
Non-Invasive Identification of Atrial Fibrillation Driver Location Using
the 12-lead ECG: Pulmonary Vein Rotors vs. other Locations

G. Luongo1, L. Azzolin1, M.W. Rivolta2, R. Sassi2, J.P. Martı́nez3, P. Laguna3, O. Dössel1, and A. Loewe1

Abstract— Atrial fibrillation (AF) is an irregular heart
rhythm due to disorganized atrial electrical activity, often
sustained by rotational drivers called rotors. In the present
work, we sought to characterize and discriminate whether
simulated single stable rotors are located in the pulmonary
veins (PVs) or not, only by using non-invasive signals (i.e., the
12-lead ECG). Several features have been extracted from the
signals, such as Hjort descriptors, recurrence quantification
analysis (RQA), and principal component analysis. All the
extracted features have shown significant discriminatory
power, with particular emphasis to the RQA parameters. A
decision tree classifier achieved 98.48% accuracy, 83.33%
sensitivity, and 100% specificity on simulated data.

Clinical relevance— This study might guide ablation proce-
dures, suggesting doctors to proceed directly in some patients
with a pulmonary veins isolation, and avoiding the prior use
of an invasive atrial mapping system.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained
arrhythmia in clinical practice and a leading cause of hospi-
talization and death [1]. Rotors are localized functional reen-
trant circuits that sustain AF and exhibit curved wavefronts
and wavetails that meet each other at a singularity point [2].
Ablation is one common therapy to terminate AF. Never-
theless, it is still uncertain which ablation approach is the
most effective. Whether to ablate the “triggers” that initiate
AF or the “substrate” that supports it. Narayan et al. showed
how localization and ablation of rotors and focal sources
is important to terminate AF [3], due to these mechanisms
being drivers or organizing sources of fibrillation.
In clinical practice, pulmonary vein isolation (PVI) is one of
the most common ablation methods that is applied to try to
terminate AF. Since, triggers and sustaining mechanisms are
often located on the pulmonary veins (PVs) [4]. In this work,
we focused on identifying stable rotors that are located near
to the PVs as opposed to other sites in the atria by using 12-
lead electrocardiogram (ECG) in a simulation study. The use
of a non-invasive technique (i.e., 12-lead ECG) may directly
suggest to the doctor if PVI alone will be successful or if
additional procedures are likely required to terminate AF.
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In case of PVs rotor identification, the application of more
complex and prior invasive mapping procedures could be
avoided, proceeding directly with PVI.

II. METHODS

A. Simulations

The simulations were computed on a volumetric atrial
geometry built from clinical data modelled with 11 million
tetrahedral elements with fibre direction computed by a semi-
automatic rule based algorithm [5]. Cellular atrial electro-
physiology was represented by the Courtemanche-Ramirez-
Nattel model considering atrial fibrillation-induced remod-
elling in 9 regions with different conduction velocities [6] to
take into account heterogeneity and anisotropy in the atria.
The atrial geometry was considered with and without fibrotic
tissue. Transmural fibrotic tissue was modelled as 2 circular
patches with a radius of 14 mm in which 50% of the elements
were not conductive and the other 50% included ionic
changes to represent the effect of cytokines (TGF-β1) [7].
Single rotor (1R) episodes were induced using the phase
singularity distribution method [8], which consists of placing
phase singularities in the atria, estimating an activation time
map by solving the Eikonal equation, and using this as
initial state for a monodomain simulation [9]. The phase
singularities were placed in 300 uniformly distributed points
in the atria, and 3 s of activation were computed. Only the
cases with 1R episodes that kept going for the whole simu-
lation time were considered as stable rotor arrhythmias and
considered for further analysis. This led to unbalanced data
generation. From the transmembrane voltage (TMV) as the
result of the monodomain simulation, the body surface poten-
tial map (BSPM) was calculated in 8 different torso models
(19.898 triangles on average), generated from segmented
MRI data of healthy male and female subjects (Fig. 1A.1-2,
B.1-2), [10], [11]. The boundary element method was used to
solve the forward problem of electrocardiography [12]. From
the BSPM, the 12-lead ECG was extraced (Fig. 1A.3, B.3).
Every 12-lead ECG signal has a length of 3 s. The 12-lead
ECG signals are formed only by f-waves without the QRS
complex and T-wave, since the ventricles were not included
in the simulations. The final dataset was composed of 440
simulated 12-lead ECGs (40, 112, and 288 ECGs with 1R
located in the PVs, other left atrium areas, and right atrium
areas, respectively).

B. Feature Extraction

100 features (Table I) were extracted from the 12-lead
ECGs using biosignal processing methods:

© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.
G. Luongo et al., "Non-Invasive Identification of Atrial Fibrillation Driver Location Using the 12-lead ECG: Pulmonary Vein Rotors vs. other Locations," 2020 42nd  
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 410-413, doi: 10.1109/EMBC44109.2020.9176135.



Fig. 1. A.1: Example of simulated atrial rotor located in the PVs. B.1: Example of simulated atrial rotor located outside the PVs (right atrium in this
case). A.2-B.2: BSPMs on torso model generated from MRI. The torso potentials were obtained by solving the forward problem of electrocardiography
from the simulated TMVs on the atria. A.3-B.3: Example of three of the 12 ECG leads extracted from the BSPMs.

TABLE I
FEATURE LIST

1. H0 2. σ2
H0

3. H1 4. σ2
H1

5. H2 6. σ2
H2

7. DVCG

8. E DL
VCG 9. RR

VCG 10. LVCG 11. TVCG 12. E V L
VCG 13-14. DrlsRQAd 15-16. E DL

rlsRQAd
17-18. RR

rlsRQAd
19-20. LrlsRQAd 21-22. TrlsRQAd 23-24. E V L

rlsRQAd
25-28. RR

sRQAPCi
29-32. DsRQAPCi 33-36. LsRQAPCi

37-40. TsRQAPCi 41-44. E V L
sRQAPCi

45-48. E DL
sRQAPCi

49-60. λi 61-72. σλi 73. λ PC 74. σλPC

75-86. Ri 87-98. σRi 99. RPC 100. σRPC

1) Hjort descriptors: The Hjort descriptors are closely
related to the spectral moments. The first descriptor, H0,
called activity, is defined by the total signal power. The
second descriptor, H1, called mobility, reflects the dominant
frequency of the signal under analysis. The third descriptor,
H2, is used to define a measure related to half of the
bandwidth of the signal and is termed complexity [16]. These
descriptors were evaluated for each ECG lead. The mean
values and the variances of these parameters over all 12 leads
were calculated and used as features (feat. 1-6 in Table I).

2) Recurrence quantification analysis on vectocardio-
gram: The vectocardiogram (VCG) was calculated from the
12-lead ECG using the Dower’s inverse transformation, and
the 3-D VCG vector loops were used as state space plots
for a further recurrence quantification analysis (RQA) [13].
RQA allowed to analyse the topological structure of multi-
dimensional dynamical systems, giving access to a signal’s
intermittency, regularity, and predictability [14]. A detailed
explanation of the RQA and the respective extractable param-
eters can be found in the work of Marwan et al., [14]. The
extracted parameters were: determinism (DVCG), entropy of
the diagonal lines (E DL

VCG), recurrence rate (RR
VCG), laminarity

(LVCG), trapping time (TVCG), and entropy of the vertical
lines (E V L

VCG), (feat. 7-12 in Table I).
3) reduced lead spatial RQA: From the 12-lead ECGs,

the first four principal components (PCs) were extracted
(representing more than 99% of the total variability). The first
three PCs, and the first four PCs, were used as dimensions
(d) of a state space in which a reduced-lead spatial RQA
(rlsRQA3 and rlsRQA4) was applied, respectively [15]. The
extracted parameters were: determinism (DrlsRQAd ), entropy
of the diagonal lines (E DL

rlsRQAd
), recurrence rate (RR

rlsRQAd
),

laminarity (LrlsRQAd ), trapping time (TrlsRQAd ), and entropy
of the vertical lines (E V L

rlsRQAd
), (feat. 13-24 in Table I).

4) standard RQA: A standard RQA (sRQA) was also
applied on each of the first four PCs calculated from the
12-lead ECGs [15]. The extracted parameters were: deter-
minism (DsRQAPCi ), entropy of the diagonal lines (E DL

sRQAPCi
),

recurrence rate (RR
sRQAPCi

), laminarity (LsRQAPCi ), trapping
time (TsRQAPCi ), and entropy of the vertical lines (E V L

sRQAPCi
),

with i being the number of PC, (feat. 25-48 in Table I).
5) Ratio PCA eigenvalues: The 12-lead ECGs were di-

vided in 3 segments of the same length (i.e., 1 s considering
the total length of each ECG of 3 s). For each segment



j, the eigenvalues (λ i, j) corresponding to the spatial PCA
components over the 12 leads were extracted. From the λ i, j,
also the ratio was calculated:

Ri, j =
λ i, j

∑k 6=i λ k, j
, (1)

with k being the number of PC.
The features extracted were: the mean λ values and the
respective standard deviations for each PC over all segments
(λi and σλi ); from λi, the mean over the 12 PCs and the
respective standard deviation (λ PC and σλPC ); the mean
R values and the respective standard deviations for each
PC over all segments (Ri and σRi ); from Ri, the mean
over the 12 PCs and the respective standard deviation (RPC
and σRPC ), (feat. 49-100 in Table I). The idea behind the
Ri, j parameter and the extracted features was to increase
the differences between the eigenvalues to achieve a better
discrimination due to the variability shown by the PCs over
time and between them.

C. Feature Selection

Features were selected with a greedy forward selection
technique to implement a feature set. This algorithm started
with an empty feature set and added a new feature to it at
each iteration based on the increase of the feature set accu-
racy with a decision tree classifier. The algorithm stopped
when performance based on the validation set could not be
further increased. In order to handle possible correlations
among features, the candidate feature to be added to the set
was only added if the correlation coefficient with any of the
already included features was < 0.6. The correlation thresh-
old was optimized looking for the best compromise between
redundant information and physiological explanation.

D. Classification

In this preliminary study, a decision tree classifier was
implemented for binary classification (1R located in PVs
vs. noPVs) due to its simplicity. All extracted features were
singularly evaluated with a simple decision tree classifier and
a leave-one-out cross-validation procedure. Subsequently, a
multi-feature classification was performed with the feature
set selected in section II-C. The dataset was randomly
divided in training set, validation set, and test set with a
ratio of 70%, 15%, and 15%, respectively. Training set was
used for the tuning of classifier parameters, while validation
set was used for the greedy feature selection optimization.
The classes have been balanced appropriately weighting them
in the dataset. Sensitivity and specificity were calculated
considering the class PVs rotors as positive and the class
noPVs rotors as negative.

E. Statistical Analysis

The evaluation of goodness of each single feature in
characterizing the two classes was done with the Wilcoxon
rank-sum test. p-values <0.01 were considered statistically
significant.

TABLE II
5 SINGLE FEATURES WITH THE HIGHEST ACCURACY FOR

PVS VS. NOPVS CLASSIFICATION

Feature Accuracy (%) Sensitivity (%) Specificity (%)

LVCG 95.23 80.00 96.75
DrlsRQA3 94.55 80.00 96.00
RPC 93.86 75.00 95.75
E V L

rlsRQA4
93.41 75.00 95.25

E DL
VCG 93.18 75.00 95.00

Fig. 2. Boxplots for PVs vs. noPVs rotor location classification: A. RPC
feature, B. H2 feature, C. σλ11 feature. All features are statistically different
between the two classes with p < 0.01.

III. RESULTS

A. Characterization of PVs Rotors

The 5 features with the highest accuracy for individually
discriminating these phenomena are shown in Table II. All
these features showed significantly higher values for 1R
located in the PVs with p < 0.01.

B. PVs Rotors Classification

The feature set comprised 3 features: RPC, H2, and σλ11 .
As shown in Fig. 2, these 3 features were significantly higher
for 1R located in the PVs. The classifier reached a test
accuracy of 98.48%, with sensitivity of 83.33%, specificity
of 100%, and negative predicted value of 98.36%.

IV. DISCUSSION

The simulations implemented in this work provide ideal
and controlled scenarios where the ground truth for AF
perpetuation sustained by 1R is known in all the cases.
This allows the analysis of each simulation without the
influence of secondary, or unknown, mechanisms, e.g. other
simultaneous rotors.

A. Characterization of PVs Located Rotors

There are compelling results for RQA approaches regard-
ing characterization and discrimination of many arrhyth-
mias [13], [15]. 4 of the 5 single highest ranked features
in this work were obtained with RQA methods (Table II).
We observed that the irregular activity produced by 1R
located in the PVs is delimited in a small portion of tissue,
due to the presence of many anatomical obstacles (i.e., the
PVs). In fact, in our simulated cases, PVs prevent the rotor
from meandering in the remaining areas of the LA. There-
fore, the signal can propagate as a single wave front in the



remaining atrial areas. This explains why, the determinism
and laminarity of the ECG is significantly higher for PVs
1R cases. On the contrary, if the rotor is positioned in other
atrial areas, it has less anatomical constraints and is free to
meander throughout the tissue. This yields more irregular
ECGs, therefore less deterministic and laminar. Entropy of
the diagonal/vertical lines reflects the complexity of the
phenomena regarding the determinism/laminarity. Hence, the
same considerations made for determinism and laminarity are
valid for diagonal and vertical entropy as well.

B. PVs vs. noPVs 1R Classification

The high performance achieved for PVs vs. noPVs 1R
classification indicates the potential of using the features
extracted in this work to identify the location of 1R (PVs vs.
noPVs) using only the non-invasive 12-lead ECG signals.
The ECG produced by the PVs simulations is more regular
than the one in the noPVs simulations, and a large amount of
information can be contained in the PC1 in case of regular
signals. As result of it, the R parameters calculated from the
PC1 of PVs cases was considerably higher than the ones in
noPVs cases. On the contrary, in the following PCs, the R
parameters have a lower difference between the two classes,
even though they are still higher in the PVs cases. This strong
contribution from PC1 influences the RPC feature, which
becomes significantly higher in the PVs class than in the
noPVs class (Fig. 2A.).
Complexity parameters have lower values if the signals
under analysis are as sinusoidal as possible. In case of PVs
simulations, the PCs are more regular and stable than in
noPVs simulations (as confirmed by the RQA parameters).
However, in the PVs case, the signals are less sinusoidal than
those composing the signal in the noPVs case (Fig. 1A.3-
B.3). For this reason, H2 is significantly higher for the PVs
class than for the noPVs class (Fig. 2B.).
In case of regular signals, most of the variability is con-
tained in the first PCs. On the contrary, the last PCs no
longer contain much information, becoming irregular signals.
Therefore, σλ over each of these last PCs (i.e., σλ11 ) for the
PVs cases is significantly higher than in the noPVs cases (In
Fig. 2C.).
The specificity of 100% indicates that the classifier was
able to identify all the noPVs 1R in this work. Therefore,
the classifier correctly predicted all cases where pure PV
cryo-ablation would not be sufficient. Since, the 1R is not
located on the PVs, and so the PVI will likely not stop
the arrhythmia. For these cases, radio frequency ablation
catheters and a prior mapping system are needed, to proceed
with a more complex ablation procedure. Consequently,
doctors could plan the procedure and equipment accordingly
to the prediction made by the implemented classifier.
This work could be extended with a prior characterization of
different AF driver mechanisms and AF complexity analysis.
Several and more robust classification algorithms can be
tested.

V. CONCLUSIONS

The parameters extracted from the RQA (sRQA, rlsRQA
and RQA on the VCG) have shown to be the most perform-
ing in individually characterizing and discriminating whether
1R is located in the PVs or not, reaching 95% accuracy even
with a single feature classification.
A decision tree classifier was implemented with a feature
set of 3 features yielding an accuracy of 98.48%, specificity
of 100%, and a sensitivity of 83.33%. This classifier could
guide the doctors before the ablation procedures, suggesting
if PVI could potentially terminate the ongoing arrhythmia or
not, without the need of a prior invasive mapping procedure.
Due to the computational framework of this study, further
investigations on clinical data, exactly labelled by inspecting
the local activation maps, are necessary to effectively assess
the proposed approach.
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