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Abstract

We study the cluster recovery problem in the semi-supervised active clustering
framework. Given a finite set of input points, and an oracle revealing whether any
two points lie in the same cluster, our goal is to recover all clusters exactly using
as few queries as possible. To this end, we relax the spherical k-means cluster
assumption of Ashtiani et al. to allow for arbitrary ellipsoidal clusters with mar-
gin. This removes the assumption that the clustering is center-based (i.e., defined
through an optimization problem), and includes all those cases where spherical
clusters are individually transformed by any combination of rotations, axis scalings,
and point deletions. We show that, even in this much more general setting, it is
still possible to recover the latent clustering exactly using a number of queries
that scales only logarithmically with the number of input points. More precisely,
we design an algorithm that, given n points to be partitioned into k clusters, uses
O(k3 ln k lnn) oracle queries and Õ(kn+ k3) time to recover the clustering with
zero misclassification error. The O(·) notation hides an exponential dependence
on the dimensionality of the clusters, which we show to be necessary thus char-
acterizing the query complexity of the problem. Our algorithm is simple, easy to
implement, and can also learn the clusters using low-stretch separators, a class of
ellipsoids with additional theoretical guarantees. Experiments on large synthetic
datasets confirm that we can reconstruct clusterings exactly and efficiently.

1 Introduction

Clustering is a central problem of unsupervised learning with a wide range of applications in machine
learning and data science. The goal of clustering is to partition a set of points in different groups,
so that similar points are assigned to the same group and dissimilar points are assigned to different
groups. A basic formulation is the k-clustering problem, in which the input points must be partitioned
into k disjoint subsets. A typical example is center-based k-clustering, where the points lie in a metric
space and one is interested in recovering k clusters that minimize the distance between the points and
the cluster centers. Different variants of this problem, captured by the classic k-center, k-median, and
k-means problems, have been extensively studied for several decades [1, 15, 26].

In this work we investigate the problem of recovering a latent clustering in the popular semi-supervised
active clustering model of Ashtiani et al. [4]. In this model, we are given a set X of n input points in

∗Most of this work was done while the author was at the Sapienza University of Rome.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Rd and access to an oracle. The oracle answers same-cluster queries (SCQs) with respect to a fixed but
unknown k-clustering and tells whether any two given points in X belong to the same cluster or not.
The goal is to design efficient algorithms that recover the latent clustering while asking as few oracle
queries as possible. Because SCQ queries are natural in crowd-sourcing systems, this model has been
extensively studied both in theory [2, 3, 13, 19, 28, 29, 30, 33, 39] and in practice [12, 16, 37, 38]
— see also [11] for other types of queries. In their work [4], Ashtiani et al. showed that by using
O(lnn) same-cluster queries one can recover the optimal k-means clustering of X in polynomial
time, whereas doing so without the queries would be computationally hard. Unfortunately, [4] relies
crucially on a strong separation assumption, called γ-margin condition: for every cluster C there must
exist a sphere SC , centered in the centroid µC of C, such that C lies entirely inside SC and every
point not in C is at distance (1 + γ)rC from µC , where rC is the radius of SC . Thus, although [4]
achieves cluster recovery with O(lnn) queries, it does so only for a very narrow class of clusterings.

Figure 1: A toy instance on 105 points that
we solve exactly with 105 queries, while the
SCQ-k-means algorithm of [4] is no better
than random labeling.

In this work we significantly enlarge the class of clus-
terings that can be efficiently recovered. We do so by
relaxing the γ-margin condition of [4] in two ways
(see Section 2 for a formal definition). First, we as-
sume that every clusterC has γ-margin in some latent
space, obtained by linearly transforming all points
according to some unknown positive semi-definite
matrix WC . This is equivalent to assume that C is
bounded by an ellipsoid (possibly degenerate) rather
than by a sphere (which corresponds to WC = I).
This is useful because in many real-world applica-
tions the features are on different scales, and so each
cluster tends to be distorted along specific directions
causing ellipsoids to fit the data better than spheres
[10, 22, 27, 31, 35]. Second, we allow the center of
the ellipsoid to lie anywhere in space — in the cen-
troid of C or anywhere else, even outside the convex
hull of C. This includes as special cases clusterings
in the latent space which are solutions to k-medians,
k-centers, or one of their variants. It is not hard to
see that this setting captures much more general and
challenging scenarios. For example, the latent clus-
tering can be an optimal solution of k-centers where
some points have been adversarially deleted and the
features adversarially rescaled before the input points
are handed to us. In fact, the latent clustering need
not be the solution to an optimization problem, and
in particular need not be center-based: it can be liter-
ally any clustering, as long as it respects the margin
condition just described.

Our main result is that, even in this significantly more
general setting, it is still possible to recover the latent
clustering exactly, in polynomial time, and using only
O(lnn) same-cluster queries. The price to pay for this generality is an exponential dependence of the
number of queries on the dimension d of the input space; this dependence is however unavoidable,
as we show via rigorous lower bounds. Our algorithm is radically different from the one in [4],
which we call SCQ-k-means here. The reason is that SCQ-k-means uses same-cluster queries to
estimate the clusters’ centroids and find their spherical boundaries via binary search. Under our
more general setting, however, the clusters are not separated by spheres centered in their centroids,
and thus SCQ-k-means fails, as shown in Figure 1 (see Section 8 for more experiments). Instead of
binary search, we develop a geometric technique, based on careful tessellations of minimum-volume
enclosing ellipsoids (MVEEs). The key idea is that MVEEs combine a low VC-dimension, which
makes learning easy, with a small volume, which can be decomposed in easily classifiable elements.
While MVEEs are not guaranteed to be consistent with the cluster samples, our results can be also
proven using consistent ellipsoids that are close to the convex hull of the samples. This notion of
low-stretch consistent ellipsoid is new, and may be interesting in its own right.
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2 Preliminaries and definitions

All missing statements and proofs can be found in the supplementary material. The input to our
problem is a triple (X, k, γ) where X ⊂ Rd is a set of n arbitrary points, k ≥ 2 is an integer, and
γ ∈ R>0 is the margin (see below). We assume there exists a latent clustering C = {C1, . . . , Ck}
over the input set X , which we do not know and want to compute. To this end, we are given access
to an oracle answering same-cluster queries: a query SCQ(x,x′) is answered by +1 if x,x′ are in
the same cluster of C, and by −1 otherwise. Our goal is to recover C while using as few queries as
possible. Note that, given any subset S ⊆ X , with at most k|S| queries one can always learn the
label (cluster) of each x ∈ S up to a relabeling of C, see [4].

It is immediate to see that if C is completely arbitrary, then no algorithm can reconstruct C with
less than n queries. Here, we assume some structure by requiring each cluster to satisfy a certain
margin condition, as follows. Let W ∈ Rd×d be some positive semidefinite matrix (possibly different
for each cluster). Then W induces the seminorm ‖x‖W =

√
x>Wx, which in turn induces the

pseudo-metric dW (x,y) = ‖x − y‖W . The same notation applies to any other PSD matrix, and
when the matrix is clear from the context, we drop the subscript and write simply d(·, ·). The margin
condition that we assume is the following:
Definition 1 (Clustering margin). A cluster C has margin γ > 0 if there exist a PSD matrix
W = W (C) and a point c ∈ Rd such that for all y /∈ C and all x ∈ C we have dW (y, c) >√

1 + γ dW (x, c). If this holds for all clusters, then we say that the clustering C has margin γ.

This is our only assumption. In particular, we do not assume the cluster sizes are balanced, or that
C is the solution to an optimization problem, or that points in a cluster C are closer to the center of
C than to the centers of other clusters. Note that the matrices W and the points c are unknown to
us. The spherical k-means setting of [4] corresponds to the special case where for every C we have
W = rI for some r = r(C) > 0 and c = µ(C) = 1

|C|
∑

x∈C x.

We denote a clustering returned by our algorithm by Ĉ = {Ĉ1, . . . , Ĉk}. The quality of Ĉ is
measured by the disagreement with C under the best possible relabeling of the clusters, that is,
4(Ĉ, C) = minσ∈Sk

1
2n

∑k
i=1 |C14Ĉσ(i)|, where Sk is the set of all permutations of [k]. Our goal

is to minimize 4(Ĉ, C) using as few queries as possible. In particular, we characterize the query
complexity of exact reconstruction, corresponding to4(Ĉ, C) = 0. The rank of a cluster C, denoted
by rank(C), is the rank of the subspace spanned by its points.

3 Our contribution

Our main contribution is an efficient active clustering algorithm, named RECUR, to recover the latent
clustering exactly. We show the following.
Theorem 1. Consider any instance (X, k, γ) whose latent clustering C has margin γ. Let n = |X|,
let r ≤ d be the maximum rank of a cluster in C, and let f(r, γ) = max

{
2r,O

(
r
γ ln rγ

)r}
. Given

(X, k, γ), RECUR with probability 1 outputs C (up to a relabeling), and with high probability runs in
time O((k lnn)(n+ k2 ln k)) using O

(
(k lnn) (k2d2 ln k + f(r, γ))

)
same-cluster queries.

More in general, RECUR clusters correctly (1− ε)n points using O
(
(k ln 1/ε) (k2d2 ln k + f(r, γ))

)
queries in expectation. Note that the query complexity depends on r rather than on d, which is
desirable as real-world data often exhibits a low rank (i.e., every point can be expressed as a linear
combination of at most r other points in the same cluster, for some r�d). In addition, unlike the
algorithm of [4], which is Monte Carlo and thus can fail, RECUR is Las Vegas: it returns the correct
clustering with probability 1, and the randomness is only over the number of queries and the running
time. Moreover, RECUR is simple to understand and easy to implement. It works by recovering a
constant fraction of some cluster at each round, as follows (see Section 5 and Section 6):

1. Sampling. We draw points uniformly at random from X until, for some cluster C, we obtain
a sample SC of size ' d2. We can show that with good probability |C| ' 1

k |X|, and that, by
standard PAC bounds, any ellipsoid E containing SC contains at least half of C.

2. Computing the MVEE. We compute the MVEE (minimum-volume enclosing ellipsoid) E =
EJ(SC) of SC . As said, by PAC bounds, E contains at least half of C. If we were lucky, E
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would not contain any point from other clusters, and E ∩ X would be our large subset of C.
Unfortunately, E can contain an arbitrarily large number of points from X \C. Our goal is to find
them and recover C ∩ E.

3. Tessellating the MVEE. To recover C ∩ E, we partition E into roughly (d/γ)d hyperrectangles,
each one with the property of being monochromatic: its points are either all in C or all in X \ C.
Thanks to this special tessellation, with roughly (d/γ)d queries we can find all hyperrectangles
containing only points of C, and thus compute C ∩ E.

Our second contribution is to show a family of instances where every algorithm needs roughly (1/γ)r

same-cluster queries to return the correct clustering. This holds even if the algorithm is allowed to
fail with constant probability. Together with Theorem 1, this gives an approximate characterization
of the query complexity of the problem as a function of γ and r. That is, for ellipsoidal clusters, a
margin of γ is necessary and sufficient to achieve a query complexity that grows roughly as (1/γ)r.
This lower bound also implies that our algorithm is nearly optimal, even compared to algorithms that
can fail. The result is given formally in Section 7.

Our final contribution is a set of experiments on large synthetic datasets. They show that our algorithm
RECUR achieves exact cluster reconstruction efficiently, see Section 8.

4 Related work.

The semi-supervised active clustering (SSAC) framework was introduced in [4], together with the
SCQ-k-means algorithm that recovers C using O(k2 ln k + k lnn) same-cluster queries. This is
achieved via binary search under assumptions much stronger than ours (see above). In our setting,
SCQ-k-means works only when every point c is close to the cluster centroid and the condition number
of W is small (see the supplementary material); indeed, our experiments show that SCQ-k-means
fails even when W ' I . Interestingly, even if binary search and its generalizations are at the core
of many active learning techniques [32], here they do not seem to help. We remark that we depend
on γ in the same way as [4]: if γ is a lower bound on the actual margin of C, then the correctness
is guaranteed, otherwise we may return any clustering. Clustering with same-cluster queries is also
studied in [28], but they assume stochastic similarities between points that do not necessarily define a
metric. Same-cluster queries for center-based clustering in metric spaces were also considered by [34],
under α-center proximity [5] instead of γ-margin (see [4, Appendix B] for a comparison between the
two notions). Finally, [3] used same-cluster queries to obtain a PTAS for k-means. Unfortunately,
this gives no guarantee on the clustering error: a good k-means value can be achieved by a clustering
very different from the optimal one, and vice versa. From a more theoretical viewpoint, the problem
has been extensively studied for clusters generated by a latent mixture of Gaussians [8, 20, 18].

As same-cluster queries can be used to label the points, one can also learn the clusters using standard
pool-based active learning tools. For example, using quadratic feature expansion, our ellipsoidal
clusters can be learned as hyperplanes. Unfortunately, the worst-case label complexity of actively
learning hyperplanes with margin γ < 1/2 is still Ω

(
(R/γ)d

)
, where R is the radius of the smallest

ball enclosing the points [14]. Some approaches that bypass this lower bound have been proposed. In
[14] they prove an approximation result, showing that OPT ×O

(
d ln R

γ

)
queries are sufficient to

learn any hyperplane with margin γ, where OPT is the number of queries made by the optimal active
learning algorithm. Moreover, under distributional assumptions, linear separators can be learned
efficiently with roughly O(d lnn) label queries [6, 7, 9]. In a different line of work, [23] show that
O
(
(d lnn) ln R

γ

)
queries suffice for linear separators with margin γ when the algorithm can also

make comparison queries: for any two pairs of points (x,x′) and (y,y′) from X , a comparison
query returns 1 iff dW (x,x′) ≤ dW (y,y′). As we show, comparison queries do not help learning
the latent metric dW using metric learning techniques [25] (see the supplementary material). In
general, the query complexity of pool-based active learning is characterized by the star dimension
of the family of sets [17]. This implies that, if we allow for a non-zero probability of failure, then
O(s lnn) queries are sufficient for reconstructing a single cluster, where s is the star dimension of
ellipsoids with margin γ. To the best of our knowledge, this quantity is not known for ellipsoids with
margin (not even for halfspaces with margin), and our results seem to suggest a value of order (d/γ)d.
If true, this would imply then the general algorithms of [17] could be used to solve our problem
with a number of queries comparable to ours. However, note that our reconstructions are exact with
probability one, and are achieved by simple algorithms that work well in practice.
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5 Recovery of a single cluster with one-sided error

This section describes the core of our cluster recovery algorithm. The main idea is to show that, given
any subset SC ⊆ C of some cluster C, if we compute a small ellipsoid E containing SC , then we
can compute C ∩ E deterministically with a small number of queries.

Consider a subset SC ⊆ C, and let conv(SC) be its convex hull. The minimum-volume enclosing
ellipsoid (MVEE) of SC , also known as Löwner-John ellipsoid and denoted by EJ(SC), is the
volume-minimizing ellipsoid E such that SC ⊂ E (see, e.g., [36]). The main result of this section is
that C ∩ EJ(SC) is easy to learn. Formally, we prove:
Theorem 2. Suppose we are given a subset SC ⊆ C, where C is any unknown cluster. Then we
can learn C ∩ EJ(SC) using max

{
2r,O

(
r
γ ln rγ

)r}
same-cluster queries, where r = rank(C) and

EJ(SC) is the minimum-volume enclosing ellipsoid of SC .

In the rest of the section we show how to learn C ∩ EJ(SC) and sketch the proof of the theorem.

The MVEE. The first idea is to compute an ellipsoid E that is “close” to conv(SC). A d-rounding
of SC is any ellipsoid E satisfying the following (we assume the center of E is the origin):

1

d
E ⊆ conv(SC) ⊆ E (1)

In particular, by a classical theorem by John [24], the MVEE EJ(SC) is a d-rounding of SC . We
therefore let E = EJ(SC). Note however that any d-rounding ellipsoid E can be chosen instead, as
the only property we exploit in our proofs is (1).

It should be noted that the ambient space dimensionality d can be replaced by r = rank(SC). To this
end, before computing E = EJ(SC), we compute the span V of SC and a canonical basis for it using
a standard algorithm (e.g., Gram-Schmidt). We then use V as new ambient space, and search for
EJ(SC) in V . This works since EJ(SC) ⊂ V , and lowers the dimensionality from d to r ≤ d. From
this point onward we still use d in our notation, but all our constructions and claims hold unchanged
if instead one uses r, coherently with the bounds of Theorem 2.

The monochromatic tessellation. We now show that, by exploiting the γ-margin condition, we
can learn C ∩ EJ(SC) with a small number of queries. We do so by discretizing EJ(SC) into
hyperrectangles so that, for each hyperrectangle, we need only one query to decide if it lies in C
or not. The crux is to show that there exists such a discretization, which we call monochromatic
tessellation, consisting of relatively few hyperrectangles, roughly ( dγ ln dγ )d.

µ β1

β2

β1ρ
i β1ρ

i+1

β2ρ
j

β2ρ
j+1

L1

L2

Figure 2: The tessellation R of E ∩ Rd
+.

Every hyperrectangle R (shaded) is such
that R ∩ E is monochromatic, i.e. contains
only points of C or of X \ C.

Let E = EJ(SC). To describe the monochromatic tessel-
lation, we first define the notion of monochromatic subset:
Definition 2. A setB ⊂ Rd is monochromatic with respect
to a cluster C if it does not contain two points x,y with
x ∈ C and y /∈ C.

Fix a hyperrectangle R ⊂ Rd. The above definition implies
that, if B = R ∩ E is monochromatic, then we learn the
label of all points in B with a single query. Indeed, if we
take any y ∈ B and any x ∈ SC , the query SCQ(y,x) tells
us whether y ∈ C or y /∈ C simultaneously for all y ∈
B. Therefore, if we can cover E with m monochromatic
hyperrectangles, then we can learn C ∩E with m queries.
Our goal is to show that we can do so with m ' ( dγ ln dγ )d.

We now describe the construction in more detail; see
also Figure 2. The first observation is that, if any two
points x,y ∈ X are such that x ∈ C and y /∈ C, then
|xi − yi| & γ/d for some i. Indeed, if this was not the
case then x,y would be too close and would violate the
γ-margin condition. This implies that, for ρ ' 1 + γ/d,
any hyperrectangle whose sides have the form [βi, βiρ ] is
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monochromatic. We can exploit this observation to construct the tessellation. Let the semiaxes of
E be the canonical basis for Rd and its center µ be the origin. For simplicity, we only consider
the positive orthant, the argument being identical for every other orthant. Let Li be the length of
the i-th semiaxis of E. The goal is to cover the interval [0, Li] along the i-th semiaxis of E with
roughly logρ(Li/βi) intervals of length increasing geometrically with ρ. More precisely, we let
Ti =

{[
0, βi

]
,
(
βi, βiρ

]
, . . . ,

(
βiρ

b−1, βiρ
b
]}

, where βi > 0, ρ > 1, and b ≥ 0 are functions of γ
and d. Then our tessellation is the cartesian product of all the Ti:

Definition 3. Let Rd+ be the positive orthant of Rd. The tessellation R of E ∩ Rd+ is the set of
(b+ 1)d hyperrectangles expressed in the canonical basis {u1, . . . ,ud} of E: R = T1 × . . .× Td.

We now come to the central fact. Loosely speaking, if βi ' γ
dLi then the point (β1, . . . , βd) lies

“well inside” conv(SC), because (1) tells us E itself is close to conv(SC). By setting ρ, b adequately,
then, we can guarantee the intervals of Ti of the form (βiρ

j−1, βiρ
j ] cover all the space between

conv(SC) and E. More formally we show that, for a suitable choice of βi, ρ, b, the tessellation R
satisfies the following properties (see the supplementary material):

(1) |R| ≤ max
{

1,O
(
d
γ ln dγ

)d}
(2) E ∩ Rd+ ⊆

⋃
R∈R

R

(3) For every R ∈ R, the set R ∩ E is monochromatic w.r.t. C

Once the three properties are established, Theorem 2 immediately derives from the discussion above.

Pseudocode. We list below our algorithm that learns C ∩E subject to the bounds of Theorem 2.
We start by computing E = EJ(SC) and selecting the subset EX = X ∩E. We then proceed with
the tessellation, but without constructing R explicitly. Note indeed that, for every y ∈ EX , the
hyperrectangle R(y) containing y is determined uniquely by |yi|/βi for all i ∈ [d]. In fact, we can
manage all orthants at once by simply looking at yi/βi. After grouping all points y by their R(y),
we repeatedly take a yet-unlabeled R and label it as C or not C. Finally, we return all points in the
hyperrectangles labeled as C.

Algorithm 1 TessellationLearn(X,SC , γ)

1: compute E ← EJ(SC) or any other r-rounding of SC
2: compute EX ← X ∩ E
3: compute βi, ρ, b as a function of r, γ . see Figure 2
4: for every y ∈ EX do
5: map y to R(y)

6: xC ← any point in SC
7: while there is some unlabeled R do
8: label(R)← SCQ(xC ,y), where y is any point s.t. R(y) = R

9: return all y mapped to R such that label(R) = +1

Low-stretch separators. We conclude this section with a technical note. Although MVEEs enable
exact cluster reconstruction, they do not give PAC guarantees since they do not ensure consistency.
Indeed, if we draw a sample S from X and let SC = S ∩ C, there is no guarantee that E = EJ(SC)
separates SC from S \ SC . On the other hand, any ellipsoid E separating SC from S \ SC is a good
classifier in the PAC sense, but there is no guarantee it will be close to conv(SC), thus breaking down
our algorithm. Interestingly, in the supplementary material we show that it is possible to compute an
ellipsoid that is simultaneously a good PAC classifier and close to conv(SC), yielding essentially the
same bounds as Theorem 2. Formally, we have:

Definition 4. Given any finite set X in Rd and a subset S ⊂ X , a Φ-stretch separator for S is any
ellipsoid E separating S from X \ S and such that E ⊆ ΦEJ(S).

Theorem 3. Suppose C has margin γ > 0 w.r.t. to some z ∈ Rd and fix any subset SC ⊆ C. There
exists a Φ-stretch separator for SC with Φ = 64

√
2d2 max

{
125, 1/γ3

}
.
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6 Exact recovery of all clusters

In this section we conclude the construction of our algorithm RECUR (listed below), and we bound its
query complexity and running time. RECUR proceeds in rounds. At each round, it draws samples
uniformly at random from X until, for some sufficiently large b > 0, it obtains a sample SC of
size bd2 ln k from some cluster C. At this point, by concentration and PAC bounds, we know that
any ellipsoid E containing SC satisfies |C ∩ E| ≥ 1

4k |X| with probability at least 1/2. RECUR uses
the routine TessellationLearn() from Section 5 to compute such a subset C ∩ E efficiently (see
Theorem 2). RECUR then deletes C ∩ E from X and repeats the process on the remaining points.
This continues until a fraction (1 − ε) of points have been clustered. In particular, when ε < 1/n,
RECUR clusters all the points of X .

Algorithm 2 RECUR(X, k, γ, ε)

1: Ĉ1, . . . , Ĉk ← ∅
2: while |X| > εn do
3: draw samples with replacement from X until |SC | ≥ bd2ln k for some C
4: CE ← TessellationLearn(X,SC , γ)

5: add CE to the corresponding Ĉi
6: X ← X \ CE
7: return Ĉ = {Ĉ1, . . . , Ĉk}

Regarding the correctness of RECUR, we have:

Lemma 1. The clustering Ĉ returned by RECUR(X, k, γ, ε) deterministically satisfies4(Ĉ, C) ≤ ε.
In particular, for ε < 1/n we have4(Ĉ, C) = 0.

This holds because 4(Ĉ, C) is bounded by the fraction of points that are still in X when RECUR
returns; and this fraction is at most ε by construction. Regarding the cost of RECUR, we have:
Lemma 2. RECUR(X, k, γ, ε) makes O(k3 ln k ln(1/ε)) same-cluster queries in expectation, and
for all fixed a ≥ 1, RECUR(X, k, γ, 0) with probability at least 1 − n−a makes O(k3 ln k lnn)

same-cluster queries and runs in time O((k lnn)(n+ k2 ln k)) = Õ(kn+ k3).

In the rest of the section we sketch the proof of Lemma 2. We start by bounding the number of rounds
performed by RECUR. Recall that, at each round, with probability at least 1/2 a fraction at least 1/4k of
points are labeled and removed. Thus, at each round, the size of X drops by (1− 1/8k) in expectation.
Hence, we need roughly 8k ln(1/ε) rounds before the size of X drops below εn. Indeed, we prove:
Lemma 3. RECUR(X, k, γ, ε) makes at most 8k ln(1/ε) rounds in expectation, and for all fixed a ≥ 1,
RECUR(X, k, γ, 0) with probability at least 1− n−a performs at most (8k + 6a

√
k) lnn rounds.

We can now bound the query cost and running time of RECUR, by counting the work done at each
round and using Lemma 3. To simplify the discussion we treat d, r, γ as constants, but fine-grained
bounds can be derived immediately from the discussion itself.

Query cost of RECUR. The algorithm makes queries at line 3 and line 4. At line 3, RECUR draws at
most bkd2 ln k = O(k ln k) samples. This holds since there are at most k clusters, so after bkd2 ln k
samples, the condition |SC | ≥ bd2 ln k will hold for some C. Since learning the label of each
sample requires at most k queries, line 3 makes O(k2 ln k) queries in total. At line 4, RECUR makes
f(d, γ) = O(1) queries by Theorem 2. Together with Lemma 3, this implies that RECUR with
probability at least 1− n−a makes at most O(k lnn)×O(k2 ln k) = O(k3 ln k lnn) queries.

Running time of RECUR. Line 3 takes time O(k2 ln k), see above. The rest of each round is
dominated by the invocation of TessellationLearn at line 4. Recall then the pseudocode of Tessella-
tionLearn from Section 5. At line 1, computing E = EJ(SC) or any r-rounding of SC takes time
O(|SC |3.5 ln |SC |), see [24].2 This is in Õ(1) since by construction |SC | = O(d2 ln k) = Õ(1).
Computing EX = X ∩ E takes time O(|X|poly(d)) = O(n). For the index (line 4), we can build
in time O(|X ∩E|) a dictionary that maps every R ∈ R to the set R ∩EX . The classification part

2More precisely, for a set S an ellipsoid E such that 1
(1+ε)d

E ⊂ conv(S) ⊂ E can be computed in
O(|S|3.5 ln(|S|/ε)) operations in the real number model of computation, see [24].
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(line 7) takes time |R| = O(1). Finally, enumerating all positive R and concatenating the list of their
points takes again time O(|X ∩ E|poly(d)). By the rounds bound of Lemma 3, then, RECUR with
probability at least 1− n−a runs in time O((k lnn)(n+ k2 ln k)).

7 Lower bounds

We show that any algorithm achieving exact cluster reconstruction must, in the worst case, perform a
number of same-cluster queries that is exponential in d (the well-known “curse of dimensionality”).
Formally, in the supplementary material we prove:
Theorem 4. Choose any possibly randomized learning algorithm. There exist:

1. for all γ ∈ (0, 1/7) and d ≥ 2, an instance on n = Ω
(
( 1+γ

8γ )
d−1
2

)
points and 3 clusters

2. for all γ > 0 and d ≥ 48(1 + γ)2, an instance on n = Ω
(
e

d
48(1+γ)2

)
points and 2 clusters

such that (i) the latent clustering C has margin γ, and (ii) to return with probability 2/3 a Ĉ such that
4(Ĉ, C) = 0, the algorithm must make Ω(n) same-cluster queries in expectation.

The lower bound uses two different constructions, each one giving a specific instance distribution
where any algorithm must perform Ω(n) queries in expectation, where n is exponential in d as in the
statement of the theorem. The first construction is similar to the one shown in [14]. The input set X is
a packing of' (1/γ)d points on the d-dimensional sphere, at distance' √γ from each other. We show
that, for x = (x1, . . . , xd) ∈ X drawn uniformly at random, setting W = (1 + γ) diag(x21, . . . , x

2
d)

makes x an outlier. That is, X \ {x} forms a first cluster C1, and {x} forms a second cluster C2,
and both clusters satisfy the margin condition. In order to output the correct clustering, any algorithm
must find x, which requires Ω(n) queries in expectation. In the second construction, X is a random
sample of n ' exp(d/(1 + γ)2) points from the d-dimensional hypercube {0, 1}d such that each
coordinate is independently 1 with probability ' 1

1+γ . Similarly to the first construction we show
that, for x ∈ X drawn uniformly at random, setting W = (1 + γ) diag(x1, . . . , xd) makes x an
outlier, and any algorithm needs Ω(n) queries to find it.

8 Experiments

We implemented our algorithm RECUR and compared it against SCQ-k-means [4]. To this end, we
generated four synthetic instances on n = 105 points with increasing dimension d = 2, 4, 6, 8. The
latent clusterings consist of k = 5 ellipsoidal clusters of equal size, each one with margin γ = 1 w.r.t.
a random center and a random PSD matrix with condition number κ = 100, making each cluster
stretched by 10× in a random direction. To account for an imperfect knowledge of the data, we
fed RECUR with a value of γ = 10 (thus, it could in principle output a wrong clustering). We also
adopted for RECUR the batch sampling of SCQ-k-means, i.e., we draw k · 10 samples in each round;
this makes RECUR slightly less efficient than with its original sampling scheme (see line 3).

To further improve the performance of RECUR, we use a simple “greedy hull expansion” heuristic
that can increase the number of points recovered at each round without performing additional queries.
Immediately after taking the sample SC , we repeatedly expand its convex hull conv(SC) by a factor
' (1 + γ/d), and add all the points that fall inside it to SC . If C is sufficiently dense, a substantial
fraction of it will be added to SC ; while, by the margin assumption, no point outside C will ever be
added to SC (see the proof of the tessellation). This greedy hull expansion is repeated until no new
points are found, in which case we proceed to compute the MVEE and the tessellation.

Figure 3 shows for both algorithms the clustering error4 versus the number of queries, round by
round, averaged over 10 independent runs (SCQ-k-means has a single measurement since it runs “in
one shot”). The run variance is negligible and we do not report it. Observe that the error of SCQ-k-
means is always in the range 20%–40%. In contrast, the error of RECUR decreases exponentially with
the rounds until the latent clustering is exactly recovered, as predicted by our theoretical results. To
achieve4 ≤ .05, RECUR uses less than 3% of the queries needed by a brute force labeling, which is
kn = 5× 105. Note that, except when clusters are aligned as in Figure 1, SCQ-k-means continues to
perform poorly even after whitening the input data to compensate for skewness. Finally, note how the
number of queries issued by RECUR increases with the dimensionality d, in line with Theorem 4.
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Figure 3: Clustering error vs. number of queries for k = 5 and d = 2, 4, 6, 8 (left to right, top to
bottom). While SCQ-k-means performs rather poorly, RECUR always achieves exact reconstruction.

9 Conclusions

We have given a novel technique that, under general conditions, allows one to actively recover a
clustering using only O(lnn) same-cluster queries. Unlike previous work, our technique is robust
to distortions and manglings of the clusters, and works for arbitrary clusterings rather than only for
those based on the solution of an optimization problem. Our work leaves open three main questions:
Q1: Can our assumptions be strengthened in order to reduce the dependence on the dimension from
exponential to polynomial, but without falling back to the setting of Ashtiani et al. [4]?
Q2: Can our assumptions be further relaxed, for instance by assuming a class of transformations
more general than those given by PSD matrices?
Q3: Is there a natural and complete characterization of the class of clusterings that can be recon-
structed with O(lnn) queries?
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