Interpretability Analysis of Machine Learning Algorithms
in the Detection of ST-Elevation Myocardial Infarction

Matteo Bodini, Massimo W Rivolta, Roberto Sassi

Dipartimento di Informatica “Giovanni Degli Antoni”, Universita degli Studi di Milano, Milan, Italy

Abstract

Recent studies suggested that ST-Elevation Myocardial
Infarction (STEMI) can be detected in the ECG relying on
machine learning (ML) algorithms. However, most of ML
algorithms lack of an interpretability analysis, since they
do not provide any justification for their decisions.

In this study, we trained a Random Forest (RF) on the
Physionet PTB database to automatically detect STEMI
patients, considering 12-lead average templates as input.
Then, we used the Local Interpretable Model-agnostic Ex-
planations (LIME) method to highlight the input parts that
mostly contributed to the detection. LIME interpretations
were validated with the anatomical position of the myocar-
dial infarction available within the dataset.

Experimental results showed that RF achieved a high
test set accuracy (ranging from 0.84 to 0.92). However,
LIME identified areas within QRS complexes as the most
relevant ones for the RF decision, rather than in the ST
segment as expected.

Our study suggests that, despite the test set accuracy,
ML algorithms for STEMI classification, trained on small
or unbalanced/biased populations, may rely on features
which are not clinically significant. In this regard, inter-
pretability algorithms like LIME may help in understand-
ing possible pitfalls.

1. Introduction

ST-Elevation Myocardial Infarction (STEMI) is one of
the leading causes of death for humans. Indeed, according
to World Health Organization, an estimate of 7.3 million
people died from heart attack [1]. Therefore, an accurate
and early detection of STEMI is fundamental to increase
the life expectancy and to improve the life quality.

The electrocardiogram (ECG) analysis is a crucial step
in the diagnostic triage of patients suspected with STEMI.
Clinical 12 leads ECG is acquired, and ST-segment Eleva-
tion (STE) is the marker most commonly linked to coro-
nary occlusion. Further, STE persists on the ECG for sev-
eral weeks after an acute infarct [2].

Computing in Cardiology 2020; Vol 47

Being the ECG the most effective tool for prompt diag-
nosis of STEMI, as it is inexpensive, quickly performed,
and rapidly available [2], to complement the role of physi-
cians, computer-aided diagnosis (CAD) systems have been
widely developed and have been gaining high attention
worldwide.

Focusing on STEMI, researchers proposed CAD ECG
classification systems based on machine learning (ML) al-
gorithms. Standard ML algorithms make use of features
extracted according to the medical expertise [3,4]. How-
ever, since in other fields avoiding the step of feature engi-
neering provided remarkable results, algorithms that auto-
matically learn useful features from the ECG signal have
been recently introduced [5-7].

Despite latest ML models for ECG classification seem to
have reached the highest performance [7], they often lack
of interperability. Thus, the goal of this study is to investi-
gate on methodologies capable of providing interpretations
of the model’s decisions.

In this study, we investigated on the interpretation of
ML models trained to detect STEMI, using the Local Inter-
pretable Model-agnostic Explanations (LIME) method [8].
In order to validate the interpretations provided by LIME,
we compared them with the anatomical position of the my-
ocardial infarction, known as part of the diagnostic report
of the patient.

2. Materials and Methods

2.1. Dataset

ECG signals were collected from the Physikalisch Tech-
nische Bundesanstalt (PTB) database [9]. The database
contained 549 acquisitions from 290 subjects (aged 17 to
87, mean 57.2; 81 women). ECG signals were sampled at
1 kHz, 16 bit resolution, and had variable length (the typ-
ical duration was two minutes). We considered only the
12 standard leads. For each ECG, diagnostic information
were available: the PTB database contained 368 traces for
148 STEMI patients and 80 traces for 52 Healthy Control
(HC) subjects. For STEMI, we selected only the 341 traces
whose anatomical infarct location was annotated.
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Table 1: Values of accuracy, precision, and recall for each infarct location: inputs are average QRST template (top), and
average ST segment (bottom). The three highest RV measures are reported along with their respective lead.

Average QRST template
Accuracy Precision Recall 1stlead/ RV 2ndlead/ RV  3rdlead/ RV
Anterior 0.85 0.89 0.84 V1/0.24 V2/0.14 v4/0.14
Antero-lateral 0.84 0.81 0.77 V1/0.31 1/0.29 V2/0.09
Antero-septal 0.92 0.89 0.90 1/0.22 aVF/0.22 V1/0.13
Inferior 0.88 0.87 0.85 1I/0.14 V1/0.11 V2/0.11
Infero-lateral 0.89 0.88 0.79 1/0.19 II/0.18 V1/0.15

Average ST segment

Accuracy Precision Recall
Anterior 0.91 0.82 0.81
Antero-lateral 0.89 0.83 0.79
Antero-septal 0.86 0.80 0.90
Inferior 0.87 0.81 0.82
Infero-lateral 0.85 0.82 0.78

2.2.  Preprocessing and feature extraction

Selected ECG signals were filtered with a bandpass
Butterworth filter (3rd order, zero phase, and pass-band:
0.67-30 Hz) to reduce powerline interference, baseline
wandering and high frequency noise.

Beats were detected on the vector magnitude signal us-
ing the ggrs algorithm [9]. Beat positions were aligned on
the R peak using the Woody algorithm applied to the vector
magnitude [10]. Quality of signals was assessed comput-
ing the mean crosscorrelation with an average QRS tem-
plate. An ECG trace was considered of good quality when
such crosscorrelation was higher than 0.9 for every lead.
After quality assessment, we obtained 44 HC traces, and
for STEMI: 18 anterior, 15 antero-lateral, 34 antero-septal,
54 inferior, and 29 infero-lateral infarct traces. Other
infarct locations were not considered since less than 10
traces were of good quality.

For each ECG, the average beat was computed for any
lead. Then, two configurations were considered. First, we
concatenated the average QRST segment of each lead in
a single vector. The considered QRST segment spanned
from 50 ms before the R peak to 150 ms after it, obtaining a
feature vector of 2400 elements. Second, we concatenated
the average ST segments only. Specifically, we considered
segments from 50 ms after the R peak up to 150 ms after
it, with a resulting feature vector of 1200 elements.

2.3. Random Forest training

We considered the Random Forest (RF) algorithm for
our proof of concept. A different RF was trained for each
of the two feature vectors (the concatenations of average
beats or of average ST-segments) and for each of five spe-

Istlead/ RV 2ndlead/ RV  3rdlead/ RV

V1/0.29 V270.25 V3/0.17
1/0.19 V1/0.17 V2/0.12
V3/0.29 V1/0.21 Vv2/0.14
I1/0.44 aVF/0.17 Ir/0.11
1/0.28 V1/0.24 1I/0.09

cific infarct positions. The binary classification approach
distinguished HC from STEMI subjects. For each RF, a
dataset with features from HC and STEMI subjects was
built. Then, a 70/30 training/test split was sampled with
stratification (same proportion of classes was preserved).

The hyperparameters of the models (i.e., number of esti-
mators, maximum number of leafs, maximum depth, min-
imum number of samples required to split nodes, and min-
imum number of samples required to be at a leaf) were
tuned using a 10-fold cross validation applied to the train-
ing set. Specifically, we performed a random search by
uniformly sampling 10® combinations in the range from 1
to 50 with a step of 10 for each parameter. In addition,
Gini and Shannon entropies were tested as splitting crite-
rion. The combination of hyperparameters that maximized
the validation accuracy was then retained for the final train-
ing of the RF on the entire training set. Accuracy, precision
and recall were finally evaluated on the test set.

24. LIME algorithm interpretations

LIME is a local surrogate explanation model, i.e., it ap-
proximates the prediction about a new instance by using
a simpler model. This simplified model is fitted on an ar-
tificial dataset created by probing the model “locally” on
the new instance. LIME defines the explanation model as
follows

explanation(x) = argmin L(f, g, 7), (1)
geG

where x is the new instance, g is a model within the fam-
ily of possible explanation models GG, and L is the loss
function (for instance, the mean square error). The simpler
model g is fitted by minimizing the loss £ using an artifi-
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Figure 1: (a) Lasso weights and average beat for record patient005/s00251re. Red dots point to the 10 largest weights. (b)
Population averaged QRST template & standard deviation for HC and anterior STEMI, computed over the PTB dataset.

cial dataset created by sampling in a neighbourhood of the
instance x. A kernel function 7 defines the weight of each
instance of the artificial dataset based on the distance with
x (higher weights for lower distances).

For each of the trained RF f, we ran LIME as follows.
Given an instance & belonging to the training set used to
train f, we generated an artificial dataset by adding to « a
white Gaussian noise, with zero mean and a standard de-
viation of 0.5 mV, to obtain |10?/training set size| “arti-
ficial” samples (| -] is the floor function). Such artificial
samples were weighted according to their distance to the
instance x using an isotropic Gaussian kernel 7, with 0.5
width. A linear model g was trained on the artificial train-
ing set with a loss function £ defined as kernel weighted
least square with L1 norm penalizer (Lasso). The A\ param-
eter of the Lasso method was set to 10~*. We repeated the
procedure for each sample of the training set.

At the end of the procedure, a Lasso weight was avail-
able for each ECG sample in the feature vector. A large

weight indicated high relevance of that sample for the clas-
sification of that subject. In order to also have a relevance
measure (RV) for each lead, we computed the sum of the
absolute value of the weights belonging to that lead, and
normalized these 12 values with their sum. Finally, the av-
erage RV across the training set instances was computed.

3. Results

In Table 1, we report the accuracy, precision and recall
quantified on the test set for the five RF models and two
feature vectors considered. All metrics ranged from 0.77
to 0.92, hinting to a robust training of the RFs.

Regarding LIME explanations, and the relevance mea-
sure RV, we noticed that: 1) in the case features are av-
erage ST-segments, the highest RV value always refers to
leads that anatomically pertains to the considered infarcts,
for any RF model. 2) In the case features are average beats,
for antero-septal (noticeable in V1 - V3 leads), and infe-
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rior (noticeable in II, III, and aVF leads) infarcts, the three
highest RV values are instead referred to leads that are not
anatomically related to the considered infarcts.

4. Discussion

Even if the latest ECG-based STEMI ML detection al-
gorithms usually take raw, or almost raw, ECG signals as
input, we performed a preprocessing phase and computed
an average template representation. This procedure pre-
served the STE marker and reduced the noise, and proved
to be efficient in terms of performance (Table 1). Fur-
ther, we followed the recommendation of the International
Guidelines for myocardial infarction identification [11] by
using the standard twelve lead ECG, despite the majority
of ML methods applied in this context did not rely on this
standard setting [7].

While the two considered average template representa-
tions reached comparable performance on the test set, our
analysis showed that in the case of antero-septal and infe-
rior infarcts, the RF models using the QRST average tem-
plate relied on leads which were not anatomically related
to the considered infarct according to the guidelines (RV
in Table 1). On the contrary, in the case of anterior, antero-
lateral, and infero-lateral infarcts, the RF models relied on
relevant leads for both feature representations.

Focusing on the anterior infarct, RV showed the high-
est relevance for the leads anatomically involved in STEMI
for both feature representations. However, LIME showed
that, for the QRST average template case, ECG samples
mostly relevant for the classification were located on the
QRS complex (Fig. 1a), rather than on the ST segments as
recommended by the guidelines. This result might be ex-
plained by observing the high variability of the QRS com-
plex between HC and STEMI (V1, V2 and V3 in Fig. 1b),
and implicitly suggests a low inter-subject variability in the
PTB dataset. LIME hinted that the considered RF might
be unreliable when used in real scenarios. Similar results
were obtained for the other kinds of infarcts. Another pos-
sible explanation for the relevance of the QRS complex
might be due to the age difference between the HC sub-
jects and STEMI patients (HC: 53 4+ 17 vs STEMI: 67 &+
14), as QRS narrows while ageing [12].

To the best of our knowledge, only Strodthoff ez al. [13]
studied the interpretability of ML algorithms with the “gra-
dient x input” method to explain the decisions of a Con-
volutional Neural Network for STEMI detection. Similarly
to our results, they noticed that the most relevant segments
for classification were located on the QRS complex.

To conclude, LIME may be considered a good ally in
supporting researchers aiming to create automatic classi-
fiers.
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