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Abstract

Temporal asymmetry is a peculiar aspect of heart period (HP) variability (HPV). HPV asym-

metry (HPVA) is reduced with aging and pathology, but its origin is not fully elucidated.

Given the impact of respiration on HPV resulting in the respiratory sinus arrhythmia (RSA)

and the asymmetric shape of the respiratory pattern, a possible link between HPVA and

RSA might be expected. In this study we tested the hypothesis that HPVA is significantly

associated with RSA and asymmetry of the respiratory rhythm. We studied 42 middle-aged

healthy (H) subjects, and 56 chronic heart failure (CHF) patients of whom 26 assigned to the

New York Heart Association (NYHA) class II (CHF-II) and 30 to NYHA class III (CHF-III).

Electrocardiogram and lung volume were monitored for 8 minutes during spontaneous

breathing (SB) and controlled breathing (CB) at 15 breaths/minute. The ratio of inspiratory

(INSP) to expiratory (EXP) phases, namely the I/E ratio, and RSA were calculated. HPVA

was estimated as the percentage of negative HP variations, traditionally measured via the

Porta’s index (PI). Departures of PI from 50% indicated HPVA and its significance was

tested via surrogate data. We found that RSA increased during CB and I/E ratio was smaller

than 1 in all groups and experimental conditions. In H subjects the PI was about 50% during

SB and it increased significantly during CB. In both CHF-II and CHF-III groups the PI was

about 50% during SB and remained unmodified during CB. The PI was uncorrelated with

RSA and I/E ratio regardless of the experimental condition and group. Pooling together data

of different experimental conditions did not affect conclusions. Therefore, we conclude that

the HPVA cannot be explained by RSA and/or I/E ratio, thus representing a peculiar feature

of the cardiac control that can be aroused in middle-aged H individuals via CB.
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Introduction

Heart period (HP) varies on a beat-to-beat basis and this dynamic is denoted as HP variabil-

ity (HPV). HPV features an imbalance between negative (i.e. heart rate accelerations) and

positive (i.e. heart rate decelerations) variations in young healthy subjects and this phenome-

non is labelled as HPV asymmetry (HPVA). More specifically, HPVA leads to runs of HP

lengthening shorter than those of HP shortening [1, 2]. HPVA can be quantified from HPV

recordings via the Porta’s index (PI) computing the percentage of negative HP variations [3].

When PI is above 50%, the greater the PI, the more important the HPVA. The relevance of

HPVA lies in being a feature observed with an intact cardiac neural control and in being

absent in pathological conditions. In healthy subjects HPVA is enhanced during passive and

active orthostatic challenges [2–7] and during daytime [8]. It is linked to the autonomic ner-

vous system development in the fetus [5, 9], it is reduced with aging [7, 10, 11] and it is dis-

rupted by many pathological conditions [8, 10–13]. Since the presence of HPVA makes

statistical properties of HPV series different under time reversal [2–5, 8, 10, 11] and this fea-

ture is not observable in linear processes [14], HPVA is considered to be one of the determi-

nants of the nonlinear dynamics in short-term HPV. The link of HPVA with nonlinear HPV

dynamics makes HPVA assessment the typical target of those HPV studies checking for the

presence of nonlinear HPV dynamics as a hallmark of healthy cardiac control [10, 15, 16]. In

spite of the numerous studies carried out for its characterization, the physiological mecha-

nism responsible for HPVA remains unclear. Among the possible mechanisms, the periph-

eral hypothesis supports a strong involvement of the cardiac baroreflex, namely the reflex

that aims at adjusting HP in response to arterial pressure changes. Since the baroreflex exhib-

its an asymmetric behavior that leads to greater HP variations in response to arterial pressure

rises than falls, it has been suggested that this peculiar property might explain HPVA [7].

However, this peripheral hypothesis does not exclude the concurrent action of additional

influences. Respiration has the potential of producing HPVA: indeed, it is an asymmetric

input featuring an inspiratory (INSP) phase shorter than the expiratory (EXP) one with an

INSP to EXP (I/E) ratio near to 1:2 [17, 18]. In addition, respiration is accompanied by HP

fluctuations at the respiratory rate [19–22], known as respiratory sinus arrhythmia (RSA)

[23], grouping tachycardic runs in INSP and bradycardic ones in EXP. Accordingly, it was

found that HPVA increases with modifications of the I/E ratio from the more physiological

value of 1:2 to 2:1 [18]. While keeping a physiological I/E ratio, it has been suggested [7] that,

in presence of a negligible RSA (i.e. with limited HP variations at the respiratory rate), the PI

is about 50% or even lower given that the INSP duration is shorter than the EXP one. Con-

versely, if the magnitude of RSA is remarkable, a migration of PI toward 50% and above this

value is expected [7], thus imposing a significant and positive correlation between PI and

RSA.

The aim of this study was to check the relation between HPVA and RSA in populations fea-

turing a limited RSA and a physiological value of the I/E ratio smaller than 1, namely middle-

aged healthy (H) subjects and chronic heart failure (CHF) patients, and to test the effect of a

maneuver, namely controlled breathing (CB), empowering the RSA. The asymmetric behavior

of respiration was quantified via the ratio of the INSP to EXP duration, i.e. the I/E ratio [17],

the HPVA via the PI [2, 8] and the RSA as the power of HPV series at the respiratory rate [19–

22]. We hypothesized that, in presence of a physiological value of the I/E ratio smaller than 1,

HPVA could be significantly associated with RSA and this association could become more visi-

ble when RSA was increased via CB. Preliminary results were presented at the 11th meeting of

the European Study Group of the Cardiovascular Oscillations [24].
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Methods

Ethics statement

The study was in keeping with the Declaration of Helsinki. The study was approved by the eth-

ical review board of the IRCCS Istituti Clinici Scientifici Maugeri (approval number: 211;

approval date: 17/04/2002). Written signed informed consent was obtained from all subjects.

Population and experimental protocol

We studied two groups of CHF patients assigned to class II (CHF-II) and III (CHF-III) accord-

ing to classification criteria of the New York Heart Association and a group of age-matched H

subjects. CHF-II and CHF-III groups had similar age and reduced left ventricular ejection frac-

tion (LVEF). In detail, we considered: i) 42 H subjects (age: 60±5 yrs; 42 males); ii) 26 CHF-II

patients (age: 57±4 yrs; LVEF: 27%±6%; 23 males); iii) 30 CHF-III (age: 58±5 yrs; LVEF: 28%

±8%; 23 males). All the CHF-II and CHF-III patients were clinically stable, in sinus rhythm and

had no recent (<6 months) myocardial infarction or cardiac surgery. Table 1 summarizes the

demographic and clinical characteristics of CHF-II and CHF-III patients. A detailed clinical

interview and physical examination excluded the presence of any sign or symptom of cardiac

diseases in H subjects. None of them were taking any medication or had disturbances known to

affect the autonomic nervous system. The H subjects were also in sinus rhythm.

The experimental protocol was conducted at IRCCS Istituti Clinici Scientifici Maugeri,

Montescano, Italy and was the same for the three different groups of individuals. The subjects

were studied in the morning in supine position. After instrumentation, subjects carried out a

session of familiarization with the paced breathing protocol. During this phase they were

instructed to follow a recorded human voice indicating the onset of the INSP and EXP phases

at a rate of 0.25 Hz with a I/E ratio of about 0.7. After an initial trial of two minutes, they were

asked whether they felt comfortable with the CB pacing or would rather prefer to slightly

increase or decrease it. Accordingly, an adjustment was made within ±10% of the target value

Table 1. Demographic and clinical characteristics of CHF-II and CHF-III patients.

CHF-II (n = 26) CHF-III (n = 30)

Age [yrs] 57±4 58±5

Gender [males/females] 23/3 23/7

BMI [kg�m-2] 28±4 28±4

LVEF [%] 27±6 28±8

Coronary artery disease 11 (42) 20 (67)

Hypertensive cardiomyopathy 3 (12) 1 (3)

Valvular cardiomyopathy 1 (4) 0 (0)

Idiopathic cardiomyopathy 11 (42) 9 (30)

Hypertension 8 (31) 12 (40)

Diabetes 3 (11) 4 (30)

eGFR [ml�min-1] 76±17 68±19

Mild-to-moderate renal failure (eGFR<45 ml�min-1) 1 (4) 3 (10)

Moderate-to-severe renal failure (eGFR<30 ml�min-1) 0 (0) 1 (3)

NYHA: New York Heart Association; CHF: chronic heart failure; CHF-II: CHF in NYHA class II; CHF-III: CHF in

NYHA class III; BMI: body mass index; LVEF, left ventricular ejection fraction; eGFR, estimated glomerular

filtration rate. Continuous variables are presented as mean±standard deviation. Categorical variables as absolute

numbers (percentage).

https://doi.org/10.1371/journal.pone.0247145.t001
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(i.e. 0.25 Hz), while I/E ratio was preserved. After some minutes of stabilization, we acquired a

surface electrocardiogram (ECG) with a ECG bioamplifier (Cardiolab3, Marazza, Monza,

Italy) and lung volume (Respitrace, Florida, USA). The ECG device preserved frequencies

between 0.01 and 125 Hz. Lung volume signal was low-pass filtered at 1 Hz. Signals were mon-

itored for 8 minutes during spontaneous breathing (SB) and for 8 minutes during CB at 15

breaths/minute (i.e. 0.25 Hz). During CB subjects were guided according to the procedure uti-

lized during the familiarization process and the same personalized rate. ECG and lung volume

signals were sampled at 250 Hz. Due to the low quality of the respiratory signal in a fraction of

subjects the reliable detection of respiratory phase onsets was carried out in 26 H, 26 CHF-II

and 28 CHF-III subjects.

Extraction of the beat-to-beat HP and breath-to-breath respiratory phase

duration series

The HP was approximated as the temporal distance between two consecutive R-wave peaks on

the ECG [25]. The R-wave was identified by an algorithm based on a threshold on the first

derivative of the ECG. The R-wave apex location was fixed via parabolic interpolation.

Maxima and minima of the respiratory signal were detected by setting a confidence interval

about the mean value of the respiratory signal [26]. The amplitude of the confidence interval

was defined as a fraction of the difference between a maximum and a minimum chosen graph-

ically over the respiratory signal by the user. Peaks and valleys outside this confidence interval

were identified. Their time occurrences were taken as EXP and INSP onsets.

The detections of the R-wave peaks and INSP and EXP onsets were manually corrected in

case of erroneous identification. Missing detections were manually inserted. HP series of 256

consecutive values were selected randomly in each experimental session (i.e. SB and CB). The

HP mean was computed, labelled as μHP and expressed in ms. INSP and EXP onsets were

extracted during the same period and the INSP and EXP durations were computed. INSP and

EXP durations were expressed in s. The respiratory period was defined as the temporal dis-

tance between two EXP onsets. The ratio between INSP and EXP durations was calculated for

each respiratory cycle and labeled I/E ratio. The I/E ratio is dimensionless. In physiological

condition the I/E ratio is smaller than 1 [17, 18]. In this situation, the smaller the I/E ratio, the

greater the respiratory signal asymmetry.

Computation of variability series and all the analyses described in the next subsections were

carried out via signal processing and time series analysis programs developed in-house.

Computation of the RSA

The RSA was estimated via parametric spectral analysis. Briefly, HPV series were described as

a realization of an autoregressive (AR) process modeling the variation of the most recent HP

about μHP as a linear combination of p past HP changes weighted by constant coefficients plus

a sample drawn from a realization of a zero mean white noise, where p is the order of the AR

model [27, 28]. The coefficients of the AR model and the variance of the white noise were iden-

tified directly from the series by solving the least squares problem via Levinson-Durbin recur-

sion [27]. The number p of coefficients was chosen according to the Akaike’s figure of merit in

the range from 8 to 16 [29]. Power spectral density was computed from the AR coefficients

and from the variance of the white noise according to the maximum entropy spectral estima-

tion approach [27]. The power spectral density was factorized into a sum of terms, referred to

as spectral components, the sum of which provides the entire power spectral density [28].

Power spectral decomposition provided the central frequency of the components expressed in

normalized frequency units, namely cycles per beat. Central frequency ranged from 0 to 0.5

PLOS ONE Heart period variability asymmetry and chronic heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0247145 February 16, 2021 4 / 13

https://doi.org/10.1371/journal.pone.0247145


cycles/beat and was converted into Hz by dividing the value by the average sampling period T

= μHP expressed in s [28]. RSA was estimated as the sum of the powers of all the spectral com-

ponents whose central frequencies dropped in the high frequency band (from 0.15 to 0.5 Hz)

[19, 20]. RSA was expressed in ms2.

Evaluation of the HPVA

The HPVA was quantified via the percentage of negative HP variations with respect to the

total amount of HP changes via the PI [2, 3]. PI ranges from 0 to 100 and it is expressed in %.

A PI>50% indicates the presence of an asymmetric behavior of the HP series with tachycardic

runs longer than the bradycardic ones.

Generation of the surrogate data

We verified the presence of asymmetry in the original HP series via a surrogate data approach.

We created one artificial surrogate series for each subject in each experimental condition. The

surrogate series was generated via the iterative amplitude-adjusted Fourier transform-based

method [30, 31]. The surrogates perfectly preserved the distribution of values of the original

series and their power spectral density was the best approximation of the power spectral den-

sity of the original series according to the number of iterations of the procedure (here 100).

Conversely, any pattern of phases was destroyed by substituting the phases of the original

series with numbers taken from a uniform distribution from 0 to 2π. The PI was computed

over both the original and surrogate series. Since HPVA is not expected to be present in surro-

gates featuring only linear dynamics [14], when a significant difference between the PI com-

puted over the original and that calculated over the surrogate series was found, we assumed

that HPVA was present [2, 3, 5].

Statistical analysis

Two-way repeated measures analysis of variance (one-factor repetition, Holm-Sidak test for

multiple comparisons) was applied to assess the difference of μHP, RSA and I/E ratio between

experimental conditions (i.e. SB and CB) within the same group (i.e. H, CHF-II or CHF-III)

and among different groups within the same experimental condition. Assigned the group, the

same test (two-factor repetition) was exploited to check the difference of respiratory phase

duration between types of respiratory phase (i.e. INSP and EXP) within the same experimental

condition (i.e. SB or CB) and between experimental conditions within the same type of respi-

ratory phase. Assigned the group, the same test (two-factor repetition) was utilized to verify

the difference of PI between types of series (i.e. original and surrogate sequences) within the

same experimental condition (i.e. SB or CB) and between experimental conditions within the

same type of series. The associations between PI and I/E ratio and between PI and RSA were

checked in each experimental condition and group via Pearson correlation analysis. The same

association was also tested in each group by pooling the data together regardless of the experi-

mental condition (i.e. SB and CB). Pearson product moment correlation coefficient r and type

I error probability p were calculated. Data are presented as mean±standard deviation. Statisti-

cal analysis was carried out using the statistical program Sigmaplot (Sigmaplot, v.14.0, Systat

Software, Inc., Chicago, IL, USA). A p<0.05 was always considered as significant.

Results

The grouped error bar graphs of Fig 1 show μHP (Fig 1A) and RSA (Fig 1B) as a function of the

group (i.e. H, CHF-II and CHF-III). Data were collected during SB (solid black bars) and CB
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(open white bars). The μHP did not vary with group and experimental condition. Regardless of

the experimental condition, the RSA remained similar across groups. Conversely, CB

increased RSA compared to SB in all the groups.

The grouped error bar graphs of Fig 2 show the duration of the respiratory phases as a func-

tion of the experimental condition (i.e. SB and CB). Data are relevant to the INSP (solid black

bars) and EXP (open white bars). The graphs show the data collected in H (Fig 2A), CHF-II

(Fig 2B) and CHF-III (Fig 2C) groups. Regardless of the group and experimental condition,

EXP duration was longer than the INSP one. Both INSP and EXP durations increased during

CB compared to SB and this result held in all groups with the exception of the H group in

which the increase was observed solely in the EXP phase.

Fig 3 has the same structure as Fig 1 but it shows the I/E ratio. This respiratory marker

remained unvaried across groups and experimental conditions.

Fig 1. μHP and RSA in H, CHF-II, CHF-III groups during SB and CB. The grouped error bar graphs show μHP (a) and RSA (b) in H,

CHF-II and CHF-III groups. The markers are computed during SB (solid black bars) and CB (open white bars). Data are reported as mean

±standard deviation. The symbol § indicates p<0.05 between SB and CB within the same group.

https://doi.org/10.1371/journal.pone.0247145.g001

Fig 2. Respiratory phase durations in H, CHF-II, CHF-III groups during SB and CB. The grouped error bar graphs show INSP (solid black

bars) and EXP (open white bars) durations as a function of the experimental condition (i.e. SB and CB). Respiratory phase durations are

compared in H (a), CHF-II (b) and CHF-III (c) groups. Data are reported as mean±standard deviation. The symbol § indicates p<0.05 between

SB and CB within the same respiratory phase. The symbol � indicates p<0.05 between INSP and EXP durations within the same experimental

condition.

https://doi.org/10.1371/journal.pone.0247145.g002
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The grouped error bar graphs of Fig 4 show the PI computed over the original series (solid

black bars) and surrogate ones (open white bars) as a function of the experimental condition

(i.e. SB and CB). The grouped error bar graphs are relevant to the PI computed over H (Fig

4A), CHF-II (Fig 4B) and CHF-III (Fig 4C) groups. The PI calculated over the original data

was significantly different from that computed over surrogates only during CB in H individu-

als. The PI calculated over the original data increased during CB compared to SB solely in H

subjects, while CB did not affect PI in CHF patients. As expected the PI computed over the sur-

rogate series remained close to 50% and constant across the experimental conditions and this

result held regardless of the group.

Table 2 shows the results of the correlation analysis between PI and I/E ratio and between

PI and RSA in each group and experimental condition. Regardless of the group and experi-

mental condition, no significant correlation was found. Table 3 shows the results of the

Fig 3. I/E ratio in H, CHF-II, CHF-III groups during SB and CB. The grouped error bar graph shows I/E ratio in H,

CHF-II and CHF-III groups. The markers are computed during SB (solid black bars) and CB (open white bars). Data

are reported as mean±standard deviation.

https://doi.org/10.1371/journal.pone.0247145.g003

Fig 4. PI computed over original and surrogate HP series in H, CHF-II, CHF-III groups. The grouped error bar graphs show PI as a function

of the experimental condition (i.e. SB and CB) in H (a), CHF-II (b) and CHF-III (c) groups. The PI is computed over original (solid black bars)

and surrogate (open white bars) HP series. Data are reported as mean±standard deviation. The symbol § indicates p<0.05 between SB and CB

within the same type of series. The symbol # indicates p<0.05 between original and surrogate HP series within the same experimental condition.

https://doi.org/10.1371/journal.pone.0247145.g004
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correlation analysis between PI and RSA and between PI and I/E ratio in each group when

data were pooled together regardless of the experimental condition. Regardless of the group,

we confirmed that no significant correlation was found.

Discussion

The main findings of this study can be summarized as follows: i) the HPVA was not observable

in middle-aged H subjects during SB but it could be evoked via CB at 15 breaths/minute; ii)

the HPVA was present neither in CHF patients during SB nor could be evoked via CB; iii)

regardless of RSA levels, HPVA was not associated with the I/E ratio in both H and CHF

patients; iv) in the presence of physiological I/E ratios (i.e. I/E<1), HPVA was not associated

with RSA in both H and CHF patients.

Impact of CB on HPVA of middle-aged H subjects

It is well-known that aging reduces HPVA [7, 10, 11]. This study confirms the negative impact

of aging on HPVA [7, 10, 11]. Indeed, middle-aged H controls did not exhibit HPVA as sug-

gested by the similar values of PI found in the original and surrogate HP series during SB. The

loss of HPVA with age has been interpreted as a sign of the reduced complexity of the cardiac

control during senescence [7, 10] that is commonly detected using different approaches such

as conditional entropy or predictability [32–34]. This reduced complexity might be the result

of the impairment of the central autonomic network responsible for the generation of low and

high frequency rhythms at the level of the brainstem [35–37] and/or the consequence of the

loss of peculiar characteristics of reflex circuits, such as the different baroreflex responses to

positive and negative arterial pressure changes [7, 38]. Also the loss of sympathetic sinus node

responsiveness with age [34, 39] might be responsible for the missing HPVA in middle-aged H

subjects. Remarkably, CB at 15 breaths/minutes was still able to increase HPVA in middle-

aged H subjects, thus indicating that HPVA can be manipulated by regularizing breathing at a

well-tolerated rate. This result might indicate that respiration could stimulate via afferent

Table 2. Results of the correlation analysis of PI with I/E ratio and RSA in H, CHF-II and CHF-III groups during SB and CB.

marker H CHF-II CHF-III

SB CB SB CB SB CB

r p r p r p r p r p r p
I/E -0.049 8.1×10−1 -0.261 1.4×10−1 0.220 2.8×10−1 0.187 3.6×10−1 0.034 8.6×10−1 -0.257 1.8×10−1

RSA [ms2] -0.239 0.127 0.087 0.582 0.029 0.890 -0.029 0.886 -0.107 0.581 0.014 0.942

NYHA: New York Heart Association; H: healthy controls; CHF: chronic heart failure; CHF-II: CHF in NYHA class II; CHF-III: CHF in NYHA class III; SB:

spontaneous breathing; CB: controlled breathing at 15 breaths per minute; I/E: ratio of the inspiratory phase duration to the expiratory one; RSA: respiratory sinus

arrhythmia; r: Pearson product moment correlation coefficient; p: probability of type I error.

https://doi.org/10.1371/journal.pone.0247145.t002

Table 3. Results of the correlation analysis of PI with I/E ratio and RSA in H, CHF-II and CHF-III groups after pooling together data relevant to SB and CB.

marker H CHF-II CHF-III

r p R p r p
I/E -0.194 1.3×10−1 0.187 1.8×10−1 -0.156 2.4×10−1

RSA [ms2] -0.009 0.937 -0.015 0.914 -0.041 0.756

NYHA: New York Heart Association; H: healthy controls; CHF: chronic heart failure; CHF-II: CHF in NYHA class II; CHF-III: CHF in NYHA class III; I/E: ratio of the

inspiratory phase duration to the expiratory one; RSA: respiratory sinus arrhythmia; r: Pearson product moment correlation coefficient; p: probability of type I error.

https://doi.org/10.1371/journal.pone.0247145.t003
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pathways central respiratory pattern generators with the inherent possibility of driving asym-

metric neural outflows directed to the heart [40, 41] and/or reflex circuits with asymmetric

sensitivity, such as the baroreflex, through stronger periodic modifications of the venous

return and stroke volume [42, 43] linked to a more profound breathing at a slower rate [44].

Respiratory-driven actions might unveil the asymmetric activity of some components of the

cardiovascular neural control at central [35–37] and/or peripheral levels [7, 38].

Impact of CB on HPVA of CHF patients

This study confirms the negative impact of pathological conditions on HPVA [8, 10–13].

Indeed, in keeping with previous results [8], CHF subjects did not exhibit HPVA, as suggested

by the similar values of PI found in the original and surrogate HP series during SB. In addition,

unlike H controls, CB could not induce HPVA. Since CHF is known to alter cardiovascular

control [45–47], the lack of HPVA and the inability of CB to evoke HPVA might be taken as

an additional sign of the derangement occurring at central and/or peripheral levels and a hall-

mark of the reduced complexity of the cardiac control in CHF [10]. However, other phenom-

ena, such as the reduced sinus node responsiveness and saturation of cardiac receptors to

neural inputs, typically observed in CHF patients, might play a role as well [34, 39, 45].

HPVA was not associated with I/E ratio in both H and CHF patients

During SB we confirm that the EXP duration was longer than the INSP one in middle-aged H

subjects, thus indicating the asymmetry of the respiratory pattern [17, 18]. As a consequence,

regardless of the experimental condition, the I/E ratio was smaller than 1 in the H group [17,

18]. The asymmetry of the respiratory pattern was preserved in both CHF-II and CHF-III

groups. During CB we observed that both EXP and INSP phase increased proportionally in

response to the overall modification of respiratory period compared to SB. This conclusion

held regardless of the group, thus leading to a constancy of the I/E ratio across experimental

conditions and groups. Since tachycardic runs are more likely during INSP and the bradycar-

dic ones are more frequent during EXP [23], it can be hypothesized a positive association

between PI and I/E ratio. As a matter of fact, the transition from a physiological I/E ratio of 1:2

to an imposed and less physiological I/E ratio of 2:1 increased PI [17]. In the present study

with physiological I/E ratios (i.e. I/E<1) and in presence of limited RSA, as it occurred in these

middle-aged H subjects and CHF patients, we did not find any correlation between PI and I/E

ratio. This result was confirmed regardless of the group. Thus, we conclude that the variability

of I/E ratio about a physiological value cannot explain per se the HPVA phenomenon.

In the presence of physiological I/E ratios, HPVA was not associated with

RSA in both H and CHF patients

In the presence of physiological I/E ratios, i.e. I/E<1, and limited RSA, it was hypothesized

that PI is about 50% and even less [7]. Furthermore, it was conjectured that, even in absence of

an I/E ratio increase, the PI could migrate toward 50% and eventually overcome 50%, if RSA

increases [7]. The significant increase of RSA in all groups during CB allowed us to test this

hypothesis. Since no correlation was found between PI and RSA, the initial hypothesis was

rejected. Remarkably, this conclusion held after pooling together data relevant to SB and CB,

namely after a procedure that allowed us to span a larger RSA range due to the RSA increase

during CB compared to SB. For example, in CHF patients RSA increased during CB, while PI

remained unvaried. Therefore, the observed increase of PI in H individuals during CB should

not be considered the trivial consequence of an increased vagal control responsible for an aug-

mented RSA [48]. The uncorrelation between PI and RSA would be in agreement with the
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peripheral origin of the HPVA, namely the result of some asymmetric properties of reflex cir-

cuits [7, 38], rather than with the central one, namely the generation of an asymmetric periodi-

cal input from central pattern generators at brainstem level [35–37]. We conclude that PI and

RSA carry non-redundant information in physiological conditions featuring values of the I/E

ratio smaller than 1. Therefore, we recommend the exploitation of PI in any study based on

HPV analysis as an additional marker able to point out a peculiar aspect of the cardiac control

that is not fully addressed by other HPV markers.

Potential clinical impact of HPVA assessment

HPVA analysis may be of clinical importance given the association between HPVA markers

and cardiovascular aging [7, 10, 11]. Indeed, HPVA may provide further information about

healthy aging, thereby opening the possibility of testing the efficacy of treatment strategies

aimed at slowing the aging process. The complementarity of HPVA markers with respect to

more traditional indexes of cardiac control derived from HPV (e.g. RSA), demonstrated in the

present study, might provide further indications for the evaluation of the efficacy of counter-

measures. Moreover, HPVA analysis may also be of clinical relevance owing to the link

between HPVA markers and peculiar features of the baroreflex [7]. The indirect estimation of

features linked to the different responses of HP to arterial pressure rises or falls based on

HPVA markers might facilitate the detection of subjects at risk of impaired cardiac control

responses to usual stressors (e.g. orthostatic challenges) and/or to particular conditions (e.g.

post-exercise recovery).

Conclusions

In the present study we investigated the relation between HPVA, as inferred from the percent-

age of negative HP changes (i.e. the PI), and RSA in middle-aged H controls and in CHF

patients, both featuring physiological I/E ratios. We found that HPVA was uncorrelated with

the RSA even when pooling together data relevant to SB and CB. Therefore, we conclude that

RSA is not a determinant of HPVA in middle-aged H controls and CHF patients in presence

of physiological values of the I/E ratio. This finding suggests that HPVA markers contain non-

redundant information compared to more traditional HPV markers such as the RSA. Since

HPVA increased during CB only in H subjects, we conclude that regularizing breathing at a

well-tolerated rate (i.e. 15 breaths/minute) might stimulate efferent asymmetric autonomic

patterns directed to the heart and/or might induce asymmetric responses of reflex cardiac con-

trol circuits such as the baroreflex. We promote the use of CB to modify HPVA in middle-

aged H subjects and to stratify individuals according to the ability of CB to evoke HPVA. It

remains to be elucidated whether the exploitation of HPVA markers could allow the explora-

tion of peculiar aspects of the central autonomic network and/or peripheral reflex controls and

whether information provided by HPVA markers could be of clinical value.
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