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Abstract

We introduce a model system of stochastic entities, called rowers

which include some essentials of the behavior of real cilia. We introduce
and discuss the problem of symmetry breaking for these objects and
its connection with the onset of macroscopic, directed flow in the fluid.
We perform a mean field-like calculation showing that hydrodynamic
interaction may provide for the symmetry breaking mechanism and the
onset of fluid flow. Finally, we discuss the problem of the metachronal
wave in a stochastic context through an analytical calculation based
on a path integral representation of our model equation.
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1 Introduction and overview

We set up a model system of entities, called rowers, that may organize spon-
taneously breaking left-right symmetry of the motion and give rise to an or-
dered macroscopic flow and beating patterns. Rowers are active, stochastic
elements that ”live” in a fluid with low Reynolds number and are capable
to exert influence on each other by means of hydrodynamic coupling.

The motivation for this analysis comes from the motion of cilia, long
and thin extroflections of the eucaryotic cell membrane that are able to
generate motion [1] [2]. The cilia are used by the cell for self-propulsion
or to stir the surrounding fluid. A cilium has an internal structure (the
axoneme) containing an arrangement of microtubule doublets attached to a
basal body anchored to the cell membrane. A complex, symmetric net of
protein bridges and links among the doublets gives the whole structure elas-
tic properties. Biochemical reactions at the level of such proteins represent
the energy source for the ciliary motion, a cyclic beating composed of two
phases: the effective stroke – which is active in propulsion or in fluid trans-
port – and the recovery stroke, which is passive. A ciliated cell generally
has a field of hundreds of cilia which beat in a coordinated manner, setting
up wave-like time dependent patterns. This phenomenon is referred to as
metachronism.

In the framework of a purely mechanical description, the physics of cil-
iary motion involves the balance of hydrodynamic and elasticity; the forced
nature of the system is modeled through the elastic constitutive equations,
which contain the engine supplying energy in a deterministic way.

In this paper we adopt a stochastic approach to ciliary motion and its
associated macroscopic fluid flux. We analyze some physical assumptions
which are required as necessary conditions for the existence of a macro-
scopic net flow in the surrounding fluid and for the onset of coordination,
or metachronism.
Our spirit is to approach the system from the point of view of Statistical
Mechanics, looking at macroscopic effects and keeping as few as possible
the number of relevant variables. As our model is designed to be studied
as much as possible with analytical tools, we do not model in detail the in-
ternal features of the single object- the rower - which inherits from the real
cilium the only peculiarity of undergoing a two-phase motion. We consider
hydrodynamic interaction and energy supply, which is switched on and off
at times controlled by a stochastic process, and possibly correlated to the
configuration of the object.

We think that some of the questions pointed out in this study, may be
of general interest –independently of the problem of ciliary motion – for the
Statistical Mechanics in far from equilibrium systems.

Looking at the literature about cilia and flagella in a viscous fluid one
realizes that such studies are mainly mechanics–oriented, the stochastic as-
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pects of the phenomena being, in general, disregarded.
Early works on these subjects date since 1955 with the early model by

Gray and Hancock (one cilium in a fluid) [3] and with the study by Machin
(1963 - locally contractile flagellum) [4]. Later, mathematical models for
simulating the motion of cilium (and flagellum) have been developed,

we refer to the works by Brokaw et.al. [5] [6] [7] [8] [9], (curvature
controlled models) and by Murase et.al. [10] [11] [12] [13] [12] (excitable
dynein models and directional mechano-sensitivity of cilium as a possible
mechanism for the onset of metachronal waves via hydrodynamic interaction
[12]) .

The description of metachronism, was addressed to model multicilia dy-
namical configurations in a suitable way to generate Stokes flow in the sur-
rounding fluid (Liron, Blake et al. [14] [15] [16]); the problem of fluid trans-
port was investigated for different geometries of fluid confinement [17] [18]
[19] [20] [21]. In 1984 Liron in his work [22], based on the discrete cilia ap-
proach [20], described fluid transport by cilia, assuming metachronal coordi-
nation between ciliary moves (propagating wave) and periodicity conditions.
More recently, Gueron et al. proposed a model which accounts for multi-
cilia hydrodynamical interactions [23] [26] [24] [25] and energetics [27]. The
dependence of the metachronal wave on observable ciliary parameters [28] –
and the effect of varying fluid viscosity [29] have been studied by Priel et al.
They also proposed a model involving hydrodynamically coupled oscillators
[30] [31] [32].

In building up the model, we represent the system in terms of two-phase
hydrodynamically coupled oscillators. The nonequilibrium drive (active mo-
tion) is realized as stochastic transitions between two internal states, acting
together with gaussian thermal fluctuations.

In this paper we are interested in focusing two crucial problems. The
first is symmetry breaking.

If the internal (mechanical) engine which generates motion is removed
the cilium is free of moving in a cone with cylindrical symmetry, O(2) in 3D
with fixed basis. However, cilia and flagella are observed to perform planar
motion. In the case of sea-urchin sperm cell flagella the plane of motion can
be imposed by external perturbations [33].

The internal couple of microtubules in the axoneme – may give an ex-
planation to the breaking of the O(2) symmetry.

The problem whether, once moving in a plane, there is any preference
for right or left-directed effective stroke is, to our knowledge, open. It is
invaluable by purely anatomic reasons of the individual, that is, there is no
structural symmetry breaking. Flagella, for example, are observed to beat
symmetrically.

In paramecia this left right symmetry is broken in connection with an in-
trinsically oriented structure of the whole cell cortex (the so-called kineties),
which is absent in ciliated epithelial cells [34].
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Therefore real cilia need a symmetry-breaking mechanism to push the
fluid in a directed way. This could be due to regulatory processes that estab-
lish a cortical anisotropy followed by the cilia. With our simplified model we
show that hydrodynamic interactions in collective motions of rowers could be
enough to realize this symmetry breaking. This situation is interesting from
the point of view of statistical mechanics, because a local, a priori isotropic
release of energy is transformed in a self organized way in a macroscopically
relevant collective state with a well-defined directionality (see also [35]).

The second problem is the physical source of metachronism. With our
model we show that metachronism is not a wave phenomenon of the tra-
ditional kind, but, instead, a phenomenon of statistical nature. In fact, it
can not be sustained by oscillations around the ground state of the sys-
tem in thermodynamical equilibrium, but it is more understandable as a
time-dependent pattern created by the counteracting active beating and
dissipative processes.

In section 2. we present the general features of the model. The elemen-
tary component is a rather abstract object (the rower). It includes a few
observed features of real cilia, mainly the distinction between effective stroke
and recovery stroke. Our rowers are one dimensional but not intrinsically
oriented, that is, they have left-right symmetry. The observed two-phase
beating is represented as the motion of a particle in two different poten-
tials – active and passive – alternatively switched on and off by a two-state
stochastic process. These potentials are analogues of states of a filament in
which the collective action of the dyneins determines two different minimum
energy curvatures.

In section 3. we show how to compute averaged quantities for the single
rower, of which the most interesting is the current that it generates as a
function of the external velocity of the fluid.
We then use this result, together with known techniques of fluid mechan-
ics, to compute the self-consistent velocity field in a low Reynolds number
Stokes fluid with an array of rowers as velocity sources. This can be taken
as a demonstration that cooperative effects arising from the hydrodynamic
interaction may make our stochastic rowers spontaneously break symmetry
and set up a macroscopic flux. This result is obtained in a mean-field like
picture, and is independent of a more-refined investigation on the collective
motion of rowers.

In the last section, we discuss the premises for the onset of metachronal
waves, defined as spatio-temporal anisotropic ground states of the system.
Pointed out the role of hydrodynamic interactions in models that include
thermal noise, we proceed employing a path integral representation of our
model equations to obtain information on the most probable history (path
in the configurational space) and first excitations.
We analyze in more detail the case in which any feedback mechanism of
position and internal state is avoided. The cyclic nature of ciliary motion
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(i.e. the fact that its intrinsic time scale is larger than relaxation times) is
taken explicitly into account. We prove that the onset of metachronal waves
is compatible with such a system, but it is frustrated by the presence of
random solutions with the same statistical weight.

This means that, if there is no exchange of signals between cilia, (nether
chemical nor mechanical) the onset of metachronism due to hydrodynamic
interaction is not relevant. However, a nearest neighbor coupling between
the internal state of the rowers is enough to stabilize this wave-like solution.

We also argue that if the transition probabilities between states are cou-
pled with the configuration of the rower – the coupling may be realized
for example as a stochastic version of the “geometric switch” introduced
by Gueron et al. [36] – the problem of metachronism becomes formally
analogous to the problem of modulated phases in membranes with defects
[37].

2 The Rower

A rower is the elementary tile of our model, and is designed to contain some
of the essentials of the cilium.
Our starting point is the observation that a single cilium beat pattern can
be divided into two phases [2]. During the effective stroke it moves almost
as a straight rod, transversally to the fluid, while during the recovery stroke

it glides back softly, in a tangential motion. Thus the effective stroke is
associated with high viscous load and actually propels the fluid, whereas the
recovery stroke brings back the cilium to its equilibrium position minimizing
the viscous resistance.

A rower is characterized by two degrees of freedom, a continuous one
corresponding to its position (the cilium center of mass, for example), and
a discrete one corresponding to its internal state. The rower is alternatively
subject to two different potentials and viscous loads, with different hydrody-
namical characterization. In state 1 (recovery stroke) the viscous coefficient
is low and the particle “sees” a concave potential V1, while in state 2 (ef-
fective stroke) the viscous coefficient is high and the potential V2 looks like
a mexican hat. The transitions between the two states are stochastic. The
switching between two potentials makes our rower an active element, and is
the analogue of the active component of the force in the mechanical mod-
els of the cilium. The two different viscous loads mimic the behavior of a
slender body moving transversely or tangentially in the fluid.

We consider a one-dimensional rower, that is, the rower breaks rotational
but not left-right symmetry. This is different from most models of ciliary
activity found in the literature, which treat cilia as structurally asymmetric
objects. In both states one has to take into account the external drive due
to the velocity of the fluid. At one-body level, the velocity of the external
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fluid enters as a linear bias the active and passive potentials; with such a
bias the left-right symmetry will be broken.

Making the additional hypothesis that we are in the overdamped regime
(low Reynolds number) [38], we can use the following Langevin equation
to describe the dynamics of each rower (see [39] for a similar equation in a
different context)

ẋ = v −
1

γσ

∂Vσ(x)

∂x
+ ξσ (1)

where σ(t) may take values in {−1, 1} and is the stochastic process describing
the switching between phases.
The simplest choice for this noise is a random telegraph process, with Poisson
distributed jumps. Alternatively, one could allow the transitions between
the two states to depend on the configuration of the rower. For example one
could require the transition probability to increase at the two ends of the
rowing oscillations , with a mechanism which is the analogue for our rower
of the “geometric switch” introduced in[36].
We will stick for simplicity of exposition to the first case throughout this
section and the next, as the results do not change in substance from the point
of view of a “mean field”-like description. In section 4 we will distinguish
between the two mechanisms.

In eq. (1) ξσ is a gaussian white noise with zero average and correlation

〈ξσ(t)ξσ(t
′)〉 =

2T

γσ
δ(t − t′)

In the same equation v is the component of the surrounding fluid velocity
along the direction of our one-dimensional rower.
In the dynamics described by equation 1 we have eliminated two “fast”
modes with characteristic times τ+,σ = m

γσ
, where m is the mass of the

particle. Thus, we are left with the “slow” modes with relaxation times
τ−,σ ≃ γσ

κσ
, where κσ is the curvature of potential Vσ at its minimum(s). In

order for the model to represent effectively the movement of a rower, the
average time between two stochastic transitions must be greater than the
characteristic times τ−,σ. This implies in the first place that the system has
to be far from criticality (see [40]).

Of course our rowers overlook many details of the mechanism of contrac-
tion of real cilia. In the first place they are not filaments but ”points”. On
the other hand we do not want to focus on the detailed modeling of real cilia
but instead on the organization through hydrodynamic coupling, and they
are designed to this aim. In fact, the statistical mechanics of an internally
driven filament is quite a difficult subject (one object has infinitely many
degrees of freedom), while our rowers turn out to be much milder.
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3 Symmetry breaking and onset of macroscopic

flux

3.1 Single rower

It is convenient to pass from equation 1 to the Fokker-Planck description,
that deals with the distribution functions Pσ(x, t) for the probability to find
the rower with position x at time t in state σ. These distributions obey the
equations











∂tP1(x, t) = −∂xJ1(x, t)− ω1P1(x, t) + ω2P2(x, t)

∂tP2(x, t) = −∂xJ2(x, t) + ω1P1(x, t)− ω2P2(x, t)
(2)

with probability currents

Jσ = vPσ −
1

γσ

∂Vσ

∂x
Pσ −

T

γσ

∂Pσ

∂x

where ωσ is the probability of transition from the state labeled by σ to the
other (these quantities would depend on x if one chooses a configuration-
dependent case). Typical values for these quantities are around 60 s−1.
The motion of the rower looks like an oscillation between the bottoms of the
two potentials, and each phase of the cycle has a mean duration of τi = ω−1

i .
Equations 1 and 2 resemble formally those of a two-state thermal ratchet

model (e.g. [39]). Actually, in our model the physical situation is quite
different. In fact, if we consider the stationary Fokker-Planck equation for
the sum of probability currents Jtot = J1 + J2, because of the absence of
periodic boundary condition, ∂xJtot = 0 implies that Jtot is zero. That is, a
global flow of probability is not possible: the rower can’t just run away.
One should not worry about the fact that the overall net current is zero,
because the two strokes of the rower produce much different perturbations
in the surrounding fluid, thanks to the differences in viscosity. The problem
becomes then if the two probability currents Ji(x), which have opposite sign,
are nonzero.

Let us compute the mean stationary value of the velocity during the
effective stroke. We can write the average active current as

I ≡ I2 = −I1 (3)

with

Ii =

∫

Ji(x)dx

With a little manipulation of equation 2 it is easy to obtain a third order
differential equation for P1 (or P2) that, once solved, allows to compute
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Figure 1: Model potentials with incorporated external fluid velocity. For
the passive phase V1(x) = a

2x
2 − vx ; for the active phase V2(x) =

b
4x

2(x2 − x20) − vx. Here rescaled parameters are plotted a = 1.2; b =
0.8;x0 = 3.7; v = 1.5; γ1 = 1.0; γ2 = 1.5. Piece-wise linear potentials are also
drawn. Realistic parameters are: x0 ∼ 5µm; v ∼ 10−5 to 10−4µm/s ; γ2 ≃
1.5γ1, γ1 ∼ 10−3N s/m; a ∼ 10−6N/m.

explicitly the above averages. We have been able to solve analytically this
equation by transfer matrix method in the case of piece-wise linear potentials
(figure 1). For more general cases, typically that of a quadric V1 and a
quartic V2 (figure 1), we have resorted to solve numerically equation 2 and
look at its long-time behavior.

From simulations and calculations it’s clear that, when v = 0, I1 = I2 =
0 and there is no biased pumping. For v 6= 0 instead the average currents
are finite and sustain fluid flow. In figure 2 we show the computed average
active current I(v) as a function of the surrounding fluid velocity; and it is
nonzero for v 6= 0 – negative values for I(v) are just an artifact, because by
increasing v the minimum of V1 passes the right minimum of V2.

We now give a heuristic argument that, for low temperature and driv-
ing velocity, justifies this behavior. In these conditions, the process is well
approximated by a sequence of jumps between the minimums of the two
potentials. These jumps are unbiased as long as there is no driving velocity,
since the left-right symmetry is not broken. The presence of the linear term
induces a bias in the jump probability , so that from the minimum xm(v)
of V1 (figure 1) the rower has a probability of 1/2 + π(v) to fall into x+ and
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Figure 2: Active current I(v) as a function of the surrounding fluid velocity
from calculation with the potentials of fig.1 (points with dotted line for
piece-wise linear potential).

1/2 − π(v) to fall into x−. Thus we can estimate the average current as
2π(v)

p
, where p is the period of the rowing cycle.

If we make the further assumption that in the recovery phase the probability
distribution for the position of the rower relaxes to a gaussian centered in
xm(v), with width T

a
, it is easy to see that

1

2
+ π(v) =

√

T

a
erf(xm(v)− xM (v))

which, substituting, gives the same qualitative behavior for the average cur-
rent as that shown in figure 2.

Thus, for nonzero external velocity field v, I(v) 6= 0, and the rower breaks
left-right symmetry. In this situation, the average excess Stokes force exerted
by the rower on the surrounding fluid, is

FS = (γ2 − γ1)I(v)

and there is biased pumping of the fluid as long as the two viscosities are
different. In the above expression, the information on the transition times
is contained in I. The dependence of the force on the fluid velocity is
reminiscent of the mechano-sensitivity found by Murase in [12].
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3.2 Array of rowers

In the case of a planar array of N interacting rowers beating in the same
direction and arranged on a lattice (which can also be random), we have N
equations that look like equation 1, but the surrounding fluid velocity term
v has to be substituted by the contribution of all the other rowers through
hydrodynamic interactions. That is, we have a sum of all the other particles
velocities to which we apply the mobility matrix, which we take as H̄II = 1,
H̄IJ = H(rIJ), where H(r) = 1

8πηr (1+ r̂r̂) is the Oseen tensor, which has a
dependence on the inverse distance (see [41] p.68). Then we write (I and J
label lattice sites and d̂ is the unit vector directed along the rower’s motion):

vI =
∑

J 6=I

H̄IJ [(−
∂V (σJ , xJ)

∂xJ
+ ξσJ ,J) d̂]

and the analogous of eq. 1 is:

ẋI = vI · d̂−
1

γσI ,I

[
∂V (σI , xI)

∂xI
+ ξσI ,I ] (4)

The problem is hard to tackle analytically as is, because it is a self-
consistency problem in which the instantaneous configuration of the rowers
affects the Stokes field, which in turn enters the equation of a single rower
as the (local) velocity of the surrounding fluid. Nevertheless, a mean field
calculation is fairly easy. That is, we examine if a macroscopically steady
constant flow can be sustained by the beating rowers.
We can write (see [41]) the average velocity field in one point R of the
surrounding fluid as

v(R) =
∑

J

H̄(R− rJ)γ(σJ )(IσJ ,J − v)

Which, averaged and projected along the direction of beating, taking into ac-
count the average force exerted by the single rower, gives the self-consistency
relation for the constant fluid velocity

vfluid =
H int(γ2 − γ1)

1 +H int(γ2 + γ1)
I(vfluid)

The quantity H int is a number that derives from the sum over the (finite)
lattice sites of the Oseen propagators, and I is the average active current,
as defined in equation (3). If H int is big the equation becomes vfluid =
γ2−γ1
γ2+γ1

I(vfluid), whereas in the limit of small H int we get vfluid = H int(γ2 −

γ1)I(vfluid). The value of H int depends of course on the arrangement of
the rowers on the lattice, and can be easily calculated. When the number of
rowers is not finite problems may arise because of the 1

r
dependence of the
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Oseen tensor, but this situation is not realistic for systems of cilia. Following
Landau [42], one could extend the sum over the penetration length of the
hydrodynamic interaction, so that the constant will be a function of the
surface density of rowers.
Then, the velocity field can be either zero, or take the (positive or negative)
selfconsistent value vSC 6= 0 (fig. 3).
This means that the system of rowers is able to set up a macroscopic (and
macroscopically steady) flow in the fluid. As this flow is selfconsistently
maintained by the array of rowers, we can see this process as a spontaneous,
dynamic symmetry breaking.

v
v_SC

I(v)

vα

Figure 3: Sketch of the selfconsistent velocity calculation. α = 1+Hint(γ2+γ1)
Hint(γ2−γ1)

The question whether this symmetry breaking process could be relevant
for real cilia is beyond the descriptive capabilities of the model. Nevertheless,
we have established that ideal, minimal, cilia-like object as the rowers that
are not intrinsically oriented, may achieve a directionality collectively.

4 Metachronal coordination

The mean field approach of the above paragraph prevents by construction
the analysis of wave-like patterns in the beating of the rowers. It tells us
that the fluid is pumped by the rowers but not if they pump it coordinately.
In this section we want to analyze the possible active role of hydrodynamic
interaction not only in breaking left-right symmetry but also in creating
patterns. Given that this interaction (alone) is able to generate directed fluid
flux, we are now looking for the premises for spatial coordination. To escape
from the mean field description we turn to a path integral representation of
equation 4.
The entity of interest is the effective action for the configuration variables.
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It is from the minima and from the curvature of this action that we expect
to get evidence about the existence of waves (patterns).

In our description we are considering the “ground” state of the system to
undergo continuous changes driven by the dynamics of the discrete field σ.
Thus, in our model the metachronal wave cannot have the nature of a small
oscillation around an equilibrium state but rather it is a far-from-equilibrium
oscillatory pattern. This implies that standard techniques relying on conser-
vation laws or symmetry breaking (see for example [44]) cannot be employed
to find waves in the form of propagating modes. In this view, the assump-
tion that the time scales of thermalization are fast compared to σ is very
important in order to see any kind of oscillation.

In what follows we outline the calculation.
The reduced partition function to the configurational variables is

Z(JI(t)) = 〈exp[
∑

I

∫

dtJI(t)xI(t)]〉ξ,σ

The two averaging steps involved are integration on thermal noise ξ and on
the noise σ. Integration on thermal noise is straightforward (see [43]).
The second integration is a much more delicate step. First, σ is not only
an additive noise, but it has a multiplicative role too, second σ has to be
described on greater time scales than the thermalization times.

It is convenient to rewrite the mobility matrix as

LIJ = HIJ + ησIδIJ

– where the dependence on σ has been isolated and HIJ has the same off-
diagonal terms as the Oseen tensor – and to approximate the inversion of L
up to first order in η. We choose for simplicity to have the potentials Vσ,I =
1
2a(xI − σI)

2, so that the symmetry breaking is assumed and the two wells
are quadratic with the same stiffness a. This choice allows us to analyze the
existence problem of the metachronal wave using straightforward algebra.
(Keeping into account more general potentials involves non-linearities which,
however, do not affect space-time derivatives and consequently do not change
our analysis about the metachronal wave.)
Integration on thermal noise is carried on with

〈ξI(t)〉 = 0 ; 〈ξI(t)ξJ(t
′)〉 = L−1

IJ δ(t− t′)

and gives an effective dynamical action depending on the fields x and σ:

S =

∫

dt(Lx + Lx,σ + Lσ)

where Lx depends only on the configurations, Lσ involves the field σ,
and Lx,σ is an interaction term.
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We find

Lx =
∑

I,J

xI [H
−1(−∂2

t + a2H2)]IJxJ + 2a2η
∑

I

xI

Lσ = a2
∑

I,J

σIHIJσJ + ηa2
∑

I

σI

Lx,σ = 2a
∑

I

σI(ẋI + a
∑

J

HIJxJ) + η
∑

I

σI [a
2x2I −

∑

PQ

H−1
IP ẋPH

−1
PQẋQ]

Let us now consider the integration in σ.
We proceed with M.S. technique and consider the functional measure for
the integration in σ. The fact that such a noise has a cyclic nature cannot
be ignored, so we write the measure in the form:

dΣ(σ) = [dσ] exp{−
1

2

∑

I,J

∫

dt σI(t) Σ(∂t)IJσJ(t)} (5)

We can observe that, in view of this expression and the above ones, the
complete effective kernel for σ is

a2H +Σ (6)

This quadratic form determines, through its lowest eigenvalue, the most
probable configuration around which one can study the fluctuations. As-
suming space-time translational invariance, the spectrum will depend on a
wave-vector k and a frequency ω.

The question whether the hydrodynamic interaction can give rise to
metachronism is then equivalent in this formalism to asking whether adding
H to Σ can change the minimum eigenvalue of the quadratic form for the
field σ, determining a ground state configuration corresponding to well de-
fined wave-vector k∗ and frequency ω∗, both different from zero, that will
generate the metachronal wave.

As we do not have a microscopic theory for the internal engines of the
rowers, we have some freedom to choose the probability measure in formula
5 Σ. The case we would like to investigate first is the one in which σI(t) are
spatially independent random variables. We will find that even in this case
there are wave like solutions, but they are canceled out by the noise when
averaging.

We take a Σ which is diagonal in space and has kernel which is not

monotonically increasing in time. This last requirement is crucial. In fact,
with a noise with a monotonically increasing kernel the system should be
purely dissipative. It is easy to prove that the equation for the classical (most
probable) field admits the null-path as unique solution, with fluctuations
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exponentially decreasing both in space and time. In the large time limit the
probability distribution becomes

Pstat,hydr ∼ e−
1

2

∑

J
x2

J

so that HIJ does not intervene in any way in the stationary probability
measure, but it may just modify the thermalization times. This means that
if one models the energy release with a stochastic “white-like” process, the
hydrodynamic interaction cannot have influence on the stationary configu-
ration of the system, and cannot set up any spatial coordination.

Thus, we assume that Σ is not monotonically increasing and analyze this
case.

Notice that what follows is independent of the specific choice of the
operator Σ, for example one can write - as in the Brazovskii model [45] –
Σ = (C2 ∂4

t +D2 ∂2
t + B2). With this kernel the most favored modulation

in time is ω∗ = | D√
2C

| and it can be identified with the transition frequency.

The fact that this modulation may correspond to a zero–mode is not a
problem with a bounded field.
We proceed summing over σ. Since in our case the zero–mode can not
be resolved by exploiting symmetry, we must assume that the field xI(t) is
limited in width. The results that we can easily obtain with this assumption
are equivalent to the results of a different, more heavy but mathematically
more careful analysis.

Thus, we look for the classical solution with field xI(t) - the most prob-
able path and first excitation - of the form x = x0 + ηx1 + · · ·.

It is easy to verify that x0 e x1 are solutions of the equations (from
hereafter we will take a = 1):

∑

J

[(−∂2
t +H2)

Σ

H(H +Σ)
]IJ x0J = 0 (7)

and

∑

K

[(−∂2
t+H2)Σ]IKx1K =

∑

J

HIJ−
1

2

∑

J

(−∂t+H)IJ [(x
0)2+(H−1ẋ0)2]J−· · ·

(8)
Considering x0 first, the positivity of (−∂2

t + H2) and the existence of
H−1 imply (eq. 7) that x0 is a solution if Σ x0 = 0. This means that the
properties of the internal state field σ are transferred to x trough functional
integration, so that the classical path is random in space. Moreover, it
describes a null velocity for the fluid environment (from the simmetry of
H).

Consider now the first correction in η. As one can see by eq. 8, x1 has a
space-time source. Nevertheless, like for x0, there is no explicit dependence
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on spatial variables. It is relevant that, instead, x1 gives a non zero fluid
velocity, that is: the rowers are idoneous to pump fluid, but again without
coordination.

We shall now consider the fluctuations and limit our study to the quadratic
part of the effective action. Our task is to analyze the paths which corre-
spond to non-zero eigenvalues λ of the operator in eq. 7 (which gives the
solution x0).

The paths are xI(t) = ei (ωt+kI) with dispersion relation

λ = (ω2 +H(k)2)
Σ(ω)

H(k)[H(k) + Σ(ω)]
(9)

For each λ this relation gives a “band” of solutions with the same statistical
weight. Together with the true waves – the metachronal waves – there is
a solution of the same kind of x0, namely with spatial randomness. These
solutions are obtained, for each λ, by considering the limit k → 0 and
recalling that H is essentially the inverse of the laplacian – in fact, for
k → 0 the operator that we are considering reduces to Σ(ω).

This further level of analysis which includes fluctuations confirms the
mean field result on the presence of an effective macroscopic pumping of
the fluid by the rowers, as an effect which is first order in η. However, the
hydrodynamic interaction is frustrated in sustaining the metachronal waves
because for every metachronal mode there is a path, with the same proba-
bility, and the same random nature of the classical solution. Furthermore
the metachronal waves are always depressed with respect to the classical
solution.
In conclusion, without exchange of chemical information between rowers,
the sole hydrodynamic interaction does not generate coordination. This is
mainly due to the fact that, going back to equation 6, if Σ is diagonal in
space, adding the term H ∼ 1/k2 does not determine a modification in the
minimum eigenvalue of the spectrum giving rise to a well-defined mode.

The situation is different if the functional measure for the field σ contains
a spatial interaction, which can be short ranged, between the internal states
σI . For example, one could consider a nearest neighbor interaction with
coupling constant α, giving rise to a Laplacian on the lattice. This does
not affect the minimum around the homogeneous configuration in absence
of hydrodynamic interaction.

However, in presence of H, the spectrum becomes

H +Σ ∼
1

k2
+ αk2 +Σ(ω)

and there is a minimum for the particular value |k∗|4 = 1
α

of the wave
vector, together with the usual value ω∗ for the frequency. Integrating on σ
and looking for the eigenvalues of the effective quadratic form for x one is
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forced to keep this minimum energy “spatio-temporal mode” into account
and obtains wave-like solutions with frequency ω∗ and wave-vector k∗.

This solution can be called metachronal wave according to our definition.
It is sustained by hydrodynamic interaction, but it needs a preexisting short
ranged interaction between the internal states of the rowers to be formed.
This preexisting interaction is unable by itself to set up a mode.

The physical interpretation for this short ranged coupling could be that
one cilium can feel the depletion in ATP concentration due to the activity
of nearby cilia of the same cell.
In order to obtain metachronism one can also consider an alternative scenario
in which the σ is dynamically related to the configuration. This scenario
includes as a special case the stochastic analogous of the “geometric switch”
mechanism found in [36] and [27], in which the transitions between the active
and passive phases of the cilium are determined by its reaching some limit
configurations.

If we include a dependence on the configuration in the dynamical equa-
tion for the field σ, so that the quantities ωi in eq. 2 become necessarily
functions of the space coordinate of the rower. The results of sections 2 and
3 do not change. On the contrary, the functional integral study undergoes a
dramatic change. Time modulation of σ noise need not be required ab initio.
In this case there are two interacting fields, xI(t) and σI(t), the functional
integral is well defined and a correct perturbative analysis can be carried
on. The scenario is formally equivalent to the one for modulated phases in
membranes with defects [37]. Dealing with quadratic potentials, for exam-
ple, it is possible to integrate out the continuous configurational degrees of
freedom – as in [46] – obtaining an effective model for the field σ.

5 Conclusions

We introduced a model system, the rower, which contains some essentials of
the cilium and, being economic in degrees of freedom, enables to deal with
stochastic features of this system.

We computed the probability current of one rower interacting with a
surrounding fluid in a steady state, and we used the result to deal with the
problem of left-right symmetry breaking of this entity.

The same expression of the current was then used in a self-consistent
mean field-like calculation for a planar array of rowers coupled hydrodynam-
ically. The result was that rowers can cooperate to set up a macroscopic
flow in the fluid.

Finally, we presented the problem of metachronal coordination in terms
of correlation between rowers, and discussed a path-integral calculation that
enables to point out some features that are sufficient for the model to exhibit
this behavior.
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This kind of calculation can be a useful tool in general for systems driven
far from equilibrium by a stochastic process that switches the Hamiltonian
locally.

The indications that come from the last two calculations are that

• 1) For our rowers the metachronal wave is not necessary to set up
a macroscopic flow in the surrounding fluid. This is supported by a
mean field like analysis and confirmed when we include fluctuation.

• 2) Without any direct interaction between rowers the hydrodynamic
interaction generates metachronal waves which are frustrated by the
presence of random fluctuations of the same statistical weight, together
with the random dominant solution.

• 3) A short ranged coupling of internal states (that could have for ex-
ample chemical origin), unable by itself to set up a mode, can stabilize
the wave and make the pattern formation statistically relevant.

• 4) Alternatively, provided that the only interaction between rowers is
hydrodynamic, a sufficient condition for the onset of a metachronal
wave is the presence of a coupling between position and transition
frequency of the single rower.

These results are qualitative theoretical predictions. They have a definite
interest from the point of view of the model, but they need to be examined
in greater detail to fully understand their implications for the real system.
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