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The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour
suppressor protein which functions as a tetrameric transcription factor capable of
regulating the expression of a plethora of target genes involved in cell cycle arrest,
apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most
commonly mutated gene in human cancer cells and TP53 germ-line mutations are
responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53
gene generally presents missense mutations, which can be distributed throughout the
coding sequence, although they are found most frequently in the central DNA binding
domain of the protein. TP53 mutations represent an important prognostic and predictive
marker in cancer. The presence of a TP53mutation does not necessarily imply a complete
P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53
protein function. Different models have been used to explore these never-ending facets of
TP53mutations, generating abundant experimental data on their functional impact. Here,
we briefly review the studies analysing the consequences of TP53 mutations on P53
protein function and their possible implications for clinical outcome. The focus shall be on
Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion
on the role of TP53 mutations for therapy decisions.

Keywords: TP53mutations, chronic lymphocytic leukemia, clinical impact, P53 protein function, reactivation of P53
INTRODUCTION

The human tumour suppressor gene TP53, located at 17p13.1 locus, encodes a 393 amino acid-long
protein,whichwasdiscovered in the80sof lastCenturywithin a complex containing the viral SV40 large
T antigen (1–3). Initially misclassified as an oncogene, because of the isolation of mutant cDNA clones
capable of inducing cell transformation, the wild type (WT) TP53 gene was eventually classified as
October 2020 | Volume 10 | Article 5933831

https://www.frontiersin.org/articles/10.3389/fonc.2020.593383/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593383/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593383/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gilberto.fronza@hsanmartino.it
https://doi.org/10.3389/fonc.2020.593383
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.593383
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.593383&domain=pdf&date_stamp=2020-10-28


Monti et al. TP53 Mutations in Cancer
tumour suppressor, upon the definite demonstration of its capacity
of inhibiting the growth and the oncogenic transformation of cells
in culture (4). Concurrently, somatic TP53 mutations were
identified in tumours (5, 6) and germ-line TP53 mutations were
described in the Li-Fraumeni syndrome (LFS), the well-known
hereditary cancer predisposition disorder (7).

The P53 protein consists of different functional domains
including mainly a N-terminal transactivation domain (residues
1–61, TAD), a central DNA binding domain (residues 94–290,
DBD), anoligomerizationdomain (residues 325–356,OD) andaC-
terminal domain that regulates the DNA binding (residues 357–
393, CTD) (Figure 1A) (10).While the TADdomain interacts with
components of the transcription machinery, the OD and the DBD
domains are necessary for the formation of the P53 tetramer which
interacts with specific DNA target sequences, called P53 response
elements (P53REs) that are comprisedof twodegenerate decameric
sequences [Pu (Purine)-Pu-Pu-C-A/T-AT-G-Py (Pyrimidine)-Py-
Py] separated by a variable spacer (11). To complicate the scenario
further, different isoforms of P53, resulting from the usage of
alternative promoters and splicing sites, or alternative initiation
sites of translation, have been recently described (12, 13).
Frontiers in Oncology | www.frontiersin.org 2
P53 is a transcription factor (TF) which can be induced by
endogenous and exogenous stresses (e.g. oncogenes and UV
radiation); these stresses activate signals, which operate via post-
translational modifications on P53 protein (e.g. phosphorylations,
acetylations), and cause release of P53 from the mortal embrace with
MDM2 protein, eventually leading to P53 activation (14). P53 protein
can then enter the nucleus where it induces the expression of a plethora
of target genes (15). However, increasing observations are reporting
certain “non-transcriptional functions” of P53, that can contribute to
tumour suppression activity (16).
TP53 MUTATIONS HETEROGENEITY

Unlike other tumour suppressors, the TP53 gene is mostly
altered by missense mutations, mainly involving the portion
coding for the DBD domain of the P53 protein. Within this
region, eight amino-acid substitutions (i.e. R175H, G245S,
R248Q, R248W, R249S, R273H, R273S, and R282W), called
hotspot mutations, characterize ~27% of all mutant P53
proteins identified in human cancers. However, the spectrum
A

B

FIGURE 1 | (A) Domain organization of P53 protein (TAD, transactivation domain; PRD, proline-rich domain; DBD, DNA-binding domain; NLS, nuclear localization
signal; OD, oligomerization domain; CTD, C-terminal domain) and distribution of TP53 missense mutations from the cBioPortal online tool (TCGA) (8, 9). Missense
mutations location (green signs) throughout the P53 protein is shown according to the frequency and the position of the amino acid hit. (B) Heterogeneity of mutants
P53 with examples of the corresponding TP53 mutations.
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of missense mutations is extremely broad (Figure 1A) (8, 9, 17,
18) and varies in the different tumour types.

Mutant P53 proteins have been primarily categorized as
“contact” or “structural”, depending on whether substituted
amino-acid was directly involved in the interaction with DNA
(e.g. R273H) or caused a global effect on the protein structure (e.g.
R175H) (19, 20). Over the last 25 years, a large amount of
experimental data on the functional impact of different amino-
acid substitutions has been generated and different models have
been used to explore the never-ending facets of the corresponding
mutant proteins. One of these models is the yeast S. cerevisiae,
exploiting the fact that P53 can act as TF also in this organism by
binding P53 REs located upstream a reporter gene (21, 22). The
assay, originated as a Functional Analysis of Separate Alleles in
Yeast to study the TP53 status in somatic tumour and blood cells,
has been unceasingly modified and upgraded in order to explore
additional functions of P53 mutants (23–26). In 2003 Ishioka’s
group tested the functionality of more than 2,000 different P53
single amino-acid substitutions expressed in yeast (27). Their work,
along with that of others (23–26), led to a re-classification of the
TP53 mutations based on their effects on P53 function generating
the following categories: i) loss offunction (LOF), ii) partial function
and/or temperature sensitive (PF, TS), iii) WT-like or super-
transactivating (WT-L, ST), iv) with altered specificity (AS) (i.e.
active or partially active on some targets but inactive onothers), and
v) dominant-negative (DN), based on the ability to inhibit WT
protein in a heterozygous condition.However,mutantP53proteins
might be classified also as gain of function (GOF) related to the
acquisition of novel oncogenic activities, not shared with the WT
protein (Figure 1B). This latter property is mainly based on the
ability of the mutant P53 to interact with other TFs or with
chromatin-modifying complexes, altering the cellular
transcriptional profile (28–32). Therefore, mutant P53 proteins
appear to constitute a functional rainbow (Figure 1B) (33).

Recently, two seminal papers confirmed the relevance of the
heterogeneity of mutants P53 in terms of Relative Fitness Score
(RFS) in in vitro cultures (34, 35). RFS has been used as an indicator
of the functional impact of TP53 mutations in terms of selective
growth; specifically, a highRFS indicates a higherfitness of theTP53
variant with preferential expansion within mixed cultured cells in
competitionwith otherTP53 variants, whereas a lowRFS pinpoints
preferential depletion in the same experimental condition.
Moreover, Kotler et al. (34) showed that the loss of the anti-
proliferative function of WT P53 largely correlates with the
occurrence of cancer-associated TP53 mutations, and that
selective GOF properties may further favour specific mutants P53
in vivo. An enhanced cellular fitness was also confirmed in
association with the loss of WT P53 function or the DN effect
associated to specific TP53mutations (35).
IMPACT OF TP53 MUTATIONS
HETEROGENEITY: FROM MICE TO
LFS CLINICAL CONDITION

A clear evidence of the different impact of TP53mutations at the
organism level came from the studies with Trp53 knock-in mice.
Frontiers in Oncology | www.frontiersin.org 3
In mice, the introduction of the R172H mutation (corresponding
to the human R175H hotspot) at the germ-line level generates a
tumor phenotype similar to that observed in Trp53 null mice, but
with a much higher rate of metastasis (36). The GOF activity of
R172H mutation was demonstrated to be associated with the
functional inactivation of P63 and P73 TFs (37). In contrast, the
R172P mutation in mice (corresponding to the human R175P,
PF mutation) caused a delayed tumorigenesis rate with absence
of chromosomal instability (38). These findings have been
paralleled by observations made in patients affected by LFS,
showing that the age of first tumor onset and the spectrum of
observed tumors are dependent on the type of TP53
mutation (39).

The associations of the genotype with clinical outcome was
explored in carriers of TP53 germ-line mutations also using a
functional classification of the mutant P53 based on the
quantification of their transactivation potential and DN effect
in a yeast reporter assay. The analyses revealed that P53 proteins
severely deficient in transactivation capability were more
frequently associated with more severe cancer proneness
syndromes (e.g. LFS) (40), whereas a further classification of
these alleles, based on DN effects, did not distinguish clinical
subclasses (41).
IMPACT OF TP53 MUTATIONS
HETEROGENEITY IN SOMATIC CANCERS

Although the majority of the studies on the prognostic and
predictive role of TP53 status in human cancers distinguish
between patients harboring WT versus mutant proteins, some
evidence favors a categorization of TP53 mutations since
different mutant P53 proteins can have different biologic
effects. Poeta et al. (42) proposed the distinction between
“disruptive” and “non-disruptive” TP53 mutations; while
disruptive mutations likely lead to a complete loss of activity of
the P53 protein, non-disruptive mutants can encode proteins
which retain some of the original functions. This classification
was used to stratify patients with TP53 mutations in head and
neck squamous cell carcinoma (42), advanced Non-Small Cell
Lung Cancer (43), breast and ovarian tumors (44, 45) and
esophageal squamous cell carcinoma (46). However, the
association between the type of TP53 mutations and prognosis
was significantly variable in the different cancers.

Recently, Dutta et al. (47) analyzed data from 1,537 patients
with Acute Myeloid Leukemia (AML) in order to determine a
correlation between TP53 mutations and clinical outcome. TP53
mutations have been classified according to (i) their impact on
protein structure (disruptive versus non-disruptive), (ii) an
evolutionary action score that takes into account the
evolutionary sensitivity to sequence variation and amino-acid
conservation (48) and (iii) the RFS (34). Only the RFS was
capable of distinguishing among AML patients with a
significantly different overall survival and event-free survival.
All these observations complicate the scenario and the definition
of the events which are drivers of the disease pathogenesis.
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IMPACT OF TP53 MUTATIONS
HETEROGENEITY: RESTORATION OF
WT P53 FUNCTIONALITY

Mutant P53 protein has been considered a promising target for
the development of new anticancer strategies and, in the last two
decades, several molecules have been developed with the aim of
reinstating the WT function or eliminating the mutant P53
accumulated in cancer cells (49). Upon re-acquisition of its
original WT properties, the P53 protein should become
transactivation competent (50), and trigger an efficient
apoptotic response following treatments to which the tumor
cells are normally refractory. PRIMA-1 and its methylated
derivative PRIMA-1Met (also named APR246) are the most
widely studied molecules on which phase I/II clinical trials are
in progress (51). These molecules were found capable of
reconstituting the specific DNA binding capacities to different
mutant proteins (e.g. R273H, R175H) and of inducing significant
apoptosis in cancer cells carrying a mutant P53 protein (52).
Another molecule, RITA, which interacts with P53 and inhibits
its binding to MDM2, induces a P53-dependent gene
transcription and cell death (53). Beside these, many others
molecules, which target the interaction of WT P53 with
negative regulators (e.g. Nutlins) or with the mutant P53 (e.g.
CP31398), have been investigated, some of them being currently
tested in clinical trials (53, 54).

A different approach is based on the potential inhibition of
the GOF activities, obtained by promoting mutant P53 protein
degradation. Since mutant P53 is stabilized by the heat shock
protein HSP90, usually over-expressed in cancer cells (55),
several HSP90 inhibitors, such as 17-AAG or Ganetespib, have
been tested as anticancer molecules and their ability to trigger
mutant P53 degradation has been demonstrated (56). Also
Histone Deacetylase inhibitors (HDAC), such as SAHA, can
induce the degradation of the mutant P53, restraining tumor
growth in vivo (56, 57). Lastly, a role of autophagy to trigger
mutant, but not WT, P53 deprivation has been shown in
different cancer cells (58–60), identifying the modulation of
autophagy as an emerging strategy for cancer therapy (61, 62).
NOT JUST A QUESTION OF
TP53 MUTATIONS

P53 total inactivation in human cancer cells is frequently caused
by the alterations of both alleles, comprising the allelic loss due to
deletion of the short arm of the chromosome 17 [del(17p)], and
the concomitant mutation of the other allele. It is of note that
Donehower et al. (63) performing a comprehensive assessment
of the P53 pathway involvement in 32 cancers from The Cancer
Genome Atlas, demonstrated the loss of the second allele in 91%
of the cases with TP53 mutations. In addition, in heterozygous
murine tumours carrying the hotspot GOF allele R248Q, the loss
of the remaining WT TP53 allele was a necessary prerequisite for
the stabilization of the mutant P53 and for the GOF properties to
become evident in vivo (64). These observations suggest that a
Frontiers in Oncology | www.frontiersin.org 4
given TP53 mutation must operate in a specific cellular context
to show its biological consequences (65).
CLINICAL IMPACT OF TP53
ALTERATIONS: THE EXAMPLE OF
CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic Lymphocytic Leukemia (CLL) is the most common
leukemia in the Western countries, characterized by the clonal
expansion of CD5+ B cells in peripheral blood, lymph-nodes and
bone marrow. CLL clinical course is highly heterogeneous (66),
ranging from decades of survival with no need for treatment, to a
rapid disease progression with the requirement for an early
treatment (67). Such a scenario likely reflects the cellular and
molecular heterogeneity of the disease. CLL cases present specific
karyotype aberrations, the most frequent being 13q- (~55%),
11q- (~15%) 17p- (~8%) and +12 (~15%), which correlate with a
different disease course and outcome (68). In addition, gene
mutations (e.g. TP53, SF3B1, BIRC3, and NOTCH1) have been
reported (69), which, again, may influence the disease course and
outcome. B cell receptors (BCR) features expressed by the
leukemic cells also dictate the subsequent patient fate as
demonstrated by the fact that patients with somatically
mutated IGHV genes in the leukemic cells have a better
clinical course and outcome than the patients in whom such
genes are not somatically mutated; it is generally assumed that
stimulation of the leukemic cells by self or exogenous antigens
may promote clonal expansion (70). This notion is supported by
the observation that inhibitors of the BCR-dependent signal
transducing pathway are efficient treatments for CLL (70). In
addition, different CLL patients that share the same BCR have
similar clinical courses (71). Finally, patients with complex
karyotypes, detected by chromosome G-banding, may have a
dire prognosis, even in the era of new drugs (72).

P53 dysfunction has certainly a role in the clinical evolution
of CLL (73). The incidence of TP53mutations is low at diagnosis
(<10% of patients), although it rises in cases with progressive
disease and reaches approximately 40% in refractory CLL (73–
77). Furthermore, there is evidence that CLL patients with TP53
dysfunction [measured as del(17p) and/or TP53 mutations]
progress more rapidly to stages requiring treatment. Together,
these considerations indicate that TP53 alterations facilitate
clonal expansion and disease progression irrespective of the
impact they may have on therapy (78). The presence of a P53
dysfunction has a definite negative impact on the effect of
chemo-immunotherapy, whereas such impact appears to be
less pronounced in patients treated with BCR inhibitors (e.g.
Ibrutinib or Idelalisib) or with apoptosis inducers (e.g.
Venetoclax). Because of this, TP53 mutational screening for all
patients before therapy start is recommended by the European
Research Initiative on CLL group (ERIC) to avoid treatment
protocols that are ineffective in patients with P53 dysfunction (79).

Detection of a del(17p) or of a TP53 mutation is generally
assumed to be a sufficient indication for a P53 dysfunction. CLL
patients with del(17p) carry a TP53 mutation in 80% to 90% of
October 2020 | Volume 10 | Article 593383
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the cases, and ~60% of patients with TP53mutations also harbor
del(17p), as detected by FISH. Even in the absence of del(17p),
the presence of a TP53 mutation appears to be more frequent in
patients with a poor prognosis and a higher genetic complexity
(80, 81). Moreover, CLL sub-clones carrying specific TP53
mutations can be positively selected upon treatment, ultimately
becoming the prevalent expansion of an initially minor mutant
component (69, 82–84).
DEALING WITH COMPLEXITY IN CLL

The identification of molecular biomarkers together with certain
clinical features of the disease may dictate the choice of treatment
in CLL (85). Since a P53 dysfunction is the strongest predictor of
chemo-refractoriness, the assessment of TP53 status is the first,
and possibly most important, decisional node in the first-line
treatment algorithm. Indeed, the presence of P53 dysfunctions
prevents the use of chemo-immunotherapy in favour of BCR
inhibitors or Venetoclax (78). However, although such drugs
have improved the poor efficacy of chemo-immunotherapy in
patients with del(17p) and/or TP53 mutations (86), all these
treatments still pose some challenges in these patients.
Furthermore, the real influence of a gene dosage effect [e.g.
presence of del(17p) versus presence of both deletion and a TP53
mutation] in patients treated with the new drugs has still to be
clarified (78).

Although genomic technologies are changing the practice of
onco-haematology, with improved detection of driver lesions,
genomic data, generated through different technologies, each
Frontiers in Oncology | www.frontiersin.org 5
with its own sensitivity, are often considered not only
interchangeable [i.e. equivalence between the presence of del
(17p) and of a TP53mutation (TP53mut)], but are also subjected
to oversimplification [i.e. equivalence between the presence of
one TP53 alteration (mutation or deletion) and of both
alterations)]. Even though a binary simplification (P53
dysfunction versus no P53 dysfunction) can be considered
clinically usable, the actual situation is potentially more
complicated than estimated (87) and a more realistic situation
diverging from a simple binary scenario (noDel/noMut versus
Del and/or Mut) could be conceived and proposed for the clinical
use in the future (Figure 2). Furthermore, the abundance of the
single TP53 alteration within the leukemic clone [i.e. Variant
Allele Frequency (VAF) for a TP53 mutation and percentage of
del(17p) positive cells] may represent a factor of relevance. For
example, while all identified TP53mutations were clonal with the
Sanger sequencing method (VAF>10%), both clonal (VAF>10%)
and sub-clonal (VAF<10%, as small as 0.3%) TP53 mutations
can be detected with the introduction of Next Generation
Sequencing technologies. Nevertheless, this information has
not entered into clinical practice yet, although it may
contribute to provide information on the effective P53 function
in the leukemic clone and also on its potential prospective
evolution. The last update of the guidelines released by ERIC
still consider that clinical decisions should be taken based on the
presence of a clonal TP53 mutation.

The percentage of del(17p) positive cell may also represents
an important variable as it appears that, among patients with del
(17p), those with a higher percentage of cells carrying the
deletion have shorter survivals (88). Another layer of
FIGURE 2 | Del(17p) (DEL), detected by FISH, and/or TP53 mutation (s) (MUT), detected by DNA sequencing, as indicators of a P53 dysfunction. The present
classification may represent an oversimplification of the conditions leading to an impaired P53 function, both in terms of quantity [del(17p) % or VAF, Variant Allele
Frequency %] and quality (i.e. P53 mutant protein functionality: LOF, loss of function; PF, partial function; AS, altered specificity; TS, temperature sensitive; WT-L,
wild-type like; ST, super-transactivating; GOF, gain of function; DN, dominant negative). Moreover, other molecular features (e.g. mutated IGHV versus un-mutated
IGHV; SF3B1, BIRC3 and NOTCH1 mutations; 13q and 11q partial deletions) and the eventual previous patient management might influence the highly
heterogeneous clinical course of the disease.
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complexity is related to the fact that not all mutant P53 proteins
appear to have the same functional consequences, as previously
described. Although these issues, which are related to the effective
P53 function in a leukemic clone, have emerged as real biological
and clinical problems, they have not been so far deeply investigated
in CLL (65). Finally, it should be stressed that TP53 alterations,
although important, are not the sole alterations and should be
considered together with other cytogenetic abnormalities which
mayoccur concomitantly in the single patients andmay affectper se
the clinical course of CLL (Figure 2).
CONCLUDING REMARKS

In conclusion, is the binary scenario compatible with the
underlying complexity in CLL? While a simplified vision is
important for deciding clinical strategies, new studies appear
necessary for assessing whether further levels of complexity in
CLL classification, can lead to a more precise patient
stratification. In this context, it is likely that future studies will
define whether patients with del(17p) and a TP53 mutation
might have a different clinical course from those who have
only a TP53 mutation or only del(17p). Furthermore, a
patient with a partial function TP53 mutation might show a
different clinical course from those harbouring a complete loss of
Frontiers in Oncology | www.frontiersin.org 6
function TP53 mutation, as suggested by our present
observations and studies in other experimental systems (33, 89,
90). All of these aspects regarding P53 dysfunction may affect
therapy and consequently deserve an evaluation, possibly more
extended than that currently used.
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