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Abstract 

Ovarian failure is the most common cause of infertility and affects about 1% of young women. One 

innovative strategy to restore ovarian function may be represented by the development of a 

bioprosthetic ovary, obtained through the combination of tissue engineering and regenerative 

medicine. 

We here describe the two main steps required for bioengineering the ovary and for its ex vivo 

functional re-assembling. The first step aims at producing a 3D bio-scaffold, which mimics the natural 

ovarian milieu in vitro. This is obtained with a whole organ decellularization technique that allows 

the maintenance of microarchitecture and biological signals of the original tissue. The second step 

involves the use of magnetic activated cell sorting (MACS) to isolate purified female germline stem 

cells (FGSCs). These cells are able to differentiate in ovarian adult mature cells, when subjected to 

specific stimuli, and can be used them to repopulate ovarian decellularized bio-scaffolds. The 

combination of the two techniques represents a powerful tool for in vitro re-creation of a 

bioengineered ovary that may constitute a promising solution for hormone and fertility function 

restoring. In addition, the procedures here described allow for the creation of a suitable 3D platform 

with useful applications both in toxicological and transplantation studies. 
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1. Introduction  

Infertility is a growing issue in modern society. According to the World Health Organization, it 

represents the fifth highest serious global disability, with an alarming incidence of one out of 1000 

women, under the age of 30, rising to 1.0-1.5% in women younger than 40 years (1, 2). Ovary 

dysfunction and premature ovarian insufficiency (POI) represent the main causes of infertility and 

can occur as a result of an inherited condition, de novo mutation or from insults to the ovarian tissue, 

including viral infections and environmental factors (2–4). Furthermore, therapy-induced ovarian 

failure due to chemotherapy and radiation treatments, can cause oocyte and/or surrounding support 

cell apoptosis in cancer survivors (5–9). To date, several approaches have been developed and used 

in clinics to restore ovarian functions, including oocyte, embryo and ovarian tissue cryopreservation 

(10–18). However, since these procedures are largely devoted to cancer patients, the high risk of 

malignant cell re-introduction pose a severe limit to their use in clinical practices (19, 20). 

Development of a bioengineered ovary may provide a safe option in fertility restoration for all 

patients, including cancer survivors.  

We here describe the two main steps required for the ex vivo creation of a bioprosthetic ovary and its 

functional assembling. The first step is based on a decellularization technique that produces an 

extracellular matrix (ECM)-based 3D-scaffold. The second one allows the repopulation of the 

decellularized bio-scaffold in order to create a functional in vitro bioengineered ovary.  To date, many 

reports in the literature describe the regeneration in vitro of different organs using decellularized 

scaffolds (21–30). However, limited studies have been performed in the reproductive system, and, 

more specifically, in the ovarian tissue (31, 32). Indeed, the majority of decellularization protocols 

was specifically developed for ovarian tissue fragments and cortical slides (33–35), while the use of 

an entire ovary was limited to the bovine (32), the mouse (36, 37) and the porcine (38). The 

decellularization protocol here described leads to the creation of a whole-ovary 3D bio-scaffold 

preserves intact microarchitecture as well as ECM structures and components (38) (Figure 1). It 

combines the use of physical and chemical methods to remove cellular components and generate 3D 
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ovarian bio-scaffold that recreates in vitro the complex in vivo ovarian milieu, facilitating the 

necessary interactions between cells and their surroundings and ensuring a correct cell growth, 

differentiation and function (39).  

The obtained whole-ovary bio-scaffold can be repopulated with a single cell type or with different 

ovarian cell populations, including fibroblasts, stromal and granulosa cells, or follicles. Among the 

several cell types present in the ovary, female germline stem cells (FGSCs) can be a promising 

candidate. Indeed, when subjected to specific stimuli, these cells are able to differentiate in ovarian 

adult mature cells and generate fully functional oocytes (40, 41).  We here describe the isolation of 

FGSCs by using magnetic activated cell sorting (MACS). Obtained cells can be stably maintained in 

culture, undergo mitotic division and steadily express germline and pluripotency-related genes 

(Figure 2). Moreover, when used for the recellularization of decellularized ovary, FGSCs are able to 

rapidly migrate into the bio-scaffold, adhering and colonizing the ECM within 24 hours, and, during 

the subsequent days of culture, they increase in number and form cluster-like structures (Figure 3). 

Overall, the method here reported is simple, fast and highly efficient and paves the way for a possible 

in vitro ovarian tissue re-construction that may result advantageous for a general improvement of 

reproductive technologies and, possible future application to organ transplantation for hormone and 

fertility function restoring. 

 

2. Materials  

Prepare all solutions immediately before use (unless indicated otherwise). 

 

2.1 Ovary collection 

1. Porcine ovaries collected from a local slaughterhouse. 

2. 500 mL plastic bottle. 

3. Ice container. 

4. Surgical scissor. 
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5. Dulbecco’s phosphate-buffered saline (PBS): dissolve 8 gr of NaCl (137 mM), 200 mg of KCl 

(2.7 mM), 1.44 gr of Na2HPO4 (8 mM) and 240 mg of KH2PO4 (2 mM) in 800 mL of distilled 

water. Adjust pH to 7.4. Add distilled water until volume is 1 L. Sterilize solution with autoclave 

and store at +4°C. 

6. Antibiotic/Antimycotic Solution. 

 

2.2 Whole -ovary decellularization 

1. 50 mL centrifuge polypropylene tubes. 

2. Water bath. 

3. Orbital shaker. 

4. 500 mL plastic or glass bottle. 

5. Deionized water (DI-H2O). 

6. 0.5% sodium dodecyl sulfate (SDS): dissolve 2.5 gr of SDS in 500 mL of DI-H2O. 

7. 1% Triton X-100: add 5 mL in 495 mL of DI-H2O. 

8. 2% deoxycholate: dissolve 10 gr of deoxycholate in 500 mL of DI-H2O. 

 

2.3 FGSC isolation 

1. 4-well dish. 

2. 100 mm petri dish. 

3. Surgical scalpels. 

4. 15 mL centrifuge polystyrene tube. 

5. 50 mL centrifuge polypropylene tubes. 

6. Centrifuge. 

7. CO2 incubator. 

8. MACS cell separator. 

9. 30-μm nylon mesh cell strainer. 
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10. Cell counting chamber. 

11. Anti-SSEA-4 MicroBeads. 

12. LS Column. 

13. Inverted microscope. 

14. 0.5% porcine gelatin: dissolve 0.5 gr of porcine gelatin in 100 mL of distilled water. Sterilize 

solution with autoclave. 

15. Dulbecco’s phosphate-buffered saline (PBS): dissolve 8 gr of NaCl (137 mM), 200 mg of KCl 

(2.7 mM), 1.44 gr of Na2HPO4 (8 mM) and 240 mg of KH2PO4 (2 mM) in 800 mL of distilled 

water. Adjust pH to 7.4. Add distilled water until volume is 1 L. Sterilize solution with autoclave 

and store at +4°C. 

16. Hank’s Balanced Salt Solution (HBSS) with phenol red. 

17. 1 mg/ml collagenase (type IV): dissolve 5 mg of collagenase in 5 mL of HBSS with phenol red. 

Sterilize solution with 0.22 µm filter. 

18. Trypsin-EDTA solution: dissolve 0.5 gr of porcine trypsin and 0.2 gr of EDTA 4Na in 1 L of 

HBSS with phenol red. 

19. Fetal bovine serum (FBS). 

20. FGSC culture medium: Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 

(DMEM/F12), 40 ng/ml Human Stem Cell Factor (SCF) Recombinant Protein, 1% B27, 1 mM 

MEM Non-Essential Amino Acids, 0.1 mM b-mercaptoethanol, 10% Knock-out serum 

replacement (KO serum), 2 mM L-glutamine, 1% Antibiotic Antimycotic Solution (see Note 1). 

 

3. Methods  

All the procedures described below must be performed under sterile conditions. Instruments touching 

or in connection to the ovary have to be sterilized. Cell isolation must be carried out under laminar a 

flow hood and cell cultures have to be maintained at 37 °C during their handling using 

thermostatically controlled stages. 
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3.1 Ovary collection 

1. Collect ovaries from gilts weighing approximately 120 kg. 

2. Separate ovaries from fallopian tubes by cutting them with surgical scissor. 

3. Transfer ovaries in cold sterile PBS containing antibiotic/antimycotic solution (5mL/500 mL) and 

transport them to the laboratory using ice container. 

 

3.2 Whole-ovary decellularization 

1. Wash ovary in fresh PBS, completely remove the PBS, place ovary in 50 mL tube and store organ 

at -80°C for at least 24 hours (see Note 2, Figure 4). 

2. Thaw whole-ovary at 37°C in a water bath for 30 min. 

3. Transfer whole-ovary in a bottle containing 500 mL of 0.5% SDS. Place the bottle onto an orbital 

shaker at 200 rpm and incubate for 3 hours at room temperature. 

4. Remove SDS solution from the bottle containing the whole-ovary and add 500 mL of 1% Triton 

X-100. Incubate whole-ovary over-night at room temperature in 1% Triton X-100, using an orbital 

shaker at 200 rpm. 

5. Remove Triton X-10 solution from the bottle containing the whole-ovary and wash ovary with 

500 mL of DI-H2O twice. Add for a third time 500 mL of DI-H2O and extensively wash whole -

ovary for 9 hours at room temperature, using an orbital shaker at 200 rpm. 

6. Remove DI-H2O from the bottle and add 500 mL of 2% deoxycholate for 12 hours at room 

temperature, using an orbital shaker at 200 rpm. 

7. Remove deoxycholate and wash whole-ovary in DI-H2O for 6 hours at room temperature, using 

an orbital shaker at 200 rpm. Changes DI-H2O every 2 hours (see Note 3). 

 

3.3 FGSC isolation 
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1. Add 500 µL of sterile 0.5% porcine gelatin to 4-well dishes. Wait 2 hours to polymerize, 

maintaining them at room temperature. 

2. Wash ovary twice in 50 mL of fresh sterile PBS at room temperature. 

3. Place ovary into a 100 mm sterile petri dish and cut ovarian cortex into small pieces 

(approximately cubes of 1-2 mm2) using a surgical scalpel. 

4. Wash fragments 4 times in sterile PBS at room temperature. 

5. Enzymatically digest 20-30 fragments by 30 min incubation with 5 mL of 1 mg/ml collagenase 

(type IV) in 15 mL tube, with gentle shaking every 5 min. 

6. Centrifuge digested tissue at 300 g for 5 min. Remove supernatant, add 5 ml of HBSS and 

resuspend digested tissue. 

7. Centrifuge at 300 g for 5 min. Remove supernatant, add 5 ml of trypsin-EDTA solution and 

resuspend digested tissue. Incubate for 15 min at 37°C. 

8. Remove the 0.5% porcine gelatin excess for the 4-well dish and let the dish open under laminar 

flow hood to dry (see Sect. 3.3, step 1). 

9. Neutralize trypsin by adding 500 µl FBS. Disperse digested tissues into single cells by gentle 

pipetting and centrifuge at 300 g for 5 min. Remove supernatant and resuspend pellet in FGSC 

culture medium. 

10. Dissociate to single-cell suspension by pipetting up and down using a 10 mL serological pipette. 

1. Pass cell suspension through a 30-μm nylon mesh filter to remove cell clumps which may clog 

the column (see Note 4). 

11. Count cells using a counting chamber under an optical microscope at room temperature. Calculate 

the volume of medium needed to re-suspend cells in order to obtain 10⁷ cells in 80 μL (see Note 

5). 

12. Centrifuge cell suspension at 300 g for 5 min. Aspirate supernatant completely and resuspend cell 

pellet in 80 μL of pre-cooled FGSC culture medium per 10⁷ total cells (see Note 6). 
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13. Add 20 μL of Anti-SSEA-4 MicroBeads per 10⁷ total cells (see Note 7). Mix well and incubate 

for 15 min at +4° C (see Note 8).  

14. Wash cells by adding 2 mL of FGSC culture medium and centrifuge at 300×g for 5 min. Aspirate 

supernatant and resuspend in 500 μL of fresh pre-cooled FGSC culture medium. 

15. Place column in the magnetic field of a MACS Separator and prepare column by rinsing 3 mL of 

pre-cooled FGSC culture medium.  

16. Apply cell suspension onto the column and collect flow-through containing unlabeled cells (Note 

9). Wash column tree time with 3 mL of FGSC culture medium (see Note 10).  

17. Remove column from the separator and place it on a 50 mL collection tube. Pipette 5 mL of FGCS 

culture medium onto the column. Immediately flush out the magnetically labeled cells by firmly 

pushing the plunger into the column (see Note 11). 

18. Centrifuge cell suspension at 300 g for 5 minutes. Aspirate supernatant completely and resuspend 

cell pellet in of FGSC culture medium and plate cells in gelatin pre-coated 4-well dish (see Sect. 

3.3, steps 1 and 8) and culture the incubator under aseptic conditions with 5% CO2 at 37°C. 

  

4. Notes  

1. FGCS culture medium can be stored at +4° C a maximum of 10 days. 

2. Intact ovaries can be stored at -80°C for long time periods without causing matrix alteration. 

3. The obtained bio-scaffold can be either directly used for histological analysis or sterilized for cell 

repopulation. Its sterilization procedure can be performed using 70% Ethanol and 2% Antibiotic 

in sterile H2O for 30 min at room temperature. Before cell repopulation, wash bio-scaffold 

extensively with PBS and 4% Antibiotic at room temperature using an orbital shaker at 200 rpm. 

4. Moisten filter with culture medium before use. 

5. The formula to be used depends on the specific type of chamber. Cells/µL = Average number of 

cells per small grid x chamber multiplication factor x dilution. 
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6. Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies 

on the cell surface and non-specific cell labelling. 

7. The microbead volume here reported is necessary for up to 10⁷ cells. When working with fewer 

cells, use the same quantity. When working with higher cell numbers, scale up the volumes 

accordingly. 

8. The incubation temperature and period are fundamental for specific cell labeling. Higher 

temperatures and/or longer incubation times may lead to nonspecific cell labelling. 

9. FGCS are labelled cells. The unlabeled ones, collected in this step, can be discarded or cultured 

for negative control. 

10. Add medium only when the column reservoir is empty. 

11. To increase the purity of SSEA-4+ cells, the eluted fraction can be enriched with a new second 

column, repeating the magnetic separation procedure. 
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Figure legends  

Figure 1. (A) Whole-ovary decellularized bio-scaffold preserves an intact macrostructure, 

maintaining the original shape and tissue homogeneity. (B) Decellularized ovary displays three-

dimensional microarchitecture and ECM integrity with complex and well -organized fiber network. 

(C) Masson’s trichrome (left panel), Gomori's aldehyde-fuchsin (middle panel) and Alcian Blue (right 

panel) staining show the persistence of collagen fibers (dark blue), elastic fibers (magenta) and the 

retention of glycosaminoglycans (GAG, light blue) after decellularization process. 

 

Figure 2. (A) FGSCs isolated using MACS in vitro cultured. (B) FGSCs could be expanded in vitro 

with an estimated cell doubling time of 48-72 h. (C) FGSCs express pluripotency-related genes 

(OCT4, NANOG, REX1, and SOX2) and (D) germline specific markers (DDX4/VASA, FRAGILIS, 

BLIMP1, and DAZL). 

 

Figure 3. (A) Re-seeded FGSCs rapidly migrate into the bio-scaffolds, adhering and colonizing the 

ECM within 24 hours (left panel) and, during the subsequent days of culture, cell form of cluster-like 

structures (right panel). (B) H&E staining demonstrates the presence of cells into the bio-scaffolds 

after recellularization. (C) DAPI staining confirms the positivity for nuclei. 
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Figure 4. Schematic representation of decellularization protocol and chronological macroscopic 

images illustrating changes in ovary colour, turning from red to white, while maintaining original 

shape. 

 


