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Abstract

Network formation games (Myerson, 1991) typically present a multiplicity of Nash equilibria. Some of them are such that
mutually beneficial links are not formed, thus inducing networks that are not pairwise stable. We offer an equilibrium
refinement for this class of games which naturally involves pairwise stability while guaranteeing admissibility.
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1. Introduction

Network formation games are designed to understand
how individuals’ strategic incentives influence the struc-
ture of the network connecting them. In the simultane-
ous link-announcement game by Myerson (1991), players5

choose the set of links they wish to form and a link between
two players is formed only if announced by both of them.
This double-consent requirement generates a multiplicity
of Nash equilibria. In some of them, couples of players do
not announce a link even if it would make them better off10

since each player is indifferent to the own unilateral de-
viation. The concept of pairwise stability introduced by
Jackson and Wolinsky (1996) captures such a coordination
aspect by requiring that every mutually beneficial link be
formed. Pairwise stable networks are not necessarily equi-15

librium outcomes of network formation games and, when
they are, they may be induced by unplausible Nash equi-
libria. We offer an equilibrium refinement for this class
of games that satisfies a desirable condition for strategic
stability and easily involves the coordination requirement20

of pairwise stability.
Some studies have been developed in order to pro-

vide a non-cooperative foundation of pairwise stability via
solution concepts of network formation games. Calvó-
Armengol and İlkılıç (2009) consider the concept of proper25

equilibrium (Myerson, 1978), and furnish sufficient condi-
tions on players’ payoff functions for a proper equilibrium
to imply pairwise stability and for a pairwise stable net-
work to be induced by a proper equilibrium. İlkılıç and
İkizler (2019) introduce the concept of trial perfect equilib-30

rium, which requires less stringent conditions in the sec-
ond direction. But this comes at the expense of admissi-
bility, that is, the principle prescribing players not to play
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dominated strategies (Luce and Raiffa, 1957). Considering
such a principle a basic desideratum for solution concepts35

of non-cooperative games, we propose a refinement which
guarantees it like properness, and involves less-demanding
requirements to capture pairwise stability than both the
previous concepts.

We consider a refinement of Selten (1975)’s trembling-40

hand perfection that puts further restrictions on the con-
verging sequence of strategies, requiring strategy perturba-
tions to be independent across link announcements. This
seems reasonable since we focus on pure strategy equilib-
ria and interpret perturbations as mistakes that players45

do when announcing the links they wish to form. Roughly
speaking, we limit the probability of making mistakes on
a set of announcements to be of smaller order than the
probability of making mistakes on any of its subsets.1 We
show that such a refinement, that we call b-perfect equilib-50

rium, induces a pairwise stable network whenever players
are not indifferent to the addition of a direct link. As
we will see throughout the discussion, the intuitiveness of
b-perfection translates also in a computational advantage
relative to other concepts.55

Section 2 presents the model, Section 3 discusses pair-
wise stability, Section 4 examines b-perfection, Section 5
concludes.

2. The model

Let N = (1, . . . , n) be the set of players. A network g60

is a collection of links connecting them. We let ij denote
the link between player i and player j and we consider
undirected networks, that is, for every link ij we have ji =
ij. We let gN be the complete network in which each player
is linked with every other player. We call the network65

1 For an application of an analogous solution concept to a different
class of games, see De Sinopoli and Meroni (2018).
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where no link is formed the empty network. The power set
of gN , G = {g ⊆ gN}, is the set of all possible networks.
The network payoff function v : G → Rn specifies for every
network the payoff each player obtains.

A network formation game (Myerson, 1991) is a nor-70

mal form game G = (N,S, u). Each player i ∈ N chooses
the links she wants to form. A pure strategy of player
i can be described as an n − 1-dimensional vector si =
(s1i , . . . , s

i−1
i , si+1

i , . . . , sni ) with entries sji ∈ {0, 1} for ev-

ery j ∈ N\{i}, where sji = 1 if player i announces the75

link with player j while sji = 0 if she does not. The set of
player i’s pure strategies is Si, and the set of pure strategy
profiles is S =

∏
i∈N Si. The profile s ∈ S induces the net-

work g(s) where a link between two players exists whenever
both of them announce it. The payoff function u : S → Rn

80

maps each strategy profile to the payoff that each player
gets given the induced network, i.e. u(s) = v ◦ g(s).

Throughout the paper we will focus on Nash equilibria
in pure strategies. A network g is a Nash equilibrium net-
work if there exists a Nash equilibrium s of the network85

formation game that induces it, i.e. g = g(s).

3. Pairwise stability

We begin by recalling the concept of pairwise stability
and then discuss the drawbacks of pairwise stable networks
in terms of strategic stability of the strategy profiles they90

are supported by.

Definition 1. A network g is pairwise stable with respect
to the network payoff function v if, for every i, j ∈ N ,

(i) if ij ∈ g then vk(g) ≥ vk(g\{ij}) for k = i, j;

(ii) if ij /∈ g then vi(g ∪ {ij}) > vi(g) implies vj(g ∪95

{ij}) < vj(g).

Clearly, a Nash equilibrium network satisfies condition
(i) in the above definition but does not necessarily satisfy
condition (ii). On the other hand, a pairwise stable net-
work is not necessarily supported by a Nash equilibrium,100

as a player could be better off by cutting several of her
links. It is standard to require that the strategy profile
inducing a pairwise stable network be a Nash equilibrium,
and if such a requirement is satisfied the network is called
a pairwise-Nash equilibrium network.105

From a strategic stability viewpoint, the Nash equilib-
rium concept is unsatisfactory as it does not guarantee ad-
missibility. Likewise, pairwise-Nash equilibrium networks
may be induced by dominated Nash equilibria. Consider
for instance three players, each of whom is indifferent be-110

tween having no link or having a link with one of the oth-
ers, but strictly prefers being linked with both of them.
Announcing both links is a weakly dominant strategy for
everyone.2 However, the empty network is pairwise stable

2 Strictly dominated strategies do not appear in network forma-
tion games in which link formation requires mutual consent, and
henceforth we will refer to weak dominance simply as dominance.

and is induced by multiple Nash equilibria, which are all115

dominated since at least two players are choosing a domi-
nated strategy.3

It is well-known that admissibility is captured by the
concept of trembling-hand perfection and, obviously, is as-
sured by every of its refinements. Calvó-Armengol and120

İlkılıç (2009) apply the concept of proper equilibrium to
network formation games and provide a sufficient condi-
tion for it to induce pairwise stable networks. In the next
section we present a different refinement of perfect equi-
librium, which involves pairwise stability under a milder125

condition.

4. B-perfection

First, we introduce some additional definitions. Let a
b-strategy bi of player i be an n−1-dimensional vector with
entries bji ∈ [0, 1] for every j ∈ N\{i}, where bji represents130

the probability that player i announces the link with player
j. The set of b-strategies of player i is Bi. A b-strategy
profile b is an element of B =

∏
i∈N Bi. Let b(s) be the b-

strategy profile corresponding to the pure strategy profile
s.4135

A perfect equilibrium is the limit point of a sequence
of completely-mixed strategy profiles that is best reply to
every element of the sequence. We now define a refine-
ment of perfect equilibrium, which requires the profiles in
the converging sequence to be completely-mixed b-strategy140

profiles (i.e., such that bji > 0 for every i and j).

Definition 2. The pure strategy profile s is a b-perfect
equilibrium of the network formation game if there exists a
sequence of completely-mixed b-strategy profiles converging
to b(s) such that s is best reply to every element of the145

sequence.

A network g is a b-perfect equilibrium network if there
exists a b-perfect equilibrium of the network formation
game that induces it. The following example shows that
not every pairwise-Nash equilibrium network is b-perfect,150

and viceversa.

Example 1. Consider a three-player network formation
game, where payoffs of player 1 (at the top), player 2 (at
the lower left), and player 3 (at the lower right) are as
follows.155

1 1

1 0

11

0

0 0 11

1

3 See also Example 1.
4 The term b-strategy reminisces behavioral strategy. Note that

the set of mixed strategies of player i is Σi = ∆(Si) and the set of
mixed strategy profiles is Σ =

∏
i∈N Σi. Both mixed and b-strategy

profiles induce probability distributions over G .
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It is easy to see that the empty network is pairwise stable160

and is induced by several Nash equilibria (e.g., the profile
in which no player announces any link). But none of them
is b-perfect, since player 2 and player 3 have dominant
strategies, s2 = (0, 1) and s3 = (1, 1).

On the other hand, the network in which only link 12165

is missing is b-perfect, being induced by the b-perfect equi-
librium s = ((1, 1), (0, 1), (1, 1)).5 However, it is not pair-
wise stable because the addition of link 12 makes player 1
strictly better off but leaves player 2 indifferent, violating
condition (ii) in Definition 1.170

In this example, the reason why the b-perfect equilib-
rium network is not pairwise stable is that player 2 is indif-
ferent between having the link with player 1 or not, given
the other links in the network. We define a condition on
players’ payoff functions, that we call local link responsive-175

ness, which precisely requires that players be not indiffer-
ent if a single link of theirs is added to the network.

Definition 3. The network payoff function v is locally link
responsive on g if vi(g ∪ {ij}) 6= vi(g) for all i, j ∈ N and
ij /∈ g.180

We can show that, under local link responsiveness, b-
perfection readily implies pairwise stability.

Proposition 1. Let g be a b-perfect equilibrium network.
If v is locally link responsive on g, then g is pairwise stable.

Proof. Let s be a b-perfect equilibrium and g = g(s). Since185

every b-perfect equilibrium is a Nash equilibrium, we need
to show that g satisfies condition (ii) in Definition 1. Con-
sider a link ij /∈ g such that vi(g ∪ {ij}) > vi(g). For the
link not to be formed in equilibrium, it must be sij = 0.

Since s is a b-perfect equilibrium, we have sji = 1. In190

fact, in any completely-mixed b-strategy profile close to
b(s), the probability that sij = 1 and all the other link
announcements are as prescribed by s is of higher or-
der than the probability that sij = 1 and also other an-
nouncements change. By local link responsiveness, we195

have vj(g ∪ {ij}) 6= vj(g). If vj(g ∪ {ij}) > vj(g) then
player j’s best reply against s would prescribe sij = 1, so
it must be vj(g ∪ {ij}) < vj(g), as required by pairwise
stability.

5 Note that in any completely-mixed b-strategy profile close to
b(s), the probability that s12 = 1 and all the other announcements
are as prescribed by s is infinitely larger than the probability that
s12 = 1 and also other announcements change, so player 1’s unique
best reply is s1 = (1, 1).

Calvó-Armengol and İlkılıç (2009) show that proper200

equilibria induce pairwise stable networks under strong
link responsiveness, a condition requiring players not to
be indifferent to any change in their set of direct links.
They offer an example where that condition is not sat-
isfied and a proper equilibrium network fails to be pair-205

wise stable. We can consider that same example to see
how b-perfection outperforms properness in capturing pair-
wise stability (we refer to the example “Violation of strong
link responsiveness” in Calvó-Armengol and İlkılıç, 2009,
p.74).6 In fact, b-perfection rules out the unfortunate net-210

work g0 that is induced by the proper equilibrium s∗. In
any completely-mixed b-strategy profile close to b(s∗), in-
deed, the probability that player 4 announces the link with
player 3 and the other announcements are as prescribed by
s∗ is of higher order than the probability that s34 = 1 and215

also other announcements change. Thus, it is a best reply
for player 3 to announce also the link with player 4. Since
an analogous and symmetric reasoning holds for player 4,
g0 is not induced by any b-perfect equilibrium.

We note that also the concept of trial perfect equilib-220

rium of İlkılıç and İkizler (2019) supports the bad network
g0, as any proper equilibrium is trial perfect.7 Moreover,
its definition allows the strategy profiles in the converging
sequence to not be completely-mixed, thus not guarantee-
ing undominance.8225

The computational advantage of b-perfection emerges
also when analyzing whether a pairwise-Nash equilibrium
network satisfies it. In particular, given such a network
and under local link responsiveness, it is enough to con-
sider the strategy profile in which every player announces230

her existing links and those whose addition makes her bet-
ter off. If such a profile is a Nash equilibrium supporting
the network under consideration, then this is b-perfect.

5. Conclusions

We have introduced an equilibrium refinement for net-235

work formation games which is motivated by the actual
procedure of announcing links. It outperforms other re-
finements proposed by the literature in inducing pairwise
stability, while satisfying the basic requirement of admis-
sibility. The question naturally arises as to how such a240

6 We make explicit that when players 3 and 4 have no direct links
their payoffs must be lower than or equal to zero for g0 (the network
in which only links 13 and 24 are formed) to be a Nash equilibrium
network. We assume that in that case they get −1, which ensures
that g0 is a proper equilibrium network, being induced by the same
proper equilibrium s∗ = ((0, 1, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0)).

7 That concept requires the converging sequence of strategy pro-
files to assign strictly positive probability to all best replies, and
orders perturbations so that more costly mistakes are made with
lower order probability.

8 Consider, for instance, the example “Violation of β-strong su-
permodularity” in Calvó-Armengol and İlkılıç (2009, p.77). The
pairwise-Nash equilibrium network g′′, which is induced only by
dominated equilibria, is trial perfect, as the condition of strong link
responsiveness required by İlkılıç and İkizler (2019) is satisfied.
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solution concept relates to a context-independent theory
of strategic stability in network formation games.
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