents patients  

 

The number of identified clusters was also considered reasonable after looking at the dendrogram. 

Table 10 describes the clinical characteristics for subjects included in each cluster.  

 

Table 10. Sample characteristics stratified by clusters     

 Cluster 1 Cluster 2 p-value 
Subjects, nr 78 47  
Age, yrs  11.09 (2.97)  11.80 (2.31)  0.156 
Age range, yrs 5.6 - 16.8 7.7- 16.3  
Sex, female     36 (46.2)      25 (53.2)  0.466 
BMI, Z-score  -0.68 (0.78)  -0.37 (1.00)  0.073 
Pancreatic Insufficiency       74 ( 94.9)  - <0.001 
CFRD      1 ( 1.3)  - 1.000 
CFTR Genotype           <0.001 

F508del/other     32 (41.0)      18 ( 38.3)   
F508del/F508del     30 (38.5)       1 (  2.1)   

 Other/other     16 (20.5)      28 ( 59.6)   
Pseudomonas aeurginosa           <0.001 

   chronic     25 (32.9)       0 (  0.0)   
   free     41 (53.9)      35 ( 85.4)   

   intermittent     10 (13.2)       6 ( 14.6)   
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FEV1, % predicted  95.26 (17.96) 109.01 (12.41) <0.001 
FEV1, Z-score  -0.38 (1.52)   0.79 (1.08) <0.001 
FVC, % predicted 104.39 (15.98) 112.36 (10.68)  0.002 
FVC, Z-score   0.35 (1.34)   1.03 (0.90)  0.001 
LCI2.5  11.33 (2.91)   7.97 (1.57) <0.001 
LCI2.5, Z-score, median (IQR) 8.32 (8.44) 0.98 (2.98) <0.001 

Sacin*VT   0.16 (0.12)   0.10 (0.08)  0.001 

Scond*VT   0.08 (0.02)   0.05 (0.03) <0.001 
Pulmonary Exacerbations*, median (IQR) 3 (1-4) 0 (0-1) <0.001 
Hospitalization*   <0.001 

1 15 (19.2) -  
⋝2 4 (5.1) -  

Values are expressed as absolute number(percentage) or mean(sd), where not differently expressed. * Reference 
time period is twelve months preceding MBWN2 test 

 

 

One third of the considered sample fell into cluster #2, made by young individuals of the same age 

of cluster #1, but less severe. Indeed, cluster #1 is characterized by the co-presence of several negative 

known prognostic factors, statistically different in their distribution from cluster #2. For example, 

F508del variant is almost absent in cluster #2 and none presents pancreatic insufficiency. Moreover, 

individuals in cluster #2 are classified as free from Pseudomonas aeruginosa colonization whereas 

all youngsters with chronic infection by PSA fell into cluster #1.  

The sole analysis of air flow obstruction in terms of FEV1 %predicted returns all patients in the two 

clusters in the range of moderate to mild/normal air flow obstruction, with a median (IQR) FEV1 

equals to 96.4 (85.7 – 109.4) %predicted in the cluster #1 and 106.2 (103.2 – 119.3) % predicted in 

cluster #2. Particularly, 90.5% and 100% of patients, respectively in clusters #1 and #2, could be 

considered having mild/normal FEV1; again, these percentages vary if one adopts Z-score of FEV1, 

under which case the percentage of patients with a normal lung function drops to 81.1% and to 97.7% 

in the first and second cluster, respectively. Moreover, by adopting Z-score of FEV1, the two clusters 
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show exactly an opposite behaviour, with a median (IQR) FEV1 equals to -0.30 (-1.19 – 0.83) Z-score 

in the first cluster and 0.53 (0.28 – 1.64) in the second cluster. 

The analysis of LCI2.5 improves the understanding of lung status and clearly classifies as abnormal, 

i.e. LCI2.5 >ULN, the majority of patients in cluster #1, 92.3% compared to 42.6% in cluster #2. At a 

population level, 95%CI for the mean LCI2.5 in cluster #1 goes from 10.7 to 12.0, whereas 95%CI for 

the mean LCI2.5 in cluster #2 is much lower, namely 7.5 to 8.4. Acinar and conductive ventilation 

appear to be more homogenous in cluster #2 compared to cluster #1. Generally, the two clusters 

differentiated one from another by a mean LCI2.5 difference of 3.37 (95%CI: 2.57 to 4.16) and by a 

mean FEV1 difference of 1.2 (95%CI:0.7 to 1.6) Z-score. Under these clusters, no sex difference is 

detectable (P=0.466) nor any significant difference in nutritional status, -0.34 (95%CI: -0.65 to 0.03) 

BMI Z-score. Age span is pretty much identical between the two partitions.  

 

Longitudinal association between lung function measures and selected variables between 

phenotypes 

Considering that only 14 patients in cluster #1 and one patient in cluster #2 performed 4 visits or 

more during the considered period of time, the analysis of LCI2.5 variation over time covers a 3 visits-

span. On average, children were evaluated for a second time after 1.6 years during a regular outpatient 

visit; for 47 children, the third evaluation occurred after 2.8 years from the first evaluation and 1.4 

years from the second evaluation.  
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Figure 15: LCI2.5 profile (spaghetti plot) for children over years. Solid line describes the linear regression used to visually describe the relationship 

between time and LCI2.5 

 

From figure 15, three things stand out. The first is about one patient in cluster #1, whose baseline 

LCI2.5 is above 20 and further increased at the next follow-up. This represents an unusual observation 

belonging to a young girl aged 15 years, whose FEV1 deteriorated in one year, going from 47.8% to 

32.3 %predicted. Considering the poor meaning of such a high measure of LCI2.5, we decided to 

remove this patient from next analyses. 

Secondly, patients in cluster #1 have a lot of variability in their ventilation inhomogeneity basal 

measurement and, thirdly, children in cluster #2 seem more stable over time.  
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Figure 16: Box-and-whiskers plots for LCI2.5 by cluster and time. 

 

Indeed, figure 16 shows the patterns implied by the sample median. The variability is larger in cluster 

#1 compared to cluster #2, and it seems almost constant over time.  

The mixed-effect model was built as follows, allowing an interaction between visits and the two 

identified phenotypes (i.e. clusters): 

5)	𝐿𝐶𝐼#.&	*+ = 𝑏" + 𝑏!D𝑣𝑖𝑠𝑖𝑡*+F + 𝑏#(𝑐𝑙𝑢𝑠𝑡𝑒𝑟*) + 𝑏!#D𝑣𝑖𝑠𝑖𝑡*+	𝑋	𝑐𝑙𝑢𝑠𝑡𝑒𝑟*F 	+ 𝑈*+ 

where Uij is the patient-specific random effect. Based on the LR test (P<0.001), the final model 

considering a heterogeneous residual variance structure within cluster indicates a better fitting of the 

model. This choice is in agreement with the computed value of 1237.98 of AIC, which is slightly 

smaller than 1263.15 obtained from the model with constant variance.  
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Figure 17. Graphs illustrate normal Q-Q of the conditional Pearson residual for each cluster (left) and scatterplots (right) of the conditional Pearson 

residual versus fitted values from equation 5. 

 

Figure 17 displays the diagnostic plots used to assess the goodness of fit of model 5. The left plot 

shows little deviation from linear trend whereas plot on the right shows that residual variance is 

slightly different for higher values, especially for observations contained in cluster #2. It is worth 

considering that diagnostic plot from this model with heterogeneous variance is qualitatively better 

and revealed a smaller number of outliers (n=7), i.e. residuals larger than the 97.5th percentile of 

standard normal distribution, compared to the model with constant variance (n=25).  

Considering that outliers are present in both clusters and at first and second timepoints (figure not 

shown), and that dropping them from the final model did not change the overall magnitude and 

interpretation of estimates, these were not discarded. The resulting LCI2.5 profile across time is 

displayed in Figure 18, that identify outliers and the negligible slope changing.  
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Figure 18. LCI2.5 profile (spaghetti plot) for children over years. Plot on the left highlights the 7 observations considered as outliers (red lines) 

whereas plot on the right displays the variation across visits if outliers were removed. Solid black line describes the linear regression used to visually 

describe the relationship between time and LCI2.5 

 

Also, in order to exclude an impact of non-Gaussian distribution of residuals on the precision of the 

estimates and its interpretation, a model with the inverse of LCI2.5 was fitted, yielding to the same 

clinical conclusions. For the sake of interpretability, results are therefore presented with 

untransformed LCI2.5. 
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Table 11. REML-based parameter estimates for LCI2.5 with subject-specific random 
intercepts 

 b-Coefficients (SE) p-value Pr(>F)  
Fixed effects    
Intercept 11.20 (0.28) <0.001  
Cluster    

Cluster 2 versus Cluster 1 -3.23 (0.39) <0.001  
Visits    

Visit 2 versus Visit 1 -0.08 (0.29) 0.7805 0.1265 
Visit 3 versus Visit 1 -0.80 (0.40) 0.0478 

Cluster X Visit    
∆ Visit 1 versus ∆ Visit 2   -0.31 (0.35) 0.3720 

0.5023 
∆ Visit 1 versus ∆ Visit 3   0.21 (0.50) 0.6841 

SE = standard error; ∆ = difference betwen clusters 

 

Results from the mixed-effect model with heterogenous residual variance are displayed in table 11. 

Generally, difference between children explain 46% of the variance left over after the variance 

explained by clustering and follow-up visits. There is evidence of association between clustering and 

ventilation inhomogeneity in this sample but no evidence of different effect of time between clusters 

(P=0.5023). LCI2.5 is on average 3.23 (95%CI: 2.46 to 4) lower in cluster #2 than in cluster #1 at 

baseline. At the second follow-up visit, the absolute difference between clusters is 3.54 (95%CI 2.77 

to 4.31) while at the third follow-up it is 3.02 (95%CI 1.98 to 4.08). These differences are statistically 

significant and clinically meaningful. 

As regards follow-up visits, the model describes a non-significant variation over time (P=0.1265).  In 

cluster #1, the slope of LCI2.5 at the second follow-up changes by -0.08 (95%CI: -0.65 to 0.49) and 

by -0.8 (95%CI: -1.6 to -0.01) at the third visit, compared to the baseline. In cluster #2, the slope of 

LCI2.5 at the second follow-up changes by -0.39 (95%CI: -0.78 to 0.01) and by -0.2 (95%CI: -0-8 to 

0.39) at the third visit, compared to the baseline. 
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Figure 19. Solid lines represent fitted values obtained from the marginal model, with visits follow-up expressed as discrete time. Vertical bar lines 

represent 95% confidence intervals. 

 

An adjusted model with colonization by Pseudomonas aeruginosa (free versus intermittent or 

chronic), age as linear, genotype (F508del homozygotes, heterozygotes and other variants), 

pancreatic status, sex, BMI Z-score was fitted to explore also the association of LCI2.5 with clinical 

markers of CF disease. The modelling also accounted for the number of hospitalizations and 

pulmonary exacerbations experienced in the twelve months before the MBWN2 test.  

An association between Pseudomonas aeruginosa and the lung clearance index is also detectable 

under this adjusted model (P=0.0037), showing that being free from Pseudomonas aeruginosa lowers 

LCI2.5 by 0.82 (95%CI: -1.36 to -0.27). Other evidences of association come with age (P=0.009), 

which increases LCI2.5 by 0.17 for every one-year (95%CI: 0.04 to 0.3), with pancreatic status 

(P<0.001) and with BMI Z-score (P=0.0017). Particularly, those with pancreatic sufficiency have 

lower LCI2.5 compared to those with pancreatic insufficiency (-1.43, 95%CI: -2.11 to -0.75), whereas 
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nutritional status (BMI Z-score) is negatively associated with ventilation inhomogeneity (b = -0.533, 

P=0.0017). 

As regards the evaluation of FEV1 %predicted, figure 20 summarise the trend across follow-up visits, 

showing a large amount of heterogeneity between children in both clusters, however smaller in cluster 

#2. From the visual inspection of the spaghetti plot, it seems that cluster #1 and #2 show a decreasing 

trajectory of FEV1 %predicted over time, more pronounced in cluster #1.  

 

Figure 20: FEV1 % predicted profile (spaghetti plot) for children across time. Solid line describes the linear regression used to visually describe the 

relationship between time and FEV1 % predicted (left). On the right, Box-and-whiskers plots for FEV1 % predicted by cluster and time. 

 

The modelling of FEV1% predicted was based on the following parametrization: 

6)	𝐹𝐸𝑉!%	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑*+ = 𝑏" + 𝑏!D𝑣𝑖𝑠𝑖𝑡*+F + 𝑏#(𝑐𝑙𝑢𝑠𝑡𝑒𝑟*) + 𝑏!#D𝑣𝑖𝑠𝑖𝑡*+	𝑋	𝑐𝑙𝑢𝑠𝑡𝑒𝑟*F 	+ 𝑈*+ 

where Uij is the patient-specific random effect. Based on the LR test (P=0.5392), the final model 

considered a homoscedastic residual variance (AIC 2235.501), and therefore a general correlation 

structure was used. No worrisome departure from normality were detected in the diagnostic plots. 

Seven observations were identified as outliers and again were not excluded from the final model.  
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Figure 21. Graphs illustrate normal Q-Q of the conditional Pearson residual for each cluster (left) and scatterplots (right) of the conditional Pearson 

residual versus fitted values from equation 6. 

Difference between patients explained a smaller portion of variance (i.e., 39.5%) compared to the 

model for LCI2.5. Table 12 reports the coefficients for the marginal model of FEV1 % predicted. 

 

Table 12.REML-based parameter estimates for FEV1 with subject-specific random intercepts 

 b-Coefficients (SE) p-value Pr(>F)  
Fixed effects    
Intercept 95.8 (1.8) <0.001  
Cluster    

Cluster 2 versus Cluster 1 13.3 (3.0) <0.001  
Visits    

Visit 2 versus Vitis 1 -1.1 (2.1) 0.5938 0.2415 
Visit 3 versus Visit 1 -3.8 (2.9) 0.1843 

Cluster X Visit    
∆ Visit 1 versus ∆ Visit 2   -3.2 (3.4) 0.3469 

0.4408 
∆ Visit 1 versus ∆ Visit 3   2.5 (4.8) 0.6088 

SE = standard error; ∆ = difference betwen clusters 

 

Also, for FEV1 %predicted we can observe evidence of a significative difference between clusters 

however without evidence of variation across visits (P=0.2415). FEV1 is higher on average 13.3 % 

points predicted (95%CI: 7.3 to 19.2 %pred.) in cluster #2, at baseline. The overall estimated marginal 

means are displayed in figure 22.  
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Figure 22. Solid lines represent fitted values obtained from the marginal model, with visits follow-up expressed as discrete time. Vertical bar lines 

represent 95% confidence intervals. 

The same adjusted model used for LCI2.5 was fitted to explore also the association of FEV1 with 

clinical markers of CF disease. Based on AIC, age was expressed as non-linear using restricted cubic 

spline with 3 knots. A positive association between pancreatic function and FEV1 was found  (b=7.58, 

P=0.0048). In the same model, nutritional status (BMI Z-score) is positively associated with airflow 

obstruction (b = 4.77, P<0.001). No evidence of association was found between Pseudomonas 

aeruginosa or age and FEV1 %predicted. 

Children under therapy with CFTR-modulator agents 

By the end of the present data collection, 11 children were under therapy with Orkambi® or 

Ivacaftor®. These children fell into cluster #1, and we were able to track longitudinal variation in 

their pulmonary functions only for three of them. Variation in their pulmonary function is summarised 

in Table 13. 

 



 64 

Table 13. Pulmonary functions for children under therapy with modulators 
agents.  

 Baseline visit Follow-up Relative Difference % 
#1    

FEV1 % predicted 65.7 58.9 -10.4 
LCI2.5 17.25 12.54 -27.3 

Age, yrs 11.4 11.5  
#2    

FEV1 % predicted 92.1 120.1 30.4 
LCI2.5 7.89 6.42 -18.6 

Age, yrs 5.5 6.1  
#3    

FEV1 % predicted 119.9 99.2 -17.3 
LCI2.5 6.78 7.57 11.7 

Age, yrs 14.3 14.7   

 

Direction of variations is not consistent across children nor between FEV1 and LCI2.5, however it is 

worth noting that substantial changes occur in a very short period of time between evaluations. As 

these children were not even identified as outliers from the fitted models, they were kept in the 

longitudinal analyses. 
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Risk factors for pulmonary exacerbation as recurrent time-to-event data  

The majority of children had at least one pulmonary exacerbation (n=207, 84.5%). Mean number of 

recurrences is 1.8, varying from 0 to 4. First to fourth recurrence of pulmonary exacerbations occurred 

in 207, 89, 28 and 8 children, respectively (Table 14). Among those with at least one PE, 4% had at 

most 4 PEs. Therefore, the dataset was truncated after the third event due to small number of events 

in the fourth stratum. 

 

Table 14. Distribution of anthropometric and clinical markers of CF disease for PE recurrence 
among 245 children  

 Recurrence no. 

 First PE (n=207) Second PE (n=89) Third PE (n=28) Fouth PE (n=8) 
Age, yrs 11.82 (3.45) 13.14 (2.88) 14.13 (2.17) 14.56 (1.86) 
Sex, female 109 (44.5) 41 (46.1) 11 (39.3) 1 (12.5) 
BMI, Z-score -0.54 (0.90) -0.62 (0.87) -0.83 (0.90) -0.80 (0.90) 
Pancreas Insufficiency  141 (57.6) 59 (66.3) 23 (82.1) 6 (75) 
CFTR Genotype     

F508del/other 105 (42.9) 37 (41.6) 11 (39.3) 3 (37.5) 
F508del/F508del 50 (20.4) 27 (30.3) 10 (35.7) 3 (37.5) 

 Other/other 90 (36.7) 25 (28.1) 7 (25) 2 (25) 
Pseudomonas aeurginosa     

   chronic 48 (19.6) 16 (18.0) 7 (25) 2 (25) 
   free 141 (57.6) 50 (56.2) 18 (64.3) 4 (50) 

   intermittent 39 (15.9) 22 (24.7) 3 (10.7) 2 (25) 
FEV1, % predicted 97.3 (19.6) 96.3 (18.1) 93.8 (16.0) 92.0 (16.5) 
FEV1, Z-score -0.21 (1.61) -0.29 (1.52) -0.51 (1.35) -0.66 (1.39) 
LCI2.5 10.28 (3.37) 10.63 (3.44) 10.83 (3.44) 11.00 (2.21) 
LCI2.5, Z-score¶ 3.5 (8.02) 5.42 (8.26) 7.48 (8.8) 11.1 (8.98) 
Values are presented as mean (standard deviation) or count (percentage), where not differently expressed. ¶ median 
(IQR) 

 

Table 14 shows that clinical markers of CF slightly deteriorated as patients developed more 

recurrences, as one could expect from CF disease.  
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From the Prentice, Williams and Peterson gap time (PWP-GT) model, LCI2.5 and pancreatic status 

are the two covariates showing evidence of association with the risk of recurrent PE episodes. 

Children with higher LCI2.5 are expected to experience a 6% higher risk of PE recurrence during their 

follow-up (HR 1.06, 95%CI 1.01 to 1.10), whereas lower risk of recurrent PE episodes is expected in 

children with pancreatic sufficiency versus those with pancreatic insufficiency (HR 0.59, 95%CI 0.44 

to 0.79). Adopting a model with gap-time, this means that children with a previous PE have 26% risk 

of having a second PE within a year (Figure 23, green line).  

 

Figure 23. Risk of PE recurrence over time for the first 3 repeated PEs, estimated using gap time among 245 patients with CF. Dotted lines represent 

95% confidence intervals estimated using Breslow approximation.  

If we consider LCI2.5 as dichotomous predictor, as previously defined (see p. 22), the above model 

shows that children with a normal LCI have a lower risk of recurrence compared to children with 

LCI2.5 values above ULN (HR 0.72, 95%CI 0.52 to 0.99).  
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The PWP-GT model adjusted for FEV1 %predicted (table 15) shows the same association between 

being pancreatic sufficient and the recurrent PE risk, with a little higher hazard, i.e. 46%. However, 

lung function measured by FEV1% predicted is not associated with PE recurrence in this young cohort 

of children. 

 

Table 15. Results from PWP conditional model using gap time 

 Adjusted with LCI2.5 
Adjusted with FEV1 % 

predicted 

 Hazard ratio P-value Hazard ratio P-value 
Age 1.00 (0.96;1.04) 0.9740 1.00 (0.97;1.04) 0.8167 
Sex     

Male vs Female 0.80 (0.63;1.03) 0.0941 0.86 (0.69;1.08) 0.1893 
CFTR Genotype     

F508del/other or Other/other vs 
F508del/F508del 0.89 (0.68;1.18) 0.4226 0.80 (0.61;1.06) 0.1236 

Pancreatic status     

Sufficiency vs insufficiency 0.59 (0.44;0.79) <0.001 0.54 (0.40;0.72) <0.001 
Pseudomonas aeruginosa infection     

Free vs Intermittent or chronic 0.83 (0.64;1.06) 0.1392 0.78 (0.60;1.00) 0.0500 
BMI,Z-score 0.98 (0.86;1.13) 0.8274 0.98 (0.86; 1.13) 0.7937 
LCI2.5 1.06 (1.01;1.10) 0.0083   

FEV1, % predicted     1.00 (0.99;1.00) 0.2630 
Estimates of association are hazard ratios with 95% confidence intervals. PWP = Prentice, Williams and 
Peterson  

 

Although not meant for prediction, discriminative ability of the PWP-GT models adjusted for LCI2.5 

and FEV1% predicted were respectively 0.58 and 0.59 (adjusted C-Index).  
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Time-to-pulmonary exacerbations by phenotypes  

The same PWP-GT model was also applied to the previous cohort used to assess longitudinal 

variation over time (see p. 49), with the variable cluster as the only predictor. Clustering showed 

evidence of association with PE recurrence (P<0.001), with children in cluster #2 having a lower risk 

of PE recurrence compared to children defined by cluster #1 (HR 0.46, 95%CI 0.34 to 0.60) (Figure 

24).  

 

Figure 24. Risk of PE recurrence over time for the first PE, estimated using gap time among 125 patients with CF. Dotted lines represent 95% 

confidence intervals estimated using Breslow approximation.  
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Discussion 

 

The aim of this project was investigating the association of some clinical measures used in CF centres 

to assess CF disease with one marker of lung disease (LCI2.5), and to gather information about its 

behaviour when compared to FEV1. Cluster analysis was performed to ascertain whether children 

with CF would express peculiar trait in each cluster and within cluster at follow-up, in terms of lung 

function variation. Eventually, the association between relapses of pulmonary exacerbations and lung 

function was explored in order to assess the importance of LCI2.5 when related to the burden of 

disease, considering how impactful can be hospitalizations and antibiotic therapies on children and 

their families. 

As theoretically expected, the relationship between FEV1 and age was better specified when 

summarized by non-linear fitting. It is well known that pulmonary function varies with age, standing 

height, sex and ethnicity. Therefore, test results need to be compared to predicted values. New 

equations from the Global Lung Initiative [64] have been developed, taking into account the changing 

relationship between FEV1 and height during the adolescent growth spurt and considering also the 

discontinuity in the available prediction equation when individuals move from one set of equations 

to the next. Essentially, GLI provided a linear regression equation with an age-specific correction in 

the form of the age-spline. The age-correction adopted favoured a better interpretation of the 

transition from adolescence to adulthood, already describe as non-linear [30]. In the CF Centre of 

Milano, adolescence is confirmed as the time when children with CF start to express a variable disease 

expression. FEV1 %predicted starts decreasing in children around 10 years old, whereas ventilation 

inhomogeneity keeps increasing, with a linear trend. Using this information merely for descriptive 

purposes, MBWN2 is able to recognize children younger than approximately 10 years as already 

exposed to lung disease. Particularly, airflow obstruction of larger airways becomes significantly 
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impaired after 10 years of age whereas ventilation inhomogeneity characterizes early lung disease in 

children with CF. 

From the cross-sectional results, the present findings show a statistically significant association 

between age and lung function measures, namely FEV1 %predicted and LCI2.5. Particularly, the FEV1 

increases until 12 years of age whereas LCI2.5 steadily increases over time, making FEV1 poorly 

sensitive of what occurs in smaller airways until adolescence. Overall, this can be translated into a 

clinical advantage of using LCI2.5 over FEV1 %predicted alone, suggesting that despite the absence 

of airflow obstruction, peripheral lung damage causing ventilation inhomogeneity begins earlier. This 

type of knowledge about the lung clearance index has been extensively discussed in CF literature. 

[65] 

The specific distributions of FEV1 and LCI2.5 challenged the fitting of their relationship with age in 

the considered sample, hampering the inferential process and the interpretability of the models, as 

transformations in the forms of square and inverse functions can be difficult to be appreciated. 

Anyway, the association between LCI2.5 and FEV1 found in this sample reinforce the idea that 

ventilation inhomogeneity (LCI2.5) and air flow obstruction (FEV1) are two different ways of looking 

at lung disease in CF. The first refers to the degree of ventilation distribution in the lungs in terms of 

dis/homogeneity, the latter to the resistance of flow when passing large airways. 

Basically, results from regression analyses showed that pancreatic exocrine function, nutritional 

status and infection by Pseudomonas aeruginosa are the strongest predictors of lung function indices 

in both models. This strengthens the utility of LCI2.5 as an early marker of CF disease, especially 

when children cannot perform spirometry or when FEV1 show normal/above normal values, keeping 

in mind that early infection have an impact on future health.  

From the present findings, one could say that children are subjected to early small airways 

modification, to which one must add larger airways remodelling during adolescence. It is worth 
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mentioning the work by Szczesniak et al., who modelled FEV1% decline using semi-parametric 

nonlinear models and suggested that the trends for individuals at risk for prolonged drops in lung 

function diverged just around 12.9 years of age. [44] One could argue if modifying the linear 

increasing trend in LCI2.5 during young ages could somehow delay the overall impact of small 

airways on the disease phenotype during adolescence and adulthood. 

The importance of adolescence as a key timepoint along the risk of derangement of lung function is 

also supported by the presence of two already distinct phenotypes at 11 years of age, as reported by 

the cluster approach used in the present work. Indeed, cluster analysis identified two different profiles 

of children, interestingly about the same age, equally represented by boys and girls and without 

statistically or clinically significant difference in nutritional status. Cluster #2 depicts children with 

less severe genotypes, better lung health and without pancreatic insufficiency. Cluster #1 identifies 

peers with a more severe expression of disease. The most important thing to consider is that children 

of same age could show different lung health and a differently compromised lung periphery, only 

when evaluated by score indices of ventilation inhomogeneity and FEV1 Z-score together. This is 

furthermore of interest, taking into consideration that clustering used information derived by MBWN2 

and not by spirometry. Although statistically different between the two clusters, FEV1 % remains 

above 90% predicted. Again, this reinforces its poor sensitivity in discriminating lung health in 

children with CF. 

The severity of cluster #1 is also supported by the higher prevalence of pulmonary exacerbations 

compared to cluster #2 and by the absence of hospitalization at all in cluster #2. These children may 

be identified at elevated risk, being the target of more personalized interventions. As commented by 

Nyilas et al., children with different phenotypes and particularly with distinct ventilation 

inhomogeneity profiles, may benefit from different therapeutic approach, such as aerosol therapy 

performed with distinct devices in order to deliver different particle sizes. [47]  
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Consistency of identified clusters was assessed longitudinally, and two opposite behaviours in terms 

of FEV1 %predicted and LCI2.5 were detected in the present analyses.  

Overall, LCI2.5 and FEV1 did not show evidence of statistical variation over time, both showing a 

decreasing trend anyway. Considering the time lag between observations, this can be considered a 

therapeutic success, given that children did not show negative changes in their peripheral lung disease 

progression, and that these were below the reported variation in literature. [66] Once adjusted for the 

clinical markers of CF disease and the number of hospitalizations and pulmonary exacerbations 

experienced in the twelve months before the MBWN2 test, only LCI2.5 remains associated with age 

and with Pseudomonas aeruginosa, differently from the study of Davies et al., which did not show 

any evidence of association between ventilation inhomogeneity and acquisition of Pseudomonas 

aeruginosa in children prior to their pre-school visit. [67] In the present study, the LCI2.5 slope was 

not modified by high-impactful events, such as pulmonary exacerbation or hospitalization, occurred 

in the year before the first MBWN2 test.  

At baseline, children in cluster #2 presented with 3.23 units lower in their LCI2.5 compared to children 

in cluster #1, whereas FEV1 %predicted was on average 13.3% points higher in cluster #2. Although 

considering the differences between clusters as statistically and clinically meaningful at each follow-

up visit, differences in lung function between clusters did not significantly vary between follow-up 

visits. Taken all together, results from the present stable cohort of children over a 4-year follow-up 

show that LCI2.5 could be used routinely in the clinic to monitor lung disease, and that it is associated 

with the detection of Pseudomonas aeruginosa, which is known to elicit a pro-inflammatory response 

in the lung. Most importantly, the present findings show that clusters can characterize children with 

CF in terms of differences in lung function over time.  

In the present work, it remains questionable if the steady trend in LCI2.5 should be attributed to any 

medical decision and subsequent intervention triggered by the evaluation of LCI2.5 during the follow-

up.  
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In a recent study, [68] 1-unit larger increase in LCI was not associated with increased antimicrobial 

use or pathogens load over 2-year follow-up based on LCI-triggered bronchoalveolar lavage. 

However, the variation in LCI2.5 of less than 1 unit seen over 3 follow-up visits in the present work 

might suggest that smaller variation in LCI2.5 may be required to trigger change in the 

multidisciplinary management of CF, especially in children with stable conditions. Other significative 

examples come from Stanojevic et al., who showed that LCI2.5 significantly deteriorated throughout 

the 12 month study by a slope of 0.40 (95%CI 0.14 to 0.66) in children aged 3 to 6 years. [40] Also, 

Perrem et al. showed that LCI2.5 increased by 0.87 units from baseline to the symptomatic visit in 98 

individuals with CF aged 5 to 17 years. [69] Thus it is plausible that such small variations could be 

currently used in a clinical setting to guide therapies or require additional assessment. Indeed, it is to 

be recalled how meaningful was the rescue of MBW test from the armoury of lung function tests in 

the 2010s in the CF scenario worldwide. It would not be surprising if high LCI2.5 values or, at that 

time, any values above 7 – which was considered a standard cut-off of normality – could have opened 

to clinicians more options in the care of their CF patients. It is well known that information with a 

high emotional impact can alter the decisional process, even though the probabilistic rules to guide 

decisions are already there. 

Anyway, the observed stability in ventilation inhomogeneity over a total 4-year follow-up is 

encouraging for the CF team in Milano, especially considering the recent findings from Sandvik et 

al., showing that no progression of structural lung disease at CT scan is expected in children with 

stable LCI2.5. [70]   

Considering the clinical impact of pulmonary exacerbation on disease progression, as well as the 

impact of antibiotic therapy on the course of the disease, the last analysis focused on the time to 

recurrent pulmonary exacerbations from the first MBWN2 test. For this purpose, the event pulmonary 

exacerbation was defined as the moment when children required hospitalization or an antibiotic 

course, thus representing also mild respiratory events. A recent study [69] showed that LCI2.5 

worsened with respiratory events such as pulmonary exacerbations in school-age children, and that 
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recovery was incomplete at follow-up, both in terms of ventilation inhomogeneity and airflow 

obstruction. This reinforces the idea that lung clearance index is able to track disease progression. 

Given that recurrence of respiratory events leading to hospitalization or antibiotic therapy may have 

a significant burden on children and families, we have analysed if LCI2.5 could be associated to the 

risk of PE recurrences. From the present findings, LCI2.5 and pancreatic exocrine function are 

associated the with risk of PE recurrences whereas a separate model with FEV1 as adjustment 

covariate did not show any evidence of association between airflow obstruction and the risk of 

recurrent PEs. 

Earlier, Vermeulen et al. [71] showed an association between baseline LCI2.5 and FEV1 and time to 

first PE in a cohort of 5-19 years old CF patients with CF. Annual PE rate was higher in children with 

lowest LCI Z-score and FEV1 Z-score but LCI Z-score was identified as the only predictor of the PE 

rate in the 12 months following the baseline assessment. Their methods relied on Kaplan-Meier and 

Negative Binomial regression, which assume that each patient has recurrent events according to 

individual Poisson event rate which in turn varies according to a specific distribution, i.e. Gamma, 

across patients. Negative Binomial regression model seems appropriate to estimate recurrent events 

when information on time is not available, [72] differently from the present study, in which we 

collected the exact timing of PEs throughout the follow-up. Moreover, the study from Vermeulen et 

al. used information on PEs up to first event only, potentially leading to an inaccurate evaluation of 

the association of selected covariates with the event that occurs more than once and that are possibly 

dependent.  

However, both these studies show a relevant association of baseline LCI2.5 with the course of CF 

disease in terms of PE or recurrent PEs, suggesting again how MBWN2 could be useful in the clinic 

to monitor disease progression. This association is also present in the subset of children assessed 

longitudinally, showing that a better phenotype is associated with a lower risk of PEs recurrence 

compared to children phenotypically more compromised.  
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As regards CFTR genotype, it’s well known how the association between genotype and the 

phenotypic expression of the disease is hampered by the influence of environmental and other genetic 

factors. However, it remains intuitive thinking that patients with mild CFTR genotype may show less 

negative prognostic markers than patients carrying severe genotype. In the present study, a difference 

distribution of variants was significantly described between clusters, that differentiate one from 

another also by the number of homozygotic individuals carrying F508del (30 versus 1). This is the 

most common mutation worldwide and has long been associated with more severe disease and less 

favourable clinical outcomes.[73] 

In the present cross-sectional analysis, only LCI2.5 showed a statistically significant association with 

genotype, with lower values in patients with different CFTR alleles than homozygosis for F508del. 

Very recently, this finding was also reported by Bernasconi et al, showing an association between 

increased ventilation inhomogeneity and individuals with less CFTR function. [74] In our cohort, 

genotype does not remain longitudinally associated with lung function nor with PE recurrence, 

suggesting that LCI2.5 may be more sensitive than FEV1 to characterize patients at a specific time, but 

it is not associated to the type of variants when we look at the impact of genotype on disease 

progression. For example, McKone et al. reported that the risk of death predicted by the quantitative 

protein production was higher in patients with severe mutations (class I-III) but not fully explained 

by lung function measured by FEV1. [75] 

Strengths and limitations 

The longitudinal study design reflects usual clinical care, therefore time intervals between visits 

varied between participants, potentially impacting the observed changes.  

MBWN2 is time consuming in little boys and girls aged 5 or younger. Despite research efforts in CF 

should prioritize children during their silent years in order to detect lung function changes, the limited 

staff at the CF center represents an important barrier to implement this type of lung function 
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assessment on routine basis in youngsters.  For this reason, we were able to include only 2 children 

under 5 years in the present study.  

Future studies should compare these results with regression models taking FEV1 Z-score as dependent 

variable, in order to limit possible confounding by age on lung function describing air flow 

obstruction. Nevertheless, being FEV1 and LCI2.5 two distinct measures of one unique underlying 

disease, it would be worth exploring their longitudinal variation modelled together, by means of a 

joint mixed effect models or latent class joint models. In fact, given the existent correlation between 

LCI2.5 and FEV1, it is unlikely fitting these two covariates at the same time. To account for their 

intrinsic correlation, such models would give more insights about how these two lung function indices 

are longitudinally relate to each other.  
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Conclusion 

 

In light of the present findings, LCI2.5 shows interesting associations with clinical characteristics not 

shared with FEV1 %predicted, both in cross-sectional and longitudinal analyses. Clustering has 

shown a disease profile of children who share negative clinical prognostic factors, also in terms of 

ventilation inhomogeneity. These children are at higher risk of recurrent pulmonary exacerbations as 

well. Further steps should take into consideration the anatomical correlates of CF lung disease, in 

order to address to each cluster a specific level of anatomical damage.  

Descriptive analysis of the whole CF cohort and clustering approach also support that FEV1 Z-score 

has the potential to overcome the limitations reported when describing lung function in terms of % 

predicted only, especially in younger patients.  

Finally, MBW reveals a complementary tool to assess lung function in children with CF, and these 

results confirm its clinical utility in the evaluation of the course of CF disease. Under such 

circumstances, the implementation of MBW as part of the routine assessment of individuals with CF 

by the Regional CF Centre of Milano seems appropriate. 
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